1
|
Miyara S, Adler M, Umansky KB, Häußler D, Bassat E, Divinsky Y, Elkahal J, Kain D, Lendengolts D, Ramirez Flores RO, Bueno-Levy H, Golani O, Shalit T, Gershovits M, Weizman E, Genzelinakh A, Kimchi DM, Shakked A, Zhang L, Wang J, Baehr A, Petrover Z, Sarig R, Dorn T, Moretti A, Saez-Rodriguez J, Kupatt C, Tanaka EM, Medzhitov R, Krüger A, Mayo A, Alon U, Tzahor E. Cold and hot fibrosis define clinically distinct cardiac pathologies. Cell Syst 2025; 16:101198. [PMID: 39970910 PMCID: PMC11922821 DOI: 10.1016/j.cels.2025.101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 09/28/2024] [Accepted: 01/27/2025] [Indexed: 02/21/2025]
Abstract
Fibrosis remains a major unmet medical need. Simplifying principles are needed to better understand fibrosis and to yield new therapeutic approaches. Fibrosis is driven by myofibroblasts that interact with macrophages. A mathematical cell-circuit model predicts two types of fibrosis: hot fibrosis driven by macrophages and myofibroblasts and cold fibrosis driven by myofibroblasts alone. Testing these concepts in cardiac fibrosis resulting from myocardial infarction (MI) and heart failure (HF), we revealed that acute MI leads to cold fibrosis whereas chronic injury (HF) leads to hot fibrosis. MI-driven cold fibrosis is conserved in pigs and humans. We computationally identified a vulnerability of cold fibrosis: the myofibroblast autocrine growth factor loop. Inhibiting this loop by targeting TIMP1 with neutralizing antibodies reduced myofibroblast proliferation and fibrosis post-MI in mice. Our study demonstrates the utility of the concepts of hot and cold fibrosis and the feasibility of a circuit-to-target approach to pinpoint a treatment strategy that reduces fibrosis. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Shoval Miyara
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Miri Adler
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Kfir B Umansky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Häußler
- TUM School of Medicine and Health, Institute of Experimental Oncology and Therapy Research, Technical University of Munich, Munich, Germany
| | - Elad Bassat
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria; Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Yalin Divinsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob Elkahal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Kain
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Daria Lendengolts
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ricardo O Ramirez Flores
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
| | - Hanna Bueno-Levy
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Shalit
- The Mantoux Bioinformatics institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Gershovits
- The Mantoux Bioinformatics institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Eviatar Weizman
- The Mantoux Bioinformatics institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Genzelinakh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Danielle M Kimchi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Avraham Shakked
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lingling Zhang
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jingkui Wang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria; Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Andrea Baehr
- Klinik und Poliklinik für Innere Medizin I, University Clinic rechts der Isar, Technical University of Munich, Munich, Germany; DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Zachary Petrover
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rachel Sarig
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tatjana Dorn
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Alessandra Moretti
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany; First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, UK
| | - Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, University Clinic rechts der Isar, Technical University of Munich, Munich, Germany; DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Elly M Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria; Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Ruslan Medzhitov
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Department of Immunobiology, Yale University School of Medicine, Yale, New Haven, CT, USA
| | - Achim Krüger
- TUM School of Medicine and Health, Institute of Experimental Oncology and Therapy Research, Technical University of Munich, Munich, Germany
| | - Avi Mayo
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Xu X, Su J, Zhu R, Li K, Zhao X, Fan J, Mao F. From morphology to single-cell molecules: high-resolution 3D histology in biomedicine. Mol Cancer 2025; 24:63. [PMID: 40033282 DOI: 10.1186/s12943-025-02240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/18/2025] [Indexed: 03/05/2025] Open
Abstract
High-resolution three-dimensional (3D) tissue analysis has emerged as a transformative innovation in the life sciences, providing detailed insights into the spatial organization and molecular composition of biological tissues. This review begins by tracing the historical milestones that have shaped the development of high-resolution 3D histology, highlighting key breakthroughs that have facilitated the advancement of current technologies. We then systematically categorize the various families of high-resolution 3D histology techniques, discussing their core principles, capabilities, and inherent limitations. These 3D histology techniques include microscopy imaging, tomographic approaches, single-cell and spatial omics, computational methods and 3D tissue reconstruction (e.g. 3D cultures and spheroids). Additionally, we explore a wide range of applications for single-cell 3D histology, demonstrating how single-cell and spatial technologies are being utilized in the fields such as oncology, cardiology, neuroscience, immunology, developmental biology and regenerative medicine. Despite the remarkable progress made in recent years, the field still faces significant challenges, including high barriers to entry, issues with data robustness, ambiguous best practices for experimental design, and a lack of standardization across methodologies. This review offers a thorough analysis of these challenges and presents recommendations to surmount them, with the overarching goal of nurturing ongoing innovation and broader integration of cellular 3D tissue analysis in both biology research and clinical practice.
Collapse
Affiliation(s)
- Xintian Xu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rongyi Zhu
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Kailong Li
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaolu Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital)Key Laboratory of Assisted Reproduction (Peking University), Ministry of EducationBeijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China.
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory for Interdisciplinary Research in Gastrointestinal Oncology (BLGO), Beijing, China.
| |
Collapse
|
3
|
Sanborn MA, Wang X, Gao S, Dai Y, Rehman J. Unveiling the cell-type-specific landscape of cellular senescence through single-cell transcriptomics using SenePy. Nat Commun 2025; 16:1884. [PMID: 39987255 PMCID: PMC11846890 DOI: 10.1038/s41467-025-57047-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 02/06/2025] [Indexed: 02/24/2025] Open
Abstract
Senescent cells accumulate in most tissues with organismal aging, exposure to stressors, or disease progression. It is challenging to identify senescent cells because cellular senescence signatures and phenotypes vary widely across distinct cell types and tissues. Here we developed an analytical algorithm that defines cell-type-specific and universal signatures of cellular senescence across a wide range of cell types and tissues. We utilize 72 mouse and 64 human weighted single-cell transcriptomic signatures of cellular senescence to create the SenePy scoring platform. SenePy signatures better recapitulate in vivo cellular senescence than signatures derived from in vitro senescence studies. We use SenePy to map the kinetics of senescent cell accumulation in healthy aging as well as multiple disease contexts, including tumorigenesis, inflammation, and myocardial infarction. SenePy characterizes cell-type-specific in vivo cellular senescence and could lead to the identification of genes that serve as mediators of cellular senescence and disease progression.
Collapse
Grants
- R01-AG091545 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01HL160469 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01-HL152515 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL152515 NHLBI NIH HHS
- R01-HL163978 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01 HL160469 NHLBI NIH HHS
- F31-AG090005 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- T32- HL139439 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- F31 AG090005 NIA NIH HHS
- R01 HL163978 NHLBI NIH HHS
- T32 HL139439 NHLBI NIH HHS
- R01 AG091545 NIA NIH HHS
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
Collapse
Affiliation(s)
- Mark A Sanborn
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois, USA.
- Center for Bioinformatics and Quantitative Biology, University of Illinois Chicago, Chicago, Illinois, USA.
| | - Xinge Wang
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois, USA
- Center for Bioinformatics and Quantitative Biology, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois Chicago, College of Engineering and College of Medicine, Chicago, Illinois, USA
| | - Shang Gao
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois, USA
- Center for Bioinformatics and Quantitative Biology, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois Chicago, College of Engineering and College of Medicine, Chicago, Illinois, USA
| | - Yang Dai
- Center for Bioinformatics and Quantitative Biology, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois Chicago, College of Engineering and College of Medicine, Chicago, Illinois, USA
| | - Jalees Rehman
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois, USA.
- Center for Bioinformatics and Quantitative Biology, University of Illinois Chicago, Chicago, Illinois, USA.
- Department of Biomedical Engineering, University of Illinois Chicago, College of Engineering and College of Medicine, Chicago, Illinois, USA.
- University of Illinois Cancer Center, Chicago, Illinois, USA.
| |
Collapse
|
4
|
Koenig AL, Kadyrov FF, Amrute JM, Yang S, Weinheimer CJ, Nigro JM, Kovacs A, Smith G, Lavine KJ. Genetic Mapping of Monocyte Fate Decisions Following Myocardial Infarction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.24.573263. [PMID: 39974922 PMCID: PMC11838486 DOI: 10.1101/2023.12.24.573263] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Inflammation contributes to the pathogenesis of myocardial infarction and heart failure and represents a viable therapeutic target. Monocytes and their progeny are highly abundant and display incredible functional diversity, serving as key determinants of myocardial inflammation and tissue repair. Much remains to be learned regarding mechanisms and signaling events that instruct monocyte fate decisions. We devised a genetic lineage tracing strategy using Ccr2 crERT2 Rosa26 LSL-tdTomato mice in combination with single cell RNA-sequencing to map the differentiation trajectories of monocytes that infiltrate the heart after reperfused myocardial infarction. Monocytes are recruited to the heart early after injury and give rise to transcriptionally distinct and spatially restricted macrophage and dendritic cell-like subsets that are specified prior to extravasation and chronically persist within the myocardium. Pseudotime analysis predicted two differentiation trajectories of monocyte-derived macrophages that are partitioned into the border and infarct zones, respectively. Among these trajectories, we show that macrophages expressing a type I IFN responsive signature are an intermediate population that gives rise to MHC-II hi macrophages, are localized within the border zone, and promote myocardial protection. Collectively, these data uncover new complexities of monocyte differentiation in the infarcted heart and suggest that modulating monocyte fate decisions may have clinical implications.
Collapse
|
5
|
Song Y, Spurlock B, Liu J, Qian L. Cardiac Aging in the Multi-Omics Era: High-Throughput Sequencing Insights. Cells 2024; 13:1683. [PMID: 39451201 PMCID: PMC11506570 DOI: 10.3390/cells13201683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Cardiovascular diseases are a leading cause of mortality worldwide, and the risks of both developing a disease and receiving a poor prognosis increase with age. With increasing life expectancy, understanding the mechanisms underlying heart aging has become critical. Traditional techniques have supported research into finding the physiological changes and hallmarks of cardiovascular aging, including oxidative stress, disabled macroautophagy, loss of proteostasis, and epigenetic alterations, among others. The advent of high-throughput multi-omics techniques offers new perspectives on the molecular mechanisms and cellular processes in the heart, guiding the development of therapeutic targets. This review explores the contributions and characteristics of these high-throughput techniques to unraveling heart aging. We discuss how different high-throughput omics approaches, both alone and in combination, produce robust and exciting new findings and outline future directions and prospects in studying heart aging in this new era.
Collapse
Affiliation(s)
- Yiran Song
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (Y.S.); (B.S.); (J.L.)
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Brian Spurlock
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (Y.S.); (B.S.); (J.L.)
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (Y.S.); (B.S.); (J.L.)
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (Y.S.); (B.S.); (J.L.)
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Liu S, Deshmukh V, Wang F, Liang J, Cusick J, Li X, Martin JF. Myocardial Infarction Suppresses Protein Synthesis and Causes Decoupling of Transcription and Translation. JACC Basic Transl Sci 2024; 9:792-807. [PMID: 39070274 PMCID: PMC11282883 DOI: 10.1016/j.jacbts.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 07/30/2024]
Abstract
Gene expression involves transcription, translation, and mRNA and protein degradation. Advanced RNA sequencing measures mRNA levels for cell state assessment, but mRNA level does not fully reflect protein level. Identifying heart cell proteomes and their stress response is crucial. Using a cardiomyocyte-specific mouse model, we tracked protein synthesis after myocardial infarction. Our results showed that myocardial infarction suppresses protein synthesis and unveils a decoupling of translation and transcription regulation in cardiomyocytes.
Collapse
Affiliation(s)
- Shijie Liu
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, Texas, USA
- (currently) Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Vaibhav Deshmukh
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Fangfei Wang
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jie Liang
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jenna Cusick
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Xiao Li
- Gene Editing Laboratory, Texas Heart Institute, Houston, Texas, USA
| | - James F. Martin
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Gene Editing Laboratory, Texas Heart Institute, Houston, Texas, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
7
|
En A, Bogireddi H, Thomas B, Stutzman A, Ikegami S, LaForest B, Almakki O, Pytel P, Moskowitz IP, Ikegami K. Pervasive nuclear envelope ruptures precede ECM signaling and disease onset without activating cGAS-STING in Lamin-cardiomyopathy mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.28.555134. [PMID: 37693381 PMCID: PMC10491116 DOI: 10.1101/2023.08.28.555134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Nuclear envelope (NE) ruptures are emerging observations in Lamin-related dilated cardiomyopathy, an adult-onset disease caused by loss-of-function mutations in Lamin A/C, a nuclear lamina component. Here, we tested a prevailing hypothesis that NE ruptures trigger pathological cGAS-STING cytosolic DNA-sensing pathway, using a mouse model of Lamin-cardiomyopathy. Reduction of Lamin A/C in cardiomyocytes of adult mice caused pervasive NE ruptures in cardiomyocytes, preceding inflammatory transcription, fibrosis, and fatal dilated cardiomyopathy. NE ruptures were followed by DNA damage accumulation without causing immediate cardiomyocyte death. However, cGAS-STING-dependent inflammatory signaling remained inactive. Deleting cGas or Sting did not rescue cardiomyopathy. The lack of cGAS-STING activation was likely due to the near absence of cGAS expression in adult cardiomyocytes at baseline. Instead, extracellular matrix (ECM) signaling was activated and predicted to initiate pro-inflammatory communication from Lamin-reduced cardiomyocytes to fibroblasts. Our work nominates ECM signaling, not cGAS-STING, as a potential inflammatory contributor in Lamin-cardiomyopathy.
Collapse
Affiliation(s)
- Atsuki En
- Division of Molecular Cardvascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hanumakumar Bogireddi
- Division of Molecular Cardvascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Briana Thomas
- Division of Molecular Cardvascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Alexis Stutzman
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Sachie Ikegami
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Brigitte LaForest
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Omar Almakki
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Peter Pytel
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Ivan P Moskowitz
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
- Department of Pathology, The University of Chicago, Chicago, IL, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Kohta Ikegami
- Division of Molecular Cardvascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
8
|
Li RG, Li X, Morikawa Y, Grisanti-Canozo FJ, Meng F, Tsai CR, Zhao Y, Liu L, Kim J, Xie B, Klysik E, Liu S, Samee MAH, Martin JF. YAP induces a neonatal-like pro-renewal niche in the adult heart. NATURE CARDIOVASCULAR RESEARCH 2024; 3:283-300. [PMID: 38510108 PMCID: PMC10954255 DOI: 10.1038/s44161-024-00428-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/12/2024] [Indexed: 03/22/2024]
Abstract
After myocardial infarction (MI), mammalian hearts do not regenerate, and the microenvironment is disrupted. Hippo signaling loss of function with activation of transcriptional co-factor YAP induces heart renewal and rebuilds the post-MI microenvironment. In this study, we investigated adult renewal-competent mouse hearts expressing an active version of YAP, called YAP5SA, in cardiomyocytes (CMs). Spatial transcriptomics and single-cell RNA sequencing revealed a conserved, renewal-competent CM cell state called adult (a)CM2 with high YAP activity. aCM2 co-localized with cardiac fibroblasts (CFs) expressing complement pathway component C3 and macrophages (MPs) expressing C3ar1 receptor to form a cellular triad in YAP5SA hearts and renewal-competent neonatal hearts. Although aCM2 was detected in adult mouse and human hearts, the cellular triad failed to co-localize in these non-renewing hearts. C3 and C3ar1 loss-of-function experiments indicated that C3a signaling between MPs and CFs was required to assemble the pro-renewal aCM2, C3+ CF and C3ar1+ MP cellular triad.
Collapse
Affiliation(s)
- Rich Gang Li
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, USA
- McGill Gene Editing Laboratory, Texas Heart Institute, Houston, TX, USA
- These authors contributed equally: Rich Gang Li, Xiao Li
| | - Xiao Li
- McGill Gene Editing Laboratory, Texas Heart Institute, Houston, TX, USA
- These authors contributed equally: Rich Gang Li, Xiao Li
| | - Yuka Morikawa
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, USA
| | - Francisco J. Grisanti-Canozo
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Fansen Meng
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Chang-Ru Tsai
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Yi Zhao
- McGill Gene Editing Laboratory, Texas Heart Institute, Houston, TX, USA
| | - Lin Liu
- McGill Gene Editing Laboratory, Texas Heart Institute, Houston, TX, USA
| | - Jong Kim
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, USA
| | - Bing Xie
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Elzbieta Klysik
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Shijie Liu
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, USA
| | - Md Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - James F. Martin
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, USA
- McGill Gene Editing Laboratory, Texas Heart Institute, Houston, TX, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Center for Organ Repair and Renewal, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
9
|
Jiang Y, Yu W, Hu T, Peng H, Hu F, Yuan Y, Liu X, Lai S, Zhou J, Dong X. Unveiling macrophage diversity in myocardial ischemia-reperfusion injury: identification of a distinct lipid-associated macrophage subset. Front Immunol 2024; 15:1335333. [PMID: 38449872 PMCID: PMC10915075 DOI: 10.3389/fimmu.2024.1335333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024] Open
Abstract
Background and objective Macrophages play a crucial and dichotomous role cardiac repair following myocardial ischemia-reperfusion, as they can both facilitate tissue healing and contribute to injury. This duality is intricately linked to environmental factors, and the identification of macrophage subtypes within the context of myocardial ischemia-reperfusion injury (MIRI) may offer insights for the development of more precise intervention strategies. Methods Specific marker genes were used to identify macrophage subtypes in GSE227088 (mouse single-cell RNA sequencing dataset). Genome Set Enrichment Analysis (GSEA) was further employed to validate the identified LAM subtypes. Trajectory analysis and single-cell regulatory network inference were executed using the R packages Monocle2 and SCENIC, respectively. The conservation of LAM was verified using human ischemic cardiomyopathy heart failure samples from the GSE145154 (human single-cell RNA sequencing dataset). Fluorescent homologous double-labeling experiments were performed to determine the spatial localization of LAM-tagged gene expression in the MIRI mouse model. Results In this study, single-cell RNA sequencing (scRNA-seq) was employed to investigate the cellular landscape in ischemia-reperfusion injury (IRI). Macrophage subtypes, including a novel Lipid-Associated Macrophage (LAM) subtype characterized by high expression of Spp1, Trem2, and other genes, were identified. Enrichment and Progeny pathway analyses highlighted the distinctive functional role of the SPP1+ LAM subtype, particularly in lipid metabolism and the regulation of the MAPK pathway. Pseudotime analysis revealed the dynamic differentiation of macrophage subtypes during IRI, with the activation of pro-inflammatory pathways in specific clusters. Transcription factor analysis using SCENIC identified key regulators associated with macrophage differentiation. Furthermore, validation in human samples confirmed the presence of SPP1+ LAM. Co-staining experiments provided definitive evidence of LAM marker expression in the infarct zone. These findings shed light on the role of LAM in IRI and its potential as a therapeutic target. Conclusion In conclusion, the study identifies SPP1+ LAM macrophages in ischemia-reperfusion injury and highlights their potential in cardiac remodeling.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wenpeng Yu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tie Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hanzhi Peng
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fajia Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yong Yuan
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xufeng Liu
- Department of Haematology, Ganzhou People’s Hospital, Ganzhou, China
| | - Songqing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jianliang Zhou
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao Dong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Kiessling P, Kuppe C. Spatial multi-omics: novel tools to study the complexity of cardiovascular diseases. Genome Med 2024; 16:14. [PMID: 38238823 PMCID: PMC10795303 DOI: 10.1186/s13073-024-01282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024] Open
Abstract
Spatial multi-omic studies have emerged as a promising approach to comprehensively analyze cells in tissues, enabling the joint analysis of multiple data modalities like transcriptome, epigenome, proteome, and metabolome in parallel or even the same tissue section. This review focuses on the recent advancements in spatial multi-omics technologies, including novel data modalities and computational approaches. We discuss the advancements in low-resolution and high-resolution spatial multi-omics methods which can resolve up to 10,000 of individual molecules at subcellular level. By applying and integrating these techniques, researchers have recently gained valuable insights into the molecular circuits and mechanisms which govern cell biology along the cardiovascular disease spectrum. We provide an overview of current data analysis approaches, with a focus on data integration of multi-omic datasets, highlighting strengths and weaknesses of various computational pipelines. These tools play a crucial role in analyzing and interpreting spatial multi-omics datasets, facilitating the discovery of new findings, and enhancing translational cardiovascular research. Despite nontrivial challenges, such as the need for standardization of experimental setups, data analysis, and improved computational tools, the application of spatial multi-omics holds tremendous potential in revolutionizing our understanding of human disease processes and the identification of novel biomarkers and therapeutic targets. Exciting opportunities lie ahead for the spatial multi-omics field and will likely contribute to the advancement of personalized medicine for cardiovascular diseases.
Collapse
Affiliation(s)
- Paul Kiessling
- Department of Nephrology, Rheumatology, and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
| | - Christoph Kuppe
- Department of Nephrology, Rheumatology, and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany.
| |
Collapse
|
11
|
Rolland L, Abaroa JM, Faucherre A, Drouard A, Jopling C. The ion channel Trpc6a regulates the cardiomyocyte regenerative response to mechanical stretch. Front Cardiovasc Med 2024; 10:1186086. [PMID: 38259319 PMCID: PMC10801195 DOI: 10.3389/fcvm.2023.1186086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/26/2023] [Indexed: 01/24/2024] Open
Abstract
Myocardial damage caused, for example, by cardiac ischemia leads to ventricular volume overload resulting in increased stretch of the remaining myocardium. In adult mammals, these changes trigger an adaptive cardiomyocyte hypertrophic response which, if the damage is extensive, will ultimately lead to pathological hypertrophy and heart failure. Conversely, in response to extensive myocardial damage, cardiomyocytes in the adult zebrafish heart and neonatal mice proliferate and completely regenerate the damaged myocardium. We therefore hypothesized that in adult zebrafish, changes in mechanical loading due to myocardial damage may act as a trigger to induce cardiac regeneration. Based on this notion we sought to identify mechanosensors which could be involved in detecting changes in mechanical loading and triggering regeneration. Here we show using a combination of knockout animals, RNAseq and in vitro assays that the mechanosensitive ion channel Trpc6a is required by cardiomyocytes for successful cardiac regeneration in adult zebrafish. Furthermore, using a cyclic cell stretch assay, we have determined that Trpc6a induces the expression of components of the AP1 transcription complex in response to mechanical stretch. Our data highlights how changes in mechanical forces due to myocardial damage can be detected by mechanosensors which in turn can trigger cardiac regeneration.
Collapse
Affiliation(s)
| | | | | | | | - Chris Jopling
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, LabEx ICST, Montpellier, France
| |
Collapse
|
12
|
Chen Y, Yang S, Yu K, Zhang J, Wu M, Zheng Y, Zhu Y, Dai J, Wang C, Zhu X, Dai Y, Sun Y, Wu T, Wang S. Spatial omics: An innovative frontier in aging research. Ageing Res Rev 2024; 93:102158. [PMID: 38056503 DOI: 10.1016/j.arr.2023.102158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Disentangling the impact of aging on health and disease has become critical as population aging progresses rapidly. Studying aging at the molecular level is complicated by the diverse aging profiles and dynamics. However, the examination of cellular states within aging tissues in situ is hampered by the lack of high-resolution spatial data. Emerging spatial omics technologies facilitate molecular and spatial analysis of tissues, providing direct access to precise information on various functional regions and serving as a favorable tool for unraveling the heterogeneity of aging. In this review, we summarize the recent advances in spatial omics application in multi-organ aging research, which has enhanced the understanding of aging mechanisms from multiple standpoints. We also discuss the main challenges in spatial omics research to date, the opportunities for further developing the technology, and the potential applications of spatial omics in aging and aging-related diseases.
Collapse
Affiliation(s)
- Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Shuhao Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Kaixu Yu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Yongqiang Zheng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Centre, Sun Yat-sen University, Guangzhou, China
| | - Yun Zhu
- Department of Internal Medicine, Southern Illinois University School of Medicine, 801 N. Rutledge, P.O. Box 19628, Springfield, IL 62702, USA
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Chunyan Wang
- College of Science & Engineering Jinan University, Guangzhou, China
| | - Xiaoran Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Yunhong Sun
- Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| |
Collapse
|
13
|
Mahoney SA, Dey AK, Basisty N, Herman AB. Identification and functional analysis of senescent cells in the cardiovascular system using omics approaches. Am J Physiol Heart Circ Physiol 2023; 325:H1039-H1058. [PMID: 37656130 PMCID: PMC10908411 DOI: 10.1152/ajpheart.00352.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide, and senescent cells have emerged as key contributors to its pathogenesis. Senescent cells exhibit cell cycle arrest and secrete a range of proinflammatory factors, termed the senescence-associated secretory phenotype (SASP), which promotes tissue dysfunction and exacerbates CVD progression. Omics technologies, specifically transcriptomics and proteomics, offer powerful tools to uncover and define the molecular signatures of senescent cells in cardiovascular tissue. By analyzing the comprehensive molecular profiles of senescent cells, omics approaches can identify specific genetic alterations, gene expression patterns, protein abundances, and metabolite levels associated with senescence in CVD. These omics-based discoveries provide insights into the mechanisms underlying senescence-induced cardiovascular damage, facilitating the development of novel diagnostic biomarkers and therapeutic targets. Furthermore, integration of multiple omics data sets enables a systems-level understanding of senescence in CVD, paving the way for precision medicine approaches to prevent or treat cardiovascular aging and its associated complications.
Collapse
Affiliation(s)
- Sophia A Mahoney
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, Colorado, United States
| | - Amit K Dey
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States
| | - Nathan Basisty
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States
| | - Allison B Herman
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States
| |
Collapse
|
14
|
Zhu M, Liang H, Zhang Z, Jiang H, Pu J, Hang X, Zhou Q, Xiang J, He X. Distinct mononuclear diploid cardiac subpopulation with minimal cell-cell communications persists in embryonic and adult mammalian heart. Front Med 2023; 17:939-956. [PMID: 37294383 DOI: 10.1007/s11684-023-0987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/31/2023] [Indexed: 06/10/2023]
Abstract
A small proportion of mononuclear diploid cardiomyocytes (MNDCMs), with regeneration potential, could persist in adult mammalian heart. However, the heterogeneity of MNDCMs and changes during development remains to be illuminated. To this end, 12 645 cardiac cells were generated from embryonic day 17.5 and postnatal days 2 and 8 mice by single-cell RNA sequencing. Three cardiac developmental paths were identified: two switching to cardiomyocytes (CM) maturation with close CM-fibroblast (FB) communications and one maintaining MNDCM status with least CM-FB communications. Proliferative MNDCMs having interactions with macrophages and non-proliferative MNDCMs (non-pMNDCMs) with minimal cell-cell communications were identified in the third path. The non-pMNDCMs possessed distinct properties: the lowest mitochondrial metabolisms, the highest glycolysis, and high expression of Myl4 and Tnni1. Single-nucleus RNA sequencing and immunohistochemical staining further proved that the Myl4+Tnni1+ MNDCMs persisted in embryonic and adult hearts. These MNDCMs were mapped to the heart by integrating the spatial and single-cell transcriptomic data. In conclusion, a novel non-pMNDCM subpopulation with minimal cell-cell communications was unveiled, highlighting the importance of microenvironment contribution to CM fate during maturation. These findings could improve the understanding of MNDCM heterogeneity and cardiac development, thus providing new clues for approaches to effective cardiac regeneration.
Collapse
Affiliation(s)
- Miaomiao Zhu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, `, Wuhan, 430030, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huamin Liang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, `, Wuhan, 430030, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhe Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, `, Wuhan, 430030, China
| | - Hao Jiang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, `, Wuhan, 430030, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingwen Pu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, `, Wuhan, 430030, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoyi Hang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, `, Wuhan, 430030, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Zhou
- Department of Physiology, School of Basic Medicine, Tongji Medical College, `, Wuhan, 430030, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiacheng Xiang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, `, Wuhan, 430030, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ximiao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, `, Wuhan, 430030, China.
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
15
|
Wang Y, Li Q, Tao B, Angelini M, Ramadoss S, Sun B, Wang P, Krokhaleva Y, Ma F, Gu Y, Espinoza A, Yamauchi K, Pellegrini M, Novitch B, Olcese R, Qu Z, Song Z, Deb A. Fibroblasts in heart scar tissue directly regulate cardiac excitability and arrhythmogenesis. Science 2023; 381:1480-1487. [PMID: 37769108 PMCID: PMC10768850 DOI: 10.1126/science.adh9925] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/11/2023] [Indexed: 09/30/2023]
Abstract
After heart injury, dead heart muscle is replaced by scar tissue. Fibroblasts can electrically couple with myocytes, and changes in fibroblast membrane potential can lead to myocyte excitability, which suggests that fibroblast-myocyte coupling in scar tissue may be responsible for arrhythmogenesis. However, the physiologic relevance of electrical coupling of myocytes and fibroblasts and its impact on cardiac excitability in vivo have never been demonstrated. We genetically engineered a mouse that expresses the optogenetic cationic channel ChR2 (H134R) exclusively in cardiac fibroblasts. After myocardial infarction, optical stimulation of scar tissue elicited organ-wide cardiac excitation and induced arrhythmias in these animals. Complementing computational modeling with experimental approaches, we showed that gap junctional and ephaptic coupling, in a synergistic yet functionally redundant manner, excited myocytes coupled to fibroblasts.
Collapse
Affiliation(s)
- Yijie Wang
- Division of Cardiology, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Cardiovascular Theme, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- California Nanosystems Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Qihao Li
- Peng Cheng Laboratory, Shenzhen, Guangdong 518000, China
| | - Bo Tao
- Division of Cardiology, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Cardiovascular Theme, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- California Nanosystems Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Marina Angelini
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sivakumar Ramadoss
- Division of Cardiology, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Cardiovascular Theme, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- California Nanosystems Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Baiming Sun
- Division of Cardiology, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Cardiovascular Theme, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- California Nanosystems Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ping Wang
- Division of Cardiology, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Cardiovascular Theme, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- California Nanosystems Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yuliya Krokhaleva
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Feiyang Ma
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yiqian Gu
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences–The Collaboratory, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alejandro Espinoza
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences–The Collaboratory, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ken Yamauchi
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences–The Collaboratory, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Bennett Novitch
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Riccardo Olcese
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Zhilin Qu
- Division of Cardiology, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Zhen Song
- Peng Cheng Laboratory, Shenzhen, Guangdong 518000, China
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Cardiovascular Theme, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- California Nanosystems Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
16
|
Yamada S, Ko T, Katagiri M, Morita H, Komuro I. Recent Advances in Translational Research for Heart Failure in Japan. J Card Fail 2023; 29:931-938. [PMID: 37321698 DOI: 10.1016/j.cardfail.2022.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Despite decades of intensive research and therapeutic development, heart failure remains a leading cause of death worldwide. However, recent advances in several basic and translational research fields, such as genomic analysis and single-cell analysis, have increased the possibility of developing novel diagnostic approaches to heart failure. Most cardiovascular diseases that predispose individuals to heart failure are caused by genetic and environmental factors. It follows that genomic analysis can contribute to the diagnosis and prognostic stratification of patients with heart failure. In addition, single-cell analysis has shown great potential for unveiling the pathogenesis and/or pathophysiology and for discovering novel therapeutic targets for heart failure. Here, we summarize the recent advances in translational research on heart failure in Japan, based mainly on our studies.
Collapse
Affiliation(s)
- Shintaro Yamada
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiyuki Ko
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mikako Katagiri
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cardiovascular Medicine, Graduate School of Medicine, International University of Health and Welfare, Tokyo, Japan.
| |
Collapse
|
17
|
Pearce DP, Nemcek MT, Witzenburg CM. Don't go breakin' my heart: cardioprotective alterations to the mechanical and structural properties of reperfused myocardium during post-infarction inflammation. Biophys Rev 2023; 15:329-353. [PMID: 37396449 PMCID: PMC10310682 DOI: 10.1007/s12551-023-01068-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 07/04/2023] Open
Abstract
Myocardial infarctions (MIs) kickstart an intense inflammatory response resulting in extracellular matrix (ECM) degradation, wall thinning, and chamber dilation that leaves the heart susceptible to rupture. Reperfusion therapy is one of the most effective strategies for limiting adverse effects of MIs, but is a challenge to administer in a timely manner. Late reperfusion therapy (LRT; 3 + hours post-MI) does not limit infarct size, but does reduce incidences of post-MI rupture and improves long-term patient outcomes. Foundational studies employing LRT in the mid-twentieth century revealed beneficial reductions in infarct expansion, aneurysm formation, and left ventricle dysfunction. The mechanism by which LRT acts, however, is undefined. Structural analyses, relying largely on one-dimensional estimates of ECM composition, have found few differences in collagen content between LRT and permanently occluded animal models when using homogeneous samples from infarct cores. Uniaxial testing, on the other hand, revealed slight reductions in stiffness early in inflammation, followed soon after by an enhanced resistance to failure for cases of LRT. The use of one-dimensional estimates of ECM organization and gross mechanical function have resulted in a poor understanding of the infarct's spatially variable mechanical and structural anisotropy. To resolve these gaps in literature, future work employing full-field mechanical, structural, and cellular analyses is needed to better define the spatiotemporal post-MI alterations occurring during the inflammatory phase of healing and how they are impacted following reperfusion therapy. In turn, these studies may reveal how LRT affects the likelihood of rupture and inspire novel approaches to guide scar formation.
Collapse
Affiliation(s)
- Daniel P. Pearce
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Mark T. Nemcek
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Colleen M. Witzenburg
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
18
|
Long X, Yuan X, Du J. Single-cell and spatial transcriptomics: Advances in heart development and disease applications. Comput Struct Biotechnol J 2023; 21:2717-2731. [PMID: 37181659 PMCID: PMC10173363 DOI: 10.1016/j.csbj.2023.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Current transcriptomics technologies, including bulk RNA-seq, single-cell RNA sequencing (scRNA-seq), single-nucleus RNA-sequencing (snRNA-seq), and spatial transcriptomics (ST), provide novel insights into the spatial and temporal dynamics of gene expression during cardiac development and disease processes. Cardiac development is a highly sophisticated process involving the regulation of numerous key genes and signaling pathways at specific anatomical sites and developmental stages. Exploring the cell biological mechanisms involved in cardiogenesis also contributes to congenital heart disease research. Meanwhile, the severity of distinct heart diseases, such as coronary heart disease, valvular disease, cardiomyopathy, and heart failure, is associated with cellular transcriptional heterogeneity and phenotypic alteration. Integrating transcriptomic technologies in the clinical diagnosis and treatment of heart diseases will aid in advancing precision medicine. In this review, we summarize applications of scRNA-seq and ST in the cardiac field, including organogenesis and clinical diseases, and provide insights into the promise of single-cell and spatial transcriptomics in translational research and precision medicine.
Collapse
Affiliation(s)
- Xianglin Long
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
19
|
Nomura S, Ono M. Precision and genomic medicine for dilated and hypertrophic cardiomyopathy. Front Cardiovasc Med 2023; 10:1137498. [PMID: 36950287 PMCID: PMC10025380 DOI: 10.3389/fcvm.2023.1137498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
Cardiomyopathy develops through an interaction of genetic and environmental factors. The clinical manifestations of both dilated cardiomyopathy and hypertrophic cardiomyopathy are diverse, but genetic testing defines the causative genes in about half of cases and can predict clinical prognosis. It has become clear that cardiomyopathy is caused not only by single rare variants but also by combinations of multiple common variants, and genome-wide genetic research is important for accurate disease risk assessment. Single-cell analysis research aimed at understanding the pathophysiology of cardiomyopathy is progressing rapidly, and it is expected that genomic analysis and single-cell molecular profiling will be combined to contribute to more detailed stratification of cardiomyopathy.
Collapse
Affiliation(s)
- Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Minoru Ono
- Department of Cardiac Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Pulido M, de Pedro MÁ, Álvarez V, Marchena AM, Blanco-Blázquez V, Báez-Díaz C, Crisóstomo V, Casado JG, Sánchez-Margallo FM, López E. Transcriptome Profile Reveals Differences between Remote and Ischemic Myocardium after Acute Myocardial Infarction in a Swine Model. BIOLOGY 2023; 12:340. [PMID: 36979032 PMCID: PMC10045039 DOI: 10.3390/biology12030340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Acute myocardial infarction (AMI) is the consequence of an acute interruption of myocardial blood flow delimiting an area with ischemic necrosis. The loss of cardiomyocytes initiates cardiac remodeling in the myocardium, leading to molecular changes in an attempt to recover myocardial function. The purpose of this study was to unravel the differences in the molecular profile between ischemic and remote myocardium after AMI in an experimental model. To mimic human myocardial infarction, healthy pigs were subjected to occlusion of the mid-left anterior descending coronary artery, and myocardial tissue was collected from ischemic and remote zones for omics techniques. Comparative transcriptome analysis of both areas was accurately validated by proteomic analysis, resulting in mitochondrion-related biological processes being the most impaired mechanisms in the infarcted area. Moreover, Immune system process-related genes were up-regulated in the remote tissue, mainly due to the increase of neutrophil migration in this area. These results provide valuable information regarding differentially expressed genes and their biological functions between ischemic and remote myocardium after AMI, which could be useful for establishing therapeutic targets for the development of new treatments.
Collapse
Affiliation(s)
- María Pulido
- Jesús Usón Minimally Invasive Surgery Centre, Carretera Nacional 521, Km 41.8, 10071 Cáceres, Spain
| | - María Ángeles de Pedro
- Jesús Usón Minimally Invasive Surgery Centre, Carretera Nacional 521, Km 41.8, 10071 Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029 Madrid, Spain
| | - Verónica Álvarez
- Jesús Usón Minimally Invasive Surgery Centre, Carretera Nacional 521, Km 41.8, 10071 Cáceres, Spain
| | - Ana María Marchena
- Jesús Usón Minimally Invasive Surgery Centre, Carretera Nacional 521, Km 41.8, 10071 Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029 Madrid, Spain
| | - Virginia Blanco-Blázquez
- Jesús Usón Minimally Invasive Surgery Centre, Carretera Nacional 521, Km 41.8, 10071 Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), C. de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Claudia Báez-Díaz
- Jesús Usón Minimally Invasive Surgery Centre, Carretera Nacional 521, Km 41.8, 10071 Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), C. de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Verónica Crisóstomo
- Jesús Usón Minimally Invasive Surgery Centre, Carretera Nacional 521, Km 41.8, 10071 Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), C. de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Javier G Casado
- RICORS-TERAV Network, ISCIII, 28029 Madrid, Spain
- Immunology Unit, University of Extremadura, Campus Universitario, Av. de la Universidad, s/n, 10003 Cáceres, Spain
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Cáceres, Spain
| | - Francisco Miguel Sánchez-Margallo
- Jesús Usón Minimally Invasive Surgery Centre, Carretera Nacional 521, Km 41.8, 10071 Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), C. de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Esther López
- Jesús Usón Minimally Invasive Surgery Centre, Carretera Nacional 521, Km 41.8, 10071 Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029 Madrid, Spain
| |
Collapse
|
21
|
Schumacher D, Kramann R. Multiomic Spatial Mapping of Myocardial Infarction and Implications for Personalized Therapy. Arterioscler Thromb Vasc Biol 2023; 43:192-202. [PMID: 36579644 DOI: 10.1161/atvbaha.122.318333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ischemic heart disease including myocardial infarction is still the leading cause of death worldwide. Although the survival early after myocardial infarction has been significantly improved by the introduction of percutaneous coronary intervention, long-term morbidity and mortality remain high. The elevated long-term mortality is mainly driven by cardiac remodeling processes triggering ischemic heart failure and electric instability. Despite the new developments in pharmaco-therapy of heart failure, we still lack targeted therapies for cardiac remodeling and fibrosis. Single-cell and genomic technologies allow us to map the human heart at unprecedented resolution and allow to gain insights into cellular and molecular heterogeneity. However, these technologies rely on digested tissue and isolated cells or nuclei and thus lack spatial information. Spatial information is critical to understand tissue homeostasis and disease and can be utilized to identify disease-driving cell populations and mechanisms including cellular cross-talk. Here, we discuss recent advances in single-cell and spatial genomic technologies that give insights into cellular and molecular mechanisms of cardiac remodeling after injury and can be utilized to identify novel therapeutic targets and pave the way toward new therapies in heart failure.
Collapse
Affiliation(s)
- David Schumacher
- Institute of Experimental Medicine and Systems Biology (D.S., R.K.), RWTH Aachen University, Germany.,Department of Anesthesiology, University Hospital (D.S.), RWTH Aachen University, Germany
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology (D.S., R.K.), RWTH Aachen University, Germany.,Department of Nephrology and Clinical Immunology (R.K.), RWTH Aachen University, Germany.,Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, the Netherlands (R.K.)
| |
Collapse
|
22
|
Hayat S, Kramann R. Mapping the border zone in myocardial infarction. NATURE CARDIOVASCULAR RESEARCH 2022; 1:978-979. [PMID: 39195916 DOI: 10.1038/s44161-022-00161-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Sikander Hayat
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany.
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany.
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|