1
|
Fan X, Qiu J, Yuan T, Zhang J, Xu J. Piperlongumine alleviates corneal allograft rejection via suppressing angiogenesis and inflammation. Front Immunol 2022; 13:1090877. [PMID: 36591243 PMCID: PMC9802119 DOI: 10.3389/fimmu.2022.1090877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Background Neovascularization and inflammatory response are two essential features of corneal allograft rejection. Here, we investigated the impact of Piperlongumine (PL) on alleviating corneal allograft rejection, primarily focusing on pathological angiogenesis and inflammation. Methods A murine corneal allograft transplantation model was utilized to investigate the role of PL in preventing corneal allograft rejection. PL (10 mg/kg) or vehicle was intraperitoneally injected daily into BALB/c recipients from day -3 to day 14. The clinical signs of the corneal grafts were monitored for 30 days. Corneal neovascularization and inflammatory cell infiltration were detected by immunofluorescence staining and immunohistochemistry. The proportion of CD4+ T cells and macrophages in the draining lymph nodes (DLNs) was examined by flow cytometry. In vitro, HUVECs were cultured under hypoxia or incubated with TNF-α to mimic the hypoxic and inflammatory microenvironment favoring neovascularization in corneal allograft rejection. Multiple angiogenic processes including proliferation, migration, invasion and tube formation of HUVECs in hypoxia with or without PL treatment were routinely evaluated. The influence of PL treatment on TNF-α-induced pro-inflammation in HUVECs was investigated by real-time PCR and ELISA. Results In vivo, PL treatment effectively attenuated corneal allograft rejection, paralleled by coincident suppression of neovascularization and alleviation of inflammatory response. In vitro, PL distinctively inhibited hypoxia-induced angiogenic processes in HUVECs. Two key players in hypoxia-induced angiogenesis, HIF-1α and VEGF-A were significantly suppressed by PL treatment. Also, TNF-α-induced pro-inflammation in HUVECs was hampered by PL treatment, along with a pronounced reduction in ICAM-1, VCAM-1, CCL2, and CXCL5 expression. Conclusions The current study demonstrated that PL could exhibit both anti-angiogenic and anti-inflammatory effects in preventing corneal allograft rejection, highlighting the potential therapeutic applications of PL in clinical strategy.
Collapse
Affiliation(s)
- Xiangyu Fan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Jini Qiu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Tianjie Yuan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Jing Zhang
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China,National Health Commission (NHC), Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China,*Correspondence: Jing Zhang, ; Jianjiang Xu,
| | - Jianjiang Xu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China,National Health Commission (NHC), Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China,*Correspondence: Jing Zhang, ; Jianjiang Xu,
| |
Collapse
|
2
|
Saddala MS, Lennikov A, Mukwaya A, Yang Y, Hill MA, Lagali N, Huang H. Discovery of novel L-type voltage-gated calcium channel blockers and application for the prevention of inflammation and angiogenesis. J Neuroinflammation 2020; 17:132. [PMID: 32334630 PMCID: PMC7183139 DOI: 10.1186/s12974-020-01801-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 04/02/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The ways in which microglia activate and promote neovascularization (NV) are not fully understood. Recent in vivo evidence supports the theory that calcium is required for the transition of microglia from a surveillance state to an active one. The objectives of this study were to discover novel L-type voltage-gated channel (L-VGCC) blockers and investigate their application for the prevention of inflammation and angiogenesis. METHODS Pharmacophore-based computational modeling methods were used to screen for novel calcium channel blockers (CCBs) from the ZINC compound library. The effects of CCBs on calcium blockade, microglial pro-inflammatory activation, and cell toxicity were validated in BV-2 microglial cell and freshly isolated smooth muscle cell (SMC) cultures. Laser-induced choroidal neovascularization (NV) and the suture-induced inflammatory corneal NV models of angiogenesis were used for in vivo validation of the novel CCBs. CX3CR1gfp/+ mice were used to examine the infiltration of GFP-labeled microglial cells. RESULTS We identified three compounds from the ZINC database (Zinc20267861, Zinc18204217, and Zinc33254827) as new blockers of L-type voltage-gated calcium channels (L-VGCC) using a structure-based pharmacophore approach. The effects of the three CCBs on Ca2+ influx into cells were verified in BV-2 microglial cells using Fura-2 fluorescent dye and in freshly isolated SMCs using the voltage-patch clamp. All three CCBs reduced microglial cell migration, activation stimulated by lipopolysaccharide (LPS), and reduced the expression of the inflammatory markers NF-κB (phospho-IκBα) and cyclooxygenase-2 (COX-2) as well as reactive oxygen species. Of the three compounds, we further examined the in vivo activity of Zinc20267861. Topical treatment with Zinc20267861 in a rat model of suture-induced inflammatory cornea neovascularization demonstrated efficacy of the compound in reducing monocyte infiltration and overall corneal NV response. Subconjunctival administration of the compound in the choroidal NV mouse model effectively prevented CNV and microglial infiltration. CONCLUSIONS Our findings suggest that the novel CCBs identified here are effective anti-inflammatory agents that can be further evaluated for treating NV disorders and can be potentially applied in the treatment of ocular inflammatory and pathological angiogenetic disorders.
Collapse
Affiliation(s)
- Madhu Sudhana Saddala
- Department of Ophthalmology, School of Medicine, University of Missouri-Columbia, 1 Hospital Drive, MA102C, Columbia, MO, 65212, USA
| | - Anton Lennikov
- Department of Ophthalmology, School of Medicine, University of Missouri-Columbia, 1 Hospital Drive, MA102C, Columbia, MO, 65212, USA
| | - Anthony Mukwaya
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Yan Yang
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, USA
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, USA
| | - Neil Lagali
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Hu Huang
- Department of Ophthalmology, School of Medicine, University of Missouri-Columbia, 1 Hospital Drive, MA102C, Columbia, MO, 65212, USA.
| |
Collapse
|
3
|
Mukwaya A, Mirabelli P, Lennikov A, Thangavelu M, Jensen L, Peebo B, Lagali N. Repeat Corneal Neovascularization is Characterized by More Aggressive Inflammation and Vessel Invasion Than in the Initial Phase. ACTA ACUST UNITED AC 2019; 60:2990-3001. [DOI: 10.1167/iovs.19-27591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Anthony Mukwaya
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linköping, Sweden
| | - Pierfrancesco Mirabelli
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linköping, Sweden
| | - Anton Lennikov
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linköping, Sweden
- University of Missouri-Columbia, Columbia, Missouri, United States
| | - Muthukumar Thangavelu
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linköping, Sweden
- Deptartment of BIN Convergence Technology, Chonbuk National University, Jeonju, Republic of Korea
| | - Lasse Jensen
- Department of Medical and Health Sciences, Division of Cardiovascular Medicine, Linköping University, Linköping, Sweden
| | - Beatrice Peebo
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linköping, Sweden
| | - Neil Lagali
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linköping, Sweden
- Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
| |
Collapse
|
4
|
Mukwaya A, Jensen L, Peebo B, Lagali N. MicroRNAs in the cornea: Role and implications for treatment of corneal neovascularization. Ocul Surf 2019; 17:400-411. [PMID: 30959113 DOI: 10.1016/j.jtos.2019.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
Abstract
With no safe and efficient approved therapy available for treating corneal neovascularization, the search for alternative and effective treatments is of great importance. Since the discovery of miRNAs as key regulators of gene expression, knowledge of their function in the eye has expanded continuously, facilitated by high throughput genomic tools such as microarrays and RNA sequencing. Recently, reports have emerged implicating miRNAs in pathological and developmental angiogenesis. This has led to the idea of targeting these regulatory molecules as a therapeutic approach for treating corneal neovascularization. With the growing volume of data generated from high throughput tools applied to study corneal neovascularization, we provide here a focused review of the known miRNAs related to corneal neovascularization, while presenting new experimental data and insights for future research and therapy development.
Collapse
Affiliation(s)
- Anthony Mukwaya
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linköping, Sweden
| | - Lasse Jensen
- Department of Medical and Health Sciences, Division of Cardiovascular Medicine, Linköping University, Linköping, Sweden
| | - Beatrice Peebo
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linköping, Sweden
| | - Neil Lagali
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.
| |
Collapse
|
5
|
Mukwaya A, Lennikov A, Xeroudaki M, Mirabelli P, Lachota M, Jensen L, Peebo B, Lagali N. Time-dependent LXR/RXR pathway modulation characterizes capillary remodeling in inflammatory corneal neovascularization. Angiogenesis 2018; 21:395-413. [PMID: 29445990 PMCID: PMC5878196 DOI: 10.1007/s10456-018-9604-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/06/2018] [Indexed: 12/13/2022]
Abstract
Inflammation in the normally immune-privileged cornea can initiate a pathologic angiogenic response causing vision-threatening corneal neovascularization. Inflammatory pathways, however, are numerous, complex and are activated in a time-dependent manner. Effective resolution of inflammation and associated angiogenesis in the cornea requires knowledge of these pathways and their time dependence, which has, to date, remained largely unexplored. Here, using a model of endogenous resolution of inflammation-induced corneal angiogenesis, we investigate the time dependence of inflammatory genes in effecting capillary regression and the return of corneal transparency. Endogenous capillary regression was characterized by a progressive thinning and remodeling of angiogenic capillaries and inflammatory cell retreat in vivo in the rat cornea. By whole-genome longitudinal microarray analysis, early suppression of VEGF ligand-receptor signaling and inflammatory pathways preceded an unexpected later-phase preferential activation of LXR/RXR, PPARα/RXRα and STAT3 canonical pathways, with a concurrent attenuation of LPS/IL-1 inhibition of RXR function and Wnt/β-catenin signaling pathways. Potent downstream inflammatory cytokines such as Cxcl5, IL-1β, IL-6 and Ccl2 were concomitantly downregulated during the remodeling phase. Upstream regulators of the inflammatory pathways included Socs3, Sparc and ApoE. A complex and coordinated time-dependent interplay between pro- and anti-inflammatory signaling pathways highlights a potential anti-inflammatory role of LXR/RXR, PPARα/RXRα and STAT3 signaling pathways in resolving inflammatory corneal angiogenesis.
Collapse
Affiliation(s)
- Anthony Mukwaya
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden
| | - Anton Lennikov
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden
| | - Maria Xeroudaki
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden
| | - Pierfrancesco Mirabelli
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden
| | - Mieszko Lachota
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Lasse Jensen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Beatrice Peebo
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden
| | - Neil Lagali
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden.
| |
Collapse
|
6
|
Selective IKK2 inhibitor IMD0354 disrupts NF-κB signaling to suppress corneal inflammation and angiogenesis. Angiogenesis 2018; 21:267-285. [PMID: 29332242 PMCID: PMC5878206 DOI: 10.1007/s10456-018-9594-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/04/2018] [Indexed: 12/17/2022]
Abstract
Corneal neovascularization is a sight-threatening condition caused by angiogenesis in the normally avascular cornea. Neovascularization of the cornea is often associated with an inflammatory response, thus targeting VEGF-A alone yields only a limited efficacy. The NF-κB signaling pathway plays important roles in inflammation and angiogenesis. Here, we study consequences of the inhibition of NF-κB activation through selective blockade of the IKK complex IκB kinase β (IKK2) using the compound IMD0354, focusing on the effects of inflammation and pathological angiogenesis in the cornea. In vitro, IMD0354 treatment diminished HUVEC migration and tube formation without an increase in cell death and arrested rat aortic ring sprouting. In HUVEC, the IMD0354 treatment caused a dose-dependent reduction in VEGF-A expression, suppressed TNFα-stimulated expression of chemokines CCL2 and CXCL5, and diminished actin filament fibers and cell filopodia formation. In developing zebrafish embryos, IMD0354 treatment reduced expression of Vegf-a and disrupted retinal angiogenesis. In inflammation-induced angiogenesis in the rat cornea, systemic selective IKK2 inhibition decreased inflammatory cell invasion, suppressed CCL2, CXCL5, Cxcr2, and TNF-α expression and exhibited anti-angiogenic effects such as reduced limbal vessel dilation, reduced VEGF-A expression and reduced angiogenic sprouting, without noticeable toxic effect. In summary, targeting NF-κB by selective IKK2 inhibition dampened the inflammatory and angiogenic responses in vivo by modulating the endothelial cell expression profile and motility, thus indicating an important role of NF-κB signaling in the development of pathologic corneal neovascularization.
Collapse
|
7
|
Microarray profiling of miRNA and mRNA expression in Rag2 knockout and wild-type mouse spleens. Sci Data 2018; 5:170199. [PMID: 29313843 PMCID: PMC5759371 DOI: 10.1038/sdata.2017.199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/28/2017] [Indexed: 01/09/2023] Open
Abstract
The Rag2 knockout (KO) mouse is one of the most popular immune compromised animal models used in biomedical research. The immune compromised state concurrently alters many signalling pathways and molecules, including miRNAs and mRNA transcripts that are involved in important biological processes. In addition, miRNAs and transcripts are interdependent, often forming a feedback loop; dysregulation in one might alter the expression of the other, and both participate in many physiological processes including immune regulation. Here, we describe a comprehensive dataset containing alterations in the expression of both miRNAs and mRNAs in Rag2 KO mice compared to their wild type counterparts. The miRNA and mRNA expression profiles were generated from total RNA using a miRNA expression microarray or a BeadChip microarray, respectively. Hence, this dataset will provide the groundwork for a comparative study of the miRNAs and mRNAs that are dysregulated in Rag2 KO mice. It is hoped that the data will illuminate how miRNAs mediate immune regulation, as well as the interaction between miRNAs and mRNAs in Rag2 KO mice.
Collapse
|
8
|
Mukwaya A, Mirabelli P, Lennikov A, Xeroudaki M, Schaupper M, Peebo B, Lagali N. Genome-wide expression datasets of anti-VEGF and dexamethasone treatment of angiogenesis in the rat cornea. Sci Data 2017; 4:170111. [PMID: 28809847 PMCID: PMC5556618 DOI: 10.1038/sdata.2017.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/27/2017] [Indexed: 11/09/2022] Open
Abstract
Therapeutics against pathologic new blood vessel growth, particularly those targeting vascular endothelial growth factor (VEGF) are of enormous clinical interest. In the eye, where anti-VEGF agents are in widespread clinical use for treating retinal and corneal blindness, only partial or transient efficacy and resistance to anti-VEGF agents are among the major drawbacks. Conversely, corticosteroids have long been used in ophthalmology for their potency in suppressing inflammation and angiogenesis, but their broad biological activity can give rise to side effects such as glaucoma and cataract. To aid in the search for more targeted and effective anti-angiogenic therapies in the eye, we present here a dataset comparing gene expression changes in dexamethasone versus anti-Vegfa treatment of inflammation leading to angiogenesis in the rat cornea. Global gene expression analysis with GeneChip Rat 230 2.0 microarrays was conducted and the metadata submitted to Expression Omnibus repository. Here, we present a high-quality validated dataset enabling genome-wide comparison of genes differentially targeted by dexamethasone and anti-Vegf treatments, to identify potential alternative therapeutic targets for evaluation.
Collapse
Affiliation(s)
- Anthony Mukwaya
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping 58183, Sweden
| | - Pierfrancesco Mirabelli
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping 58183, Sweden
| | - Anton Lennikov
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping 58183, Sweden
| | - Maria Xeroudaki
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping 58183, Sweden
| | - Mira Schaupper
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping 58183, Sweden
| | - Beatrice Peebo
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping 58183, Sweden
| | - Neil Lagali
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping 58183, Sweden
| |
Collapse
|