1
|
Bravo S, Zarate P, Cari I, Clavijo L, Lopez I, Phillips NM, Vidal R. Comparative Tissue Identification and Characterization of Long Non-Coding RNAs in the Globally Distributed Blue Shark Prionace glauca. Life (Basel) 2024; 14:1144. [PMID: 39337927 PMCID: PMC11433378 DOI: 10.3390/life14091144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in numerous biological processes and serve crucial regulatory functions in both animals and plants. Nevertheless, there is limited understanding of lncRNAs and their patterns of expression and roles in sharks. In the current study, we systematically identified and characterized lncRNAs in the blue shark (Prionace glauca) from four tissues (liver, spleen, muscle, and kidney) using high-throughput sequencing and bioinformatics tools. A total of 21,932 high-confidence lncRNAs were identified, with 8984 and 3067 stably and tissue-specific expressed lncRNAs, respectively. In addition, a total of 45,007 differentially expressed (DE) lncRNAs were obtained among tissues, with kidney versus muscle having the largest numbers across tissues. DE lncRNAs trans target protein-coding genes were predicted, and functional gene ontology enrichment of these genes showed GO terms such as muscle system processes, cellular/metabolic processes, and stress and immune responses, all of which correspond with the specific biological functions of each tissue analyzed. These results advance our knowledge of lncRNAs in sharks and present novel data on tissue-specific lncRNAs, providing key information to support future functional shark investigations.
Collapse
Affiliation(s)
- Scarleth Bravo
- Laboratory of Genomics, Molecular Ecology and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago 9160000, Chile; (S.B.); (I.L.)
| | - Patricia Zarate
- Departamento de Oceanografía y Medio Ambiente, División de Investigación Pesquera, Instituto de Fomento Pesquero, Valparaíso 2361827, Chile; (P.Z.); (I.C.); (L.C.)
| | - Ilia Cari
- Departamento de Oceanografía y Medio Ambiente, División de Investigación Pesquera, Instituto de Fomento Pesquero, Valparaíso 2361827, Chile; (P.Z.); (I.C.); (L.C.)
| | - Ljubitza Clavijo
- Departamento de Oceanografía y Medio Ambiente, División de Investigación Pesquera, Instituto de Fomento Pesquero, Valparaíso 2361827, Chile; (P.Z.); (I.C.); (L.C.)
| | - Ignacio Lopez
- Laboratory of Genomics, Molecular Ecology and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago 9160000, Chile; (S.B.); (I.L.)
| | - Nicole M. Phillips
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA;
| | - Rodrigo Vidal
- Laboratory of Genomics, Molecular Ecology and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago 9160000, Chile; (S.B.); (I.L.)
| |
Collapse
|
2
|
Jeanne F, Bernay B, Sourdaine P. Comparative Proteome Analysis of Four Stages of Spermatogenesis in the Small-Spotted Catshark ( Scyliorhinus canicula), Using High-Resolution NanoLC-ESI-MS/MS. J Proteome Res 2023. [PMID: 37290099 DOI: 10.1021/acs.jproteome.3c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Spermatogenesis is a highly specialized process of cell proliferation and differentiation leading to the production of spermatozoa from spermatogonial stem cells. Due to its testicular anatomy, Scyliorhinus canicula is an interesting model to explore stage-based changes in proteins during spermatogenesis. The proteomes of four testicular zones corresponding to the germinative niche and to spermatocysts (cysts) with spermatogonia (zone A), cysts with spermatocytes (zone B), cysts with young spermatids (zone C), and cysts with late spermatids (zone D) have been analyzed by nanoLC-ESI-MS/MS. Gene ontology and KEGG annotations were also performed. A total of 3346 multiple protein groups were identified. Zone-specific protein analyses highlighted RNA-processing, chromosome-related processes, cilium organization, and cilium activity in zones A, D, C, and D, respectively. Analyses of proteins with zone-dependent abundance revealed processes related to cellular stress, ubiquitin-dependent degradation by the proteasome, post-transcriptional regulation, and regulation of cellular homeostasis. Our results also suggest that the roles of some proteins, such as ceruloplasmin, optineurin, the pregnancy zone protein, PA28β or the Culling-RING ligase 5 complex, as well as some uncharacterized proteins, during spermatogenesis could be further explored. Finally, the study of this shark species allows one to integrate these data in an evolutionary context of the regulation of spermatogenesis. Mass spectrometry data are freely accessible via iProX-integrated Proteome resources (https://www.iprox.cn/) for reuse purposes.
Collapse
Affiliation(s)
- Fabian Jeanne
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France
| | - Benoît Bernay
- Université de Caen Normandie - Plateforme PROTEOGEN, US EMerode, 14032 Caen cedex 5, France
| | - Pascal Sourdaine
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France
| |
Collapse
|
3
|
Zheng T, Li P, Zhuo X, Liu W, Qiu L, Li L, Yuan C, Sun L, Zhang Z, Wang J, Cheng T, Zhang Q. The chromosome-level genome provides insight into the molecular mechanism underlying the tortuous-branch phenotype of Prunus mume. THE NEW PHYTOLOGIST 2022; 235:141-156. [PMID: 34861048 PMCID: PMC9299681 DOI: 10.1111/nph.17894] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/20/2021] [Indexed: 05/22/2023]
Abstract
Plant with naturally twisted branches is referred to as a tortuous-branch plant, which have extremely high ornamental value due to their zigzag shape and the natural twisting of their branches. Prunus mume is an important woody ornamental plant. However, the molecular mechanism underlying this unique trait in Prunus genus is unknown. Here, we present a chromosome-level genome assembly of the cultivated P. mume var. tortuosa created using Oxford Nanopore combined with Hi-C scaffolding, which resulted in a 237.8 Mb genome assembly being anchored onto eight pseudochromosomes. Molecular dating indicated that P. mume is the most recently differentiated species in Prunus. Genes associated with cell division, development and plant hormones play essential roles in the formation of tortuous branch trait. A putative regulatory pathway for the tortuous branch trait was constructed based on gene expression levels. Furthermore, after transferring candidate PmCYCD genes into Arabidopsis thaliana, we found that seedlings overexpressing these genes exhibited curled rosette leaves. Our results provide insights into the evolutionary history of recently differentiated species in Prunus genus, the molecular basis of stem morphology, and the molecular mechanism underlying the tortuous branch trait and highlight the utility of multi-omics in deciphering the properties of P. mume plant architecture.
Collapse
Affiliation(s)
- Tangchun Zheng
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Ping Li
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Xiaokang Zhuo
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Weichao Liu
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Like Qiu
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Lulu Li
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Lidan Sun
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Zhiyong Zhang
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants, Germplasm Innovation & Molecular BreedingNational Engineering Research Centre for FloricultureBeijing Laboratory of Urban and Rural Ecological EnvironmentEngineering Research Center of the Landscape Environment of the Ministry of EducationKey Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants of the Ministry of EducationSchool of Landscape ArchitectureBeijing Forestry UniversityBeijing100083China
| |
Collapse
|
4
|
Feng Y, Gou QY, Yang WH, Wu WC, Wang J, Holmes EC, Liang G, Shi M. A time-series meta-transcriptomic analysis reveals the seasonal, host, and gender structure of mosquito viromes. Virus Evol 2022; 8:veac006. [PMID: 35242359 PMCID: PMC8887699 DOI: 10.1093/ve/veac006] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/21/2022] Open
Abstract
Although metagenomic sequencing has revealed high numbers of viruses in mosquitoes sampled globally, our understanding of how their diversity and abundance varies in time and space as well as by host species and gender remains unclear. To address this, we collected 23,109 mosquitoes over the course of 12 months from a bat-dwelling cave and a nearby village in Yunnan province, China. These samples were organized by mosquito species, mosquito gender, and sampling time for meta-transcriptomic sequencing. A total of 162 eukaryotic virus species were identified, of which 101 were novel, including representatives of seventeen RNA virus multi-family supergroups and four species of DNA virus from the families Parvoviridae, Circoviridae, and Nudiviridae. In addition, two known vector-borne viruses-Japanese encephalitis virus and Banna virus-were found. Analyses of the entire virome revealed strikingly different viral compositions and abundance levels in warmer compared to colder months, a strong host structure at the level of mosquito species, and no substantial differences between those viruses harbored by male and female mosquitoes. At the scale of individual viruses, some were found to be ubiquitous throughout the year and across four mosquito species, while most of the other viruses were season and/or host specific. Collectively, this study reveals the diversity, dynamics, and evolution of the mosquito virome at a single location and sheds new lights on the ecology of these important vector animals.
Collapse
Affiliation(s)
- Yun Feng
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, No. 5 Wenhua Road, Xiaguan, Dali, Yunnan 671000, China
| | - Qin-yu Gou
- Shenzhen Campus of Sun-Yat Sen University, Sun-Yat Sen University Shenzhen Campus, Guangming New District, Shenzhen, Guangdong 518107, China
| | - Wei-hong Yang
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, No. 5 Wenhua Road, Xiaguan, Dali, Yunnan 671000, China
| | - Wei-chen Wu
- Shenzhen Campus of Sun-Yat Sen University, Sun-Yat Sen University Shenzhen Campus, Guangming New District, Shenzhen, Guangdong 518107, China
| | - Juan Wang
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, No. 5 Wenhua Road, Xiaguan, Dali, Yunnan 671000, China
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Guodong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Mang Shi
- Shenzhen Campus of Sun-Yat Sen University, Sun-Yat Sen University Shenzhen Campus, Guangming New District, Shenzhen, Guangdong 518107, China
| |
Collapse
|
5
|
Ocampo Daza D, Bergqvist CA, Larhammar D. The Evolution of Oxytocin and Vasotocin Receptor Genes in Jawed Vertebrates: A Clear Case for Gene Duplications Through Ancestral Whole-Genome Duplications. Front Endocrinol (Lausanne) 2021; 12:792644. [PMID: 35185783 PMCID: PMC8851675 DOI: 10.3389/fendo.2021.792644] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
The neuronal and neuroendocrine peptides oxytocin (OT) and vasotocin (VT), including vasopressins, have six cognate receptors encoded by six receptor subtype genes in jawed vertebrates. The peptides elicit a broad range of responses that are specifically mediated by the receptor subtypes including neuronal functions regulating behavior and hormonal actions on reproduction and water/electrolyte balance. Previously, we have demonstrated that these six receptor subtype genes, which we designated VTR1A, VTR1B, OTR, VTR2A, VTR2B and VTR2C, arose from a syntenic ancestral gene pair, one VTR1/OTR ancestor and one VTR2 ancestor, through the early vertebrate whole-genome duplications (WGD) called 1R and 2R. This was supported by both phylogenetic and chromosomal conserved synteny data. More recently, other studies have focused on confounding factors, such as the OTR/VTR orthologs in cyclostomes, to question this scenario for the origin of the OTR/VTR gene family; proposing instead less parsimonious interpretations involving only one WGD followed by complex series of chromosomal or segmental duplications. Here, we have updated the phylogeny of the OTR/VTR gene family, including a larger number of vertebrate species, and revisited seven representative neighboring gene families from our previous conserved synteny analyses, adding chromosomal information from newer high-coverage genome assemblies from species that occupy key phylogenetic positions: the polypteriform fish reedfish (Erpetoichthys calabaricus), the cartilaginous fish thorny skate (Amblyraja radiata) and a more recent high-quality assembly of the Western clawed frog (Xenopus tropicalis) genome. Our analyses once again add strong support for four-fold symmetry, i.e., chromosome quadruplication in the same time window as the WGD events early in vertebrate evolution, prior to the jawed vertebrate radiation. Thus, the evolution of the OTR/VTR gene family can be most parsimoniously explained by two WGD events giving rise to the six ancestral genes, followed by differential gene losses of VTR2 genes in different lineages. We also argue for more coherence and clarity in the nomenclature of OT/VT receptors, based on the most parsimonious scenario.
Collapse
Affiliation(s)
- Daniel Ocampo Daza
- Subdepartment of Evolution and Development, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, United States
| | - Christina A. Bergqvist
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Dan Larhammar
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- *Correspondence: Dan Larhammar,
| |
Collapse
|
6
|
Machado AM, Muñoz-Merida A, Fonseca E, Veríssimo A, Pinto R, Felício M, da Fonseca RR, Froufe E, Castro LFC. Liver transcriptome resources of four commercially exploited teleost species. Sci Data 2020; 7:214. [PMID: 32636445 PMCID: PMC7340784 DOI: 10.1038/s41597-020-0565-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/09/2020] [Indexed: 01/10/2023] Open
Abstract
The generation of omic resources is central to develop adequate management strategies for species with economic value. Here, we provide high-coverage RNA-seq datasets of liver tissue (containing between 80,2 and 88,4 million of paired-end reads) from four wildtype teleost species with high commercial value: Trachurus trachurus (TTR; Atlantic horse mackerel), Scomber scombrus (SSC; Atlantic mackerel), Trisopterus luscus (TLU; pout), and Micromesistius poutassou (MPO; blue whiting). A comprehensive assembly pipeline, using de novo single and multi-kmer assembly approaches, produced 64 single high-quality liver transcriptomes - 16 per species. The final assemblies, with N50 values ranging from 2,543-3,700 bp and BUSCO (Benchmarking Universal Single-Copy Orthologs) completeness values between 81.8-86.5% of the Actinopterygii gene set, were subjected to open reading frame (ORF) prediction and functional annotation. Our study provides the first transcriptomic resources for these species and offers valuable tools to evaluate both neutral and selected genetic variation among populations, and to identify candidate genes for environmental adaptation assisting in the investigation of the effects of global changes in fisheries.
Collapse
Affiliation(s)
- André M Machado
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, U. Porto - University of Porto, Porto, Portugal.
| | - Antonio Muñoz-Merida
- CIBIO-InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - Elza Fonseca
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, U. Porto - University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, U. Porto - University of Porto, Porto, Portugal
| | - Ana Veríssimo
- CIBIO-InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
- Department of Biology, Faculty of Sciences, U. Porto - University of Porto, Porto, Portugal
| | - Rui Pinto
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, U. Porto - University of Porto, Porto, Portugal
| | - Mónica Felício
- Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Lisbon, Portugal
| | - Rute R da Fonseca
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Elsa Froufe
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, U. Porto - University of Porto, Porto, Portugal
| | - L Filipe C Castro
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, U. Porto - University of Porto, Porto, Portugal.
- Department of Biology, Faculty of Sciences, U. Porto - University of Porto, Porto, Portugal.
| |
Collapse
|
7
|
Luo H, Liu H, Zhang J, Hu B, Zhou C, Xiang M, Yang Y, Zhou M, Jing T, Li Z, Zhou X, Lv G, He W, Zeng B, Xiao S, Li Q, Ye H. Full-length transcript sequencing accelerates the transcriptome research of Gymnocypris namensis, an iconic fish of the Tibetan Plateau. Sci Rep 2020; 10:9668. [PMID: 32541658 PMCID: PMC7296019 DOI: 10.1038/s41598-020-66582-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Gymnocypris namensis, the only commercial fish in Namtso Lake of Tibet in China, is rated as nearly threatened species in the Red List of China's Vertebrates. As one of the highest-altitude schizothorax fish in China, G. namensis has strong adaptability to the plateau harsh environment. Although being an indigenous economic fish with high value in research, the biological characterization, genetic diversity, and plateau adaptability of G. namensis are still unclear. Here, we used Pacific Biosciences single molecular real time long read sequencing technology to generate full-length transcripts of G. namensis. Sequences clustering analysis and error correction with Illumina-produced short reads to obtain 319,044 polished isoforms. After removing redundant reads, 125,396 non-redundant isoforms were obtained. Among all transcripts, 103,286 were annotated to public databases. Natural selection has acted on 42 genes for G. namensis, which were enriched on the functions of mismatch repair and Glutathione metabolism. Total 89,736 open reading frames, 95,947 microsatellites, and 21,360 long non-coding RNAs were identified across all transcripts. This is the first study of transcriptome in G. namensis by using PacBio Iso-seq. The acquisition of full-length transcript isoforms might accelerate the transcriptome research of G. namensis and provide basis for further research.
Collapse
Affiliation(s)
- Hui Luo
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Haiping Liu
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Jie Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
| | - Bingjie Hu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
| | - Chaowei Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Mengbin Xiang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
| | - Yuejing Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Mingrui Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Tingsen Jing
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Zhe Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
| | - Xinghua Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Guangjun Lv
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Wenping He
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Benhe Zeng
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Shijun Xiao
- Department of Computer Science, Wuhan University of Technology, Wuhan, 430070, China.
| | - Qinglu Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China.
| | - Hua Ye
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China.
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China.
| |
Collapse
|
8
|
Bioinformatics for Marine Products: An Overview of Resources, Bottlenecks, and Perspectives. Mar Drugs 2019; 17:md17100576. [PMID: 31614509 PMCID: PMC6835618 DOI: 10.3390/md17100576] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/13/2022] Open
Abstract
The sea represents a major source of biodiversity. It exhibits many different ecosystems in a huge variety of environmental conditions where marine organisms have evolved with extensive diversification of structures and functions, making the marine environment a treasure trove of molecules with potential for biotechnological applications and innovation in many different areas. Rapid progress of the omics sciences has revealed novel opportunities to advance the knowledge of biological systems, paving the way for an unprecedented revolution in the field and expanding marine research from model organisms to an increasing number of marine species. Multi-level approaches based on molecular investigations at genomic, metagenomic, transcriptomic, metatranscriptomic, proteomic, and metabolomic levels are essential to discover marine resources and further explore key molecular processes involved in their production and action. As a consequence, omics approaches, accompanied by the associated bioinformatic resources and computational tools for molecular analyses and modeling, are boosting the rapid advancement of biotechnologies. In this review, we provide an overview of the most relevant bioinformatic resources and major approaches, highlighting perspectives and bottlenecks for an appropriate exploitation of these opportunities for biotechnology applications from marine resources.
Collapse
|
9
|
Sandoval-Castillo J. Conservation genetics of elasmobranchs of the Mexican Pacific Coast, trends and perspectives. ADVANCES IN MARINE BIOLOGY 2019; 83:115-157. [PMID: 31606069 DOI: 10.1016/bs.amb.2019.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One of the most critical threats to biodiversity is the high extinction rate driven by human activities. Reducing extinction rates requires the implementation of conservation programmes based on robust scientific data. Elasmobranchs are important ecological components of the ocean, and several species sustain substantial economic activities. Unfortunately, elasmobranchs are one of the most threatened and understudied animal taxa. The Mexican Pacific Coast (MPC) is a region with high elasmobranch diversity and is the seat of major elasmobranch fisheries. But it is also a developing region with several conservation and management challenges which require national and international attention. Here, we review the conservation genetics literature of elasmobranchs from the MPC. We present a synthesis of the works using samples from the region and emphasize the main gaps and biases in these data. In addition, we discuss the benefits and challenges of generating genomic information to improve the management and conservation of an elasmobranch biodiversity hotspot in a developing country. We found 47 elasmobranch genetic articles that cover <30% of the elasmobranch diversity in the region. These studies mainly used mitochondrial DNA sequences to analyse the genetic structure of commercially important and abundant species of the order Carcharhiniformes. Some of these papers also assessed mating systems, demographic parameters, and taxonomic uncertainties, all of which are important topics for efficient management decisions. In terms of conservation genetics, elasmobranchs from the MPC remain understudied. However, high-throughput sequencing technologies have increased the power and accessibility of genomic tools, even in developing countries such as Mexico. The tools described here provide information relevant for biodiversity conservation. Therefore, we strongly suggest that investment in genomic research will assist implementation of efficient management strategies. In time, this will reduce the extinction risk of the unique elasmobranch biodiversity from the MPC.
Collapse
Affiliation(s)
- Jonathan Sandoval-Castillo
- Molecular Ecology Lab, College of Science and Engineering, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
10
|
Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates. Nat Ecol Evol 2018; 2:1761-1771. [PMID: 30297745 DOI: 10.1038/s41559-018-0673-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
Abstract
Modern cartilaginous fishes are divided into elasmobranchs (sharks, rays and skates) and chimaeras, and the lack of established whole-genome sequences for the former has prevented our understanding of early vertebrate evolution and the unique phenotypes of elasmobranchs. Here we present de novo whole-genome assemblies of brownbanded bamboo shark and cloudy catshark and an improved assembly of the whale shark genome. These relatively large genomes (3.8-6.7 Gbp) contain sparse distributions of coding genes and regulatory elements and exhibit reduced molecular evolutionary rates. Our thorough genome annotation revealed Hox C genes previously hypothesized to have been lost, as well as distinct gene repertories of opsins and olfactory receptors that would be associated with adaptation to unique underwater niches. We also show the early establishment of the genetic machinery governing mammalian homoeostasis and reproduction at the jawed vertebrate ancestor. This study, supported by genomic, transcriptomic and epigenomic resources, provides a foundation for the comprehensive, molecular exploration of phenotypes unique to sharks and insights into the evolutionary origins of vertebrates.
Collapse
|