1
|
Martin C, Mahan KS, Wiggen TD, Gilbertsen AJ, Hertz MI, Hunter RC, Quinn RA. Microbiome and metabolome patterns after lung transplantation reflect underlying disease and chronic lung allograft dysfunction. MICROBIOME 2024; 12:196. [PMID: 39385282 PMCID: PMC11462767 DOI: 10.1186/s40168-024-01893-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/30/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Progression of chronic lung disease may lead to the requirement for lung transplant (LTx). Despite improvements in short-term survival after LTx, chronic lung allograft dysfunction (CLAD) remains a critical challenge for long-term survival. This study investigates the molecular and microbial relationships between underlying lung disease and the development of CLAD in bronchoalveolar lavage fluid (BALF) from subjects post-LTx, which is crucial for tailoring treatment strategies specific to allograft dysfunctions. METHODS Paired 16S rRNA gene amplicon sequencing and untargeted LC-MS/MS metabolomics were performed on 856 BALF samples collected over 10 years from LTx recipients (n = 195) with alpha-1-antitrypsin disease (AATD, n = 23), cystic fibrosis (CF, n = 47), chronic obstructive pulmonary disease (COPD, n = 78), or pulmonary fibrosis (PF, n = 47). Data were analyzed using random forest (RF) machine learning and multivariate statistics for associations with underlying disease and CLAD development. RESULTS The BALF microbiome and metabolome after LTx differed significantly according to the underlying disease state (PERMANOVA, p = 0.001), with CF and AATD demonstrating distinct microbiome and metabolome profiles, respectively. Uniqueness in CF was mainly driven by Pseudomonas abundance and its metabolites, whereas AATD had elevated levels of phenylalanine and a lack of shared metabolites with the other underlying diseases. BALF microbiome and metabolome composition were also distinct between those who did or did not develop CLAD during the sample collection period (PERMANOVA, p = 0.001). An increase in the average abundance of Veillonella (AATD, COPD) and Streptococcus (CF, PF) was associated with CLAD development, and decreases in the abundance of phenylalanine-derivative alkaloids (CF, COPD) and glycerophosphorylcholines (CF, COPD, PF) were signatures of the CLAD metabolome. Although the relative abundance of Pseudomonas was not associated with CLAD, the abundance of its virulence metabolites, including siderophores, quorum-sensing quinolones, and phenazines, were elevated in those with CF who developed CLAD. There was a positive correlation between the abundance of these molecules and the abundance of Pseudomonas in the microbiome, but there was no correlation between their abundance and the time in which BALF samples were collected post-LTx. CONCLUSIONS The BALF microbiome and metabolome after LTx are particularly distinct in those with underlying CF and AATD. These data reflect those who developed CLAD, with increased virulence metabolite production from Pseudomonas, an aspect of CF CLAD cases. These findings shed light on disease-specific microbial and metabolic signatures in LTx recipients, offering valuable insights into the underlying causes of allograft rejection. Video Abstract.
Collapse
Affiliation(s)
- Christian Martin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Kathleen S Mahan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Talia D Wiggen
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Adam J Gilbertsen
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Marshall I Hertz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Ryan C Hunter
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14051, USA.
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
2
|
Peng L, Xu W, Wang J, Liu Y, Qian W, Wang S, Xie T, Shan J. Optimization of bronchoalveolar lavage fluid volume for untargeted lipidomic method and application in influenza A virus infection. J Pharm Biomed Anal 2023; 236:115677. [PMID: 37651923 DOI: 10.1016/j.jpba.2023.115677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
Bronchoalveolar lavage (BAL) has been widely applied for the diagnosis of pulmonary diseases in clinical as it was recognized as a minimally invasive, well-tolerated and easily performed procedure. Lipid analysis of BAL fluid is a comprehensive strategy to observe lipid phenotypes, explore potential biomarkers, and elucidate the biological mechanisms of respiratory diseases. However, the highly diverse concentration of lipids in BAL fluid due to the deviation between the retrieved and injected aliquot volumes during lavage raised a challenge in obtaining high-quality lipidomic data. Here, this study aims to investigate what volume of BAL fluid is suitable for lipidomic analysis. Specifically, the BAL fluid harvested from H1N1 infected mice and controls was concentrated to varying degrees by freeze-drying technique before preparation for lipidomic analysis. The optimal concentration multiple of BAL fluid was approved by comparing the coverage and quality of identified lipids, as well as the number of differentially expressed lipids in the H1N1 infection model. Sixty-two differential lipids were identified respectively in the positive and negative modes when the BAL fluid was condensed five times, and they were classified into glycerolipids, phospholipids and fatty acids. This study focuses on the alterations of phospholipids, since they are the main constituents of pulmonary surfactants. Several phospholipids significantly accumulated in the BAL fluid of H1N1-infected mice, while most of them contained omega-3 polyunsaturated fatty acids, indicating disrupted inflammatory homeostasis in lungs. This study recommends freeze-drying/reconstitution prior to lipid extraction from BAL fluid for lipidomic analysis, as this procedure increased the richness and abundance of lipids.
Collapse
Affiliation(s)
- Linxiu Peng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Weichen Xu
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jingying Wang
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wenjuan Qian
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai, China
| | - Shaodong Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tong Xie
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jinjun Shan
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Metabolomic Analysis of Respiratory Epithelial Lining Fluid in Patients with Chronic Obstructive Pulmonary Disease—A Systematic Review. Cells 2023; 12:cells12060833. [PMID: 36980173 PMCID: PMC10047085 DOI: 10.3390/cells12060833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD), as the third leading cause of death among adults, is a significant public health problem around the world. However, about 75% of smokers do not develop the disease despite the severe smoking burden. COPD is a heterogeneous disease, and several phenotypes, with differences in their clinical picture and response to treatment, have been distinguished. Metabolomic studies provide information on metabolic pathways, and therefore are a promising tool for understanding disease etiopathogenesis and the development of effective causal treatment. The aim of this systematic review was to analyze the metabolome of the respiratory epithelial lining fluid of patients with COPD, compared to healthy volunteers, refractory smokers, and subjects with other lung diseases. We included observational human studies. Sphingolipids, phosphatidylethanolamines, and sphingomyelins distinguished COPD from non-smokers; volatile organic compounds, lipids, and amino acids distinguished COPD from smokers without the disease. Five volatile organic compounds were correlated with eosinophilia and four were associated with a phenotype with frequent exacerbations. Fatty acids and ornithine metabolism were correlated with the severity of COPD. Metabolomics, by searching for biomarkers and distinguishing metabolic pathways, can allow us to understand the pathophysiology of COPD and the development of its phenotypes.
Collapse
|
4
|
Metabolic landscape dysregulation in bronchoalveolar lavage fluid of checkpoint inhibitor pneumonitis. Clin Immunol 2023; 247:109230. [PMID: 36646189 DOI: 10.1016/j.clim.2023.109230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Checkpoint inhibitor pneumonitis (CIP) is a potentially fatal adverse event resulting from immunotherapy in patients with malignant tumors. However, the pathogenesis of CIP remains poorly understood. METHODS We collected bronchoalveolar lavage fluid (BALF) from cohorts of patients with CIP, new-onset lung cancer (LC), and idiopathic pulmonary fibrosis (IPF). Non-targeted metabolomics analysis was conducted to analyze metabolic signatures. Flow cytometry was used to evaluate immune cell subsets. RESULTS Lymphocytes were predominant in the BALF of patients with CIP. A total of 903 metabolites were identified, among which lipid compounds were the most abundant. In a comparison between patients with CIP and LC, enrichment analysis of the altered metabolites showed suppressed amino sugar metabolism, and spermidine and spermine biosynthesis in the CIP group. Metabolism of alpha linolenic acid, linoleic acid, and their fatty acid derivatives was enriched in the CIP group relative to the IPF group. The twelve metabolites found to be enriched in the CIP group were positively correlated with the proportion of CD8+ T cells. One cluster of BALF metabolites, 57.14% of which were lipid molecules, was inversely correlated with the proportion of natural killer cells. CONCLUSIONS In this study, the metabolomic landscape of BALF in patients with CIP was determined. We elucidated suppressed tumor metabolic signatures, enhanced pulmonary inflammatory signaling, and the characteristics of responsible immune cells, which helps to understand the pathogenesis of CIP.
Collapse
|
5
|
Reinke SN, Chaleckis R, Wheelock CE. Metabolomics in pulmonary medicine - extracting the most from your data. Eur Respir J 2022; 60:13993003.00102-2022. [PMID: 35618271 PMCID: PMC9386331 DOI: 10.1183/13993003.00102-2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/14/2022] [Indexed: 11/24/2022]
Abstract
The metabolome enables unprecedented insight into biochemistry, providing an integrated signature of the genome, transcriptome, proteome and exposome. Measurement requires rigorous protocols combined with specialised data analysis to achieve its promise.https://bit.ly/3yPiYkQ
Collapse
Affiliation(s)
- Stacey N Reinke
- Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Perth, Australia
| | - Romanas Chaleckis
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.,Gunma Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden .,Gunma Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan.,Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Wang C, Jiang S, Zhang S, Ouyang Z, Wang G, Wang F. Research Progress of Metabolomics in Asthma. Metabolites 2021; 11:567. [PMID: 34564383 PMCID: PMC8466166 DOI: 10.3390/metabo11090567] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
Asthma is a highly heterogeneous disease, but the pathogenesis of asthma is still unclear. It is well known that the airway inflammatory immune response is the pathological basis of asthma. Metabolomics is a systems biology method to analyze the difference of low molecular weight metabolites (<1.5 kDa) and explore the relationship between metabolic small molecules and pathophysiological changes of the organisms. The functional interdependence between immune response and metabolic regulation is one of the cores of the body's steady-state regulation, and its dysfunction will lead to a series of metabolic disorders. The signal transduction effect of specific metabolites may affect the occurrence of the airway inflammatory immune response, which may be closely related to the pathogenesis of asthma. Emerging metabolomic analysis may provide insights into the pathogenesis and diagnosis of asthma. The review aims to analyze the changes of metabolites in blood/serum/plasma, urine, lung tissue, and exhaled breath condensate (EBC) samples, and further reveals the potential pathogenesis of asthma according to the disordered metabolic pathways.
Collapse
Affiliation(s)
- Chao Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.W.); (S.J.); (S.Z.)
| | - Shengyu Jiang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.W.); (S.J.); (S.Z.)
| | - Siyu Zhang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.W.); (S.J.); (S.Z.)
| | - Zhuoer Ouyang
- Department of Cellular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China;
| | - Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.W.); (S.J.); (S.Z.)
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.W.); (S.J.); (S.Z.)
| |
Collapse
|
7
|
Pei M, Jiang P, Wang T, Xia C, Hou R, Sun A, Zou H. Effect of bronchoalveolar lavage on the clinical efficacy, inflammatory factors, and immune function in the treatment of refractory pneumonia in children. Transl Pediatr 2021; 10:921-928. [PMID: 34012841 PMCID: PMC8107863 DOI: 10.21037/tp-21-89] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Refractory pneumonia is a special type of pneumonia in children. This study aimed to analyze the effect of bronchoalveolar lavage (BAL) on the clinical efficacy, inflammatory factors, and immune function in the treatment of pediatric refractory pneumonia. METHODS A total of 196 children with refractory pneumonia admitted to our hospital from January 2017 to January 2020 were enrolled and allocated to a study group (n=99) and a control group (n=97). The study group was treated with BAL treatment plus conventional treatment, and the control group was treated with conventional treatment. The clinical efficacy, time of fever regression, time of cough relief, and length of hospital stay were compared between groups. Changes in inflammatory factors, immune function, pulmonary ventilation function, and complications were analyzed. The levels of inflammatory factors in BAL fluid were compared. RESULTS The times of fever remission, cough relief, and hospital stay of the study group was shorter than those of the control group, and the total clinical effective rate of the study group was higher. At any time after treatment, the levels of interleukin-6 (IL-6), C-reactive protein (CRP), and tumor necrosis factor-alpha (TNF-α) in the study group were lower than the control group. After 3-day of treatment, IL-6, CRP and TNF-α in BAL fluid in the study group were significantly decreased compared with before treatment. Immunoglobulin A (IgA) and immunoglobulin G (IgG) levels in the study group were higher than those in the control group at any time after treatment, and immunoglobulin M (IgM) levels were lower than in the control group. The levels of oxygenation index (OI), lung dynamic compliance (Cdyn), and work of breathing (WOB) in the study group were higher than those in the control group at any time after treatment. CONCLUSIONS BAL treatment can effectively relieve the inflammatory response, improve immune function and lung ventilation function in children with refractory pneumonia. The clinical effect is remarkable and worthy of promotion.
Collapse
Affiliation(s)
- Minqing Pei
- Department of Pediatrics, Sunshine Union Hospital, Weifang, China
| | - Ping Jiang
- Department of Pediatrics, Affiliated Hospital of Weifang Medical College, Weifang, China
| | - Tingting Wang
- Department of Pediatrics, Sunshine Union Hospital, Weifang, China
| | - Caifeng Xia
- Department of Pediatrics, Sunshine Union Hospital, Weifang, China
| | - Ruiying Hou
- Department of Pediatrics, Affiliated Hospital of Weifang Medical College, Weifang, China
| | - Ailing Sun
- Department of Pediatrics, Sunshine Union Hospital, Weifang, China
| | - Hui Zou
- Department of Pediatrics, Sunshine Union Hospital, Weifang, China
| |
Collapse
|
8
|
Carvalho AS, Moraes MCS, Hyun Na C, Fierro-Monti I, Henriques A, Zahedi S, Bodo C, Tranfield EM, Sousa AL, Farinho A, Rodrigues LV, Pinto P, Bárbara C, Mota L, de Abreu TT, Semedo J, Seixas S, Kumar P, Costa-Silva B, Pandey A, Matthiesen R. Is the Proteome of Bronchoalveolar Lavage Extracellular Vesicles a Marker of Advanced Lung Cancer? Cancers (Basel) 2020; 12:cancers12113450. [PMID: 33233545 PMCID: PMC7699733 DOI: 10.3390/cancers12113450] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Bronchoalveolar lavage is routinely collected during bronchoscopy for cytology analysis in the diagnostic of lung cancer. Due to low sensitivity of this method, early-stage cancers are undetected, lowering the treatment success. In this study, we analyzed extracellular vesicles isolated from bronchoalveolar lavage of lung cancer suspects by mass spectrometry-based proteomics. The protein composition of bronchoalveolar lavage extracellular vesicles of late-stage cancer showed a higher proteome complexity associated with mortality within the two year follow-up period. We identified a potential therapeutic target DNMT3B complex which was significantly expressed in bronchoalveolar lavage extracellular vesicles as well as in tumor tissue. Bronchoalveolar lavage extracellular vesicles proteome analysis of immune markers indicates the presence of markers of innate immune and fibroblast cells. Abstract Acellular bronchoalveolar lavage (BAL) proteomics can partially separate lung cancer from non-lung cancer patients based on principal component analysis and multivariate analysis. Furthermore, the variance in the proteomics data sets is correlated mainly with lung cancer status and, to a lesser extent, smoking status and gender. Despite these advances BAL small and large extracellular vehicles (EVs) proteomes reveal aberrant protein expression in paracrine signaling mechanisms in cancer initiation and progression. We consequently present a case-control study of 24 bronchoalveolar lavage extracellular vesicle samples which were analyzed by state-of-the-art liquid chromatography-mass spectrometry (LC-MS). We obtained evidence that BAL EVs proteome complexity correlated with lung cancer stage 4 and mortality within two years´ follow-up (p value = 0.006). The potential therapeutic target DNMT3B complex is significantly up-regulated in tumor tissue and BAL EVs. The computational analysis of the immune and fibroblast cell markers in EVs suggests that patients who deceased within the follow-up period display higher marker expression indicative of innate immune and fibroblast cells (four out of five cases). This study provides insights into the proteome content of BAL EVs and their correlation to clinical outcomes.
Collapse
Affiliation(s)
- Ana Sofia Carvalho
- Computational and Experimental Biology Group, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Campo dos Martires da Patria, 130, 1169-056 Lisboa, Portugal; (I.F.-M.); (A.H.); (S.Z.)
- Correspondence: (A.S.C.); (R.M.)
| | - Maria Carolina Strano Moraes
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, Doca de Pedroucos, 1400-038 Lisbon, Portugal; (M.C.S.M.); (C.B.); (B.C.-S.)
| | - Chan Hyun Na
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Ivo Fierro-Monti
- Computational and Experimental Biology Group, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Campo dos Martires da Patria, 130, 1169-056 Lisboa, Portugal; (I.F.-M.); (A.H.); (S.Z.)
| | - Andreia Henriques
- Computational and Experimental Biology Group, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Campo dos Martires da Patria, 130, 1169-056 Lisboa, Portugal; (I.F.-M.); (A.H.); (S.Z.)
| | - Sara Zahedi
- Computational and Experimental Biology Group, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Campo dos Martires da Patria, 130, 1169-056 Lisboa, Portugal; (I.F.-M.); (A.H.); (S.Z.)
| | - Cristian Bodo
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, Doca de Pedroucos, 1400-038 Lisbon, Portugal; (M.C.S.M.); (C.B.); (B.C.-S.)
| | - Erin M Tranfield
- Electron Microscopy Facility, Instituto Gulbenkian de Ciência—Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal; (E.M.T.); (A.L.S.)
| | - Ana Laura Sousa
- Electron Microscopy Facility, Instituto Gulbenkian de Ciência—Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal; (E.M.T.); (A.L.S.)
| | - Ana Farinho
- iNOVA4Health—Advancing Precision Medicine, CEDOC—Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Martires da Patria, 130, 1169-056 Lisboa, Portugal;
| | - Luís Vaz Rodrigues
- Department of Pneumology, Unidade Local de Saúde da Guarda (USLGuarda), 6300-659 Guarda, Portugal;
| | - Paula Pinto
- Unidade de Técnicas Invasivas Pneumológicas, Pneumologia II, Hospital Pulido Valente, Centro Hospitalar Lisboa Norte, 1649-028 Lisbon, Portugal; (P.P.); (L.M.); (T.T.d.A.); (J.S.)
| | - Cristina Bárbara
- Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal;
| | - Leonor Mota
- Unidade de Técnicas Invasivas Pneumológicas, Pneumologia II, Hospital Pulido Valente, Centro Hospitalar Lisboa Norte, 1649-028 Lisbon, Portugal; (P.P.); (L.M.); (T.T.d.A.); (J.S.)
| | - Tiago Tavares de Abreu
- Unidade de Técnicas Invasivas Pneumológicas, Pneumologia II, Hospital Pulido Valente, Centro Hospitalar Lisboa Norte, 1649-028 Lisbon, Portugal; (P.P.); (L.M.); (T.T.d.A.); (J.S.)
| | - Júlio Semedo
- Unidade de Técnicas Invasivas Pneumológicas, Pneumologia II, Hospital Pulido Valente, Centro Hospitalar Lisboa Norte, 1649-028 Lisbon, Portugal; (P.P.); (L.M.); (T.T.d.A.); (J.S.)
| | - Susana Seixas
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal;
| | - Prashant Kumar
- Institute of Bioinformatics, Discoverer building, ITPL, Bangalore 560066, India; (P.K.); (A.P.)
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Bruno Costa-Silva
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, Doca de Pedroucos, 1400-038 Lisbon, Portugal; (M.C.S.M.); (C.B.); (B.C.-S.)
| | - Akhilesh Pandey
- Institute of Bioinformatics, Discoverer building, ITPL, Bangalore 560066, India; (P.K.); (A.P.)
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rune Matthiesen
- Computational and Experimental Biology Group, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Campo dos Martires da Patria, 130, 1169-056 Lisboa, Portugal; (I.F.-M.); (A.H.); (S.Z.)
- Correspondence: (A.S.C.); (R.M.)
| |
Collapse
|
9
|
Reisdorph NA, Walmsley S, Reisdorph R. A Perspective and Framework for Developing Sample Type Specific Databases for LC/MS-Based Clinical Metabolomics. Metabolites 2019; 10:metabo10010008. [PMID: 31877765 PMCID: PMC7023092 DOI: 10.3390/metabo10010008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
Metabolomics has the potential to greatly impact biomedical research in areas such as biomarker discovery and understanding molecular mechanisms of disease. However, compound identification (ID) remains a major challenge in liquid chromatography mass spectrometry-based metabolomics. This is partly due to a lack of specificity in metabolomics databases. Though impressive in depth and breadth, the sheer magnitude of currently available databases is in part what makes them ineffective for many metabolomics studies. While still in pilot phases, our experience suggests that custom-built databases, developed using empirical data from specific sample types, can significantly improve confidence in IDs. While the concept of sample type specific databases (STSDBs) and spectral libraries is not entirely new, inclusion of unique descriptors such as detection frequency and quality scores, can be used to increase confidence in results. These features can be used alone to judge the quality of a database entry, or together to provide filtering capabilities. STSDBs rely on and build upon several available tools for compound ID and are therefore compatible with current compound ID strategies. Overall, STSDBs can potentially result in a new paradigm for translational metabolomics, whereby investigators confidently know the identity of compounds following a simple, single STSDB search.
Collapse
Affiliation(s)
- Nichole A. Reisdorph
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO 80045, USA;
- Correspondence: ; Tel.: +1-303-724-9234
| | - Scott Walmsley
- Masonic Cancer Center, University of Minnesota, 516 Delaware St. SE, Minneapolis, MN 55455, USA;
- Institute for Health Informatics, University of Minnesota, 516 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Rick Reisdorph
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO 80045, USA;
| |
Collapse
|
10
|
Yang R, Zhang Y, Qian W, Peng L, Lin L, Xu J, Xie T, Ji J, Zhan X, Shan J. Surfactant Lipidomics of Alveolar Lavage Fluid in Mice Based on Ultra-High-Performance Liquid Chromatography Coupled to Hybrid Quadrupole-Exactive Orbitrap Mass Spectrometry. Metabolites 2019; 9:E80. [PMID: 31027159 PMCID: PMC6523637 DOI: 10.3390/metabo9040080] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 01/08/2023] Open
Abstract
Surfactant lipid metabolism is closely related to pulmonary diseases. Lipid metabolism disorder can cause lung diseases, vice versa. With this rationale, a useful method was established in this study to determine the lipidome in bronchoalveolar lavage fluid (BALF) of mice. The lipid components in BALF were extracted by liquid-liquid extraction (methanol and methyl tert-butyl ether, and water). Ultra-high-performance liquid chromatography coupled to hybrid Quadrupole-Exactive Orbitrap mass spectrometry was used to analyze the extracted samples, which showed a broad scanning range of 215-1800 m/z. With MS-DIAL software and built-in LipidBlast database, we identified 38 lipids in positive, and 31 lipids in negative, ion mode, including lysophosphatidylcholine (lysoPC), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), etc. Then, the changes of lipids in BALF of mice with acute lung injury (ALI) induced by lipopolysaccharide (LPS) was investigated, which may contribute to further exploration of the pathogenesis of ALI.
Collapse
Affiliation(s)
- Rui Yang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ying Zhang
- Genome Center of UC Davis, NIH West Coast Metabolomics Center, Davis, CA 95616, USA.
| | - Wenjuan Qian
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Linxiu Peng
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Lili Lin
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jia Xu
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Tong Xie
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jianjian Ji
- Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xiuqin Zhan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|