1
|
Singh G, Kesharwani P, Kumar Singh G, Kumar S, Putta A, Modi G. Ferroptosis and its modulators: A raising target for cancer and Alzheimer's disease. Bioorg Med Chem 2024; 98:117564. [PMID: 38171251 DOI: 10.1016/j.bmc.2023.117564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
The process of ferroptosis, a recently identified form of regulated cell death (RCD) is associated with the overloading of iron species and lipid-derived ROS accumulation. Ferroptosis is induced by various mechanisms such as inhibiting system Xc, glutathione depletion, targeting excess iron, and directly inhibiting GPX4 enzyme. Also, ferroptosis inhibition is achieved by blocking excessive lipid peroxidation by targeting different pathways. These mechanisms are often related to the pathophysiology and pathogenesis of diseases like cancer and Alzheimer's. Fundamentally distinct from other forms of cell death, such as necrosis and apoptosis, ferroptosis differs in terms of biochemistry, functions, and morphology. The mechanism by which ferroptosis acts as a regulatory factor in many diseases remains elusive. Studying the activation and inhibition of ferroptosis as a means to mitigate the progression of various diseases is a highly intriguing and actively researched topic. It has emerged as a focal point in etiological research and treatment strategies. This review systematically summarizes the different mechanisms involved in the inhibition and induction of ferroptosis. We have extensively explored different agents that can induce or inhibit ferroptosis. This review offers current perspectives on recent developments in ferroptosis research, highlighting the disease's etiology and presenting references to enhance its understanding. It also explores new targets for the treatment of cancer and Alzheimer's disease.
Collapse
Affiliation(s)
- Gourav Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Gireesh Kumar Singh
- Department of Pharmacy, School of Health Science, Central University of South Bihar Gaya, 824236, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Anjaneyulu Putta
- Department of Chemistry, University of South Dakota, Churchill Haines, Vermillion SD-57069, United States
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
2
|
Ciner A, Gourdin T, Davidson J, Parette M, Walker SJ, Fox TE, Jiang Y. A phase I study of the ceramide nanoliposome in patients with advanced solid tumors. Cancer Chemother Pharmacol 2024; 93:23-29. [PMID: 37736793 PMCID: PMC10796569 DOI: 10.1007/s00280-023-04588-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE Ceramide is a sphingolipid metabolite that deactivates multiple oncogenic signaling pathways and promotes cell death. In-vivo data demonstrate single-agent anti-cancer activity and enhanced efficacy with combination strategies. This phase I dose-escalation trial evaluated Ceramide nanoLiposomes (CNL) in patients with advanced solid tumors and no standard treatment option. METHODS The primary objective was to establish the maximum tolerated dose. Secondary objectives included determining the recommended phase II dose, the safety and tolerability, the pharmacokinetic profile and preliminary anti-tumor efficacy. RESULTS 15 patients with heavily pretreated metastatic disease enrolled. Safety data were analyzed for all patients, while pharmacokinetic data were available for 14 patients. There were no grade 3 or higher treatment-related adverse events. The maximum tolerated dose was not reached and there were no dose-limiting toxicities. The most common grade 1 or 2 treatment-related adverse events included headache, fatigue, constipation, nausea and transaminitis. The maximum concentration and area under the curve increased with dose. Clearance was consistent between doses and was observed mainly through the liver without significant hepatotoxicity. The half-life ranged from 20 to 30 h and the volume of distribution was consistent with a lipophilic drug. CONCLUSIONS CNL exhibited an encouraging safety profile and pharmacokinetic parameters, with some signals of efficacy including prolonged stable disease in 1 patient with refractory pancreatic cancer. Pre-clinical data indicate potential synergy between CNL and multiple systemic therapies including chemotherapy, targeted therapy, and immunotherapy. Future studies are planned investigating CNL in combination strategies. TRIAL REGISTRATION This study is registered under ClinicalTrials.gov ID: NCT02834611.
Collapse
Affiliation(s)
- Aaron Ciner
- Department of Medicine, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Theodore Gourdin
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | | | | - Susan J Walker
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Todd E Fox
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Yixing Jiang
- Department of Medicine, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA.
| |
Collapse
|
3
|
Nguyen Van Long F, Valcourt‐Gendron D, Caron P, Rouleau M, Villeneuve L, Simonyan D, Le T, Sergerie R, Laverdière I, Vanura K, Guillemette C. Untargeted metabolomics identifies metabolic dysregulation of sphingolipids associated with aggressive chronic lymphocytic leukaemia and poor survival. Clin Transl Med 2023; 13:e1442. [PMID: 38037464 PMCID: PMC10689972 DOI: 10.1002/ctm2.1442] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/19/2023] [Accepted: 10/01/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Metabolic dependencies of chronic lymphocytic leukaemia (CLL) cells may represent new personalized treatment approaches in patients harbouring unfavourable features. METHODS Here, we used untargeted metabolomics and lipidomics analyses to isolate metabolomic features associated with aggressive CLL and poor survival outcomes. We initially focused on profiles associated with overexpression of the adverse metabolic marker glycosyltransferase (UGT2B17) associated with poor survival and drug resistance. RESULTS Leukaemic B-cell metabolomes indicated a significant perturbation in lipids, predominantly bio-active sphingolipids. Expression of numerous enzyme-encoding genes of sphingolipid biosynthesis pathways was significantly associated with shorter patient survival. Targeted metabolomics further exposed higher circulating levels of glucosylceramides (C16:0 GluCer) in CLL patients relative to healthy donors and an aggressive cancer biology. In multivariate analyses, C16:0 GluCer and sphinganine were independent prognostic markers and were inversely linked to treatment-free survival. These two sphingolipid species function as antagonistic mediators, with sphinganine being pro-apoptotic and GluCer being pro-proliferative, tested in leukemic B-CLL cell models. Blocking GluCer synthesis using ceramide glucosyltransferase inhibitors induced cell death and reduced the proliferative phenotype, which further sensitized a leukaemic B-cell model to the anti-leukaemics fludarabine and ibrutinib in vitro. CONCLUSIONS Specific sphingolipids may serve as prognostic markers in CLL, and inhibiting enzymatic pathways involved in their biosynthesis has potential as a therapaeutic approach.
Collapse
Affiliation(s)
- Flora Nguyen Van Long
- Centre Hospitalier Universitaire de Québec Research Center‐Université Laval (CRCHUQc‐UL)Faculty of Pharmacy and Centre de Recherche sur le Cancer (CRC‐UL)Université LavalQuébecCanada
| | - Délya Valcourt‐Gendron
- Centre Hospitalier Universitaire de Québec Research Center‐Université Laval (CRCHUQc‐UL)Faculty of Pharmacy and Centre de Recherche sur le Cancer (CRC‐UL)Université LavalQuébecCanada
| | - Patrick Caron
- Centre Hospitalier Universitaire de Québec Research Center‐Université Laval (CRCHUQc‐UL)Faculty of Pharmacy and Centre de Recherche sur le Cancer (CRC‐UL)Université LavalQuébecCanada
| | - Michèle Rouleau
- Centre Hospitalier Universitaire de Québec Research Center‐Université Laval (CRCHUQc‐UL)Faculty of Pharmacy and Centre de Recherche sur le Cancer (CRC‐UL)Université LavalQuébecCanada
| | - Lyne Villeneuve
- Centre Hospitalier Universitaire de Québec Research Center‐Université Laval (CRCHUQc‐UL)Faculty of Pharmacy and Centre de Recherche sur le Cancer (CRC‐UL)Université LavalQuébecCanada
| | - David Simonyan
- Statistical and Clinical Research PlatformCRCHUQc‐ULQuébecCanada
| | - Trang Le
- Department of Medicine IDivision of Haematology and HaemostaseologyMedical University of ViennaViennaAustria
| | - Roxanne Sergerie
- Centre Hospitalier Universitaire de Québec Research Center‐Université Laval (CRCHUQc‐UL)Faculty of Pharmacy and Centre de Recherche sur le Cancer (CRC‐UL)Université LavalQuébecCanada
| | - Isabelle Laverdière
- Centre Hospitalier Universitaire de Québec Research Center‐Université Laval (CRCHUQc‐UL)Faculty of Pharmacy and Centre de Recherche sur le Cancer (CRC‐UL)Université LavalQuébecCanada
| | - Katrina Vanura
- Department of Medicine IDivision of Haematology and HaemostaseologyMedical University of ViennaViennaAustria
| | - Chantal Guillemette
- Centre Hospitalier Universitaire de Québec Research Center‐Université Laval (CRCHUQc‐UL)Faculty of Pharmacy and Centre de Recherche sur le Cancer (CRC‐UL)Université LavalQuébecCanada
- Canada Research Chair in PharmacogenomicsQuébecCanada
| |
Collapse
|
4
|
Raza Y, Atallah J, Luberto C. Advancements on the Multifaceted Roles of Sphingolipids in Hematological Malignancies. Int J Mol Sci 2022; 23:12745. [PMID: 36361536 PMCID: PMC9654982 DOI: 10.3390/ijms232112745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 09/19/2023] Open
Abstract
Dysregulation of sphingolipid metabolism plays a complex role in hematological malignancies, beginning with the first historical link between sphingolipids and apoptosis discovered in HL-60 leukemic cells. Numerous manuscripts have reviewed the field including the early discoveries that jumpstarted the studies. Many studies discussed here support a role for sphingolipids, such as ceramide, in combinatorial therapeutic regimens to enhance anti-leukemic effects and reduce resistance to standard therapies. Additionally, inhibitors of specific nodes of the sphingolipid pathway, such as sphingosine kinase inhibitors, significantly reduce leukemic cell survival in various types of leukemias. Acid ceramidase inhibitors have also shown promising results in acute myeloid leukemia. As the field moves rapidly, here we aim to expand the body of literature discussed in previously published reviews by focusing on advances reported in the latter part of the last decade.
Collapse
Affiliation(s)
- Yasharah Raza
- Department of Pharmacological Sciences, Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY 11794, USA
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Jane Atallah
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Chiara Luberto
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
5
|
Banini BA, Kumar DP, Cazanave S, Seneshaw M, Mirshahi F, Santhekadur PK, Wang L, Guan HP, Oseini A, Alonso C, Bedossa P, Koduru SV, Min HK, Sanyal AJ. Identification of a Metabolic, Transcriptomic, and Molecular Signature of Patatin-Like Phospholipase Domain Containing 3-Mediated Acceleration of Steatohepatitis. Hepatology 2020; 73:1290-1306. [PMID: 33131062 PMCID: PMC8046714 DOI: 10.1002/hep.31609] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS The mechanisms by which the I148M mutant variant of the patatin-like phospholipase domain-containing 3 (PNPLA3I148M ) drives development of nonalcoholic steatohepatitis (NASH) are not known. The aim of this study was to obtain insights on mechanisms underlying PNPLA3I148M -induced acceleration of NASH. APPROACH AND RESULTS Hepatocyte-specific overexpression of empty vector (luciferase), human wild-type PNPLA3, or PNPLA3I148M was achieved using adeno-associated virus 8 in a diet-induced mouse model of nonalcoholic fatty liver disease followed by chow diet or high-fat Western diet with ad libitum administration of sugar in drinking water (WDSW) for 8 weeks. Under WDSW, PNPLA3I148M overexpression accelerated steatohepatitis with increased steatosis, inflammation ballooning, and fibrosis (P < 0.001 versus other groups for all). Silencing PNPLA3I148M after its initial overexpression abrogated these findings. PNPLA3I148M caused 22:6n3 docosahexanoic acid depletion and increased ceramides under WDSW in addition to increasing triglycerides and diglycerides, especially enriched with unsaturated fatty acids. It also increased oxidative stress and endoplasmic reticulum stress. Increased total ceramides was associated with signature of transducer and activator of transcription 3 (STAT3) activation with downstream activation of multiple immune-inflammatory pathways at a transcriptomic level by network analyses. Silencing PNPLA3I148M reversed STAT3 activation. Conditioned media from HepG2 cells overexpressing PNPLA3I148M increased procollagen mRNA expression in LX2 cells; this was abrogated by hepatocyte STAT3 inhibition. CONCLUSIONS Under WDSW, PNPLA3I148M overexpression promotes steatosis and NASH by metabolic reprogramming characterized by increased triglycerides and diglycerides, n3 polyunsaturated fatty acid depletion, and increased ceramides with resultant STAT3 phosphorylation and downstream inflammatory pathway activation driving increased stellate cell fibrogenic activity.
Collapse
Affiliation(s)
- Bubu A Banini
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, USA,Section of Digestive Diseases, Yale University, New Haven, CT, USA
| | - Divya. P. Kumar
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, USA,Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Sophie Cazanave
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, USA,Glympse Bio, Cambridge, MA, USA
| | - Mulugeta Seneshaw
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, USA
| | - Faridoddin Mirshahi
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, USA
| | - Prasanna K. Santhekadur
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | | | | | - Abdul Oseini
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, USA
| | - Cristina Alonso
- OWL Metabolomics, Technology Park of Bizkaia, Derio, Bizkaia, Spain
| | - Pierre Bedossa
- Department of Pathology, Physiology and Imaging, University Paris Diderot, Paris, France
| | - Srinivas V. Koduru
- Gene Arrays, Entity of Vedic Research, New York, NY, USA,Department of Surgery, Penn State College of Medicine, Hershey, PA, USA
| | - Hae-Ki Min
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, USA
| | - Arun J. Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
6
|
Gan C, Li Y, Yu Y, Yu X, Liu H, Zhang Q, Yin W, Yu L, Ye T. Natural product pectolinarigenin exhibits potent anti-metastatic activity in colorectal carcinoma cells in vitro and in vivo. Bioorg Med Chem 2019; 27:115089. [PMID: 31540827 DOI: 10.1016/j.bmc.2019.115089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/21/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
Abstract
Colorectal carcinoma (CRC) is one of the most common cancers with high metastatic potential, explaining why identifying new drug candidates that inhibit tumour metastasis is an urgent need. The aim of this study was to evaluate the biological activities of pectolinarigenin (PEC, a natural flavonoid present in Cirsium chanroenicum) in CRC in vitro and in vivo and to determine its underlying mechanism of action. Here, we observed that treatment with PEC could inhibit cell viability and induce apoptosis in cancer cells in a concentration- and time-dependent manner. The occurrence of apoptosis was associated with activation of caspase-3 and Bax and decreased expression of Bcl-2. In addition, PEC markedly impaired CRC cell migration and invasion by downregulating the expression of matrix metalloproteinase (MMP-9) and phosphorylated-Stat3Tyr705. Moreover, our studies showed that PEC inhibited abdominal metastasis models of murine colorectal cancer. In addition, histological and immunohistochemical analyses revealed a decrease in Ki67-positive cells, MMP9-positive cells and p-Stat3Tyr705 cells upon treatment with PEC compared to control samples. Furthermore, PEC reduced the number of myeloid-derived suppressor cells (MDSCs) in the blood and tumours, which was accompanied by the increased infiltration of CD8+T cells in the blood. Taken together, our findings suggested that PEC could be used as a natural drug to inhibit CRC metastasis.
Collapse
Affiliation(s)
- Cailing Gan
- Laboratory of Liver Surgery, Oxford University-Sichuan University Gastrointestinal Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yali Li
- Department of Nutrition and Food Hygiene, School of Public Health, West China Medical School, Sichuan University, Chengdu, China
| | - Yan Yu
- Laboratory of Liver Surgery, Oxford University-Sichuan University Gastrointestinal Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xi Yu
- Carey Business School, Johns Hopkins University, Baltimore, USA
| | - Hongyao Liu
- Laboratory of Liver Surgery, Oxford University-Sichuan University Gastrointestinal Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qianyu Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, West China Medical School, Sichuan University, Chengdu, China
| | - Wenya Yin
- Department of Nutrition and Food Hygiene, School of Public Health, West China Medical School, Sichuan University, Chengdu, China
| | - Luoting Yu
- Laboratory of Liver Surgery, Oxford University-Sichuan University Gastrointestinal Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Tinghong Ye
- Laboratory of Liver Surgery, Oxford University-Sichuan University Gastrointestinal Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
7
|
Ma W, Zhang Y, Qi Y, Guo S. STAT3 promotes chronic lymphocytic leukemia progression through upregulating SMYD3 expression. Arch Med Sci 2019; 15:1163-1175. [PMID: 31572461 PMCID: PMC6764298 DOI: 10.5114/aoms.2018.77733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/14/2018] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION This study was designed to investigate the roles of STAT3 and SMYD3 in chronic lymphocytic leukemia and the regulatory relationship between STAT3 and SMYD3 in chronic lymphocytic leukemia. MATERIAL AND METHODS The expression of STAT3 and SMYD3 was determined by RT-qPCR and western blot in chronic lymphocytic leukemia samples and cells (MEC1, CLL). Small interfering RNA was used to knock down the mRNA level of STAT3 and the pcDNA3.1-SMYD3 plasmid was used to construct a SMYD3 overexpression model. An MTT assay was performed to evaluate cell proliferation. A transwell assay was used to detect cell invasion ability. Afterwards, a luciferase reporter assay and chromatin immunoprecipitation experiment (ChIP assay) were applied to confirm the correlation between STAT3 and SMYD3. RESULTS STAT3 was highly expressed in chronic lymphocytic leukemia mononuclear cells and cancerous cell lines. STAT3 knockdown dramatically inhibited the mRNA and protein expression of SMYD3 in MEC1 and CLL cell lines. The luciferase reporter assay combined with the ChIP assay revealed that STAT3 bound to the promoter region of STAT3 and contributed to the transcription of SMYD3. Knockdown of STAT3 positively correlated with inhibition of cell proliferation and invasion abilities, while overexpression of SMYD3 negatively correlated with inhibition of cell proliferation and invasion. CONCLUSIONS STAT3 may promote chronic lymphocytic leukemia progression through elevating SMYD3 expression. Targeting STAT3 and SMYD3 may be a potential therapeutic strategy for chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Wei Ma
- Hematology and Oncology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Zhang
- Scientific Research Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Qi
- Nursing Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shidong Guo
- Emergency Department, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
8
|
Flavopereirine Suppresses the Growth of Colorectal Cancer Cells through P53 Signaling Dependence. Cancers (Basel) 2019; 11:cancers11071034. [PMID: 31336690 PMCID: PMC6678721 DOI: 10.3390/cancers11071034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is a significant cause of morbidity and mortality worldwide. The outcome of CRC patients remains poor. Thus, a new strategy for CRC treatment is urgently needed. Flavopereirine is a β-carboline alkaloid extracted from Geissospermum vellosii, which can reduce the viability of various cancer cells through an unknown mode of action. The aim of the present study was to investigate the functional mechanism and therapeutic potential of flavopereirine on CRC cells in vitro and in vivo. Our data showed that flavopereirine significantly lowered cellular viability, caused intrinsic and extrinsic apoptosis, and induced G2/M-phase cell cycle arrest in CRC cells. Flavopereirine downregulated Janus kinases-signal transducers and activators of transcription (JAKs-STATs) and cellular myelocytomatosis (c-Myc) signaling in CRC cells. In contrast, the enforced expressions of constitutive active STAT3 and c-Myc could not restore flavopereirine-induced viability reduction. Moreover, flavopereirine enhanced P53 expression and phosphorylation in CRC cells. CRC cells with P53 knockout or loss-of-function mutation significantly diminished flavopereirine-mediated viability reduction, indicating that P53 activity plays a major role in flavopereirine-mediated CRC cell growth suppression. Flavopereirine also significantly repressed CRC cell xenograft growth in vivo by upregulating P53 and P21 and inducing apoptosis. In conclusion, flavopereirine-mediated growth suppression in CRC cells depended on the P53-P21, but not the JAKs-STATs-c-Myc signaling pathway. The present study suggests that flavopereirine may be efficacious in the clinical treatment of CRC harboring functional P53 signaling.
Collapse
|
9
|
Lu P, White-Gilbertson S, Nganga R, Kester M, Voelkel-Johnson C. Expression of the SNAI2 transcriptional repressor is regulated by C 16-ceramide. Cancer Biol Ther 2019; 20:922-930. [PMID: 30836822 DOI: 10.1080/15384047.2019.1579962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ceramide synthase 6 (CerS6) is an enzyme that preferentially generates pro-apoptotic C16-ceramide in the sphingolipid metabolic pathway. Reduced expression of CerS6 has been associated with apoptosis resistance and recent studies point to a role for CerS6 in epithelial mesenchymal transition (EMT). Because cells that undergo EMT are also more resistant to apoptosis, we hypothesized that reduced expression of CerS6 could induce changes that are associated with EMT. We found that shRNA-mediated knockdown of CerS6 increases expression of the EMT transcription factor SNAI2 but not SNAI1 or TWIST. Treatment with C6-ceramide nanoliposomes (CNL) resulted in a preferential increase in C16-ceramide and suppressed SNAI2 transcriptional activation and protein expression. The increase in C16-ceramide following CNL treatment was dependent on CerS activity and occurred even when CerS6 shRNA was expressed. shRNA against CerS5, which like CerS6 preferentially generates C16-ceramide, also decreased transcriptional activation of SNAI2, suggesting a role for C16-ceramide rather than a specific enzyme in the regulation of this transcription factor. While loss of CerS6 has been associated with apoptosis resistance, we found that cells lacking this protein are more susceptible to the effects CNL. In summary, our study identifies SNAI2 as a novel target whose expression can be influenced by C16-ceramide levels. The potential of CNL to suppress SNAI2 expression has important clinical implications, since elevated expression of this transcription factor has been associated with an aggressive phenotype or poor outcomes in several types of solid tumors.
Collapse
Affiliation(s)
- Ping Lu
- a Department of Microbiology & Immunology , Medical University of South Carolina , Charleston , SC , USA.,b Hollings Cancer Center , Medical University of South Carolina , Charleston , SC , USA
| | - Shai White-Gilbertson
- a Department of Microbiology & Immunology , Medical University of South Carolina , Charleston , SC , USA.,b Hollings Cancer Center , Medical University of South Carolina , Charleston , SC , USA
| | - Rose Nganga
- b Hollings Cancer Center , Medical University of South Carolina , Charleston , SC , USA.,c Department of Biochemistry & Molecular Biology , Medical University of South Carolina , Charleston , SC , USA
| | - Mark Kester
- d Department of Pharmacology, Biomedical Engineering, Molecular Physiology and Biophysics , University of Virginia , Charlottesville , VA , USA
| | - Christina Voelkel-Johnson
- a Department of Microbiology & Immunology , Medical University of South Carolina , Charleston , SC , USA.,b Hollings Cancer Center , Medical University of South Carolina , Charleston , SC , USA
| |
Collapse
|
10
|
Gao H, Bai Y, Jia Y, Zhao Y, Kang R, Tang D, Dai E. Ferroptosis is a lysosomal cell death process. Biochem Biophys Res Commun 2018; 503:1550-1556. [DOI: 10.1016/j.bbrc.2018.07.078] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022]
|
11
|
A nanomedicine approach enables co-delivery of cyclosporin A and gefitinib to potentiate the therapeutic efficacy in drug-resistant lung cancer. Signal Transduct Target Ther 2018; 3:16. [PMID: 29942660 PMCID: PMC6013461 DOI: 10.1038/s41392-018-0019-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/26/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
Drug resistance, accounting for therapeutic failure in the clinic, remains a major challenge to effectively manage cancer. Cyclosporin A (CsA) can reverse multidrug resistance (MDR), especially resistance to epidermal growth factor receptor tyrosine kinase inhibitors. However, the application of both drugs in cancer therapies is hampered by their poor aqueous solubility and low bioavailability due to oral administration. CsA augments the potency of gefitinib (Gef) in both Gef-sensitive and Gef-resistant cell lines. Here, we show that the simultaneous encapsulation of CsA and Gef within polyethylene glycol-block-poly(D, L-lactic acid) (PEG-PLA) produced a stable and systemically injectable nanomedicine, which exhibited a sub-50-nm diameter and spherical structures. Impressively, the co-delivery of therapeutics via single nanoparticles (NPs) outperformed the oral administration of the free drug combination at suppressing tumor growth. Furthermore, in vivo results indicated that CsA formulated in NPs sensitized Gef-resistant cells and Gef-resistant tumors to Gef treatment by inactivating the STAT3/Bcl-2 signaling pathway. Collectively, our nanomedicine approach not only provides an alternative administration route for the drugs of choice but also effectively reverses MDR, facilitating the development of effective therapeutic modalities for cancer. Injection of nanoparticles containing the anticancer drug gefitinib and the immunosuppressant cyclosporin A reverses drug-resistant cancer growth in mice. The development of multidrug resistance is the main reason why many forms of chemotherapy fail. Cyclosporin A, a drug used to prevent immune rejection after organ transplantation, has previously been shown to enhance the potency of gefitinib. Hangxiang Wang and colleagues at Zhejiang University, Hangzhou, China, have successfully combined cyclosporin A and gefitinib, two poorly water-soluble and slowly absorbed drugs, into stable injectable nanoparticles that delay the growth of gefitinib resistant human lung cancer cells as well as the growth of drug resistant tumors in mice. Importantly, this novel co-formulation was more effective than oral co-administration of the two drugs. Further investigation into this drug delivery route could yield much needed alternative treatments for patients with multidrug-resistant cancers.
Collapse
|