1
|
Fahrig A, Koch T, Lenhart M, Rieckmann P, Fietkau R, Distel L, Schuster B. Lethal outcome after pelvic salvage radiotherapy in a patient with prostate cancer due to increased radiosensitivity : Case report and literature review. Strahlenther Onkol 2017; 194:60-66. [PMID: 28887683 DOI: 10.1007/s00066-017-1207-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 08/17/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND In general, late side effects after salvage radiotherapy (RT) for prostate cancer are below 10%. Patients with impaired DNA repair ability and genetic instability can have significantly increased reactions after RT. CASE, CLINICAL FOLLOW-UP, AND EXAMINATION We present a patient who experienced severe side effects after additive RT for prostate cancer and died from the complications 25 months after RT. Imaging (MR) is shown as well as three-color fluorescence in situ hybridization. The blood sample testing revealed that radiosensitivity was increased by 35-55%. We undertook a review of the literature to give an overview over the tests established that are currently considered useful. CONCLUSION This case highlights that the identification of patients with increased radiosensitivity is an important task in radiation protection. Groups of patients who should be screened have to be found and corresponding research facilities have to be set up.
Collapse
Affiliation(s)
- Antje Fahrig
- Klinik und Praxis für Radioonkologie und Strahlentherapie, Klinikum Bamberg, Sozialstiftung Bamberg, Buger Straße 80, 96049, Bamberg, Germany.
| | - T Koch
- Klinik und Praxis für Radioonkologie und Strahlentherapie, Klinikum Bamberg, Sozialstiftung Bamberg, Buger Straße 80, 96049, Bamberg, Germany
| | - M Lenhart
- Klinik für Diagnostische Radiologie, Interventionelle Radiologie und Neuroradiologie, Klinikum Bamberg, Sozialstiftung Bamberg, Buger Straße 80, 96049, Bamberg, Germany
| | - P Rieckmann
- Neurologische Klinik, Klinikum Bamberg, Sozialstiftung Bamberg, Buger Straße 80, 96049, Bamberg, Germany
| | - R Fietkau
- Strahlenklinik, Universitätsklinikum Erlangen, Universitätsstraße 27, 91054, Erlangen, Germany
| | - Luitpold Distel
- Strahlenklinik, Universitätsklinikum Erlangen, Universitätsstraße 27, 91054, Erlangen, Germany
| | - B Schuster
- Strahlenklinik, Universitätsklinikum Erlangen, Universitätsstraße 27, 91054, Erlangen, Germany
| |
Collapse
|
2
|
Personalised Medicine: Genome Maintenance Lessons Learned from Studies in Yeast as a Model Organism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:157-178. [PMID: 28840557 DOI: 10.1007/978-3-319-60733-7_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Yeast research has been tremendously contributing to the understanding of a variety of molecular pathways due to the ease of its genetic manipulation, fast doubling time as well as being cost-effective. The understanding of these pathways did not only help scientists learn more about the cellular functions but also assisted in deciphering the genetic and cellular defects behind multiple diseases. Hence, yeast research not only opened the doors for transforming basic research into applied research, but also paved the roads for improving diagnosis and innovating personalized therapy of different diseases. In this chapter, we discuss how yeast research has contributed to understanding major genome maintenance pathways such as the S-phase checkpoint activation pathways, repair via homologous recombination and non-homologous end joining as well as topoisomerases-induced protein linked DNA breaks repair. Defects in these pathways lead to neurodegenerative diseases and cancer. Thus, the understanding of the exact genetic defects underlying these diseases allowed the development of personalized medicine, improving the diagnosis and treatment and overcoming the detriments of current conventional therapies such as the side effects, toxicity as well as drug resistance.
Collapse
|
3
|
Sirák I, Šinkorová Z, Šenkeříková M, Špaček J, Laco J, Vošmiková H, John S, Petera J. Hypersensitivity to chemoradiation in FANCA carrier with cervical carcinoma-A case report and review of the literature. Rep Pract Oncol Radiother 2014; 20:309-15. [PMID: 26109920 DOI: 10.1016/j.rpor.2014.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/01/2014] [Accepted: 11/17/2014] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Compared to Fanconi anemia (FA) patients with homozygous defective two-alleles inheritance, there is a scarce or no evidence on one defective allele FANCA carriers, with respect to their cancer incidence, clinical and in vitro radiosensitivity and chemosensitivity. On that account, we report a case of a 30-year old FANCA mutation carrier woman with uterine cervix adenocarcinoma who was treated with chemoradiotherapy, in which unexpected acute toxicity and fatal late morbidity occured. METHODS We also report the results of an in vitro test for radiosensitivity, immunohistochemical examination with FANCA staining and human papillomavirus genotypization, and a review of the literature for FA carrier patients with respect to cancer incidence, clinical and in vitro response to chemo/radiotherapy, options of early heterozygosity detection, and methods of in vitro prediction of hypersensitivity to oncologic treatment. CONCLUSION Although there are no standard guidelines for management of FA carriers with malignancies and reports about chemo- or radiosensitivity in this population are scarce; patients with FA-A heterozygosity may have a high rate of complications from chemo/radiotherapy. Up to now, an optimum method for the prediction of radiosensitivity and the best parameter has not been found. Clinical radioresponsiveness is unpredictable in FA carriers and there is a pressing need of new rapid and predictive in vitro assays of radiation responses. Until then, the treatment of FA carriers with malignancies should be individualized, with respect to potential hypersensitivity to ionizing radiation or cross-linking agents.
Collapse
Affiliation(s)
- Igor Sirák
- Department of Oncology and Radiotherapy, University Hospital Hradec Králové, Sokolská 581, Hradec Kralove 500 05, Czech Republic
| | - Zuzana Šinkorová
- Department of Radiobiology, Faculty of Health Sciences, University of Defence in Brno, Sokolská 581, Hradec Kralove 500 05, Czech Republic
| | - Mária Šenkeříková
- Department of Medical Genetics, University Hospital Hradec Králové, Sokolská 581, Hradec Kralove 500 05, Czech Republic
| | - Jiří Špaček
- Department of Gynecology and Obstetrics, University Hospital Hradec Králové, Sokolská 581, Hradec Kralove 500 05, Czech Republic
| | - Jan Laco
- The Fingerland Department of Pathology, Charles University in Prague, Faculty of Medicine and University Hospital Hradec Králové, Sokolská 581, Hradec Kralove 500 05, Czech Republic
| | - Hana Vošmiková
- The Fingerland Department of Pathology, Charles University in Prague, Faculty of Medicine and University Hospital Hradec Králové, Sokolská 581, Hradec Kralove 500 05, Czech Republic
| | - Stanislav John
- Department of Oncology and Radiotherapy, University Hospital Hradec Králové, Sokolská 581, Hradec Kralove 500 05, Czech Republic
| | - Jiří Petera
- Department of Oncology and Radiotherapy, University Hospital Hradec Králové, Sokolská 581, Hradec Kralove 500 05, Czech Republic
| |
Collapse
|
4
|
Zhang LY, Chen LS, Sun R, JI SJ, Ding YY, Wu J, Tian Y. Effects of expression level of DNA repair-related genes involved in the NHEJ pathway on radiation-induced cognitive impairment. JOURNAL OF RADIATION RESEARCH 2013; 54:235-242. [PMID: 23135157 PMCID: PMC3589933 DOI: 10.1093/jrr/rrs095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 09/06/2012] [Accepted: 09/25/2012] [Indexed: 06/01/2023]
Abstract
Cranial radiation therapy can induce cognitive decline. Impairments of hippocampal neurogenesis are thought to be a paramountly important mechanism underlying radiation-induced cognitive dysfunction. In the mature nervous system, DNA double-strand breaks (DSBs) are mainly repaired by non-homologous end-joining (NHEJ) pathways. It has been demonstrated that NHEJ deficiencies are associated with impaired neurogenesis. In our study, rats were randomly divided into five groups to be irradiated by single doses of 0 (control), 0 (anesthesia control), 2, 10, and 20 Gy, respectively. The cognitive function of the irradiated rats was measured by open field, Morris water maze and passive avoidance tests. Real-time PCR was also used to detect the expression level of DNA DSB repair-related genes involved in the NHEJ pathway, such as XRCC4, XRCC5and XRCC6, in the hippocampus. The influence of different radiation doses on cognitive function in rats was investigated. From the results of the behavior tests, we found that rats receiving 20 Gy irradiation revealed poorer learning and memory, while no significant loss of learning and memory existed in rats receiving irradiation from 0-10 Gy. The real-time PCR and Western blot results showed no significant difference in the expression level of DNA repair-related genes between the 10 and 20 Gy groups, which may help to explain the behavioral results, i.e. DNA damage caused by 0-10 Gy exposure was appropriately repaired, however, damage induced by 20 Gy exceeded the body's maximum DSB repair ability. Ionizing radiation-induced cognitive impairments depend on the radiation dose, and more directly on the body's own ability to repair DNA DSBs via the NHEJ pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ye Tian
- Corresponding author: Tel: + 86-512-6778-3430; Fax: + 86-512-6828-4303;
| |
Collapse
|
5
|
Sun MF, Chang TT, Chang KW, Huang HJ, Chen HY, Tsai FJ, Lin JG, Chen CYC. Blocking the DNA Repair System by Traditional Chinese Medicine? J Biomol Struct Dyn 2011; 28:895-906. [DOI: 10.1080/07391102.2011.10508616] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
McKay MJ, Withana N, Davey DS, Bishop D, Chao M, Sprung CN. Lymphoid and fibroblastic cell lineages from radiosensitive cancer patients: molecular analysis of DNA double strand break repair by major non-homologous end-joining sub-pathways. Asia Pac J Clin Oncol 2011; 7:17-26. [PMID: 21332647 DOI: 10.1111/j.1743-7563.2010.01364.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Radiation therapy (RT) is used in the treatment of approximately half of all cancer patients. Although there have been great improvements in tumor localization and the technical accuracy of RT delivery, some RT patients still have idiosyncratic hypersensitivity to ionizing radiation (IR) in their normal tissues. Although much effort has been expended in the search for assays that could detect radiosensitive individuals prior to treatment and facilitate tailored therapy; a suitable and clinically practical predictive assay has yet to be realized. Since DNA double-strand breaks (DSB) are a major lesion caused by IR, we hypothesized that radiation hypersensitive individuals might be deficient in the repair of such lesions. METHODS To test this hypothesis we quantitatively and functionally characterized DSB repair of the two major non-homologous end-joining (NHEJ) sub-pathways in a pilot study using a plasmid repair reconstitution assay in lymphoblastoid and fibroblast cell lines from radiosensitive cancer patients and controls. Experiments using well-characterized mammalian DSB repair mutants demonstrated the ability of the assay to distinguish NHEJ sub-pathways. The proportion of direct end-joining repair compared with that of microhomology-directed repair was used as a functional end-point of DSB repair competence in the different cell lines. RESULTS We found that the overall level of NHEJ sub-pathway repair competency was similar in cell lines from radiosensitive patients and controls. CONCLUSION These data suggest that this assay in these cell lineages has limited usefulness as a predictive screen for the endogenous DNA DSB repair competency of radiosensitive cancer patients' cells but can usefully characterize major cellular DSB repair phenotypes.
Collapse
Affiliation(s)
- Michael J McKay
- Divisions of Radiation Oncology Research, Peter MacCallum Cancer Centre, Australian National University and Canberra Hospital, Yamba Drive, Canberra, ACT 2604, Australia.
| | | | | | | | | | | |
Collapse
|
7
|
Saleh EMY, El-Awady RAE. Expression of RAD51, BRCA1 and P53 does not correlate with cellular radiosensitivity of normal human fibroblasts. Ir J Med Sci 2010; 180:715-20. [PMID: 20803320 DOI: 10.1007/s11845-010-0554-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 08/10/2010] [Indexed: 10/19/2022]
Abstract
AIMS To evaluate the potential role of key DNA repair proteins in the sensitivity of normal human fibroblasts to ionising radiations. METHODS Radiosensitivity of six human fibroblast strains established from skin biopsies of women who had undergone conservative breast surgery and received a curative breast conserving radiotherapy was measured by colony-formation assay. The expression level of RAD51, BRCA1 and p53 proteins were studied using western blot analysis. RESULTS The six fibroblast strains represent a typical spectrum of normal human radiosensitivity with the surviving fraction measured for a dose of 3.5 Gy (SF3.5) ranging from 0.21 to 0.40. We found that these differences in cell survival did not correlate with the expression of RAD51, BRCA1 nor p53 in the tested normal human fibroblast strains. CONCLUSIONS We conclude that measurement of protein expression of the three tested genes (RAD51, BRCA1 and p53) did not reflect sensitivity of normal fibroblasts to IR.
Collapse
Affiliation(s)
- E M Y Saleh
- Biochemistry and Molecular Biology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| | | |
Collapse
|
8
|
Fogarty GB, Muddle R, Sprung CN, Chen W, Duffy D, Sturm RA, McKay MJ. Unexpectedly severe acute radiotherapy side effects are associated with single nucleotide polymorphisms of the melanocortin-1 receptor. Int J Radiat Oncol Biol Phys 2009; 77:1486-92. [PMID: 19932942 DOI: 10.1016/j.ijrobp.2009.07.1690] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/22/2009] [Accepted: 07/01/2009] [Indexed: 11/30/2022]
Abstract
PURPOSE The melanocortin-1 receptor (MC1R) regulates melanin biogenesis. Deoxyribonucleic acid sequence variants in the form of single nucleotide polymorphisms (SNPs) of MC1R affect melanin expression and are linked to skin phenotype. We aimed to determine whether SNPs of MC1R were associated with unexpectedly severe ionizing radiation reactions. METHODS AND MATERIALS The MC1R genotype of a cohort of Australians with unexpectedly severe acute and/or late reactions (Common Terminology Criteria Version 3 (CTCv3) Grade 3 or 4) to radiotherapy (RT) for cancer (n = 30) was analyzed. The findings were compared with control data from our previous study of MC1R representative of the general Australian population (n = 1,787). RESULTS The difference in frequency of alleles encoding a "red hair color" phenotype in the cohort of patients with unexpectedly severe acute radiation reactions (n = 12) was significantly increased compared with the control population (p = 0.003). Acute radiosensitivity was especially associated with the R160W variant allele (odds ratio, 3.64 [95% confidence interval, 1.3-10.27]). The corresponding comparison of MC1R controls with unexpectedly severe late radiation reactions (n = 18) was not significant. It was also found that R160W as a part of the genotype in the patients with unexpectedly severe acute RT side effects as compared with the control group was also significant (p = 0.043). CONCLUSIONS In this small cohort of cancer patients, deoxyribonucleic acid sequence variants of the MC1R gene, especially the R160W variant, have been associated with unexpectedly severe acute reactions to RT. This result needs to be verified in a larger cohort of patients.
Collapse
Affiliation(s)
- Gerald B Fogarty
- Division of Radiation Oncology and Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
9
|
Pollard JM, Gatti RA. Clinical radiation sensitivity with DNA repair disorders: an overview. Int J Radiat Oncol Biol Phys 2009; 74:1323-31. [PMID: 19616740 PMCID: PMC2725446 DOI: 10.1016/j.ijrobp.2009.02.057] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 12/29/2022]
Abstract
Adverse reactions to radiotherapy represent a confounding phenomenon in radiation oncology. These reactions are rare, and many have been associated with individuals with DNA repair disorders such as ataxia-telangiectasia and Nijmegen Breakage syndrome. A paucity of published data is available detailing such circumstances. This overview describes four exemplary situations, a comprehensive list of 32 additional cases, and some insights gleaned from this overall experience. Fanconi anemia was associated with more than one-half of the reports. The lowest dose given to a patient that resulted in a reaction was 3 Gy, given to an ataxia-telangiectasia patient. Most patients died within months of exposure. It is clear that the patients discussed in this report had complicated illnesses, in addition to cancer, and the radiotherapy administered was most likely their best option. However, the underlying DNA repair defects make conventional radiation doses dangerous. Our findings support previous wisdom that radiotherapy should either be avoided or the doses should be selected with great care in the case of these radiosensitive genotypes, which must be recognized by their characteristic phenotypes, until more rapid, reliable, and functional assays of DNA repair become available.
Collapse
Affiliation(s)
- Julianne M Pollard
- Department of Radiation Physics, University of Texas M D Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
10
|
Kasten-Pisula U, Vronskaja S, Overgaard J, Dikomey E. In normal human fibroblasts variation in DSB repair capacity cannot be ascribed to radiation-induced changes in the localisation, expression or activity of major NHEJ proteins. Radiother Oncol 2008; 86:321-8. [PMID: 18158193 DOI: 10.1016/j.radonc.2007.11.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 11/30/2007] [Indexed: 10/22/2022]
|
11
|
Sprung CN, Chao M, Leong T, McKay MJ. Chromosomal radiosensitivity in two cell lineages derived from clinically radiosensitive cancer patients. Clin Cancer Res 2005; 11:6352-8. [PMID: 16144940 DOI: 10.1158/1078-0432.ccr-04-1931] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Despite its prominent contribution to cancer cure and palliation, around 1% to 5% of cancer patients suffer serious side effects from radiotherapy. A cardinal goal in the fields of radiobiology and oncology is to predict normal tissue radiosensitivity of a cancer patient before radiotherapy. Higher tumor control rates are likely if radiotherapy individualization could be achieved by applying predictive approaches. EXPERIMENTAL DESIGN Here, we make use of the cytokinesis block micronucleus assay to assess radiosensitivity in cell lines derived from two different cell lineages obtained from clinically radiosensitive patients. We determined the micronucleus frequency after graded doses of ionizing radiation to primary fibroblasts and lymphoblast cell lines derived from 36 highly radiosensitive cancer patients. RESULTS Many cell lines, following exposure to ionizing radiation, from patients with severe clinical reactions to radiotherapy showed statistically significantly higher frequencies of micronuclei than those from patients who had normal reactions to radiotherapy. One individual revealed significantly higher micronucleus frequencies in both cell lineages. Interestingly, lymphoblast cell lines from one patient showed micronucleus frequencies similar to ataxia telangiectasia mutated-deficient cells. CONCLUSIONS These results indicate that the micronucleus assay may have use for identifying predisposition to clinical radiosensitivity, at least in a subset of patients as a component of a pretreatment radiosensitivity assay for use in the clinic.
Collapse
Affiliation(s)
- Carl N Sprung
- Division of Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
12
|
West CML, McKay MJ, Hölscher T, Baumann M, Stratford IJ, Bristow RG, Iwakawa M, Imai T, Zingde SM, Anscher MS, Bourhis J, Begg AC, Haustermans K, Bentzen SM, Hendry JH. Molecular markers predicting radiotherapy response: report and recommendations from an International Atomic Energy Agency technical meeting. Int J Radiat Oncol Biol Phys 2005; 62:1264-73. [PMID: 16029781 DOI: 10.1016/j.ijrobp.2005.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 05/03/2005] [Accepted: 05/04/2005] [Indexed: 01/11/2023]
Abstract
PURPOSE There is increasing interest in radiogenomics and the characterization of molecular profiles that predict normal tissue and tumor radioresponse. A meeting in Amsterdam was organized by the International Atomic Energy Agency to discuss this topic on an international basis. METHODS AND MATERIALS This report is not completely exhaustive, but highlights some of the ongoing studies and new initiatives being carried out worldwide in the banking of tumor and normal tissue samples underpinning the development of molecular marker profiles for predicting patient response to radiotherapy. It is generally considered that these profiles will more accurately define individual or group radiosensitivities compared with the nondefinitive findings from the previous era of cellular-based techniques. However, so far there are only a few robust reports of molecular markers predicting normal tissue or tumor response. RESULTS Many centers in different countries have initiated tissue and tumor banks to store samples from clinical trials for future molecular profiling analysis, to identify profiles that predict for radiotherapy response. The European Society for Therapeutic Radiology and Oncology GENEtic pathways for the Prediction of the effects of Irradiation (GENEPI) project, to store, document, and analyze sample characteristics vs. response, is the most comprehensive in this regard. CONCLUSIONS The next 5-10 years are likely to see the results of these and other correlative studies, and promising associations of profiles with response should be validated in larger definitive trials.
Collapse
Affiliation(s)
- Catharine M L West
- Academic Department of Radiation Oncology, The University of Manchester, Christie Hospital NHS Trust, Withington, Manchester, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Delaloge S, Marsiglia H. Bases génétiques de la radiosensibilité des cancers du sein. Cancer Radiother 2005; 9:77-86. [PMID: 15820435 DOI: 10.1016/j.canrad.2004.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 11/16/2004] [Indexed: 01/20/2023]
Abstract
Local-regional radiation therapy is one of the major therapeutic means in the management of breast cancer. Three questions however arise from the important advances achieved in this domain in the past years. The first question concerns the possibilities to identify and overcome the radioresistance of a subset of tumours. The second question is how to recognize women likely to benefit from adjuvant radiation therapy, and therefore to diminish treatment indications in other groups. Finally, the third question is how to identify subjects at high risk for long term injury following breast irradiation, in order to adapt techniques and indications in such populations. The major advances of breast cancer molecular genetics in the past years should provide clinicians with tools to answer these important questions. In this paper, we review the molecular germline (BRCA1, BRCA2, ATM, ...) and somatic (p53, tyrosine kinase receptors, as well as actors of cell cycle, signal transduction, apoptosis, DNA repair ...) main bases of breast cancer radiosensitivity. Recent methods of exploration of the genetic background of both the host and the tumours (gene and protein expression profiles) are also reviewed as major tools of breast cancer management in the next few years.
Collapse
Affiliation(s)
- S Delaloge
- Département de médecine, comité de pathologie mammaire et oncogénétique, institut Gustave-Roussy, 39, rue Camille-Desmoulins, 94800 Villejuif, France.
| | | |
Collapse
|
14
|
Thomas GA. Solid cancers after therapeutic radiation – can we predict which patients are most at risk? Clin Oncol (R Coll Radiol) 2004; 16:429-34. [PMID: 15487136 DOI: 10.1016/j.clon.2004.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- G A Thomas
- South West Wales Cancer Institute, Singleton Hospital, Swansea, Wales, UK.
| |
Collapse
|
15
|
Abstract
The occurrence of acute or late normal tissue reactions after therapeutic radiotherapy and cellular responses in in vitro radiosensitivity assays do not correlate well suggesting that to date no one test system is suitable for predicting the risk or severity of such reactions. New insights into the underlying molecular mechanisms of this sensitivity are coming from studies that assess associations between common polymorphisms in DNA damage detection and repair genes and the development of adverse reactions to radiotherapy. The presence of such variants may alter protein function and an individual's capacity to repair damaged DNA modifying the response of the normal tissue. Polymorphisms in the XRCC1, ATM, hHR21 and TGFbeta1 genes have been shown to be associated with an increased risk of developing an adverse normal tissue reaction to radiotherapy, whilst one variant in the ATM gene has been reported to be radioprotective. Functional studies, taking into account either the haplotypes or the combined genotypes when multiple polymorphisms in a gene are present, will be necessary to establish the mechanistic basis of these associations. In the future association studies can only benefit from the analysis of multiple genes in large, well-characterized cohorts in particular to identify genetic factors that might specifically influence the temporal occurrence of these adverse reactions.
Collapse
Affiliation(s)
- Marie Fernet
- DNA Repair Group, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France
| | | |
Collapse
|
16
|
Djuzenova C, Mühl B, Schakowski R, Oppitz U, Flentje M. Normal expression of DNA repair proteins, hMre11, Rad50 and Rad51 but protracted formation of Rad50 containing foci in X-irradiated skin fibroblasts from radiosensitive cancer patients. Br J Cancer 2004; 90:2356-63. [PMID: 15150571 PMCID: PMC2409526 DOI: 10.1038/sj.bjc.6601878] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 03/17/2004] [Accepted: 03/25/2004] [Indexed: 12/04/2022] Open
Abstract
About 5% of oncology patients treated by radiation therapy develop acute or late radiotoxic effects whose molecular mechanisms remain poorly understood. In this study, we evaluated the potential role of DNA repair proteins in the hypersensitivity of cancer patients to radiation therapy. The expression levels and focal nuclear distribution of DNA repair proteins, hMre11, Rad50 and Rad51 were investigated in skin fibroblasts strains derived from cancer patients with adverse early skin reaction to radiotherapy using Western blot and foci immunofluorescence techniques, respectively. Cells from cancer patients with normal reaction to radiotherapy as well as cells from apparently healthy subjects served as controls. Cellular radiosensitivity after in vitro irradiation was assessed by the clonogenic survival assay. The clonogenic survival assay and Western blot analysis of the DNA repair proteins did not reveal any abnormalities in cellular radiosensitivity in vitro and in protein expression levels or their migration patterns in the fibroblasts derived from cancer patients with hypersensitive reaction to radiotherapy. In contrast, in vitro irradiated cells from radiosensitive patients exhibited a significantly higher number of nuclei with focally concentrated Rad50 protein than in both control groups. The observed alteration of the distribution of radiation-induced Rad50 foci in cells derived from cancer patients with acute side reactions to radiotherapy might contribute to their radiation therapy outcome. These data suggest the usefulness of the Rad50 foci analysis for predicting clinical response of cancer patients to radiotherapy.
Collapse
Affiliation(s)
- C Djuzenova
- Klinik für Strahlentherapie der Universität Würzburg, Josef-Schneider-Strasse 11, D-97080 Würzburg, Germany.
| | | | | | | | | |
Collapse
|