1
|
Loboda AP, Adonin LS, Zvereva SD, Guschin DY, Korneenko TV, Telegina AV, Kondratieva OK, Frolova SE, Pestov NB, Barlev NA. BRCA Mutations-The Achilles Heel of Breast, Ovarian and Other Epithelial Cancers. Int J Mol Sci 2023; 24:ijms24054982. [PMID: 36902416 PMCID: PMC10003548 DOI: 10.3390/ijms24054982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Two related tumor suppressor genes, BRCA1 and BRCA2, attract a lot of attention from both fundamental and clinical points of view. Oncogenic hereditary mutations in these genes are firmly linked to the early onset of breast and ovarian cancers. However, the molecular mechanisms that drive extensive mutagenesis in these genes are not known. In this review, we hypothesize that one of the potential mechanisms behind this phenomenon can be mediated by Alu mobile genomic elements. Linking mutations in the BRCA1 and BRCA2 genes to the general mechanisms of genome stability and DNA repair is critical to ensure the rationalized choice of anti-cancer therapy. Accordingly, we review the literature available on the mechanisms of DNA damage repair where these proteins are involved, and how the inactivating mutations in these genes (BRCAness) can be exploited in anti-cancer therapy. We also discuss a hypothesis explaining why breast and ovarian epithelial tissues are preferentially susceptible to mutations in BRCA genes. Finally, we discuss prospective novel therapeutic approaches for treating BRCAness cancers.
Collapse
Affiliation(s)
- Anna P. Loboda
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | | | - Svetlana D. Zvereva
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Dmitri Y. Guschin
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | | | | | | | - Nikolay B. Pestov
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, 108819 Moscow, Russia
- Correspondence: (N.B.P.); (N.A.B.)
| | - Nick A. Barlev
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, 108819 Moscow, Russia
- Institute of Cytology, Tikhoretsky ave 4, 194064 St-Petersburg, Russia
- Correspondence: (N.B.P.); (N.A.B.)
| |
Collapse
|
2
|
Baldrighi GN, Nova A, Bernardinelli L, Fazia T. A Pipeline for Phasing and Genotype Imputation on Mixed Human Data (Parents-Offspring Trios and Unrelated Subjects) by Reviewing Current Methods and Software. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122030. [PMID: 36556394 PMCID: PMC9781110 DOI: 10.3390/life12122030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/09/2022]
Abstract
Genotype imputation has become an essential prerequisite when performing association analysis. It is a computational technique that allows us to infer genetic markers that have not been directly genotyped, thereby increasing statistical power in subsequent association studies, which consequently has a crucial impact on the identification of causal variants. Many features need to be considered when choosing the proper algorithm for imputation, including the target sample on which it is performed, i.e., related individuals, unrelated individuals, or both. Problems could arise when dealing with a target sample made up of mixed data, composed of both related and unrelated individuals, especially since the scientific literature on this topic is not sufficiently clear. To shed light on this issue, we examined existing algorithms and software for performing phasing and imputation on mixed human data from SNP arrays, specifically when related subjects belong to trios. By discussing the advantages and limitations of the current algorithms, we identified LD-based methods as being the most suitable for reconstruction of haplotypes in this specific context, and we proposed a feasible pipeline that can be used for imputing genotypes in both phased and unphased human data.
Collapse
|
3
|
BRCA1/Trp53 heterozygosity and replication stress drive esophageal cancer development in a mouse model. Proc Natl Acad Sci U S A 2021; 118:2108421118. [PMID: 34607954 PMCID: PMC8521688 DOI: 10.1073/pnas.2108421118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
BRCA1 germline mutations are associated with an increased risk of breast and ovarian cancer. Recent findings of others suggest that BRCA1 mutation carriers also bear an increased risk of esophageal and gastric cancer. Here, we employ a Brca1/Trp53 mouse model to show that unresolved replication stress (RS) in BRCA1 heterozygous cells drives esophageal tumorigenesis in a model of the human equivalent. This model employs 4-nitroquinoline-1-oxide (4NQO) as an RS-inducing agent. Upon drinking 4NQO-containing water, Brca1 heterozygous mice formed squamous cell carcinomas of the distal esophagus and forestomach at a much higher frequency and speed (∼90 to 120 d) than did wild-type (WT) mice, which remained largely tumor free. Their esophageal tissue, but not that of WT control mice, revealed evidence of overt RS as reflected by intracellular CHK1 phosphorylation and 53BP1 staining. These Brca1 mutant tumors also revealed higher genome mutation rates than those of control animals; the mutational signature SBS4, which is associated with tobacco-induced tumorigenesis; and a loss of Brca1 heterozygosity (LOH). This uniquely accelerated Brca1 tumor model is also relevant to human esophageal squamous cell carcinoma, an often lethal tumor.
Collapse
|
4
|
Kutasovic JR, McCart Reed AE, Sokolova A, Lakhani SR, Simpson PT. Morphologic and Genomic Heterogeneity in the Evolution and Progression of Breast Cancer. Cancers (Basel) 2020; 12:E848. [PMID: 32244556 PMCID: PMC7226487 DOI: 10.3390/cancers12040848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
: Breast cancer is a remarkably complex and diverse disease. Subtyping based on morphology, genomics, biomarkers and/or clinical parameters seeks to stratify optimal approaches for management, but it is clear that every breast cancer is fundamentally unique. Intra-tumour heterogeneity adds further complexity and impacts a patient's response to neoadjuvant or adjuvant therapy. Here, we review some established and more recent evidence related to the complex nature of breast cancer evolution. We describe morphologic and genomic diversity as it arises spontaneously during the early stages of tumour evolution, and also in the context of treatment where the changing subclonal architecture of a tumour is driven by the inherent adaptability of tumour cells to evolve and resist the selective pressures of therapy.
Collapse
Affiliation(s)
- Jamie R. Kutasovic
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- QIMR Berghofer Medical Research Institute, Herston 4006, Australia
| | - Amy E. McCart Reed
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- QIMR Berghofer Medical Research Institute, Herston 4006, Australia
| | - Anna Sokolova
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- Pathology Queensland, The Royal Brisbane & Women’s Hospital, Herston, Brisbane 4029, Australia
| | - Sunil R. Lakhani
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- Pathology Queensland, The Royal Brisbane & Women’s Hospital, Herston, Brisbane 4029, Australia
| | - Peter T. Simpson
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
| |
Collapse
|
5
|
Tharmapalan P, Mahendralingam M, Berman HK, Khokha R. Mammary stem cells and progenitors: targeting the roots of breast cancer for prevention. EMBO J 2019; 38:e100852. [PMID: 31267556 PMCID: PMC6627238 DOI: 10.15252/embj.2018100852] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/11/2019] [Accepted: 04/11/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer prevention is daunting, yet not an unsurmountable goal. Mammary stem and progenitors have been proposed as the cells-of-origin in breast cancer. Here, we present the concept of limiting these breast cancer precursors as a risk reduction approach in high-risk women. A wealth of information now exists for phenotypic and functional characterization of mammary stem and progenitor cells in mouse and human. Recent work has also revealed the hormonal regulation of stem/progenitor dynamics as well as intrinsic lineage distinctions between mammary epithelial populations. Leveraging these insights, molecular marker-guided chemoprevention is an achievable reality.
Collapse
Affiliation(s)
| | - Mathepan Mahendralingam
- Princess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoONCanada
| | - Hal K Berman
- Princess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoONCanada
| | - Rama Khokha
- Princess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoONCanada
| |
Collapse
|
6
|
Semmler L, Reiter-Brennan C, Klein A. BRCA1 and Breast Cancer: a Review of the Underlying Mechanisms Resulting in the Tissue-Specific Tumorigenesis in Mutation Carriers. J Breast Cancer 2019; 22:1-14. [PMID: 30941229 PMCID: PMC6438831 DOI: 10.4048/jbc.2019.22.e6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/30/2018] [Indexed: 12/24/2022] Open
Abstract
Since the first cloning of BRCA1 in 1994, many of its cellular interactions have been elucidated. However, its highly specific role in tumorigenesis in the breast tissue—carriers of BRCA1 mutations are predisposed to life-time risks of up to 80%—relative to many other tissues that remain unaffected, has not yet been fully enlightened. In this article, we have applied a universal model of tissue-specificity of cancer genes to BRCA1 and present a systematic review of proposed concepts classified into 4 categories. Firstly, tissue-specific differences in levels of BRCA1 expression and secondly differences in expression of proteins with redundant functions are outlined. Thirdly, cell-type specific interactions of BRCA1 are presented: its regulation of aromatase, its interaction with Progesterone- and receptor activator of nuclear factor-κB ligand-signaling that controls proliferation of luminal progenitor cells, and its influence on cell differentiation via modulation of the key regulators jagged 1-NOTCH and snail family transcriptional repressor 2. Fourthly, factors specific to the cell-type as well as the environment of the breast tissue are elucidated: distinct frequency of losses of heterozygosity, interaction with X inactivation specific transcript RNA, estrogen-dependent induction of genotoxic metabolites and nuclear factor (erythroid-derived 2)-like 2, and regulation of sirtuin 1. In conclusion, the impact of these concepts on the formation of hormone-sensitive and -insensitive breast tumors is outlined.
Collapse
Affiliation(s)
- Lukas Semmler
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Berlin, Germany
| | - Cara Reiter-Brennan
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Berlin, Germany
| | - Andreas Klein
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Berlin, Germany
| |
Collapse
|
7
|
Van Heetvelde M, Van Bockstal M, Poppe B, Lambein K, Rosseel T, Atanesyan L, Deforce D, Van Den Berghe I, De Leeneer K, Van Dorpe J, Vral A, Claes KBM. Accurate detection and quantification of epigenetic and genetic second hits in BRCA1 and BRCA2-associated hereditary breast and ovarian cancer reveals multiple co-acting second hits. Cancer Lett 2018; 425:125-133. [PMID: 29580810 DOI: 10.1016/j.canlet.2018.03.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/10/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND This study characterizes the second hit spectrum in BRCA1 and BRCA2-associated breast and ovarian cancers at both gene loci to investigate if second hit mechanisms are mutually exclusive or able to coincide within the same tumor. METHODS Loss of heterozygosity, somatic point mutations and copy number alterations along with promoter methylation were studied in 56 breast and 15 ovarian cancers from BRCA1 and BRCA2 germline mutation carriers. A mathematical methodology was introduced to quantify the tumor cell population carrying a second hit. RESULTS Copy neutral LOH was the most prevalent LOH mechanism in this cohort (BC 69%, OC 67%). However, only 36% of BC and 47% of OC showed LOH in all cancerous cells. Somatic intragenic deletions and methylated subclones were also found in combination with (partial) loss of heterozygosity. Unequivocal deleterious somatic point mutations were not identified in this cohort. CONCLUSION Different mechanisms inactivating the wild type allele are present within the same tumor sample at various extents. Results indicate that BRCA1/2-linked breast and ovarian cancer cells are predominantly characterized by LOH, but harbor a complex combination of second hits at various frequencies.
Collapse
Affiliation(s)
- Mattias Van Heetvelde
- Center for Medical Genetics Ghent, Ghent University Hospital, Medical Research Building 1, Corneel Heymanslaan 10, B-9000, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), B-9000, Ghent, Belgium; Department of Basic Medical Sciences, Ghent University, Entrance 46, De Pintelaan 185, B-9000, Ghent, Belgium.
| | - Mieke Van Bockstal
- Department of Pathology, Ghent University Hospital, Entrance 23, Corneel Heymanslaan 10, B-9000, Ghent, Belgium.
| | - Bruce Poppe
- Center for Medical Genetics Ghent, Ghent University Hospital, Medical Research Building 1, Corneel Heymanslaan 10, B-9000, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), B-9000, Ghent, Belgium.
| | - Kathleen Lambein
- Department of Pathology, AZ St Lucas Hospital, Groenebriel 1, B-9000, Ghent, Belgium; Department of Oncology, KU Leuven, Surgical Oncology, University Hospital Leuven Gasthuisberg, Herestraat 49, O&N1 Box 818, B-3000, Leuven, Belgium.
| | - Toon Rosseel
- Center for Medical Genetics Ghent, Ghent University Hospital, Medical Research Building 1, Corneel Heymanslaan 10, B-9000, Ghent, Belgium.
| | - Lilit Atanesyan
- MRC-Holland, Willem Schoutenstraat 1, 1057 DL, Amsterdam, The Netherlands.
| | - Dieter Deforce
- Cancer Research Institute Ghent (CRIG), B-9000, Ghent, Belgium; Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium.
| | - Ivo Van Den Berghe
- Department of Pathology, AZ Sint Jan Hospital Brugge-Oostend, Ruddershove 10, B-8000, Brugge, Belgium.
| | - Kim De Leeneer
- Center for Medical Genetics Ghent, Ghent University Hospital, Medical Research Building 1, Corneel Heymanslaan 10, B-9000, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), B-9000, Ghent, Belgium.
| | - Jo Van Dorpe
- Cancer Research Institute Ghent (CRIG), B-9000, Ghent, Belgium; Department of Pathology, Ghent University Hospital, Entrance 23, Corneel Heymanslaan 10, B-9000, Ghent, Belgium.
| | - Anne Vral
- Cancer Research Institute Ghent (CRIG), B-9000, Ghent, Belgium; Department of Basic Medical Sciences, Ghent University, Entrance 46, De Pintelaan 185, B-9000, Ghent, Belgium.
| | - Kathleen B M Claes
- Center for Medical Genetics Ghent, Ghent University Hospital, Medical Research Building 1, Corneel Heymanslaan 10, B-9000, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), B-9000, Ghent, Belgium.
| |
Collapse
|
8
|
Vierstraete J, Willaert A, Vermassen P, Coucke PJ, Vral A, Claes KBM. Accurate quantification of homologous recombination in zebrafish: brca2 deficiency as a paradigm. Sci Rep 2017; 7:16518. [PMID: 29184099 PMCID: PMC5705637 DOI: 10.1038/s41598-017-16725-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 11/16/2017] [Indexed: 11/09/2022] Open
Abstract
Homologous Recombination (HR) repair is essential for repairing DNA double strand breaks (DSB) in dividing cells and preventing tumorigenesis. BRCA2 plays an important role in HR by recruiting the DNA recombinase RAD51 to the DSB. Despite being a popular model organism in genetic and cancer research, knowledge on the conservation of the HR pathway and function of zebrafish Brca2 is limited. To evaluate this, we developed a Rad51 foci assay in zebrafish embryos. We identified the zebrafish embryonic intestinal tissue as an ideal target for Rad51 immunostaining. After inducing DSB through irradiation, Rad51 foci were present in irradiated embryos but not in unirradiated controls. We present a method for accurate quantification of HR. Both morpholino-induced knockdown and knockout of Brca2 lead to almost complete absence of Rad51 foci in irradiated embryos. These findings indicate conserved function of Brca2 in zebrafish. Interestingly, a statistically significant decrease in Rad51 foci was observed in Brca2 heterozygous carriers compared to wild types, indicative of haploinsufficiency, a hypothesised cause of some tumours in patients with a germline BRCA2 mutation. In conclusion, we demonstrated the suitability of zebrafish as an excellent in vivo model system for studying the HR pathway and its functionality.
Collapse
Affiliation(s)
- Jeroen Vierstraete
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department for Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Andy Willaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Petra Vermassen
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Paul J Coucke
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Anne Vral
- Department for Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Kathleen B M Claes
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
9
|
Abstract
We have devised a culture system with conditions that allow primary breast myoepithelial cells (MEPs) to be passaged in a manner that sustains either nonmyodifferentiated or myodifferentiated cell populations without permitting contaminating luminal cells to grow. We show that progenitor activity and potency of MEPs to generate luminal cells in culture and in vivo rely on maintenance of myodifferentiation. Specific isolation and propagation of topographically distinct MEPs reveal the existence of multipotent progenitors in terminal duct lobular units. These findings have important implications for our understanding of the emergence of candidate luminal precursor cells to human breast cancer. The human breast parenchyma consists of collecting ducts and terminal duct lobular units (TDLUs). The TDLU is the site of origin of most breast cancers. The reason for such focal susceptibility to cancer remains poorly understood. Here, we take advantage of a region-specific heterogeneity in luminal progenitors to interrogate the differentiation repertoire of candidate stem cells in TDLUs. We show that stem-like activity in serial passage culture and in vivo breast morphogenesis relies on the preservation of a myoepithelial phenotype. By enrichment for region-specific progenitors, we identify bipotent and multipotent progenitors in ducts and TDLUs, respectively. We propose that focal breast cancer susceptibility, at least in part, originates from region-specific myoepithelial progenitors.
Collapse
|
10
|
Mapping genomic and transcriptomic alterations spatially in epithelial cells adjacent to human breast carcinoma. Nat Commun 2017; 8:1245. [PMID: 29093438 PMCID: PMC5665998 DOI: 10.1038/s41467-017-01357-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/12/2017] [Indexed: 12/21/2022] Open
Abstract
Almost all genomic studies of breast cancer have focused on well-established tumours because it is technically challenging to study the earliest mutational events occurring in human breast epithelial cells. To address this we created a unique dataset of epithelial samples ductoscopically obtained from ducts leading to breast carcinomas and matched samples from ducts on the opposite side of the nipple. Here, we demonstrate that perturbations in mRNA abundance, with increasing proximity to tumour, cannot be explained by copy number aberrations. Rather, we find a possibility of field cancerization surrounding the primary tumour by constructing a classifier that evaluates where epithelial samples were obtained relative to a tumour (cross-validated micro-averaged AUC = 0.74). We implement a spectral co-clustering algorithm to define biclusters. Relating to over-represented bicluster pathways, we further validate two genes with tissue microarrays and in vitro experiments. We highlight evidence suggesting that bicluster perturbation occurs early in tumour development. Studying the spatial mutational and gene expression alterations in breast cancer could impact our understanding of breast cancer development. Here, the authors analyse a unique dataset of epithelial samples that highlight potential field cancerisation surrounding the primary tumour.
Collapse
|
11
|
Shetzer Y, Napchan Y, Kaufman T, Molchadsky A, Tal P, Goldfinger N, Rotter V. Immune deficiency augments the prevalence of p53 loss of heterozygosity in spontaneous tumors but not bi-directional loss of heterozygosity in bone marrow progenitors. Int J Cancer 2017; 140:1364-1369. [PMID: 28008605 DOI: 10.1002/ijc.30554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/24/2016] [Indexed: 01/06/2023]
Abstract
p53 loss of heterozygosity (LOH) is a frequent event in tumors of somatic and Li-Fraumeni syndrome patients harboring p53 mutation. Here, we focused on resolving a possible crosstalk between the immune-system and p53 LOH. Previously, we reported that p53 heterozygous bone-marrow mesenchymal progenitor cells undergo p53 LOH in-vivo. Surprisingly, the loss of either the wild-type p53 allele or mutant p53 allele was detected with a three-to-one ratio in favor of losing the mutant allele. In this study, we examined whether the immune-system can affect the LOH directionality in bone marrow progenitors. We found that mesenchymal progenitor cells derived from immune-deficient mice exhibited the same preference of losing the mutant p53 allele as immune-competent matched cells, nevertheless, these animals showed a significantly shorter tumor-free survival, indicating the possible involvement of immune surveillance in this model. Surprisingly, spontaneous tumors of p53 heterozygous immune-deficient mice exhibited a significantly higher incidence of p53 LOH compared to that observed in tumors derived of p53 heterozygous immune-competent mice. These findings indicate that the immune-system may affect the p53 LOH prevalence in spontaneous tumors. Thus suggesting that the immune-system may recognize and clear cells that underwent p53 LOH, whereas in immune-compromised mice, those cells will form tumors with shorter latency. In individuals with a competent immune-system, p53 LOH independent pathways may induce malignant transformation which requires a longer tumor latency. Moreover, this data may imply that the current immunotherapy treatment aimed at abrogating the inhibition of cellular immune checkpoints may be beneficial for LFS patients.
Collapse
Affiliation(s)
- Yoav Shetzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yael Napchan
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Tom Kaufman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Alina Molchadsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Perry Tal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Naomi Goldfinger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
12
|
Sedic M, Kuperwasser C. BRCA1-hapoinsufficiency: Unraveling the molecular and cellular basis for tissue-specific cancer. Cell Cycle 2016; 15:621-7. [PMID: 26822887 DOI: 10.1080/15384101.2016.1141841] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Over the past 20 years tremendous progress has been made in understanding the function of BRCA1 gene products. Yet one question still remains: why is mutation of BRCA1 typically associated with preferential development of breast and ovarian cancers and not tumors in other tissues? Here we discuss recent evidence documenting the effect of BRCA1-haploinsufficiency in different cells and tissues and synthesize a model for how mutations in a single BRCA1 allele in human cells might preferentially confer increased cancer risk in breast epithelial cells.
Collapse
Affiliation(s)
- Maja Sedic
- a Department of Developmental , Chemical, and Molecular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine , Boston , MA , USA.,b Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine , Boston , MA , USA.,c Molecular Oncology Research Institute, Tufts Medical Center , Boston , MA , USA
| | - Charlotte Kuperwasser
- a Department of Developmental , Chemical, and Molecular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine , Boston , MA , USA.,b Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine , Boston , MA , USA.,c Molecular Oncology Research Institute, Tufts Medical Center , Boston , MA , USA
| |
Collapse
|
13
|
Abstract
We hypothesize that carcinoma in situ, and consequently breast carcinoma in general, is a lobar disease because the simultaneously or asynchronously appearing, often multiple tumor foci develop within a single lobe. The sick lobe carries some kind of genetic instability already from its initialization during the early embryonic life and is more sensitive to noxious influences than the other lobes within the same breast. Decades of postnatal life with accumulation of additional genetic alterations are needed for malignant transformation of the cells within the sick lobe. The transformation is often multifocal (involving separate distant lobules of this lobe) or diffuse (involving the larger ducts). This hypothesis offers new perspectives in cancer prevention, because selective visualization, excision, or destruction of the sick lobe before development of malignant lesions would substantially reduce the incidence of breast carcinoma.
Collapse
Affiliation(s)
- Tibor Tot
- Department of Pathology, Central Hospital, S-791 82 Falun, Sweden.
| |
Collapse
|
14
|
Johnston RL, Wockner L, McCart Reed AE, Wiegmans A, Chenevix-Trench G, Khanna KK, Lakhani SR, Smart CE. High content screening application for cell-type specific behaviour in heterogeneous primary breast epithelial subpopulations. Breast Cancer Res 2016; 18:18. [PMID: 26861772 PMCID: PMC4748588 DOI: 10.1186/s13058-016-0681-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/29/2016] [Indexed: 12/26/2022] Open
Abstract
Background The complex interaction between multiple cell types and the microenvironment underlies the diverse pathways to carcinogenesis and necessitates sophisticated approaches to in vitro hypotheses testing. The combination of mixed culture format with high content immunofluorescence screening technology provides a powerful platform for observation of cell type specific behavior. Methods We have developed a versatile, high-throughput method for assessing cell-type specific responses. In addition to the specificity and sensitivity offered traditionally by immunofluorescent detection in flow cytometry, the ‘in-cell’ analysis method we describe provides the added benefits of higher throughput and the ability to analyse protein subcellular localisation in situ. Furthermore, elimination of the cell dissociation step allows for more immediate analysis of responses to specific extrinsic stimuli. We applied this method to investigate ionising radiation treatment response in normal breast epithelial cells, measuring growth rate, cell cycle response and double-strand DNA breaks. Results The ‘in-cell’ analysis approach elucidated several interesting donor and cell-type specific differences. Notably, in response to ionizing radiation we observed differential expression in luminal and basal-like cells of a member of the APOBEC enzyme family, recently identified as a critical driver of an oncogenic signature. Our findings suggest that this enzyme is active in the normal breast epithelium during DNA damage response. Conclusions We demonstrate the practical application of a new method for assessing cell-type specific change in mixed cultures, especially the analysis of normal primary cultures, overcoming a major technical issue of dissecting the response of multiple cell types in a heterogeneous population. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0681-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebecca L Johnston
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Queensland, 4029, Australia. .,QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4029, Australia.
| | - Leesa Wockner
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4029, Australia.
| | - Amy E McCart Reed
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Queensland, 4029, Australia. .,QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4029, Australia.
| | - Adrian Wiegmans
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4029, Australia.
| | | | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4029, Australia.
| | - Sunil R Lakhani
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Queensland, 4029, Australia. .,Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland, 4029, Australia. .,The University of Queensland, School of Medicine, Brisbane, Queensland, 4029, Australia.
| | - Chanel E Smart
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Queensland, 4029, Australia. .,QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4029, Australia.
| |
Collapse
|
15
|
Ronowicz A, Janaszak-Jasiecka A, Skokowski J, Madanecki P, Bartoszewski R, Bałut M, Seroczyńska B, Kochan K, Bogdan A, Butkus M, Pęksa R, Ratajska M, Kuźniacka A, Wasąg B, Gucwa M, Krzyżanowski M, Jaśkiewicz J, Jankowski Z, Forsberg L, Ochocka JR, Limon J, Crowley MR, Buckley PG, Messiaen L, Dumanski JP, Piotrowski A. Concurrent DNA Copy-Number Alterations and Mutations in Genes Related to Maintenance of Genome Stability in Uninvolved Mammary Glandular Tissue from Breast Cancer Patients. Hum Mutat 2015. [PMID: 26219265 DOI: 10.1002/humu.22845] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Somatic mosaicism for DNA copy-number alterations (SMC-CNAs) is defined as gain or loss of chromosomal segments in somatic cells within a single organism. As cells harboring SMC-CNAs can undergo clonal expansion, it has been proposed that SMC-CNAs may contribute to the predisposition of these cells to genetic disease including cancer. Herein, the gross genomic alterations (>500 kbp) were characterized in uninvolved mammary glandular tissue from 59 breast cancer patients and matched samples of primary tumors and lymph node metastases. Array-based comparative genomic hybridization showed 10% (6/59) of patients harbored one to 359 large SMC-CNAs (mean: 1,328 kbp; median: 961 kbp) in a substantial portion of glandular tissue cells, distal from the primary tumor site. SMC-CNAs were partially recurrent in tumors, albeit with considerable contribution of stochastic SMC-CNAs indicating genomic destabilization. Targeted resequencing of 301 known predisposition and somatic driver loci revealed mutations and rare variants in genes related to maintenance of genomic integrity: BRCA1 (p.Gln1756Profs*74, p.Arg504Cys), BRCA2 (p.Asn3124Ile), NCOR1 (p.Pro1570Glnfs*45), PALB2 (p.Ser500Pro), and TP53 (p.Arg306*). Co-occurrence of gross SMC-CNAs along with point mutations or rare variants in genes responsible for safeguarding genomic integrity highlights the temporal and spatial neoplastic potential of uninvolved glandular tissue in breast cancer patients.
Collapse
Affiliation(s)
- Anna Ronowicz
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | | | - Jarosław Skokowski
- The Central Bank of Tissues and Genetic Specimens, Medical University of Gdansk, Gdansk, Poland.,Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Madanecki
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | | | - Magdalena Bałut
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Barbara Seroczyńska
- The Central Bank of Tissues and Genetic Specimens, Medical University of Gdansk, Gdansk, Poland
| | - Kinga Kochan
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Adam Bogdan
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | | | - Rafał Pęksa
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Ratajska
- Department of Biology and Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Alina Kuźniacka
- Department of Biology and Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Bartosz Wasąg
- Department of Biology and Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Gucwa
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Maciej Krzyżanowski
- Department of Forensic Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Janusz Jaśkiewicz
- Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Zbigniew Jankowski
- Department of Forensic Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Lars Forsberg
- Department of Immunology, Genetics and Pathology and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - J Renata Ochocka
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Janusz Limon
- Department of Biology and Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Michael R Crowley
- Heflin Center for Genomic Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Ludwine Messiaen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jan P Dumanski
- Department of Immunology, Genetics and Pathology and SciLifeLab, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
16
|
Haploinsufficiency for BRCA1 leads to cell-type-specific genomic instability and premature senescence. Nat Commun 2015; 6:7505. [PMID: 26106036 PMCID: PMC4491827 DOI: 10.1038/ncomms8505] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/14/2015] [Indexed: 12/19/2022] Open
Abstract
Although BRCA1 function is essential for maintaining genomic integrity in all cell types, it is unclear why increased risk of cancer in individuals harbouring deleterious mutations in BRCA1 is restricted to only a select few tissues. Here we show that human mammary epithelial cells (HMECs) from BRCA1-mutation carriers (BRCA1(mut/+)) exhibit increased genomic instability and rapid telomere erosion in the absence of tumour-suppressor loss. Furthermore, we uncover a novel form of haploinsufficiency-induced senescence (HIS) specific to epithelial cells, which is triggered by pRb pathway activation rather than p53 induction. HIS and telomere erosion in HMECs correlate with misregulation of SIRT1 leading to increased levels of acetylated pRb as well as acetylated H4K16 both globally and at telomeric regions. These results identify a novel form of cellular senescence and provide a potential molecular basis for the rapid cell- and tissue- specific predisposition of breast cancer development associated with BRCA1 haploinsufficiency.
Collapse
|
17
|
Shetzer Y, Kagan S, Koifman G, Sarig R, Kogan-Sakin I, Charni M, Kaufman T, Zapatka M, Molchadsky A, Rivlin N, Dinowitz N, Levin S, Landan G, Goldstein I, Goldfinger N, Pe'er D, Radlwimmer B, Lichter P, Rotter V, Aloni-Grinstein R. The onset of p53 loss of heterozygosity is differentially induced in various stem cell types and may involve the loss of either allele. Cell Death Differ 2014; 21:1419-31. [PMID: 24832469 DOI: 10.1038/cdd.2014.57] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/27/2014] [Accepted: 03/17/2014] [Indexed: 12/12/2022] Open
Abstract
p53 loss of heterozygosity (p53LOH) is frequently observed in Li-Fraumeni syndrome (LFS) patients who carry a mutant (Mut) p53 germ-line mutation. Here, we focused on elucidating the link between p53LOH and tumor development in stem cells (SCs). Although adult mesenchymal stem cells (MSCs) robustly underwent p53LOH, p53LOH in induced embryonic pluripotent stem cells (iPSCs) was significantly attenuated. Only SCs that underwent p53LOH induced malignant tumors in mice. These results may explain why LFS patients develop normally, yet acquire tumors in adulthood. Surprisingly, an analysis of single-cell sub-clones of iPSCs, MSCs and ex vivo bone marrow (BM) progenitors revealed that p53LOH is a bi-directional process, which may result in either the loss of wild-type (WT) or Mut p53 allele. Interestingly, most BM progenitors underwent Mutp53LOH. Our results suggest that the bi-directional p53LOH process may function as a cell-fate checkpoint. The loss of Mutp53 may be regarded as a DNA repair event leading to genome stability. Indeed, gene expression analysis of the p53LOH process revealed upregulation of a specific chromatin remodeler and a burst of DNA repair genes. However, in the case of loss of WTp53, cells are endowed with uncontrolled growth that promotes cancer.
Collapse
Affiliation(s)
- Y Shetzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - S Kagan
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - G Koifman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - R Sarig
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - I Kogan-Sakin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - M Charni
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - T Kaufman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - M Zapatka
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - A Molchadsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - N Rivlin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - N Dinowitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - S Levin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - G Landan
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - I Goldstein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - N Goldfinger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - D Pe'er
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - B Radlwimmer
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - P Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - V Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - R Aloni-Grinstein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
18
|
Guidugli L, Carreira A, Caputo SM, Ehlen A, Galli A, Monteiro ANA, Neuhausen SL, Hansen TVO, Couch FJ, Vreeswijk MPG. Functional assays for analysis of variants of uncertain significance in BRCA2. Hum Mutat 2013; 35:151-64. [PMID: 24323938 DOI: 10.1002/humu.22478] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/28/2013] [Indexed: 01/11/2023]
Abstract
Missense variants in the BRCA2 gene are routinely detected during clinical screening for pathogenic mutations in patients with a family history of breast and ovarian cancer. These subtle changes frequently remain of unknown clinical significance because of the lack of genetic information that may help establish a direct correlation with cancer predisposition. Therefore, alternative ways of predicting the pathogenicity of these variants are urgently needed. Since BRCA2 is a protein involved in important cellular mechanisms such as DNA repair, replication, and cell cycle control, functional assays have been developed that exploit these cellular activities to explore the impact of the variants on protein function. In this review, we summarize assays developed and currently utilized for studying missense variants in BRCA2. We specifically depict details of each assay, including variants of uncertain significance analyzed, and describe a validation set of (genetically) proven pathogenic and neutral missense variants to serve as a golden standard for the validation of each assay. Guidelines are proposed to enable implementation of laboratory-based methods to assess the impact of the variant on cancer risk.
Collapse
Affiliation(s)
- Lucia Guidugli
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Smart CE, Morrison BJ, Saunus JM, Vargas AC, Keith P, Reid L, Wockner L, Askarian-Amiri M, Sarkar D, Simpson PT, Clarke C, Schmidt CW, Reynolds BA, Lakhani SR, Lopez JA. In vitro analysis of breast cancer cell line tumourspheres and primary human breast epithelia mammospheres demonstrates inter- and intrasphere heterogeneity. PLoS One 2013; 8:e64388. [PMID: 23750209 PMCID: PMC3672101 DOI: 10.1371/journal.pone.0064388] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/12/2013] [Indexed: 12/19/2022] Open
Abstract
Mammosphere and breast tumoursphere culture have gained popularity as in vitro assays for propagating and analysing normal and cancer stem cells. Whether the spheres derived from different sources or parent cultures themselves are indeed single entities enriched in stem/progenitor cells compared to other culture formats has not been fully determined. We surveyed sphere-forming capacity across 26 breast cell lines, immunophenotyped spheres from six luminal- and basal-like lines by immunohistochemistry and flow cytometry and compared clonogenicity between sphere, adherent and matrigel culture formats using in vitro functional assays. Analyses revealed morphological and molecular intra- and inter-sphere heterogeneity, consistent with adherent parental cell line phenotypes. Flow cytometry showed sphere culture does not universally enrich for markers previously associated with stem cell phenotypes, although we found some cell-line specific changes between sphere and adherent formats. Sphere-forming efficiency was significantly lower than adherent or matrigel clonogenicity and constant over serial passage. Surprisingly, self-renewal capacity of sphere-derived cells was similar/lower than other culture formats. We observed significant correlation between long-term-proliferating-cell symmetric division rates in sphere and adherent cultures, suggesting functional overlap between the compartments sustaining them. Experiments with normal primary human mammary epithelia, including sorted luminal (MUC1+) and basal/myoepithelial (CD10+) cells revealed distinct luminal-like, basal-like and mesenchymal entities amongst primary mammospheres. Morphological and colony-forming-cell assay data suggested mammosphere culture may enrich for a luminal progenitor phenotype, or induce reversion/relaxation of the basal/mesenchymal in vitro selection occurring with adherent culture. Overall, cell line tumourspheres and primary mammospheres are not homogenous entities enriched for stem cells, suggesting a more cautious approach to interpreting data from these assays and careful consideration of its limitations. Sphere culture may represent an alternative 3-dimensional culture system which rather than universally ‘enriching’ for stem cells, has utility as one of a suite of functional assays that provide a read-out of progenitor activity.
Collapse
Affiliation(s)
- Chanel E Smart
- UQ Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Proia TA, Keller PJ, Gupta PB, Klebba I, Jones AD, Sedic M, Gilmore H, Tung N, Naber SP, Schnitt S, Lander ES, Kuperwasser C. Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell 2011; 8:149-63. [PMID: 21295272 DOI: 10.1016/j.stem.2010.12.007] [Citation(s) in RCA: 298] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 08/19/2010] [Accepted: 11/30/2010] [Indexed: 01/27/2023]
Abstract
Women with inherited mutations in the BRCA1 gene have increased risk of developing breast cancer but also exhibit a predisposition for the development of aggressive basal-like breast tumors. We report here that breast epithelial cells derived from patients harboring deleterious mutations in BRCA1 (BRCA1(mut /+) give rise to tumors with increased basal differentiation relative to cells from BRCA1+/+ patients. Molecular analysis of disease-free breast tissues from BRCA1(mut /+) patients revealed defects in progenitor cell lineage commitment even before cancer incidence. Moreover, we discovered that the transcriptional repressor Slug is an important functional suppressor of human breast progenitor cell lineage commitment and differentiation and that it is aberrantly expressed in BRCA1(mut /+) tissues. Slug expression is necessary for increased basal-like phenotypes prior to and after neoplastic transformation. These findings demonstrate that the genetic background of patient populations, in addition to affecting incidence rates, significantly impacts progenitor cell fate commitment and, therefore, tumor phenotype.
Collapse
Affiliation(s)
- Theresa A Proia
- Department of Anatomy & Cellular Biology, Sackler School of Biomedical Research, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yoshihara K, Tajima A, Adachi S, Quan J, Sekine M, Kase H, Yahata T, Inoue I, Tanaka K. Germline copy number variations in BRCA1-associated ovarian cancer patients. Genes Chromosomes Cancer 2010; 50:167-77. [PMID: 21213370 DOI: 10.1002/gcc.20841] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 10/25/2010] [Indexed: 11/10/2022] Open
Abstract
We investigated characteristics of germline copy number variations (CNV) in BRCA1-associated ovarian cancer patients by comparing them to CNVs present in sporadic ovarian cancer patients. Germline CNVs in 51 BRCA1-associated, 33 sporadic ovarian cancer patients, and 47 healthy women were analyzed by both signal intensity and genotyping data using the Affymetrix Genome-Wide Human SNP Array 6.0. The total number of CNVs per genome was greater in the sporadic group (median 26, range 12-34) than in the BRCA1 group (median 21, range 11-35; post hoc P < 0.05) or normal group (median 20, range 7-32; post hoc P < 0.05). While the number of amplifications per genome was higher in the sporadic group (median 13, range 7-26) than in the BRCA1 group (median 8, range 3-23; post hoc P < 0.001), the number of deletions per genome was higher in the BRCA1 group (median 12, range 6-24) than in the sporadic group (median 9, range 3-17; post hoc P < 0.01). In addition, 31 previously unknown CNV regions were present specifically in the BRCA1 group. When we performed pathway analysis on the 241 overlapping genes mapped to these novel CNV regions, the 'purine metabolism' and '14-3-3-mediated signaling' pathways were over-represented (Fisher's exact test, P < 0.01). Our study shows that there are qualitative differences in genomic CNV profiles between BRCA1-associated and sporadic ovarian cancer patients. Further studies are necessary to clarify the significance of the genomic CNV profile unique to BRCA1-associated ovarian cancer patients.
Collapse
Affiliation(s)
- Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Graham K, Ge X, de Las Morenas A, Tripathi A, Rosenberg CL. Gene expression profiles of estrogen receptor-positive and estrogen receptor-negative breast cancers are detectable in histologically normal breast epithelium. Clin Cancer Res 2010; 17:236-46. [PMID: 21059815 DOI: 10.1158/1078-0432.ccr-10-1369] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Previously, we found that gene expression in histologically normal breast epithelium (NlEpi) from women at high breast cancer risk can resemble gene expression in NlEpi from cancer-containing breasts. Therefore, we hypothesized that gene expression characteristic of a cancer subtype might be seen in NlEpi of breasts containing that subtype. EXPERIMENTAL DESIGN We examined gene expression in 46 cases of microdissected NlEpi from untreated women undergoing breast cancer surgery. From 30 age-matched cases [15 estrogen receptor (ER)+, 15 ER-] we used Affymetryix U133A arrays. From 16 independent cases (9 ER+, 7 ER-), we validated selected genes using quantitative real-time PCR (qPCR). We then compared gene expression between NlEpi and invasive breast cancer using four publicly available data sets. RESULTS We identified 198 genes that are differentially expressed between NlEpi from breasts with ER+ (NlEpiER+) compared with ER- cancers (NlEpiER-). These include genes characteristic of ER+ and ER- cancers (e.g., ESR1, GATA3, and CX3CL1, FABP7). qPCR validated the microarray results in both the 30 original cases and the 16 independent cases. Gene expression in NlEpiER+ and NlEpiER- resembled gene expression in ER+ and ER- cancers, respectively: 25% to 53% of the genes or probes examined in four external data sets overlapped between NlEpi and the corresponding cancer subtype. CONCLUSIONS Gene expression differs in NlEpi of breasts containing ER+ compared with ER- breast cancers. These differences echo differences in ER+ and ER- invasive cancers. NlEpi gene expression may help elucidate subtype-specific risk signatures, identify early genomic events in cancer development, and locate targets for prevention and therapy.
Collapse
Affiliation(s)
- Kelly Graham
- Genetics and Genomics Program and Department of Pathology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
23
|
Rennstam K, Ringberg A, Cunliffe HE, Olsson H, Landberg G, Hedenfalk I. Genomic alterations in histopathologically normal breast tissue from BRCA1 mutation carriers may be caused by BRCA1 haploinsufficiency. Genes Chromosomes Cancer 2010; 49:78-90. [PMID: 19839046 DOI: 10.1002/gcc.20723] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Multiple biopsies of normal breast tissue from 10 BRCA1 mutation carriers have been analyzed using array-based comparative genomic hybridization. Normal breast tissue from five age-matched control subjects without a family history of breast cancer was included for reference purposes. We repeatedly found multiple low copy number aberrations at a significantly higher frequency in histopathologically normal tissue from BRCA1 mutation carriers than in normal control tissue. Some of these aberrations were similar across samples from different patients and linked to biological functions such as transcriptional regulation and DNA binding. We also observed a high degree of genomic heterogeneity between samples from the same patient, suggestive of tissue heterogeneity and etiological clonality in the breast epithelium. We show that neither loss of heterozygosity nor promoter methylation of the wild-type BRCA1 allele is the predominant mechanistic origin of the observed genomic instability. Instead, we propose that haploinsufficiency of BRCA1 might be the underlying cause responsible for initiation of breast cancer in these predisposed women, making cells vulnerable to mitotic recombination. We also propose that loss of ERalpha expression is preceded by genetic instability in the initiation of BRCA1-dependent tumorigenesis, indicating that the breast epithelium of BRCA1 mutation carriers may initially be estrogen-responsive. Our results imply that genomic instability instigated by BRCA1 haploinsufficiency may be required for breast cancer initiation in BRCA1 mutation carriers. Finding molecular markers of tumor initiation and progression, for the potential use in early disease detection, may be of great clinical importance for the improved management of at-risk women.
Collapse
Affiliation(s)
- Karin Rennstam
- Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Genetic Alterations in Normal and Malignant Breast Tissue. Breast Cancer 2010. [DOI: 10.1007/978-1-84996-314-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Abstract
Phenotypic variation between tumour types is likely to reflect the nature of the cell of origin and the genes involved in pathogenesis. Compared with most sporadic breast cancers, those arising in carriers of BRCA1 mutations usually have distinctive pathological characteristics. A new study suggests that a role for BRCA1 in the determination of stem-cell fate may explain this phenomenon.
Collapse
|
27
|
Tripathi A, King C, de la Morenas A, Perry VK, Burke B, Antoine GA, Hirsch EF, Kavanah M, Mendez J, Stone M, Gerry NP, Lenburg ME, Rosenberg CL. Gene expression abnormalities in histologically normal breast epithelium of breast cancer patients. Int J Cancer 2007; 122:1557-66. [DOI: 10.1002/ijc.23267] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|