1
|
Austria ES, Akhavan B. Polymeric nanoparticle synthesis for biomedical applications: advancing from wet chemistry methods to dry plasma technologies. NANOSCALE 2025. [PMID: 40391562 DOI: 10.1039/d5nr00436e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Nanotechnology has introduced a transformative leap in healthcare over recent decades, particularly through nanoparticle-based drug delivery systems. Among these, polymeric nanoparticles (NPs) have gained significant attention due to their tuneable physicochemical properties for overcoming biological barriers. Their surfaces can be engineered with chemical functional groups and biomolecules for a wide range of biomedical applications, ranging from drug delivery to diagnostics. However, despite these advancements, the clinical translation and large-scale commercialization of polymeric NPs face significant challenges. This review uncovers these challenges by examining the interplay between structural design and payload interaction mode. It provides a critical evaluation of the current synthesis methods, beginning with conventional wet chemical techniques, and progressing to emerging dry plasma technologies, such as plasma polymerization. Special attention is given to plasma polymerized nanoparticles (PPNs), highlighting their potential as paradigm-shifting platforms for biomedical applications while identifying key areas for improvement. The review concludes with a forward-looking discussion on strategies to address key challenges, such as achieving regulatory approval and advancing clinical translation of polymeric NP-based therapies, offering unprecedented opportunities for next-generation nanomedicine.
Collapse
Affiliation(s)
- Elmer S Austria
- School of Biomedical Engineering, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia.
- Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Behnam Akhavan
- School of Biomedical Engineering, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia.
- Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
- School of Engineering, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute (HMRI), Precision Medicine Program, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
2
|
Kumar A, Shahvej SK, Yadav P, Modi U, Yadav AK, Solanki R, Bhatia D. Clinical Applications of Targeted Nanomaterials. Pharmaceutics 2025; 17:379. [PMID: 40143042 PMCID: PMC11944548 DOI: 10.3390/pharmaceutics17030379] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Targeted nanomaterials are at the forefront of advancements in nanomedicine due to their unique and versatile properties. These include nanoscale size, shape, surface chemistry, mechanical flexibility, fluorescence, optical behavior, magnetic and electronic characteristics, as well as biocompatibility and biodegradability. These attributes enable their application across diverse fields, including drug delivery. This review explores the fundamental characteristics of nanomaterials and emphasizes their importance in clinical applications. It further delves into methodologies for nanoparticle programming alongside discussions on clinical trials and case studies. We discussed some of the promising nanomaterials, such as polymeric nanoparticles, carbon-based nanoparticles, and metallic nanoparticles, and their role in biomedical applications. This review underscores significant advancements in translating nanomaterials into clinical applications and highlights the potential of these innovative approaches in revolutionizing the medical field.
Collapse
Affiliation(s)
- Ankesh Kumar
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - SK Shahvej
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Pankaj Yadav
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Unnati Modi
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Amit K. Yadav
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
3
|
Serras A, Faustino C, Pinheiro L. Functionalized Polymeric Micelles for Targeted Cancer Therapy: Steps from Conceptualization to Clinical Trials. Pharmaceutics 2024; 16:1047. [PMID: 39204392 PMCID: PMC11359152 DOI: 10.3390/pharmaceutics16081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is still ranked among the top three causes of death in the 30- to 69-year-old age group in most countries and carries considerable societal and macroeconomic costs that differ depending on the cancer type, geography, and patient gender. Despite advances in several pharmacological approaches, the lack of stability and specificity, dose-related toxicity, and limited bioavailability of chemotherapy (standard therapy) pose major obstacles in cancer treatment, with multidrug resistance being a driving factor in chemotherapy failure. The past three decades have been the stage for intense research activity on the topic of nanomedicine, which has resulted in many nanotherapeutics with reduced toxicity, increased bioavailability, and improved pharmacokinetics and therapeutic efficacy employing smart drug delivery systems (SDDSs). Polymeric micelles (PMs) have become an auspicious DDS for medicinal compounds, being used to encapsulate hydrophobic drugs that also exhibit substantial toxicity. Through preclinical animal testing, PMs improved pharmacokinetic profiles and increased efficacy, resulting in a higher safety profile for therapeutic drugs. This review focuses on PMs that are already in clinical trials, traveling the pathways from preclinical to clinical studies until introduction to the market.
Collapse
Affiliation(s)
| | - Célia Faustino
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa (ULisboa), Avenida Professor Gama PintoGama Pinto, 1649-003 Lisboa, Portugal; (A.S.); (L.P.)
| | | |
Collapse
|
4
|
Hu X, Hu J, Pang Y, Wang M, Zhou W, Xie X, Zhu C, Wang X, Sun X. Application of nano-radiosensitizers in non-small cell lung cancer. Front Oncol 2024; 14:1372780. [PMID: 38646428 PMCID: PMC11027897 DOI: 10.3389/fonc.2024.1372780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 04/23/2024] Open
Abstract
Radiotherapy stands as a cornerstone in the treatment of numerous malignant tumors, including non-small cell lung cancer. However, the critical challenge of amplifying the tumoricidal effectiveness of radiotherapy while minimizing collateral damage to healthy tissues remains an area of significant research interest. Radiosensitizers, by methods such as amplifying DNA damage and fostering the creation of free radicals, play a pivotal role in enhancing the destructive impact of radiotherapy on tumors. Over recent decades, nano-dimensional radiosensitizers have emerged as a notable advancement. Their mechanisms include cell cycle arrest in the G2/M phase, combating tumor hypoxia, and others, thereby enhancing the efficacy of radiotherapy. This review delves into the evolving landscape of nanomaterials used for radiosensitization in non-small cell lung cancer. It provides insights into the current research progress and critically examines the challenges and future prospects within this burgeoning field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaonan Sun
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Wileński S, Koper A, Śledzińska P, Bebyn M, Koper K. Innovative strategies for effective paclitaxel delivery: Recent developments and prospects. J Oncol Pharm Pract 2024; 30:367-384. [PMID: 38204196 DOI: 10.1177/10781552231208978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
PURPOSE Paclitaxel is an effective chemotherapeutic agent against a variety of cancer types. However, the clinical utility of paclitaxel is restricted by its poor solubility in water and high toxicity, resulting in low drug tolerance. These difficulties could be resolved by using suitable pharmacological carriers. Hence, it is essential to determine innovative methods of administering this effective medication to overcome paclitaxel's inherent limitations. METHODS An extensive literature search was conducted using multiple electronic databases to identify relevant studies published. RESULTS In this comprehensive analysis, many different paclitaxel delivery systems are covered and discussed, such as albumin-bound paclitaxel, polymeric micelles, paclitaxel-loaded liposomes, prodrugs, cyclodextrins, and peptide-taxane conjugates. Moreover, the review also covers various delivery routes of conventional paclitaxel or novel paclitaxel formulations, such as oral administration, local applications, and intraperitoneal delivery. CONCLUSION In addition to albumin-bound paclitaxel, polymeric micelles appear to be the most promising formulations for innovative drug delivery systems at present. A variety of variants of polymeric micelles are currently undergoing advanced phases of clinical trials.
Collapse
Affiliation(s)
- Sławomir Wileński
- Department of Pharmaceutical Technology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
- Central Cytostatic Drug Department, Hospital Pharmacy, The F. Lukaszczyk Oncology Centre, Bydgoszcz, Poland
| | - Agnieszka Koper
- Department of Oncology and Brachytherapy, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
- Department of Oncology, Franciszek Lukaszczyk Oncology Centre, Bydgoszcz, Poland
| | - Paulina Śledzińska
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, Bydgoszcz, Poland
| | - Marek Bebyn
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, Bydgoszcz, Poland
| | - Krzysztof Koper
- Department of Oncology, Franciszek Lukaszczyk Oncology Centre, Bydgoszcz, Poland
- Department of Clinical Oncology, and Nursing, Department of Oncological Surgery, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| |
Collapse
|
6
|
Wei D, Sun Y, Zhu H, Fu Q. Stimuli-Responsive Polymer-Based Nanosystems for Cancer Theranostics. ACS NANO 2023; 17:23223-23261. [PMID: 38041800 DOI: 10.1021/acsnano.3c06019] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Stimuli-responsive polymers can respond to internal stimuli, such as reactive oxygen species (ROS), glutathione (GSH), and pH, biological stimuli, such as enzymes, and external stimuli, such as lasers and ultrasound, etc., by changing their hydrophobicity/hydrophilicity, degradability, ionizability, etc., and thus have been widely used in biomedical applications. Due to the characteristics of the tumor microenvironment (TME), stimuli-responsive polymers that cater specifically to the TME have been extensively used to prepare smart nanovehicles for the targeted delivery of therapeutic and diagnostic agents to tumor tissues. Compared to conventional drug delivery nanosystems, TME-responsive nanosystems have many advantages, such as high sensitivity, broad applicability among different tumors, functional versatility, and improved biosafety. In recent years, a great deal of research has been devoted to engineering efficient stimuli-responsive polymeric nanosystems, and significant improvement has been made to both cancer diagnosis and therapy. In this review, we summarize some recent research advances involving the use of stimuli-responsive polymer nanocarriers in drug delivery, tumor imaging, therapy, and theranostics. Various chemical stimuli will be described in the context of stimuli-responsive nanosystems. Accordingly, the functional chemical groups responsible for the responsiveness and the strategies to incorporate these groups into the polymer will be discussed in detail. With the research on this topic expending at a fast pace, some innovative concepts, such as sequential and cascade drug release, NIR-II imaging, and multifunctional formulations, have emerged as popular strategies for enhanced performance, which will also be included here with up-to-date illustrations. We hope that this review will offer valuable insights for the selection and optimization of stimuli-responsive polymers to help accelerate their future applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Dengshuai Wei
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Hu Zhu
- Maoming People's Hospital, Guangdong 525000, China
| | - Qinrui Fu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
7
|
Arai Y, Iwao Y, Muguruma Y, Yamamoto K, Ikeda Y. Efficient Drug Loading Method for Poorly Water-Soluble Drug into Bicelles through Passive Diffusion. Mol Pharm 2023; 20:5701-5713. [PMID: 37823379 PMCID: PMC10630946 DOI: 10.1021/acs.molpharmaceut.3c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
The bicelle, a type of solid lipid nanoparticle, comprises phospholipids with varying alkyl chain lengths and possesses the ability to solubilize poorly water-soluble drugs. Bicelle preparation is complicated and time-consuming because conventional drug-loading methods in bicelles require multiple rounds of thermal cycling or co-grinding with drugs and lipids. In this study, we proposed a simple drug-loading method for bicelles that utilizes passive diffusion. Drug-unloaded bicelles were placed inside a dialysis device and incubated in a saturated solution of ketoconazole (KTZ), which is a model drug. KTZ was successfully loaded into bare bicelles over time with morphological changes, and the final encapsulated concentration was dependent on the lipid concentration of the bicelles. When polyethylene glycol (PEG) chains of two different lengths (PEG2K and 5K) were incorporated into bicelles, PEG2k and PEG5k bicelles mitigated the morphological changes and improved the encapsulation rate. This mitigation of morphological changes enhanced the encapsulated drug concentration. Specifically, PEG5k bicelles, which exhibited the greatest prevention of morphological changes, had a lower encapsulated concentration after 24 h than that of PEG2k bicelles, indicating that PEGylation with a longer PEG chain length improved the loading capacity but decreased the encapsulation rate owing to the presence of a hydration layer of PEG. Thus, PEG with a certain length is more suitable for passive loading. Moreover, loading factors, such as temperature and vehicles used in the encapsulation process, affected the encapsulation rate of the drug. Taken together, the passive loading method offers high throughput with minimal resources, making it a potentially valuable approach during early drug development phases.
Collapse
Affiliation(s)
- Yuta Arai
- Analytical
Development, Pharmaceutical Sciences, Takeda
Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
- Laboratory
of Physiochemistry and Preformulation Research, Graduate School of
Medical and Pharmaceutical Sciences, Chiba
University, 1-8-1, Inohana,
Chuo-ku, Chiba-shi, Chiba 260-0856 Japan
| | - Yasunori Iwao
- Department
of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan
| | - Yoshio Muguruma
- Drug
Metabolism & Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Katsuhiko Yamamoto
- Analytical
Development, Pharmaceutical Sciences, Takeda
Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
- Laboratory
of Physiochemistry and Preformulation Research, Graduate School of
Medical and Pharmaceutical Sciences, Chiba
University, 1-8-1, Inohana,
Chuo-ku, Chiba-shi, Chiba 260-0856 Japan
| | - Yukihiro Ikeda
- Analytical
Development, Pharmaceutical Sciences, Takeda
Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
- Laboratory
of Physiochemistry and Preformulation Research, Graduate School of
Medical and Pharmaceutical Sciences, Chiba
University, 1-8-1, Inohana,
Chuo-ku, Chiba-shi, Chiba 260-0856 Japan
| |
Collapse
|
8
|
Song X, Sun Z, Li L, Zhou L, Yuan S. Application of nanomedicine in radiotherapy sensitization. Front Oncol 2023; 13:1088878. [PMID: 36874097 PMCID: PMC9977159 DOI: 10.3389/fonc.2023.1088878] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Radiation therapy is an important component of cancer treatment. As research in radiotherapy techniques advances, new methods to enhance tumor response to radiation need to be on the agenda to enable enhanced radiation therapy at low radiation doses. With the rapid development of nanotechnology and nanomedicine, the use of nanomaterials as radiosensitizers to enhance radiation response and overcome radiation resistance has attracted great interest. The rapid development and application of emerging nanomaterials in the biomedical field offers good opportunities to improve the efficacy of radiotherapy, which helps to promote the development of radiation therapy and will be applied in clinical practice in the near future. In this paper, we discuss the main types of nano-radiosensitizers and explore their sensitization mechanisms at the tissue level, cellular level and even molecular biology and genetic level, and analyze the current status of promising nano-radiosensitizers and provide an outlook on their future development and applications.
Collapse
Affiliation(s)
- Xiaoyu Song
- School of Clinical Medicine, Weifang Medical University, Weifang, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhenkun Sun
- Shunde Hospital, Guangzhou University of Traditional Chinese Medicine, Foshan, Guangdong, China
| | - Li Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lu Zhou
- Shunde Hospital, Guangzhou University of Traditional Chinese Medicine, Foshan, Guangdong, China
| | - Shuanghu Yuan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China.,Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Jing D, Jiang N, Wang F, Mao C, Han S, Ho PY, Xiao W, Li Y, Li JJ, Zhang L, Lam KS. Nanoradiosensitizer with good tissue penetration and enhances oral cancer radiotherapeutic effect. Biomaterials 2022; 289:121769. [PMID: 36084485 PMCID: PMC10021813 DOI: 10.1016/j.biomaterials.2022.121769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/16/2022] [Accepted: 08/28/2022] [Indexed: 11/19/2022]
Abstract
Low dose non-toxic disulfide cross-linked micelle (DCM) encapsulated paclitaxel (PTX) was found to be highly efficacious as a radiosensitizer against oral cancer preclinical model. Intensity-modulated radiation therapy was locally administered for three consecutive days 24 h after intravascular injection of DCM-[PTX] at 5 mg/kg PTX. DCM-[PTX] NPs combined with conventional radiotherapy (2 Gy) resulted in a 1.7-fold improvement in therapeutic efficacy compared to conventional PTX plus radiotherapy. Interestingly, we found that radiotherapy can decrease tight junctions and increase the accumulation of DCM-[PTX] in tumor sites. Stereotactic body radiotherapy (SBRT) given at 6 Gy was used to further investigate the synergistic anti-tumor effect. Tumor tissues were collected to analyze the relationship between the time interval after SBRT and the biodistribution of the nanomaterials. Compared to combination DCM-[PTX] with conventional radiation dose, combination DCM-PTX with SBRT was found to be more efficacious in inhibiting tumor growth.
Collapse
Affiliation(s)
- Di Jing
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA; Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Nian Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fengyi Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Chunping Mao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shujun Han
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Pui Yan Ho
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Wenwu Xiao
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Jian Jian Li
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Lu Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA; Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
10
|
Dong S, Ma S, Chen H, Tang Z, Song W, Deng M. Nucleobase-crosslinked poly(2-oxazoline) nanoparticles as paclitaxel carriers with enhanced stability and ultra-high drug loading capacity for breast cancer therapy. Asian J Pharm Sci 2022; 17:571-582. [PMID: 36105315 PMCID: PMC9459052 DOI: 10.1016/j.ajps.2022.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Poly(2-oxazoline) (POx) has been regarded as a potential candidate for drug delivery carrier to meet the challenges of nanomedicine clinical translation, due to its excellent biocompatibility and self-assembly properties. The drug loading capacity and stability of amphiphilic POxs as drug nanocarriers, however, tend to be insufficient. Herein, we report a strategy to prepare nucleobase-crosslinked POx nanoparticles (NPs) with enhanced stability and ultra-high paclitaxel (PTX) loading capacity for breast cancer therapy. An amphiphilic amine-functionalized POx (PMBEOx-NH2) was firstly prepared through a click reaction between cysteamines and vinyl groups in poly(2-methyl-2-oxazoline)-block-poly (2‑butyl‑2-oxazoline-co-2-butenyl-2-oxazoline) (PMBEOx). Complementary nucleobase-pairs adenine (A) and uracil (U) were subsequently conjugated to PMBEOx-NH2 to give functional POxs (POxA and POxU), respectively. Due to the nucleobase interactions formed between A and U, NPs formed by POxA and POxU at a molar ratio of 1:1 displayed ultrahigh PTX loading capacity (38.2%, PTX/POxA@U), excellent stability, and reduced particle size compared to the uncross-linked PTX-loaded NPs (PTX/PMBEOx). Besides the prolonged blood circulation and enhanced tumor accumulation, the smaller PTX/POxA@U NPs also have better tumor penetration ability compared with PTX/PMBEOx, thus leading to a higher tumor suppression rate in two murine breast cancer models (E0711 and 4T1). These results proved that the therapeutic effect of chemotherapeutic drugs could be improved remarkably through a reasonable optimization of nanocarriers.
Collapse
|
11
|
Boddu SHS, Bhagav P, Karla PK, Jacob S, Adatiya MD, Dhameliya TM, Ranch KM, Tiwari AK. Polyamide/Poly(Amino Acid) Polymers for Drug Delivery. J Funct Biomater 2021; 12:58. [PMID: 34698184 PMCID: PMC8544418 DOI: 10.3390/jfb12040058] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/29/2022] Open
Abstract
Polymers have always played a critical role in the development of novel drug delivery systems by providing the sustained, controlled and targeted release of both hydrophobic and hydrophilic drugs. Among the different polymers, polyamides or poly(amino acid)s exhibit distinct features such as good biocompatibility, slow degradability and flexible physicochemical modification. The degradation rates of poly(amino acid)s are influenced by the hydrophilicity of the amino acids that make up the polymer. Poly(amino acid)s are extensively used in the formulation of chemotherapeutics to achieve selective delivery for an appropriate duration of time in order to lessen the drug-related side effects and increase the anti-tumor efficacy. This review highlights various poly(amino acid) polymers used in drug delivery along with new developments in their utility. A thorough discussion on anticancer agents incorporated into poly(amino acid) micellar systems that are under clinical evaluation is included.
Collapse
Affiliation(s)
- Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| | - Prakash Bhagav
- Advanced Drug Delivery Research and Development, Sampann Research and Development, Panacea Biotec Ltd., Ambala, Chandigarh Highway, Lalru 140501, India;
| | - Pradeep K. Karla
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, 2300 4th St. N.W., Washington, DC 20059, USA
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Mansi D. Adatiya
- Lallubhai Motilal College of Pharmacy, Navrangpura, Ahmedabad 380009, India; (M.D.A.); (T.M.D.); (K.M.R.)
| | - Tejas M. Dhameliya
- Lallubhai Motilal College of Pharmacy, Navrangpura, Ahmedabad 380009, India; (M.D.A.); (T.M.D.); (K.M.R.)
| | - Ketan M. Ranch
- Lallubhai Motilal College of Pharmacy, Navrangpura, Ahmedabad 380009, India; (M.D.A.); (T.M.D.); (K.M.R.)
| | - Amit K. Tiwari
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Department of Pharmacology & Experimental Therapeutics, Health Science Campus, The University of Toledo, 3000 Arlington Ave., Toledo, OH 43614, USA
| |
Collapse
|
12
|
Stimuli-Responsive Poly(aspartamide) Derivatives and Their Applications as Drug Carriers. Int J Mol Sci 2021; 22:ijms22168817. [PMID: 34445521 PMCID: PMC8396293 DOI: 10.3390/ijms22168817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 01/16/2023] Open
Abstract
Poly(aspartamide) derivatives, one kind of amino acid-based polymers with excellent biocompatibility and biodegradability, meet the key requirements for application in various areas of biomedicine. Poly(aspartamide) derivatives with stimuli-responsiveness can usually respond to external stimuli to change their chemical or physical properties. Using external stimuli such as temperature and pH as switches, these smart poly(aspartamide) derivatives can be used for convenient drug loading and controlled release. Here, we review the synthesis strategies for preparing these stimuli-responsive poly(aspartamide) derivatives and the latest developments in their applications as drug carriers.
Collapse
|
13
|
Mosca L, Ilari A, Fazi F, Assaraf YG, Colotti G. Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resist Updat 2021; 54:100742. [PMID: 33429249 DOI: 10.1016/j.drup.2020.100742] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Since 1984, when paclitaxel was approved by the FDA for the treatment of advanced ovarian carcinoma, taxanes have been widely used as microtubule-targeting antitumor agents. However, their historic classification as antimitotics does not describe all their functions. Indeed, taxanes act in a complex manner, altering multiple cellular oncogenic processes including mitosis, angiogenesis, apoptosis, inflammatory response, and ROS production. On the one hand, identification of the diverse effects of taxanes on oncogenic signaling pathways provides opportunities to apply these cytotoxic drugs in a more rational manner. On the other hand, this may facilitate the development of novel treatment modalities to surmount anticancer drug resistance. In the latter respect, chemoresistance remains a major impediment which limits the efficacy of antitumor chemotherapy. Taxanes have shown impact on key molecular mechanisms including disruption of mitotic spindle, mitosis slippage and inhibition of angiogenesis. Furthermore, there is an emerging contribution of cellular processes including autophagy, oxidative stress, epigenetic alterations and microRNAs deregulation to the acquisition of taxane resistance. Hence, these two lines of findings are currently promoting a more rational and efficacious taxane application as well as development of novel molecular strategies to enhance the efficacy of taxane-based cancer treatment while overcoming drug resistance. This review provides a general and comprehensive picture on the use of taxanes in cancer treatment. In particular, we describe the history of application of taxanes in anticancer therapeutics, the synthesis of the different drugs belonging to this class of cytotoxic compounds, their features and the differences between them. We further dissect the molecular mechanisms of action of taxanes and the molecular basis underlying the onset of taxane resistance. We further delineate the possible modalities to overcome chemoresistance to taxanes, such as increasing drug solubility, delivery and pharmacokinetics, overcoming microtubule alterations or mitotic slippage, inhibiting drug efflux pumps or drug metabolism, targeting redox metabolism, immune response, and other cellular functions.
Collapse
Affiliation(s)
- Luciana Mosca
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Francesco Fazi
- Dept. Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University, Via A. Scarpa 14-16, 00161 Rome, Italy
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
14
|
|
15
|
Pérez-López A, Martín-Sabroso C, Torres-Suárez AI, Aparicio-Blanco J. Timeline of Translational Formulation Technologies for Cancer Therapy: Successes, Failures, and Lessons Learned Therefrom. Pharmaceutics 2020; 12:E1028. [PMID: 33126622 PMCID: PMC7692572 DOI: 10.3390/pharmaceutics12111028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Over the past few decades, the field of cancer therapy has seen a significant change in the way in which formulations are designed and developed, resulting in more efficient products that allow us to ultimately achieve improved drug bioavailability, efficacy, and safety. However, although many formulations have entered the market, many others have fallen by the wayside leaving the scientific community with several lessons to learn. The successes (and failures) achieved with formulations that have been approved in Europe and/or by the FDA for the three major types of cancer therapy (peptide-based therapy, chemotherapy, and radiotherapy) are reviewed herein, covering the period from the approval of the first prolonged-release system for hormonal therapy to the appearance of the first biodegradable microspheres intended for chemoembolization in 2020. In addition, those products that have entered phase III clinical trials that have been active over the last five years are summarized in order to outline future research trends and possibilities that lie ahead to develop clinically translatable formulations for cancer treatment.
Collapse
Affiliation(s)
- Alexandre Pérez-López
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.P.-L.); (C.M.-S.); (J.A.-B.)
| | - Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.P.-L.); (C.M.-S.); (J.A.-B.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.P.-L.); (C.M.-S.); (J.A.-B.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.P.-L.); (C.M.-S.); (J.A.-B.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
16
|
Rehan F, Ahemad N, Islam RA, Gupta M, Gan SH, Chowdhury EH. Optimization and Formulation of Nanostructured and Self-Assembled Caseinate Micelles for Enhanced Cytotoxic Effects of Paclitaxel on Breast Cancer Cells. Pharmaceutics 2020; 12:pharmaceutics12100984. [PMID: 33080962 PMCID: PMC7589039 DOI: 10.3390/pharmaceutics12100984] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Paclitaxel (PTX) is a widely used anti-cancer drug for treating various types of solid malignant tumors including breast, ovarian and lung cancers. However, PTX has a low therapeutic response and is linked with acquired resistance, as well as a high incidence of adverse events, such as allergic reactions, neurotoxicity and myelosuppression. The situation is compounded when its complex chemical structure contributes towards hydrophobicity, shortening its circulation time in blood, causing off-target effects and limiting its therapeutic activity against cancer cells. Formulating a smart nano-carrier may overcome the solubility and toxicity issues of the drug and enable its more selective delivery to the cancerous cells. Among the nano-carriers, natural polymers are of great importance due to their excellent biodegradability, non-toxicity and good accessibility. The aim of the present research is to develop self-assembled sodium caseinate nanomicelles (NaCNs) with PTX loaded into the hydrophobic core of NaCNs for effective uptake of the drug in cancer cells and its subsequent intracellular release. METHODS The PTX-loaded micelle was characterized with high-performance liquid chromatography (HPLC), Fourier Transform Infrared Spectra (FTIR), High Resolution-Transmission Electron Microscope (HR-TEM), Field Emission Scanning Electron Microscope (FESEM) and Energy Dispersive X-Ray (EDX). Following treatment with PTX-loaded NaCNs, cell viability, cellular uptake and morphological changes were analyzed using MCF-7 and MDA-MB 231 human breast cancer cell lines. RESULTS We found that PTX-loaded NaCNs efficiently released PTX in an acidic tumor environment, while showing an enhanced cytotoxicity, cellular uptake and in-vivo anti-tumor efficacy in a mouse model of breast cancer when compared to free drug and blank micelles. Additionally, the nanomicelles also presented improved colloidal stability for three months at 4 °C and -20 °C and when placed at a temperature of 37 °C. CONCLUSIONS We conclude that the newly developed NaCNs is a promising carrier of PTX to enhance tumor accumulation of the drug while addressing its toxicity issues as well.
Collapse
Affiliation(s)
- Farah Rehan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia; (F.R.); (N.A.); (M.G.); (S.H.G.)
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia; (F.R.); (N.A.); (M.G.); (S.H.G.)
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
- Global Asia in the 21st century Research Platform, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
| | - Rowshan Ara Islam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia;
| | - Manish Gupta
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia; (F.R.); (N.A.); (M.G.); (S.H.G.)
- School of Pharmaceutical and Population Health Informatics, DIT University, Mussoorie-Diversion Road, Dehradun, Uttarakhand-248009, India
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia; (F.R.); (N.A.); (M.G.); (S.H.G.)
| | - Ezharul Hoque Chowdhury
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia;
- Correspondence:
| |
Collapse
|
17
|
Mi P, Miyata K, Kataoka K, Cabral H. Clinical Translation of Self‐Assembled Cancer Nanomedicines. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000159] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Peng Mi
- Department of Radiology, Center for Medical Imaging, State Key Laboratory of Biotherapy and Cancer Center West China Hospital, Sichuan University No. 17 People's South Road Chengdu 610041 China
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
| | - Kazunori Kataoka
- Institute for Future Initiatives The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐0033 Japan
- Innovation Center of NanoMedicine Kawasaki Institute of Industrial Promotion 3‐25‐14, Tonomachi, Kawasaki‐ku Kawasaki 210‐0821 Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
| |
Collapse
|
18
|
Sun H, Wang X, Zhai S. The Rational Design and Biological Mechanisms of Nanoradiosensitizers. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E504. [PMID: 32168899 PMCID: PMC7153263 DOI: 10.3390/nano10030504] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 01/01/2023]
Abstract
Radiotherapy (RT) has been widely used for cancer treatment. However, the intrinsic drawbacks of RT, such as radiotoxicity in normal tissues and tumor radioresistance, promoted the development of radiosensitizers. To date, various kinds of nanoparticles have been found to act as radiosensitizers in cancer radiotherapy. This review focuses on the current state of nanoradiosensitizers, especially the related biological mechanisms, and the key design strategies for generating nanoradiosensitizers. The regulation of oxidative stress, DNA damage, the cell cycle, autophagy and apoptosis by nanoradiosensitizers in vitro and in vivo is highlighted, which may guide the rational design of therapeutics for tumor radiosensitization.
Collapse
Affiliation(s)
- Hainan Sun
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China; (H.S.); (X.W.)
- Shandong Vocational College of Light Industry, Zibo 255300, Shandong, China
| | - Xiaoling Wang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China; (H.S.); (X.W.)
| | - Shumei Zhai
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China; (H.S.); (X.W.)
| |
Collapse
|
19
|
Norouzi M, Amerian M, Amerian M, Atyabi F. Clinical applications of nanomedicine in cancer therapy. Drug Discov Today 2020; 25:107-125. [DOI: 10.1016/j.drudis.2019.09.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/03/2019] [Accepted: 09/24/2019] [Indexed: 12/23/2022]
|
20
|
Fluorine-containing block/branched polyamphiphiles forming bioinspired complexes with biopolymers. Colloids Surf B Biointerfaces 2019; 174:393-400. [DOI: 10.1016/j.colsurfb.2018.11.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/16/2018] [Accepted: 11/19/2018] [Indexed: 01/22/2023]
|
21
|
Kesharwani SS, Kaur S, Tummala H, Sangamwar AT. Multifunctional approaches utilizing polymeric micelles to circumvent multidrug resistant tumors. Colloids Surf B Biointerfaces 2018; 173:581-590. [PMID: 30352379 DOI: 10.1016/j.colsurfb.2018.10.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/28/2018] [Accepted: 10/09/2018] [Indexed: 01/08/2023]
Abstract
The concerns impeding the success of chemotherapy in cancer is descending efficacy of drugs due to the development of multiple drug resistance (MDR). The current efforts employed to overcome MDR have failed or are limited to only preliminary in-vitro investigations. Nanotechnology is at the forefront of the drug delivery research, playing pivotal role in chemotherapy and diagnosis, thereby providing innovative approaches for the management of the disease with minimal side effects. Recently, polymeric micelles (PMs) have witnessed significant developments in cancer therapy. PMs are self-assembled colloidal particles, with a hydrophilic head and a long hydrophobic tail, which enhance the solubility, permeability and bioavailability of drugs, due to the unique features of reaching higher concentration in the biological system, above critical micellar concentration. One of the effective approaches to improve the efficacy of chemotherapy and overcome drug resistance would be to employ multifunctional approach (combination of stimuli-responsive, utilization of drug resistance modulators and combination therapy) using PMs as drug delivery systems. Actively targeted, stimuli-sensitive and multifunctional approaches involve using single and/or combination of approaches (pH-responsive, temperature regulated, reduction-sensitive, ultrasound etc.) to combat drug resistant. The review will describe PMs, types of copolymers used in PMs, preparation and characterization of PMs. A comprehensive list of PMs tested in clinical trials is discussed. Lastly, this review covers stimuli-sensitive and multifunctional approaches to overcome MDR in cancer utilizing PMs.
Collapse
Affiliation(s)
- Siddharth S Kesharwani
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD, 57007, USA
| | - Shamandeep Kaur
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab, 160062, India
| | - Hemachand Tummala
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD, 57007, USA
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab, 160062, India.
| |
Collapse
|
22
|
Zhai J, Luwor RB, Ahmed N, Escalona R, Tan FH, Fong C, Ratcliffe J, Scoble JA, Drummond CJ, Tran N. Paclitaxel-Loaded Self-Assembled Lipid Nanoparticles as Targeted Drug Delivery Systems for the Treatment of Aggressive Ovarian Cancer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25174-25185. [PMID: 29963859 DOI: 10.1021/acsami.8b08125] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chemotherapy using cytotoxic agents, such as paclitaxel (PTX), is one of the most effective treatments for advanced ovarian cancer. However, due to nonspecific targeting of the drug and the presence of toxic solvents required for dissolving PTX prior to injection, there are several serious side effects associated with this treatment. In this study, we explored self-assembled lipid-based nanoparticles as PTX carriers, which were able to improve its antitumour efficacy against ovarian cancer. The nanoparticles were also functionalized with epidermal growth factor receptor (EGFR) antibody fragments to explore the benefit of tumor active targeting. The formulated bicontinuous cubic- and sponge-phase nanoparticles, which were stabilized by Pluronic F127 and a lipid poly(ethylene glycol) stabilizer, showed a high capacity of PTX loading. These PTX-loaded nanoparticles also showed significantly higher cytotoxicity than a free drug formulation against HEY ovarian cancer cell lines in vitro. More importantly, the nanoparticle-based PTX treatments, with or without EGFR targeting, reduced the tumor burden by 50% compared to PTX or nondrug control in an ovarian cancer mouse xenograft model. In addition, the PTX-loaded nanoparticles were able to extend the survival of the treatment groups by up to 10 days compared to groups receiving free PTX or nondrug control. This proof-of-concept study has demonstrated the potential of these self-assembled lipid nanomaterials as effective drug delivery nanocarriers for poorly soluble chemotherapeutics, such as PTX.
Collapse
Affiliation(s)
- Jiali Zhai
- School of Science, College of Science, Engineering and Health , RMIT University , Melbourne , VIC 3000 , Australia
| | - Rodney B Luwor
- Department of Surgery, Royal Melbourne Hospital , University of Melbourne , Melbourne , VIC 3052 , Australia
| | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute , Ballarat , VIC 3353 , Australia
- Federation University Australia , Ballarat , VIC 3010 , Australia
- The Hudson Institute of Medical Research , Clayton , VIC 3168 , Australia
- Department of Obstetrics and Gynaecology , University of Melbourne , Parkville , VIC 3052 , Australia
| | - Ruth Escalona
- Fiona Elsey Cancer Research Institute , Ballarat , VIC 3353 , Australia
- The Hudson Institute of Medical Research , Clayton , VIC 3168 , Australia
- Department of Obstetrics and Gynaecology , University of Melbourne , Parkville , VIC 3052 , Australia
| | - Fiona H Tan
- School of Science, College of Science, Engineering and Health , RMIT University , Melbourne , VIC 3000 , Australia
- Department of Surgery, Royal Melbourne Hospital , University of Melbourne , Melbourne , VIC 3052 , Australia
| | - Celesta Fong
- School of Science, College of Science, Engineering and Health , RMIT University , Melbourne , VIC 3000 , Australia
- CSIRO Manufacturing , Clayton , VIC 3168 , Australia
| | | | - Judith A Scoble
- CSIRO Manufacturing , 343 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health , RMIT University , Melbourne , VIC 3000 , Australia
| | - Nhiem Tran
- School of Science, College of Science, Engineering and Health , RMIT University , Melbourne , VIC 3000 , Australia
| |
Collapse
|
23
|
Gao L, Yu J, Liu Y, Zhou J, Sun L, Wang J, Zhu J, Peng H, Lu W, Yu L, Yan Z, Wang Y. Tumor-penetrating Peptide Conjugated and Doxorubicin Loaded T 1-T 2 Dual Mode MRI Contrast Agents Nanoparticles for Tumor Theranostics. Theranostics 2018; 8:92-108. [PMID: 29290795 PMCID: PMC5743462 DOI: 10.7150/thno.21074] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/22/2017] [Indexed: 12/22/2022] Open
Abstract
The conventional chemotherapeutics could not be traced in vivo and provide timely feedback on the clinical effectiveness of drugs. Methods: In this study, a tumor-penetrating peptide RGERPPR (RGE) modified, Gd-DTPA conjugated, and doxorubicin (DOX) loaded Fe3O4@SiO2@mSiO2 nanoparticle drug delivery system (Fe3O4@SiO2@mSiO2/DOX-(Gd-DTPA)-PEG-RGE NPs) was prepared for tumor theranostics. Results: The Fe3O4@SiO2@mSiO2/DOX-(Gd-DTPA)-PEG-RGE NPs showed a z-average hydrodynamic diameter of about 90 nm, and a pH-sensitive DOX release profile. The 3 T MRI results confirmed the relaxivity of the NPs (r1 = 6.13 mM-1S-1, r2 = 36.89 mM-1S-1). The in vitro cellular uptake and cytotoxicity assays on U87MG cells confirmed that the conjugation of RGERPPR played a significant role in increasing the cellular uptake and cytotoxicity of the NPs. The near-infrared fluorescence in vivo imaging results showed that the NPs could be significantly accumulated in the U87MG tumor tissue, which should result from the mediation of the tumor-penetrating peptide RGERPPR. The MRI results showed that the NPs offered a T1-T2 dual mode contrast imaging effect which would lead to a more precise diagnosis. Compared with unmodified NPs, the RGE-modified NPs showed significantly enhanced MR imaging signal in tumor tissue and antitumor effect, which should also be attributed to the tumor penetrating ability of RGERPPR peptide. Furthermore, the Hematoxylin and Eosin (H&E) staining and TUNEL assay proved that the NPs produced obvious cell apoptosis in tumor tissue. Conclusions: These results indicated that Fe3O4@SiO2@mSiO2/DOX-(Gd-DTPA)-PEG-RGE NPs are an effective targeted delivery system for tumor theranostics, and should have a potential value in the personalized treatment of tumor.
Collapse
|
24
|
Li P, Zhou X, Qu D, Guo M, Fan C, Zhou T, Ling Y. Preliminary study on fabrication, characterization and synergistic anti-lung cancer effects of self-assembled micelles of covalently conjugated celastrol-polyethylene glycol-ginsenoside Rh2. Drug Deliv 2017; 24:834-845. [PMID: 28532223 PMCID: PMC8241176 DOI: 10.1080/10717544.2017.1326540] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 01/26/2023] Open
Abstract
The aim of this study was to develop an amphipathic polyethylene glycol (PEG) derivative that was bi-terminally modified with celastrol and ginsenoside Rh2 (Celastrol-PEG-G Rh2). Such derivative was capable of forming novel, celastrol-loaded polymeric micelles (CG-M) for endo/lysosomal delivery and thereby synergistic treatment of lung cancer. Celastrol-PEG-G Rh2 with a yield of 55.6% was first synthesized and characterized. Its critical micellar concentration was 1 × 10-5 M, determined by pyrene entrapment method. CG-M had a small particle size of 121.53 ± 2.35 nm, a narrow polydispersity index of 0.214 ± 0.001 and a moderately negative zeta potential of -23.14 ± 3.15 mV. Celastrol and G Rh2 were rapidly released from CG-M under acidic and enzymatic conditions, but slowly released in normal physiological environments. In cellular studies, the internalization of celastrol and G Rh2 by human non-small cell lung cancer (A549) cells treated with CG-M was 5.8-fold and 1.8-fold higher than that of non-micelle control. Combinational therapy of celastrol and G Rh2 using CG-M exhibited synergistic anticancer activities in cell apoptosis and proliferation assays via rapid drug release within endo/lysosomes. Most importantly, the celastrol in CG-M exhibited a long elimination half-life of 445.3 ± 43.5 min and an improved area under the curve of 645060.8 ± 63640.7 ng/mL/h, that were 1.03-fold and 2.44-fold greater than those of non-micelle control, respectively. These findings suggest that CG-M is a promising vector for precisely releasing anticancer drugs within the tumor cells, and thereby exerts an improved synergistic anti-lung cancer effect.
Collapse
Affiliation(s)
- Peng Li
- Department of Oncology, Changzhou Cancer Hospital of Soochow University, Changzhou, P.R. China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - XiaoYue Zhou
- Department of Oncology, Changzhou Cancer Hospital of Soochow University, Changzhou, P.R. China
| | - Ding Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, P.R. China, and
| | - Mengfei Guo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, P.R. China, and
| | - Chenyi Fan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, P.R. China, and
| | - Tong Zhou
- Department of Oncology, Changzhou Cancer Hospital of Soochow University, Changzhou, P.R. China
| | - Yang Ling
- Department of Oncology, Changzhou Cancer Hospital of Soochow University, Changzhou, P.R. China
- Clinical Oncology Laboratory, Changzhou Cancer Hospital of Soochow University, Changzhou, P.R. China
| |
Collapse
|
25
|
A Novel Gd-DTPA-conjugated Poly(L-γ-glutamyl-glutamine)-paclitaxel Polymeric Delivery System for Tumor Theranostics. Sci Rep 2017. [PMID: 28630436 PMCID: PMC5476566 DOI: 10.1038/s41598-017-03633-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The conventional chemotherapeutics could not be traced in vivo and provide timely feedback on the clinical effectiveness of drugs. In this study, poly(L-γ-glutamyl-glutamine)-paclitaxel (PGG-PTX), as a model polymer, was chemically conjugated with Gd-DTPA (Gd-diethylenetriaminepentaacetic acid), a T1-contrast agent of MRI, to prepare a Gd-DTPA-conjugated PGG-PTX (PGG-PTX-DTPA-Gd) delivery system used for tumor theranostics. PGG-PTX-DTPA-Gd can be self-assembled to NPs in water with a z-average hydrodynamic diameter about 35.9 nm. The 3 T MRI results confirmed that the relaxivity of PGG-PTX-DTPA-Gd NPs (r1 = 18.98 mM−1S−1) was increased nearly 4.9 times compared with that of free Gd-DTPA (r1 = 3.87 mM−1S−1). The in vivo fluorescence imaging results showed that PGG-PTX-DTPA-Gd NPs could be accumulated in the tumor tissue of NCI-H460 lung cancer animal model by EPR effect, which was similar to PGG-PTX NPs. The MRI results showed that compared with free Gd-DTPA, PGG-PTX-DTPA-Gd NPs showed significantly enhanced and prolonged signal intensity in tumor tissue, which should be attributed to the increased relaxivity and tumor accumulation. PGG-PTX-DTPA-Gd NPs also showed effective antitumor effect in vivo. These results indicated that PGG-PTX-DTPA-Gd NPs are an effective delivery system for tumor theranostics, and should have a potential value in personalized treatment of tumor.
Collapse
|
26
|
Houdaihed L, Evans JC, Allen C. Overcoming the Road Blocks: Advancement of Block Copolymer Micelles for Cancer Therapy in the Clinic. Mol Pharm 2017; 14:2503-2517. [DOI: 10.1021/acs.molpharmaceut.7b00188] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Loujin Houdaihed
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - James C. Evans
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Christine Allen
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| |
Collapse
|
27
|
Meng H, Zou Y, Zhong P, Meng F, Zhang J, Cheng R, Zhong Z. A Smart Nano-Prodrug Platform with Reactive Drug Loading, Superb Stability, and Fast Responsive Drug Release for Targeted Cancer Therapy. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201600518] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/02/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Hao Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Yan Zou
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Ping Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Jian Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Ru Cheng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P. R. China
| |
Collapse
|
28
|
Louage B, De Wever O, Hennink WE, De Geest BG. Developments and future clinical outlook of taxane nanomedicines. J Control Release 2017; 253:137-152. [DOI: 10.1016/j.jconrel.2017.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 02/09/2023]
|
29
|
Zhang L, Tan L, Chen L, Chen X, Long C, Peng J, Qian Z. A simple method to improve the stability of docetaxel micelles. Sci Rep 2016; 6:36957. [PMID: 27833135 PMCID: PMC5105067 DOI: 10.1038/srep36957] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/24/2016] [Indexed: 02/05/2023] Open
Abstract
Self-assembled polymeric micelles have been widely applied in drug delivery systems. In this study, we found that pH value of micellar system solution was the decisive factor of physical stability. Furthermore, the weak basic solution could maintain the solution clarification for a relative long time. To investigate the stability of polymeric micelles in different pH solutions, the micellar particle size and the docetaxel content remaining in solution were detected at predetermined time points. The crystallographic assay of freeze-drying powder was characterized by an X-ray diffractometer. In vitro release results indicated that the PBS had little influence on the sustained-release effect of docetaxel-loaded polymeric micelles (DPM). Besides, the safety of micellar formulation was determined by an MTT assay on HEK293 cells, and the anti-tumor activity was tested on MCF-7 cells. The results demonstrated that DPM adjusted with PBS (DPM (PBS)) was of low toxicity and maintained the effectiveness of docetaxel. In vivo antitumor results indicated that DPM (PBS) had better antitumor efficacy than common docetaxel injection (DTX). Thus it was concluded that regulation of micellar solution PH by PBS is a safe and effective method to improve the physical stability of DPM. It might promote the application of micellar formulation in clinical applications.
Collapse
Affiliation(s)
- Lan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.,Research and Development Department, Guangdong Zhongsheng Pharmacy, Dongguan, 523325, China
| | - LiWei Tan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - LiJuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - XiaoXin Chen
- Research and Development Department, Guangdong Zhongsheng Pharmacy, Dongguan, 523325, China
| | - ChaoFeng Long
- Research and Development Department, Guangdong Zhongsheng Pharmacy, Dongguan, 523325, China
| | - JinRong Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - ZhiYong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
30
|
Caster JM, Patel AN, Zhang T, Wang A. Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27312983 DOI: 10.1002/wnan.1416] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/09/2016] [Accepted: 05/17/2016] [Indexed: 12/16/2022]
Abstract
Nanomedicine is a relatively new field that is rapidly evolving. Formulation of drugs on the nanoscale imparts many physical and biological advantages. Such advantages can in turn translate into improved therapeutic efficacy and reduced toxicity. While approximately 50 nanotherapeutics have already entered clinical practice, a greater number of drugs are undergoing clinical investigation for a variety of indications. This review aims to examine all the nanoformulations that are currently undergoing clinical investigation and their outlook for ultimate clinical translation. WIREs Nanomed Nanobiotechnol 2017, 9:e1416. doi: 10.1002/wnan.1416 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Joseph M Caster
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Artish N Patel
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tian Zhang
- Department of Medicine, Duke University, Durham, NC, USA
| | - Andrew Wang
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
31
|
Zhang H, Tian Y, Zhu Z, Xu H, Li X, Zheng D, Sun W. Efficient antitumor effect of co-drug-loaded nanoparticles with gelatin hydrogel by local implantation. Sci Rep 2016; 6:26546. [PMID: 27226240 PMCID: PMC4880919 DOI: 10.1038/srep26546] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/04/2016] [Indexed: 12/26/2022] Open
Abstract
Tetrandrine (Tet) could enhance the antitumor effect of Paclitaxel (Ptx) by increasing intracellular Reactive Oxygen Species (ROS) levels, which leads to the possibility of co-delivery of both drugs for synergistic antitumor effect. In the current study, we reported an efficient, local therapeutic strategy employing effective Tet and Ptx delivery with a nanoparticle-loaded gelatin system. Tet- and Ptx co-loaded mPEG-PCL nanoparticles (P/T-NPs) were encapsulated into the physically cross-linked gelatin hydrogel and then implanted on the tumor site for continuous drug release. The drug-loaded gelatin hydrogel underwent a phase change when the temperature slowly increased. In vitro study showed that Tet/Ptx-loaded PEG-b-PCL nanoparticles encapsulated within a gelatin hydrogel (P/T-NPs-Gelatin) inhibited the growth and invasive ability of BGC-823 cells more effectively than the combination of free drugs or P/T-NPs. In vivo study validated the therapeutic potential of P/T-NPs-Gelatin. P/T-NPs-Gelatin significantly inhibited the activation of p-Akt and the downstream anti-apoptotic Bcl-2 protein and also inducing the activation of pro-apoptotic Bax protein. Moreover, the molecular-modulating effect of P/T-NPs-Gelatin on related proteins varied slightly under the influence of NAC, which was supported by the observations of the tumor volumes and weights. Based on these findings, local implantation of P/T-NPs-Gelatin may be a promising therapeutic strategy for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Geriatrics, the First Affiliated Hospital to Nanjing Medical University, Nanjing, 210029, China
| | - Yong Tian
- Department of Orthopaedics, Jiangsu Taizhou People's Hospital, Taizhou, 225300, China
| | - Zhenshu Zhu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China.,Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585
| | - Huae Xu
- Department of Pharmacy, the First Affiliated Hospital to Nanjing Medical University, Nanjing, 210029, China
| | - Xiaolin Li
- Department of Geriatrics, the First Affiliated Hospital to Nanjing Medical University, Nanjing, 210029, China
| | - Donghui Zheng
- Department of Nephrology, Huai'an Hospital Affiliated with Xuzhou Medical College and Huai'an Second Hospital, Huai'an 223002, China
| | - Weihao Sun
- Department of Geriatrics, the First Affiliated Hospital to Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
32
|
Structural modifications in polymeric micelles to impart multifunctionality for improved drug delivery. Ther Deliv 2016; 7:73-87. [PMID: 26769002 DOI: 10.4155/tde.15.90] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Polymeric micelles are macromolecular nanoconstructs which are formed by self-assembly of synthetic amphiphilic block copolymers. These copolymers could be chemically modified to expand their functionality and hence obtain a multifunctional micelle which could serve several functions simultaneously, for example, long circulation time along with active targeting, smart polymeric micelles providing on-demand drug release for example, pH responsive micelles, redox- and light-sensitive micelles, charge-conversion micelles and core/shell cross-linked micelles. Additionally, micelles could be tailored to carry a contrast agent or siRNA/miRNA along with the drug for greater clinical benefit. The focus of the current commentary would be to highlight such chemical modifications which impart multifunctionality to a single carrier and discuss challenges involved in clinical translation of these multifunctional micelles.
Collapse
|
33
|
Jiang M, Han X, Guo W, Li W, Chen J, Ren G, Sun B, Wang Y, He Z. Star-shape paclitaxel prodrug self-assembled nanomedicine: combining high drug loading and enhanced cytotoxicity. RSC Adv 2016. [DOI: 10.1039/c6ra23169a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Star-shape paclitaxel prodrugs self-assembled nanoparticles combining high drug loading and enhanced cytotoxicity.
Collapse
Affiliation(s)
- Mengjuan Jiang
- Department of Biopharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Xiangfei Han
- Department of Biopharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Weiling Guo
- Department of Biopharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Wei Li
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- China
| | - Jinling Chen
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- China
| | - Guolian Ren
- School of Pharmacy
- Shanxi Medical University
- China
| | - Bingjun Sun
- Department of Biopharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Yongjun Wang
- Department of Biopharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Zhonggui He
- Department of Biopharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| |
Collapse
|
34
|
Ogawara KI, Shiraishi T, Araki T, Watanabe TI, Ono T, Higaki K. Efficient anti-tumor effect of photodynamic treatment with polymeric nanoparticles composed of polyethylene glycol and polylactic acid block copolymer encapsulating hydrophobic porphyrin derivative. Eur J Pharm Sci 2016; 82:154-60. [DOI: 10.1016/j.ejps.2015.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/22/2015] [Accepted: 11/20/2015] [Indexed: 10/22/2022]
|
35
|
Paclitaxel Through the Ages of Anticancer Therapy: Exploring Its Role in Chemoresistance and Radiation Therapy. Cancers (Basel) 2015; 7:2360-71. [PMID: 26633515 PMCID: PMC4695897 DOI: 10.3390/cancers7040897] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/24/2015] [Accepted: 11/30/2015] [Indexed: 11/21/2022] Open
Abstract
Paclitaxel (Taxol®) is a member of the taxane class of anticancer drugs and one of the most common chemotherapeutic agents used against many forms of cancer. Paclitaxel is a microtubule-stabilizer that selectively arrests cells in the G2/M phase of the cell cycle, and found to induce cytotoxicity in a time and concentration-dependent manner. Paclitaxel has been embedded in novel drug formulations, including albumin and polymeric micelle nanoparticles, and applied to many anticancer treatment regimens due to its mechanism of action and radiation sensitizing effects. Though paclitaxel is a major anticancer drug which has been used for many years in clinical treatments, its therapeutic efficacy can be limited by common encumbrances faced by anticancer drugs. These encumbrances include toxicities, de novo refraction, and acquired multidrug resistance (MDR). This article will give a current and comprehensive review of paclitaxel, beginning with its unique history and pharmacology, explore its mechanisms of drug resistance and influence in combination with radiation therapy, while highlighting current treatment regimens, formulations, and new discoveries.
Collapse
|
36
|
Hafezi MJ, Sharif F. Brownian dynamics simulation of amphiphilic block copolymers with different tail lengths, comparison with theory and comicelles. J Mol Graph Model 2015; 62:165-173. [DOI: 10.1016/j.jmgm.2015.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/03/2015] [Accepted: 09/05/2015] [Indexed: 11/30/2022]
|
37
|
Ma Y, Zhang G, Li L, Yu H, Liu J, Wang C, Chu Y, Zhuo R, Jiang X. Temperature and pH dual-sensitive polyaspartamide derivatives for antitumor drug delivery. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yingying Ma
- Department of Chemistry, Key Laboratory of Biomedical Polymers of Ministry of Education; Wuhan University; Wuhan 430072 People's Republic of China
| | - Guangyan Zhang
- Department of Chemistry, Key Laboratory of Biomedical Polymers of Ministry of Education; Wuhan University; Wuhan 430072 People's Republic of China
- Hubei Provincial Key Laboratory of Green Materials for Light Industry & Department of Light Industry; Hubei University of Technology; Wuhan 430068 People's Republic of China
| | - Lingjuan Li
- Department of Chemistry, Key Laboratory of Biomedical Polymers of Ministry of Education; Wuhan University; Wuhan 430072 People's Republic of China
| | - Huan Yu
- Department of Chemistry, Key Laboratory of Biomedical Polymers of Ministry of Education; Wuhan University; Wuhan 430072 People's Republic of China
| | - Jia Liu
- Department of Chemistry, Key Laboratory of Biomedical Polymers of Ministry of Education; Wuhan University; Wuhan 430072 People's Republic of China
| | - Chaoqun Wang
- Department of Chemistry, Key Laboratory of Biomedical Polymers of Ministry of Education; Wuhan University; Wuhan 430072 People's Republic of China
| | - Yanfeng Chu
- Department of Chemistry, Key Laboratory of Biomedical Polymers of Ministry of Education; Wuhan University; Wuhan 430072 People's Republic of China
| | - Renxi Zhuo
- Department of Chemistry, Key Laboratory of Biomedical Polymers of Ministry of Education; Wuhan University; Wuhan 430072 People's Republic of China
| | - Xulin Jiang
- Department of Chemistry, Key Laboratory of Biomedical Polymers of Ministry of Education; Wuhan University; Wuhan 430072 People's Republic of China
| |
Collapse
|
38
|
Banik BL, Fattahi P, Brown JL. Polymeric nanoparticles: the future of nanomedicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:271-99. [PMID: 26314803 DOI: 10.1002/wnan.1364] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/16/2015] [Accepted: 07/22/2015] [Indexed: 12/22/2022]
Abstract
Polymeric nanoparticles (NPs) are one of the most studied organic strategies for nanomedicine. Intense interest lies in the potential of polymeric NPs to revolutionize modern medicine. To determine the ideal nanosystem for more effective and distinctly targeted delivery of therapeutic applications, particle size, morphology, material choice, and processing techniques are all research areas of interest. Utilizations of polymeric NPs include drug delivery techniques such as conjugation and entrapment of drugs, prodrugs, stimuli-responsive systems, imaging modalities, and theranostics. Cancer, neurodegenerative disorders, and cardiovascular diseases are fields impacted by NP technologies that push scientific boundaries to the leading edge of transformative advances for nanomedicine.
Collapse
Affiliation(s)
- Brittany L Banik
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Pouria Fattahi
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Justin L Brown
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
39
|
Affiliation(s)
- Yuanzeng Min
- Laboratory of Nano- and Translational Medicine, Carolina Institute of Nanomedicine, Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Joseph M Caster
- Laboratory of Nano- and Translational Medicine, Carolina Institute of Nanomedicine, Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Michael J Eblan
- Laboratory of Nano- and Translational Medicine, Carolina Institute of Nanomedicine, Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Andrew Z Wang
- Laboratory of Nano- and Translational Medicine, Carolina Institute of Nanomedicine, Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
40
|
Gheybi H, Adeli M. Supramolecular anticancer drug delivery systems based on linear–dendritic copolymers. Polym Chem 2015. [DOI: 10.1039/c4py01437e] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The combination of two generations of polymers as linear–dendritic copolymers leads to hybrid systems with unique properties, which are of great interest for many applications. Herein, recent advances in anticancer drug delivery systems based on linear–dendritic copolymers have been reviewed.
Collapse
Affiliation(s)
- Homa Gheybi
- Department of Chemistry
- Faculty of Science
- Lorestan University
- Khorramabad
- Iran
| | - Mohsen Adeli
- Department of Chemistry
- Faculty of Science
- Lorestan University
- Khorramabad
- Iran
| |
Collapse
|
41
|
Zhou X, Luo S, Tang R, Wang R, Wang J. Diblock Copolymers of Polyethylene Glycol and a Polymethacrylamide with Side-Chains Containing TwinOrthoEster Rings: Synthesis, Characterization, and Evaluation as Potential pH-Responsive Micelles. Macromol Biosci 2014; 15:385-94. [DOI: 10.1002/mabi.201400395] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 10/09/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Xiaojing Zhou
- School of Pharmaceutical Science; Jiangnan University; 1800 Lihu Road, Wuxi Jiangsu Province 214122 P. R. China
| | - Shi Luo
- School of Pharmaceutical Science; Jiangnan University; 1800 Lihu Road, Wuxi Jiangsu Province 214122 P. R. China
| | - Rupei Tang
- School of Pharmaceutical Science; Jiangnan University; 1800 Lihu Road, Wuxi Jiangsu Province 214122 P. R. China
- Engineering Research Center for Biomedical Materials; School of Life Science, Anhui University; 111 Jiulong Road Hefei, Anhui Province 230601 P. R. China
| | - Rui Wang
- School of Pharmaceutical Science; Jiangnan University; 1800 Lihu Road, Wuxi Jiangsu Province 214122 P. R. China
| | - Jun Wang
- Engineering Research Center for Biomedical Materials; School of Life Science, Anhui University; 111 Jiulong Road Hefei, Anhui Province 230601 P. R. China
| |
Collapse
|
42
|
Jin SE, Jin HE, Hong SS. Targeted delivery system of nanobiomaterials in anticancer therapy: from cells to clinics. BIOMED RESEARCH INTERNATIONAL 2014; 2014:814208. [PMID: 24672796 PMCID: PMC3950423 DOI: 10.1155/2014/814208] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 12/25/2013] [Indexed: 12/14/2022]
Abstract
Targeted delivery systems of nanobiomaterials are necessary to be developed for the diagnosis and treatment of cancer. Nanobiomaterials can be engineered to recognize cancer-specific receptors at the cellular levels and to deliver anticancer drugs into the diseased sites. In particular, nanobiomaterial-based nanocarriers, so-called nanoplatforms, are the design of the targeted delivery systems such as liposomes, polymeric nanoparticles/micelles, nanoconjugates, norganic materials, carbon-based nanobiomaterials, and bioinspired phage system, which are based on the nanosize of 1-100 nm in diameter. In this review, the design and the application of these nanoplatforms are discussed at the cellular levels as well as in the clinics. We believe that this review can offer recent advances in the targeted delivery systems of nanobiomaterials regarding in vitro and in vivo applications and the translation of nanobiomaterials to nanomedicine in anticancer therapy.
Collapse
Affiliation(s)
- Su-Eon Jin
- Department of Drug Development, College of Medicine, Inha University, 3-ga, Sinheung dong, Jung-gu, Incheon 400-712, Republic of Korea
| | - Hyo-Eon Jin
- Department of Bioengineering, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Soon-Sun Hong
- Department of Drug Development, College of Medicine, Inha University, 3-ga, Sinheung dong, Jung-gu, Incheon 400-712, Republic of Korea
| |
Collapse
|
43
|
Emoto S, Sunami E, Yamaguchi H, Ishihara S, Kitayama J, Watanabe T. Drug development for intraperitoneal chemotherapy against peritoneal carcinomatosis from gastrointestinal cancer. Surg Today 2014; 44:2209-20. [PMID: 24482110 DOI: 10.1007/s00595-014-0848-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/21/2013] [Indexed: 12/23/2022]
Abstract
Intraperitoneal (IP) chemotherapy for peritoneal carcinomatosis (PC) from gastrointestinal cancer has been investigated and applied clinically for several decades. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy have been considered to be the optimal treatment options for selected patients with colorectal and gastric cancers with PC. Accumulating evidence suggests that the administration of IP paclitaxel for patients with PC from gastric cancer may improve the patient survival. The pharmacokinetics of such treatment should be considered to optimize IP chemotherapy. In addition, newly emerging molecular-targeted therapies and research into new drug delivery systems, such as nanomedicine or controlled absorption/release methods, are essential to improve the effects of IP chemotherapy. This review summarizes the current status and future prospects of IP chemotherapy for the treatment of gastrointestinal cancer.
Collapse
Affiliation(s)
- Shigenobu Emoto
- Department of Surgical Oncology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Sun CY, Dou S, Du JZ, Yang XZ, Li YP, Wang J. Doxorubicin conjugate of poly(ethylene glycol)-block-polyphosphoester for cancer therapy. Adv Healthc Mater 2014; 3:261-72. [PMID: 23852934 DOI: 10.1002/adhm.201300091] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Indexed: 12/22/2022]
Abstract
Polyphosphoesters with repeating phosphoester linkages in the backbone can be easily functionalized, are biodegradable and potentially biocompatible, and may be potential candidates as polymer carriers of drug conjugates. Here, the efficacy of a polyphosphoester drug conjugate as an anticancer agent in vivo is assessed for the first time. With controlled synthesis, doxorubicin conjugated to poly(ethylene glycol)-block-polyphosphoester (PPEH-DOX) via labile hydrazone bonds form spherical nanoparticles in aqueous solution with an average diameter of ≈60 nm. These nanoparticles are effectively internalized by MDA-MB-231 breast cancer cells and release the conjugated doxorubicin in response to the intracellular pH of endosomes and lysosomes, resulting in significant antiproliferative activity in cancer cells. Compared with free doxorubicin injection, PPEH-DOX injection exhibits much longer circulation behavior in the plasma of mice and leads to enhanced drug accumulation in tumor cells. In an MDA-MB-231 xenograft murine model, inhibition of tumor growth with systemic delivery of PPEH-DOX nanoparticles is more pronounced compared with free doxorubicin injection, suggesting the potential of polyphosphoesters as carriers of drug conjugates in cancer therapy.
Collapse
Affiliation(s)
- Chun-Yang Sun
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | | | | | | | | | | |
Collapse
|
45
|
Gene therapy and DNA delivery systems. Int J Pharm 2013; 459:70-83. [PMID: 24286924 DOI: 10.1016/j.ijpharm.2013.11.041] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/31/2013] [Accepted: 11/19/2013] [Indexed: 12/29/2022]
Abstract
Gene therapy is a promising new technique for treating many serious incurable diseases, such as cancer and genetic disorders. The main problem limiting the application of this strategy in vivo is the difficulty of transporting large, fragile and negatively charged molecules like DNA into the nucleus of the cell without degradation. The key to success of gene therapy is to create safe and efficient gene delivery vehicles. Ideally, the vehicle must be able to remain in the bloodstream for a long time and avoid uptake by the mononuclear phagocyte system, in order to ensure its arrival at the desired targets. Moreover, this carrier must also be able to transport the DNA efficiently into the cell cytoplasm, avoiding lysosomal degradation. Viral vehicles are the most commonly used carriers for delivering DNA and have long been used for their high efficiency. However, these vehicles can trigger dangerous immunological responses. Scientists need to find safer and cheaper alternatives. Consequently, the non-viral carriers are being prepared and developed until techniques for encapsulating DNA can be found. This review highlights gene therapy as a new promising technique used to treat many incurable diseases and the different strategies used to transfer DNA, taking into account that introducing DNA into the cell nucleus without degradation is essential for the success of this therapeutic technique.
Collapse
|
46
|
Nanoparticles containing insoluble drug for cancer therapy. Biotechnol Adv 2013; 32:778-88. [PMID: 24113214 DOI: 10.1016/j.biotechadv.2013.10.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 01/04/2023]
Abstract
Nanoparticle drug formulations have been extensively researched and developed in the field of drug delivery as a means to efficiently deliver insoluble drugs to tumor cells. By mechanisms of the enhanced permeability and retention effect, nanoparticle drug formulations are capable of greatly enhancing the safety, pharmacokinetic profiles and bioavailability of the administered treatment. Here, the progress of various nanoparticle formulations in both research and clinical applications is detailed with a focus on the development of drug/gene delivery systems. Specifically, the unique advantages and disadvantages of polymeric nanoparticles, liposomes, solid lipid nanoparticles, nanocrystals and lipid-coated nanoparticles for targeted drug delivery will be investigated in detail.
Collapse
|
47
|
Li M, Lv S, Tang Z, Song W, Yu H, Sun H, Liu H, Chen X. Polypeptide/doxorubicin hydrochloride polymersomes prepared through organic solvent-free technique as a smart drug delivery platform. Macromol Biosci 2013; 13:1150-62. [PMID: 23894136 DOI: 10.1002/mabi.201300222] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/24/2013] [Indexed: 12/27/2022]
Abstract
Rapid and efficient side-chain functionalization of polypeptide with neighboring carboxylgroups is achieved via the combination of ring-opening polymerization and subsequent thiol-yne click chemistry. The spontaneous formation of polymersomes with uniform size is found to occur in aqueous medium via electrostatic interaction between the anionic polypeptide and cationic doxorubicin hydrochloride (DOX·HCl). The polymersomes are taken up by A549 cells via endocytosis, with a slightly lower cytotoxicity compared with free DOX ·HCl. Moreover, the drug-loaded polymersomes exhibit the enhanced therapeutic efficacy, increase apoptosis in tumor tissues, and reduce systemic toxicity in nude mice bearing A549 lung cancer xenograft, in comparison with free DOX ·HCl.
Collapse
Affiliation(s)
- Mingqiang Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China; University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Li M, Song W, Tang Z, Lv S, Lin L, Sun H, Li Q, Yang Y, Hong H, Chen X. Nanoscaled poly(L-glutamic acid)/doxorubicin-amphiphile complex as pH-responsive drug delivery system for effective treatment of nonsmall cell lung cancer. ACS APPLIED MATERIALS & INTERFACES 2013; 5:1781-92. [PMID: 23410916 DOI: 10.1021/am303073u] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nonsmall cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide. Herein, we develop a polypeptide-based block ionomer complex formed by anionic methoxy poly(ethylene glycol)-b-poly(L-glutamic acid) (mPEG-b-PLG) and cationic anticancer drug doxorubicin hydrochloride (DOX·HCl) for NSCLC treatment. This complex spontaneously self-assembled into spherical nanoparticles (NPs) in aqueous solutions via electrostatic interaction and hydrophobic stack, with a high loading efficiency (almost 100%) and negative surface charge. DOX·HCl release from the drug-loaded micellar nanoparticles (mPEG-b-PLG-DOX·HCl) was slow at physiological pH, but obviously increased at the acidic pH mimicking the endosomal/lysosomal environment. In vitro cytotoxicity and hemolysis assays demonstrated that the block copolypeptide was cytocompatible and hemocompatible, and the presence of copolypeptide carrier could reduce the hemolysis ratio of DOX·HCl significantly. Cellular uptake and cytotoxicity studies suggested that mPEG-b-PLG-DOX·HCl was taken up by A549 cells via endocytosis, with a slightly slower cellular internalization and lower cytotoxicity compared with free DOX·HCl. The pharmacokinetics study in rats showed that DOX·HCl-loaded micellar NPs significantly prolonged the blood circulation time. Moreover, mPEG-b-PLG-DOX·HCl exhibited enhanced therapeutic efficacy, increased apoptosis in tumor tissues, and reduced systemic toxicity in nude mice bearing A549 lung cancer xenograft compared with free DOX·HCl, which were further confirmed by histological and immunohistochemical analyses. The results demonstrated that mPEG-b-PLG was a promising vector to deliver DOX·HCl into tumors and achieve improved pharmacokinetics, biodistribution and efficacy of DOX·HCl with reduced toxicity. These features strongly supported the interest of developing mPEG-b-PLG-DOX·HCl as a valid therapeutic modality in the therapy of human NSCLC and other solid tumors.
Collapse
Affiliation(s)
- Mingqiang Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Danhier F, Danhier P, Magotteaux N, De Preter G, Ucakar B, Karroum O, Jordan B, Gallez B, Préat V. Electron paramagnetic resonance highlights that the oxygen effect contributes to the radiosensitizing effect of paclitaxel. PLoS One 2012; 7:e40772. [PMID: 22808261 PMCID: PMC3395636 DOI: 10.1371/journal.pone.0040772] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/13/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Paclitaxel (PTX) is a potent anti-cancer chemotherapeutic agent and is widely used in the treatments of solid tumors, particularly of the breast and ovaries. An effective and safe micellar formulation of PTX was used to administer higher doses of PTX than Taxol® (the current commercialized drug). We hypothesize that PTX-loaded micelles (M-PTX) may enhance tumor radiosensitivity by increasing the tumor oxygenation (pO(2)). Our goals were (i) to evaluate the contribution of the "oxygen effect" to the radiosensitizing effect of PTX; (ii) to demonstrate the therapeutic relevance of the combination of M-PTX and irradiation and (iii) to investigate the underlying mechanisms of the observed oxygen effect. METHODOLOGY AND PRINCIPAL FINDINGS We used (PEG-p-(CL-co-TMC)) polymeric micelles to solubilize PTX. pO(2) was measured on TLT tumor-bearing mice treated with M-PTX (80 mg/kg) using electron paramagnetic resonance (EPR) oximetry. The regrowth delay following 10 Gy irradiation 24 h after M-PTX treatment was measured. The tumor perfusion was assessed by the patent blue staining. The oxygen consumption rate and the apoptosis were evaluated by EPR oximetry and the TUNEL assay, respectively. EPR oximetry experiments showed that M-PTX dramatically increases the pO(2) 24 h post treatment. Regrowth delay assays demonstrated a synergy between M-PTX and irradiation. M-PTX increased the tumor blood flow while cells treated with M-PTX consumed less oxygen and presented more apoptosis. CONCLUSIONS M-PTX improved the tumor oxygenation which leads to synergy between this treatment and irradiation. This increased pO(2) can be explained both by an increased blood flow and an inhibition of O(2) consumption.
Collapse
Affiliation(s)
- Fabienne Danhier
- Pharmaceutics and Drug Delivery, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Pierre Danhier
- Laboratory of Biomedical Magnetic Resonance, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Nicolas Magotteaux
- Pharmaceutics and Drug Delivery, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Géraldine De Preter
- Laboratory of Biomedical Magnetic Resonance, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Bernard Ucakar
- Pharmaceutics and Drug Delivery, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Oussama Karroum
- Laboratory of Biomedical Magnetic Resonance, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Bénédicte Jordan
- Laboratory of Biomedical Magnetic Resonance, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Bernard Gallez
- Laboratory of Biomedical Magnetic Resonance, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Véronique Préat
- Pharmaceutics and Drug Delivery, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
- * E-mail:
| |
Collapse
|