1
|
Castellanos G, Valbuena DS, Pérez E, Villegas VE, Rondón-Lagos M. Chromosomal Instability as Enabling Feature and Central Hallmark of Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:189-211. [PMID: 36923397 PMCID: PMC10010144 DOI: 10.2147/bctt.s383759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/11/2022] [Indexed: 03/11/2023]
Abstract
Chromosomal instability (CIN) has become a topic of great interest in recent years, not only for its implications in cancer diagnosis and prognosis but also for its role as an enabling feature and central hallmark of cancer. CIN describes cell-to-cell variation in the number or structure of chromosomes in a tumor population. Although extensive research in recent decades has identified some associations between CIN with response to therapy, specific associations with other hallmarks of cancer have not been fully evidenced. Such associations place CIN as an enabling feature of the other hallmarks of cancer and highlight the importance of deepening its knowledge to improve the outcome in cancer. In addition, studies conducted to date have shown paradoxical findings about the implications of CIN for therapeutic response, with some studies showing associations between high CIN and better therapeutic response, and others showing the opposite: associations between high CIN and therapeutic resistance. This evidences the complex relationships between CIN with the prognosis and response to treatment in cancer. Considering the above, this review focuses on recent studies on the role of CIN in cancer, the cellular mechanisms leading to CIN, its relationship with other hallmarks of cancer, and the emerging therapeutic approaches that are being developed to target such instability, with a primary focus on breast cancer. Further understanding of the complexity of CIN and its association with other hallmarks of cancer could provide a better understanding of the cellular and molecular mechanisms involved in prognosis and response to treatment in cancer and potentially lead to new drug targets.
Collapse
Affiliation(s)
- Giovanny Castellanos
- Maestría en Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.,School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Duván Sebastián Valbuena
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Erika Pérez
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Victoria E Villegas
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| |
Collapse
|
2
|
Niu J, Wang X, Qu J, Mager DE, Straubinger RM. Pharmacodynamic modeling of synergistic birinapant/paclitaxel interactions in pancreatic cancer cells. BMC Cancer 2020; 20:1024. [PMID: 33097020 PMCID: PMC7583190 DOI: 10.1186/s12885-020-07398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/10/2020] [Indexed: 11/17/2022] Open
Abstract
Background For most patients, pancreatic adenocarcinoma responds poorly to treatment, and novel therapeutic approaches are needed. Standard-of-care paclitaxel (PTX), combined with birinapant (BRP), a bivalent mimetic of the apoptosis antagonist SMAC (second mitochondria-derived activator of caspases), exerts synergistic killing of PANC-1 human pancreatic adenocarcinoma cells. Methods To investigate potential mechanisms underlying this synergistic pharmacodynamic interaction, data capturing PANC-1 cell growth, apoptosis kinetics, and cell cycle distribution were integrated with high-quality IonStar-generated proteomic data capturing changes in the relative abundance of more than 3300 proteins as the cells responded to the two drugs, alone and combined. Results PTX alone (15 nM) elicited dose-dependent G2/M-phase arrest and cellular polyploidy. Combined BRP/PTX (150/15 nM) reduced G2/M by 35% and polyploid cells by 45%, and increased apoptosis by 20%. Whereas BRP or PTX alone produced no change in the pro-apoptotic protein pJNK, and a slight increase in the anti-apoptotic protein Bcl2, the drug combination increased pJNK and decreased Bcl2 significantly compared to the vehicle control. A multi-scale, mechanism-based mathematical model was developed to investigate integrated birinapant/paclitaxel effects on temporal profiles of key proteins involved in kinetics of cell growth, death, and cell cycle distribution. Conclusions The model, consistent with the observed reduction in the Bcl2/BAX ratio, suggests that BRP-induced apoptosis of mitotically-arrested cells is a major contributor to the synergy between BRP and PTX. Coupling proteomic and cellular response profiles with multi-scale pharmacodynamic modeling provides a quantitative mechanistic framework for evaluating pharmacodynamically-based drug-drug interactions in combination chemotherapy, and could potentially guide the development of promising drug regimens.
Collapse
Affiliation(s)
- Jin Niu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Xue Wang
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA.,Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York, USA
| | - Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA. .,New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York, USA. .,Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, 14214, USA.
| |
Collapse
|
3
|
Kukolj E, Kaufmann T, Dick AE, Zeillinger R, Gerlich DW, Slade D. PARP inhibition causes premature loss of cohesion in cancer cells. Oncotarget 2017; 8:103931-103951. [PMID: 29262611 PMCID: PMC5732777 DOI: 10.18632/oncotarget.21879] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/22/2017] [Indexed: 12/11/2022] Open
Abstract
Poly(ADP-ribose) polymerases (PARPs) regulate various aspects of cellular function including mitotic progression. Although PARP inhibitors have been undergoing various clinical trials and the PARP1/2 inhibitor olaparib was approved as monotherapy for BRCA-mutated ovarian cancer, their mode of action in killing tumour cells is not fully understood. We investigated the effect of PARP inhibition on mitosis in cancerous (cervical, ovary, breast and osteosarcoma) and non-cancerous cells by live-cell imaging. The clinically relevant inhibitor olaparib induced strong perturbations in mitosis, including problems with chromosome alignment at the metaphase plate, anaphase delay, and premature loss of cohesion (cohesion fatigue) after a prolonged metaphase arrest, resulting in sister chromatid scattering. PARP1 and PARP2 depletion suppressed the phenotype while PARP2 overexpression enhanced it, suggesting that olaparib-bound PARP1 and PARP2 rather than the lack of catalytic activity causes this phenotype. Olaparib-induced mitotic chromatid scattering was observed in various cancer cell lines with increased protein levels of PARP1 and PARP2, but not in non-cancer or cancer cell lines that expressed lower levels of PARP1 or PARP2. Interestingly, the sister chromatid scattering phenotype occurred only when olaparib was added during the S-phase preceding mitosis, suggesting that PARP1 and PARP2 entrapment at replication forks impairs sister chromatid cohesion. Clinically relevant DNA-damaging agents that impair replication progression such as topoisomerase inhibitors and cisplatin were also found to induce sister chromatid scattering and metaphase plate alignment problems, suggesting that these mitotic phenotypes are a common outcome of replication perturbation.
Collapse
Affiliation(s)
- Eva Kukolj
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, Austria
| | - Tanja Kaufmann
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, Austria
| | - Amalie E Dick
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Dea Slade
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, Austria
| |
Collapse
|
4
|
Naik RR, Singh AK, Mali AM, Khirade MF, Bapat SA. A tumor deconstruction platform identifies definitive end points in the evaluation of drug responses. Oncogene 2015; 35:727-37. [PMID: 25915841 DOI: 10.1038/onc.2015.130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/16/2015] [Accepted: 03/20/2015] [Indexed: 02/07/2023]
Abstract
Tumor heterogeneity and the presence of drug-sensitive and refractory populations within the same tumor are almost never assessed in the drug discovery pipeline. Such incomplete assessment of drugs arising from spatial and temporal tumor cell heterogeneity reflects on their failure in the clinic and considerable wasted costs in the drug discovery pipeline. Here we report the derivation of a flow cytometry-based tumor deconstruction platform for resolution of at least 18 discrete tumor cell fractions. This is achieved through concurrent identification, quantification and analysis of components of cancer stem cell hierarchies, genetically instable clones and differentially cycling populations within a tumor. We also demonstrate such resolution of the tumor cytotype to be a potential value addition in drug screening through definitive cell target identification. Additionally, this real-time definition of intra-tumor heterogeneity provides a convenient, incisive and analytical tool for predicting drug efficacies through profiling perturbations within discrete tumor cell subsets in response to different drugs and candidates. Consequently, possible applications in informed therapeutic monitoring and drug repositioning in personalized cancer therapy would complement rational design of new candidates besides achieving a re-evaluation of existing drugs to derive non-obvious combinations that hold better chances of achieving remission.
Collapse
Affiliation(s)
- R R Naik
- National Centre for Cell Science, NCCS Complex, Pune, India
| | - A K Singh
- National Centre for Cell Science, NCCS Complex, Pune, India
| | - A M Mali
- National Centre for Cell Science, NCCS Complex, Pune, India
| | - M F Khirade
- National Centre for Cell Science, NCCS Complex, Pune, India
| | - S A Bapat
- National Centre for Cell Science, NCCS Complex, Pune, India
| |
Collapse
|
5
|
Zhu Y, Zhou Y, Shi J. Post-slippage multinucleation renders cytotoxic variation in anti-mitotic drugs that target the microtubules or mitotic spindle. Cell Cycle 2014; 13:1756-64. [PMID: 24694730 DOI: 10.4161/cc.28672] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
One common cancer chemotherapeutic strategy is to perturb cell division with anti-mitotic drugs. Paclitaxel, the classic microtubule-targeting anti-mitotic drug, so far still outperforms the newer, more spindle-specific anti-mitotics in the clinic, but the underlying cellular mechanism is poorly understood. In this study we identified post-slippage multinucleation, which triggered extensive DNA damage and apoptosis after drug-induced mitotic slippage, contributes to the extra cytotoxicity of paclitaxel in comparison to the spindle-targeting drug, Kinesin-5 inhibitor. Based on quantitative single-cell microscopy assays, we showed that attenuation of the degree of post-slippage multinucleation significantly reduced DNA damage and apoptosis in response to paclitaxel, and that post-slippage apoptosis was likely mediated by the p53-dependent DNA damage response pathway. Paclitaxel appeared to act as a double-edge sword, capable of killing proliferating cancer cells both during mitotic arrest and after mitotic slippage by inducing DNA damage. Our results thus suggest that to predict drug response to paclitaxel and anti-mitotics in general, 2 distinct sets of bio-markers, which regulate mitotic and post-slippage cytotoxicity, respectively, may need to be considered. Our findings provide important new insight not only for elucidating the cytotoxic mechanisms of paclitaxel, but also for understanding the variable efficacy of different anti-mitotic chemotherapeutics.
Collapse
Affiliation(s)
- Yanting Zhu
- Center for Quantitative Systems Biology; Department of Biology and Department of Physics; Hong Kong Baptist University; Hong Kong, China
| | - Yuan Zhou
- Center for Quantitative Systems Biology; Department of Biology and Department of Physics; Hong Kong Baptist University; Hong Kong, China
| | - Jue Shi
- Center for Quantitative Systems Biology; Department of Biology and Department of Physics; Hong Kong Baptist University; Hong Kong, China
| |
Collapse
|
6
|
Martínez-Díez M, Guillén-Navarro MJ, Pera B, Bouchet BP, Martínez-Leal JF, Barasoain I, Cuevas C, Andreu JM, García-Fernández LF, Díaz JF, Avilés P, Galmarini CM. PM060184, a new tubulin binding agent with potent antitumor activity including P-glycoprotein over-expressing tumors. Biochem Pharmacol 2014; 88:291-302. [PMID: 24486569 DOI: 10.1016/j.bcp.2014.01.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 01/05/2023]
Abstract
PM060184 belongs to a new family of tubulin-binding agents originally isolated from the marine sponge Lithoplocamia lithistoides. This compound is currently produced by total synthesis and is under evaluation in clinical studies in patients with advanced cancer diseases. It was recently published that PM060184 presents the highest known affinities among tubulin-binding agents, and that it targets tubulin dimers at a new binding site. Here, we show that PM060184 has a potent antitumor activity in a panel of different tumor xenograft models. Moreover, PM060184 is able to overcome P-gp mediated resistance in vivo, an effect that could be related to its high binding affinity for tubulin. To gain insight into the mechanism responsible of the observed antitumor activity, we have characterized its molecular and cellular effects. We have observed that PM060184 is an inhibitor of tubulin polymerization that reduces microtubule dynamicity in cells by 59%. Interestingly, PM060184 suppresses microtubule shortening and growing at a similar extent. This action affects cells in interphase and mitosis. In the first case, the compound induces a disorganization and fragmentation of the microtubule network and the inhibition of cell migration. In the second case, it induces the appearance of multipolar mitosis and lagging chromosomes at the metaphase plate. These effects correlate with prometaphase arrest and induction of caspase-dependent apoptosis or appearance of cells in a multinucleated interphase-like state unrelated to classical apoptosis pathways. Taken together, these results indicate that PM060184 represents a new tubulin binding agent with promising potential as an anticancer agent.
Collapse
Affiliation(s)
- Marta Martínez-Díez
- PharmaMar S.A., Avda de los Reyes 1, Polígono Industrial La Mina, Colmenar Viejo, 28770 Madrid, Spain
| | | | - Benet Pera
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | - Isabel Barasoain
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carmen Cuevas
- PharmaMar S.A., Avda de los Reyes 1, Polígono Industrial La Mina, Colmenar Viejo, 28770 Madrid, Spain
| | - Jose M Andreu
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | - J Fernando Díaz
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Pablo Avilés
- PharmaMar S.A., Avda de los Reyes 1, Polígono Industrial La Mina, Colmenar Viejo, 28770 Madrid, Spain
| | - Carlos M Galmarini
- PharmaMar S.A., Avda de los Reyes 1, Polígono Industrial La Mina, Colmenar Viejo, 28770 Madrid, Spain.
| |
Collapse
|
7
|
Harrison Pitner MK, Saavedra HI. Cdk4 and nek2 signal binucleation and centrosome amplification in a her2+ breast cancer model. PLoS One 2013; 8:e65971. [PMID: 23776583 PMCID: PMC3679029 DOI: 10.1371/journal.pone.0065971] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/02/2013] [Indexed: 12/02/2022] Open
Abstract
Centrosome amplification (CA) is a contributor to carcinogenesis, generating aneuploidy, and chromosome instability. Previous work shows that breast adenocarcinomas have a higher frequency of centrosome defects compared to normal breast tissues. Abnormal centrosome phenotypes are found in pre-malignant lesions, suggesting an early role in breast carcinogenesis. However, the role of CA in breast cancers remains elusive. Identification of pathways and regulatory molecules involved in the generation of CA is essential to understanding its role in breast tumorigenesis. We established a breast cancer model of CA using Her2-positive cells. Our goal was to identify centrosome cycle molecules that are deregulated by aberrant Her2 signaling and the mechanisms driving CA. Our results show some Her2+ breast cancer cell lines harbor both CA and binucleation. Abolishing the expression of Cdk4 abrogated both CA and binucleation in these cells. We also found the source of binucleation in these cells to be defective cytokinesis that is normalized by downregulation of Cdk4. Protein levels of Nek2 diminish upon Cdk4 knockdown and vice versa, suggesting a molecular connection between Cdk4 and Nek2. Knockdown of Nek2 reduces CA and binucleation in this model while its overexpression further enhances centrosome amplification. We conclude that CA is modulated through Cdk4 and Nek2 signaling and that binucleation is a likely source of CA in Her2+ breast cancer cells.
Collapse
Affiliation(s)
- Mary Kathryn Harrison Pitner
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Harold I. Saavedra
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
8
|
A'Hern RP, Jamal-Hanjani M, Szász AM, Johnston SRD, Reis-Filho JS, Roylance R, Swanton C. Taxane benefit in breast cancer—a role for grade and chromosomal stability. Nat Rev Clin Oncol 2013; 10:357-64. [DOI: 10.1038/nrclinonc.2013.67] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Stepanenko AA, Kavsan VM. Evolutionary karyotypic theory of cancer versus conventional cancer gene mutation theory. ACTA ACUST UNITED AC 2012. [DOI: 10.7124/bc.000059] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- A. A. Stepanenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - V. M. Kavsan
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| |
Collapse
|
10
|
Ajabnoor GMA, Crook T, Coley HM. Paclitaxel resistance is associated with switch from apoptotic to autophagic cell death in MCF-7 breast cancer cells. Cell Death Dis 2012; 3:e260. [PMID: 22278287 PMCID: PMC3270273 DOI: 10.1038/cddis.2011.139] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Taxanes remain first line chemotherapy in management of metastatic breast cancer and have a key role in epithelial ovarian cancer, with increasingly common use of weekly paclitaxel dosing regimens. However, their clinical utility is limited by the development of chemoresistance. To address this, we modelled in vitro paclitaxel resistance in MCF-7 cells. We show that at clinically relevant drug doses, emerging paclitaxel resistance is associated with profound changes in cell death responses and a switch from apoptosis to autophagy as the principal mechanism of drug-induced cytotoxicity. This was characterised by a complete absence of caspase-mediated apoptotic cell death (using the pan-caspase-inhibitor Z-VAD) in paclitaxel-resistant MCF-7TaxR cells, compared with parent MCF-7 or MDA-MB-231 cell lines on paclitaxel challenge, downregulation of caspase-7, caspase-9 and BCl2-interacting mediator of cell death (BIM) expression. Silencing with small interfering RNA to BIM in MCF-7 parental cells was sufficient to confer paclitaxel resistance, inferring the significance in downregulation of this protein in contributing to the resistant phenotype of the MCF-7TaxR cell line. Conversely, there was an increased autophagic response in the MCF-7TaxR cell line with reduced phospho-mTOR and relative resistance to the mTOR inhibitors rapamycin and RAD001. In conclusion, we show for the first time that paclitaxel resistance is associated with profound changes in cell death response with deletion of multiple apoptotic factors balanced by upregulation of the autophagic pathway and collateral sensitivity to platinum.
Collapse
Affiliation(s)
- G M A Ajabnoor
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, P.O Box 80200, Jeddah 21589, Kingdom of Saudi Arabia
| | | | | |
Collapse
|
11
|
Bouchet BP, Puisieux A, Galmarini CM. βIII-Tubulin is required for interphase microtubule dynamics in untransformed human mammary epithelial cells. Eur J Cell Biol 2011; 90:872-8. [PMID: 21820201 DOI: 10.1016/j.ejcb.2011.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/28/2011] [Accepted: 05/03/2011] [Indexed: 12/22/2022] Open
Abstract
Numerous works have questioned the pertinence of using βII- and/or βIII-tubulin expression as markers of prognosis and/or prediction of breast cancer response to chemotherapy containing microtubule-targeting agents. The rationale of such studies was essentially based on microtubule dynamics analysis using purified tubulin in vitro and cancer cell lines. Nonetheless, the significance of βII- and βIII-tubulin expression in the control of microtubule dynamics in normal mammary epithelium has never been addressed. Here we investigate the expression and the consequences of βII- and/or βIII-tubulin depletion in interphase microtubule dynamics in non-tumor human mammary epithelial cells. We find that both isoforms contribute to the tubulin isotype composition in primary and immortalized human mammary epithelial cells. Moreover, while βII-tubulin depletion has limited effects on interphase microtubule behavior, βIII-tubulin depletion causes a strong exclusion of microtubules from lamella and a severe suppression of dynamic instability. These results demonstrate that, while βII-tubulin is dispensable, βIII-tubulin is required for interphase microtubule dynamics in untransformed mammary epithelial cells. This strongly suggests that βIII-tubulin is an essential regulator of interphase microtubule functions in normal breast epithelium cells.
Collapse
|
12
|
Burrell RA, Juul N, Johnston SR, Reis-Filho JS, Szallasi Z, Swanton C. Targeting chromosomal instability and tumour heterogeneity in HER2-positive breast cancer. J Cell Biochem 2011; 111:782-90. [PMID: 20665662 DOI: 10.1002/jcb.22781] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chromosomal instability (CIN) is a common cause of tumour heterogeneity and poor prognosis in solid tumours and describes cell-cell variation in chromosome structure or number across a tumour population. In this article we consider evidence suggesting that CIN may be targeted and may influence response to distinct chemotherapy regimens, using HER2-positive breast cancer as an example. Pre-clinical models have indicated a role for HER2 signalling in initiating CIN and defective cell-cycle control, and evidence suggests that HER2-targeting may attenuate this process. Anthracyclines and platinum agents may target tumours with distinct patterns of karyotypic complexity, whereas taxanes may have preferential activity in tumours with relative chromosomal stability. A greater understanding of karyotypic complexity and identification of methods to directly examine and target CIN may support novel strategies to improve outcome in cancer.
Collapse
Affiliation(s)
- Rebecca A Burrell
- Translational Cancer Therapeutics Laboratory, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Microtubules are dynamic filamentous cytoskeletal proteins composed of tubulin and are an important therapeutic target in tumour cells. Agents that bind to microtubules have been part of the pharmacopoeia of anticancer therapy for decades and until the advent of targeted therapy, microtubules were the only alternative to DNA as a therapeutic target in cancer. The screening of a range of botanical species and marine organisms has yielded promising new antitubulin agents with novel properties. In the current search for novel microtubule-binding agents, enhanced tumour specificity, reduced neurotoxicity and insensitivity to chemoresistance mechanisms are the three main objectives.
Collapse
Affiliation(s)
- Charles Dumontet
- INSERM 590, Faculté Rockefeller, 8 Avenue Rockefeller, 69008 Lyon, France and Université Lyon 1, ISPB, Lyon, F-69003, France.
| | | |
Collapse
|
14
|
The effect of paclitaxel alone and in combination with cycloheximide on the frequency of premature centromere division in vitro. ARCH BIOL SCI 2010. [DOI: 10.2298/abs1001063b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Premature centromere division (PCD) can be viewed as a manifestation of chromosome instability. In order to evaluate the ability of Paclitaxel (Ptx) and Cycloheximide (Cy) to induce PCD we used a cytokinesis block micronucleus assay (CBMN), fluorescent in situ hybridization (FISH), and the chromosome aberration (CA) assay in human peripheral blood lymphocytes. Results showed that Ptx can induce PCD alone or in combination with Cy. These findings call us to pay more attention to PCD as a parameter of genotoxicity in the pre-clinical research of mono and/or combinational therapies for cancer treatment.
Collapse
|