1
|
Čonkaš J, Sabol M, Ozretić P. 'Toxic Masculinity': What Is Known about the Role of Androgen Receptors in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:3766. [PMID: 36835177 PMCID: PMC9965076 DOI: 10.3390/ijms24043766] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), the most prevalent cancer in the head and neck region, develops from the mucosal epithelium of the upper aerodigestive tract. Its development directly correlates with alcohol and/or tobacco consumption and infection with human papillomavirus. Interestingly, the relative risk for HNSCC is up to five times higher in males, so it is considered that the endocrine microenvironment is another risk factor. A gender-specific risk for HNSCC suggests either the existence of specific risk factors that affect only males or that females have defensive hormonal and metabolic features. In this review, we summarized the current knowledge about the role of both nuclear and membrane androgen receptors (nAR and mARs, respectively) in HNSCC. As expected, the significance of nAR is much better known; it was shown that increased nAR expression was observed in HNSCC, while treatment with dihydrotestosterone increased proliferation, migration, and invasion of HNSCC cells. For only three out of five currently known mARs-TRPM8, CaV1.2, and OXER1-it was shown either their increased expression in various types of HNSCC or that their increased activity enhanced the migration and invasion of HNSCC cells. The primary treatments for HNSCC are surgery and radiotherapy, but targeted immunotherapies are on the rise. On the other hand, given the evidence of elevated nAR expression in HNSCC, this receptor represents a potential target for antiandrogen therapy. Moreover, there is still plenty of room for further examination of mARs' role in HNSCC diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
| | | | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| |
Collapse
|
2
|
Wang Y, Wang X. A Pan-Cancer Analysis of Heat-Shock Protein 90 Beta1(HSP90B1) in Human Tumours. Biomolecules 2022; 12:1377. [PMID: 36291587 PMCID: PMC9599833 DOI: 10.3390/biom12101377] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND HSP90B1, a member of the heat-shock protein 90 family, plays a vital role as a molecular chaperone for oncogenes and stimulates tumour growth. However, its role in various cancers remains unexplored. METHODS Using the cancer genome atlas, gene expression omnibus the Human Protein Atlas databases and various other bioinformatic tools, this study investigated the involvement of HSP90B1 in 33 different tumour types. RESULTS The over-expression of HSP90B1 generally predicted poor overall survival and disease-free survival for patients with tumours, such as adrenocortical carcinoma, bladder urothelial carcinoma, kidney renal papillary cell carcinoma, and lung adenocarcinoma. In this study, HSP90B1 was highly expressed in the majority of tumours. A comparison was made between the phosphorylation of HSP90B1 in normal and primary tumour tissues, and putative functional mechanisms in HSP90B1-mediated oncogenesis were investigated. Additionally, the mutation burden of HSP90B1 in cancer was evaluated along with the survival rate of patients with cancer patients. CONCLUSION This first pan-cancer investigation reveals the oncogenic functions of HSP90B1 in various cancers.
Collapse
Affiliation(s)
- Yaxuan Wang
- Department of Medicine, Nantong University, Nantong 226000, China
| | - Xiaolin Wang
- Department of Urology, Affiliated Tumor Hospital of Nantong University (Nantong Tumor Hospital), Nantong 226361, China
| |
Collapse
|
3
|
Cho YB, Kim JW, Heo K, Kim HJ, Yun S, Lee HS, Shin HG, Shim H, Yu H, Kim YH, Lee S. An internalizing antibody targeting of cell surface GRP94 effectively suppresses tumor angiogenesis of colorectal cancer. Biomed Pharmacother 2022; 150:113051. [PMID: 35658213 DOI: 10.1016/j.biopha.2022.113051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer (CRC) is one of the life-threatening malignancies worldwide. Thus, novel potential therapeutic targets and therapeutics for the treatment of CRC need to be identified to improve the clinical outcomes of patients with CRC. In this study, we found that glucose-regulated protein 94 (GRP94) is overexpressed in CRC tissues, and its high expression is correlated with increased microvessel density. Next, through phage display technology and consecutive in vitro functional isolations, we generated a novel human monoclonal antibody that specifically targets cell surface GRP94 and shows superior internalizing activity comparable to trastuzumab. We found that this antibody specifically inhibits endothelial cell tube formation and simultaneously promotes the downregulation of GRP94 expression on the endothelial cell surface. Finally, we demonstrated that this antibody effectively suppresses tumor growth and angiogenesis of HCT116 human CRC cells without causing severe toxicity in vivo. Collectively, these findings suggest that cell surface GRP94 is a novel potential anti-angiogenic target in CRC and that antibody targeting of GRP94 on the endothelial cell surface is an effective strategy to suppress CRC tumor angiogenesis.
Collapse
Affiliation(s)
- Yea Bin Cho
- Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ji Woong Kim
- Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Kyun Heo
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea; Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
| | - Hyun Jung Kim
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Sumi Yun
- Samkwang Medical Laboratories, Department of Diagnostic Pathology, Seoul 06742, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ha Gyeong Shin
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Hyunbo Shim
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hanjin Yu
- HauulBio, Chuncheon, Gangwon 24398, Republic of Korea
| | - Yun-Hee Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea; Division of Convergence Technology, Research Institute of National Cancer Center, Goyang 10408, Republic of Korea
| | - Sukmook Lee
- Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea; Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea; Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
4
|
Duan X, Iwanowycz S, Ngoi S, Hill M, Zhao Q, Liu B. Molecular Chaperone GRP94/GP96 in Cancers: Oncogenesis and Therapeutic Target. Front Oncol 2021; 11:629846. [PMID: 33898309 PMCID: PMC8062746 DOI: 10.3389/fonc.2021.629846] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
During tumor development and progression, intrinsic and extrinsic factors trigger endoplasmic reticulum (ER) stress and the unfolded protein response, resulting in the increased expression of molecular chaperones to cope with the stress and maintain tumor cell survival. Heat shock protein (HSP) GRP94, also known as GP96, is an ER paralog of HSP90 and has been shown to promote survival signaling during tumor-induced stress and modulate the immune response through its multiple clients, including TLRs, integrins, LRP6, GARP, IGF, and HER2. Clinically, elevated expression of GRP94 correlates with an aggressive phenotype and poor clinical outcome in a variety of cancers. Thus, GRP94 is a potential molecular marker and therapeutic target in malignancies. In this review, we will undergo deep molecular profiling of GRP94 in tumor development and summarize the individual roles of GRP94 in common cancers, including breast cancer, colon cancer, lung cancer, liver cancer, multiple myeloma, and others. Finally, we will briefly review the therapeutic potential of selectively targeting GRP94 for the treatment of cancers.
Collapse
Affiliation(s)
- Xiaofeng Duan
- Department of Microbiology & Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Stephen Iwanowycz
- Department of Microbiology & Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Soo Ngoi
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Megan Hill
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Clinical Research Center for Cancer, Tianjin, China
| | - Bei Liu
- Department of Microbiology & Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- The Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
5
|
Kim JW, Cho YB, Lee S. Cell Surface GRP94 as a Novel Emerging Therapeutic Target for Monoclonal Antibody Cancer Therapy. Cells 2021; 10:cells10030670. [PMID: 33802964 PMCID: PMC8002708 DOI: 10.3390/cells10030670] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 12/15/2022] Open
Abstract
Glucose-regulated protein 94 (GRP94) is an endoplasmic reticulum (ER)-resident member of the heat shock protein 90 (HSP90) family. In physiological conditions, it plays a vital role in regulating biological functions, including chaperoning cellular proteins in the ER lumen, maintaining calcium homeostasis, and modulating immune system function. Recently, several reports have shown the functional role and clinical relevance of GRP94 overexpression in the progression and metastasis of several cancers. Therefore, the current review highlights GRP94’s physiological and pathophysiological roles in normal and cancer cells. Additionally, the unmet medical needs of small chemical inhibitors and the current development status of monoclonal antibodies specifically targeting GRP94 will be discussed to emphasize the importance of cell surface GRP94 as an emerging therapeutic target in monoclonal antibody therapy for cancer.
Collapse
|
6
|
Rosa N, Campos B, Esteves AC, Duarte AS, Correia MJ, Silva RM, Barros M. Tracking the functional meaning of the human oral-microbiome protein-protein interactions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 121:199-235. [PMID: 32312422 DOI: 10.1016/bs.apcsb.2019.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The interactome - the network of protein-protein interactions (PPIs) within a cell or organism - is technically difficult to assess. Bioinformatic tools can, not only, identify potential PPIs that can be later experimentally validated, but also be used to assign functional meaning to PPIs. Saliva's potential as a non-invasive diagnostic fluid is currently being explored by several research groups. But, in order to fully attain its potential, it is necessary to achieve the full characterization of the mechanisms that take place within this ecosystem. The onset of omics technologies, and specifically of proteomics, delivered a huge set of data that is largely underexplored. Quantitative information relative to proteins within a given context (for example a given disease) can be used by computational algorithms to generate information regarding PPIs. These PPIs can be further analyzed concerning their functional meaning and used to identify potential biomarkers, therapeutic targets, defense and pathogenicity mechanisms. We describe a computational pipeline that can be used to identify and analyze PPIs between human and microbial proteins. The pipeline was tested within the scenario of human PPIs of systemic (Zika Virus infection) and of oral conditions (Periodontal disease) and also in the context of microbial interactions (Candida-Streptococcus) and showed to successfully predict functionally relevant PPIs. The pipeline can be applied to different scientific areas, such as pharmacological research, since a functional meaningful PPI network can provide insights on potential drug targets, and even new uses for existing drugs on the market.
Collapse
Affiliation(s)
- Nuno Rosa
- Universidade Católica Portuguesa, Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Viseu, Portugal
| | - Bruno Campos
- Universidade Católica Portuguesa, Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Viseu, Portugal
| | - Ana Cristina Esteves
- Universidade Católica Portuguesa, Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Viseu, Portugal
| | - Ana Sofia Duarte
- Universidade Católica Portuguesa, Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Viseu, Portugal
| | - Maria José Correia
- Universidade Católica Portuguesa, Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Viseu, Portugal
| | - Raquel M Silva
- Universidade Católica Portuguesa, Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Viseu, Portugal
| | - Marlene Barros
- Universidade Católica Portuguesa, Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Viseu, Portugal
| |
Collapse
|
7
|
Kang BH, Shu CW, Chao JK, Lee CH, Fu TY, Liou HH, Ger LP, Liu PF. HSPD1 repressed E-cadherin expression to promote cell invasion and migration for poor prognosis in oral squamous cell carcinoma. Sci Rep 2019; 9:8932. [PMID: 31222140 PMCID: PMC6586902 DOI: 10.1038/s41598-019-45489-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
Buccal mucosa squamous cell carcinoma (BMSCC) is one of major subsites of oral cancer and is associated with a high rate of metastasis and poor prognosis. Heat shock proteins (HSPs) act as potential prognostic biomarkers in many cancer types. However, the role of HSPD1 in oral cancer, especially in BMSCC, is still unknown. Through data analysis with The Cancer Genome Atlas (TCGA), we found the association of HSPD1 gene expression with tumorigenesis and poor prognosis in oral cancer patients. Our cohort study showed that higher HSPD1 protein level was associated with tumorigenesis and poor prognosis in BMSCC patients with lymph node invasion, suggesting that HSPD1 may be involved in tumor metastasis. Moreover, knockdown of HSPD1 induced E-cadherin expression and decreased the migration and invasion of BMSCC cells. In contrast, ectopic expression of HSPD1 diminished E-cadherin expression and promoted the migration/invasion of BMSCC cells. Further, HSPD1 regulated RelA activation to repress E-cadherin expression, enhancing the migration and invasion of BMSCC cells. Furthermore, HSPD1 protein level was inversely correlated with E-cadherin protein level in tumor tissues and co-expression of high HSPD1/low E-cadherin showed a significant association with poor prognosis in BMSCC patients. Taken together, HSPD1 might repress E-cadherin expression and promote metastatic characters of BMSCC cells for poor prognosis of BMSCC patients.
Collapse
Affiliation(s)
- Bor-Hwang Kang
- Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan.,Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - Chih-Wen Shu
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jian-Kang Chao
- Department of Psychiatry, Pingtung Branch, Kaohsiung Veterans General Hospital, Pingtung, Taiwan
| | - Cheng-Hsin Lee
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ting-Ying Fu
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Huei-Han Liou
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Luo-Ping Ger
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Pei-Feng Liu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan. .,Department of Oral Hygiene, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan.
| |
Collapse
|
8
|
Vidotto A, Polachini GM, de Paula-Silva M, Oliani SM, Henrique T, López RVM, Cury PM, Nunes FD, Góis-Filho JF, de Carvalho MB, Leopoldino AM, Tajara EH. Differentially expressed proteins in positive versus negative HNSCC lymph nodes. BMC Med Genomics 2018; 11:73. [PMID: 30157864 PMCID: PMC6114741 DOI: 10.1186/s12920-018-0382-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 08/02/2018] [Indexed: 12/21/2022] Open
Abstract
Background Lymph node metastasis is one of the most important prognostic factors in head and neck squamous cell carcinomas (HNSCCs) and critical for delineating their treatment. However, clinical and histological criteria for the diagnosis of nodal status remain limited. In the present study, we aimed to characterize the proteomic profile of lymph node metastasis from HNSCC patients. Methods In the present study, we used one- and two-dimensional electrophoresis and mass spectrometry analysis to characterize the proteomic profile of lymph node metastasis from HNSCC. Results Comparison of metastatic and non-metastatic lymph nodes showed 52 differentially expressed proteins associated with neoplastic development and progression. The results reinforced the idea that tumors from different anatomical subsites have dissimilar behaviors, which may be influenced by micro-environmental factor including the lymphatic network. The expression pattern of heat shock proteins and glycolytic enzymes also suggested an effect of the lymph node environment in controlling tumor growth or in metabolic reprogramming of the metastatic cell. Our study, for the first time, provided direct evidence of annexin A1 overexpression in lymph node metastasis of head and neck cancer, adding information that may be useful for diagnosing aggressive disease. Conclusions In brief, this study contributed to our understanding of the metastatic phenotype of HNSCC and provided potential targets for diagnostic in this group of carcinomas. Electronic supplementary material The online version of this article (10.1186/s12920-018-0382-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alessandra Vidotto
- Departamento de Biologia Molecular, Faculdade de Medicina (FAMERP), Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP, CEP 15090-000, Brazil
| | - Giovana M Polachini
- Departamento de Biologia Molecular, Faculdade de Medicina (FAMERP), Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP, CEP 15090-000, Brazil
| | - Marina de Paula-Silva
- Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), Universidade Estadual Paulista (UNESP), R. Cristóvão Colombo, 2265, São José do Rio Preto, SP, CEP 15054-000, Brazil
| | - Sonia M Oliani
- Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), Universidade Estadual Paulista (UNESP), R. Cristóvão Colombo, 2265, São José do Rio Preto, SP, CEP 15054-000, Brazil
| | - Tiago Henrique
- Departamento de Biologia Molecular, Faculdade de Medicina (FAMERP), Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP, CEP 15090-000, Brazil
| | - Rossana V M López
- Instituto do Câncer de São Paulo Octavio Frias de Oliveira - ICESP, Av. Dr. Arnaldo, 251 - Cerqueira César, São Paulo, SP, CEP 01246-000, Brazil
| | - Patrícia M Cury
- Faculdade Ceres (Faceres), Av. Anísio Haddad, 6751, São José do Rio Preto, SP, CEP 15090-305, Brazil
| | - Fabio D Nunes
- Departamento de Estomatologia, Faculdade de Odontologia, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2227, São Paulo, SP, CEP 05508-000, Brazil
| | - José F Góis-Filho
- Instituto do Câncer Arnaldo Vieira de Carvalho, R. Dr Cesário Mota Jr, 112, São Paulo, SP, CEP 01221-020, Brazil
| | - Marcos B de Carvalho
- Departamento de Cirurgia de Cabeça e Pescoço, Hospital Heliópolis, R. Cônego Xavier, 276, São Paulo, SP, CEP 04231-030, Brazil
| | - Andréia M Leopoldino
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Avenida do Café, s/n, Ribeirão Preto, SP, CEP 14040-903, Brazil
| | - Eloiza H Tajara
- Departamento de Biologia Molecular, Faculdade de Medicina (FAMERP), Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP, CEP 15090-000, Brazil. .,Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, R. do Matão, 321, São Paulo, SP, CEP 05508-090, Brazil.
| |
Collapse
|
9
|
Liu S, Li R, Zuo S, Luo R, Fang W, Xie Y. GRP94 overexpression as an indicator of unfavorable outcomes in breast cancer patients. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3061-3067. [PMID: 31938432 PMCID: PMC6958070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/10/2018] [Indexed: 06/10/2023]
Abstract
AIMS This study aimed to examine the heat shock protein Hsp90 family protein (GRP94) expression in breast cancer tissues and its correlation with clinicopathologic features, including the survival of patients with breast cancer. METHODS GRP94 mRNA expression was examined in normal breast and breast cancer tissues using real-time PCR. We also analyzed GRP94 protein expression with immunohistochemistry in 139 breast cancer patients whose ages ranged from 29 to 83 years (median =53 years). On evaluation of cytoplasmic GRP94 immunostaining, cases with a score of ≥ or ≤ six were regarded as having high or low GRP94 expression, respectively. The relationship between GRP94 expression levels and the clinical features of breast cancer were also analyzed. RESULTS GRP94 mRNA expression was markedly greater in breast cancer tissues than that in normal breast tissues (P=0.0027). Immunohistochemical analysis revealed increased GRP94 protein expression in the cytoplasm of breast cancer cells, which did not positively correlate with age, tumor size classification, lymph node metastasis classification, clinical stage, or estrogen receptor expression in breast cancer patients, but did negatively correlate with progesterone receptor expression (P=0.032). Furthermore, patients with breast cancer tissue that expressed high GRP94 had a significantly shorter survival time than did patients with a low GRP94 expression (P<0.001). A multivariate analysis suggested that the level of GRP94 expression was an independent prognostic indicator (P<0.001) for the survival of patients with breast cancer. CONCLUSION High GRP94 expression levels were found to be an independent and unfavorable prognostic indicator of breast cancer survival.
Collapse
Affiliation(s)
- Shu Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical UniversityGuangzhou, Guangdong, China
- Department of Breast Surgery, Guiyang Maternal and Child Healthcare HospitalGuiyang, China
| | - Rong Li
- Nanfang Hospital, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Shi Zuo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical UniversityChina
| | - Rongcheng Luo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Yingying Xie
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical UniversityGuangzhou, Guangdong, China
| |
Collapse
|
10
|
Glucose-regulated protein of 94 kDa contributes to the development of an aggressive phenotype in breast cancer cells. Biomed Pharmacother 2018; 105:115-120. [PMID: 29852388 DOI: 10.1016/j.biopha.2018.05.106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 12/28/2022] Open
Abstract
Grp94 plays an essential role in protein assembly. We previously suggested that Grp94 overexpression is involved in tumor aggressiveness. However, the underlying mechanisms remain unknown. Since many tumors display high Grp94 levels, we investigated the effects of tumor microenvironment on the regulation of this chaperone expression. First, we found out that hypoxia did not change Grp94 expression in the human tumor cell lines MCF-7 (breast cancer) and HepG2 (liver cancer). Second, glucose deprivation significantly increased Grp94 protein levels. Subsequently, we focused in the putative role of Grp94 in the acquisition of an aggressive phenotype by cancer cells. Using a more aggressive cancer cell model (MDA-MB-231 breast tumor cells), we found out that Grp94 knockdown using siRNA decreased the invasive capacity of cancer cells. Moreover, cells with decreased Grp94 levels displayed an enhanced sensitivity of tumor cells to doxorubicin, a standard drug in the treatment of breast cancer. Taken together, our results suggest that the expression of Grp94 is linked to tumor aggressiveness. Therefore, targeting Grp94 could be an effective way to inhibit tumor growth improving chemotherapy outcome.
Collapse
|
11
|
Banerjee S, Anura A, Chakrabarty J, Sengupta S, Chatterjee J. Identification and functional assessment of novel gene sets towards better understanding of dysplasia associated oral carcinogenesis. GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2016.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Kim SH, Ji JH, Park KT, Lee JH, Kang KW, Park JH, Hwang SW, Lee EH, Cho YJ, Jeong YY, Kim HC, Lee JD, Jang I, Lee JS, Lee HW, Lee GW. High-level expression of Hsp90β is associated with poor survival in resectable non-small-cell lung cancer patients. Histopathology 2015; 67:509-19. [PMID: 25704653 DOI: 10.1111/his.12675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/18/2015] [Indexed: 12/16/2022]
Abstract
AIMS The aim of this study was to investigate the expression of Hsp90β and GRP94, and elucidate the clinical significance of their expression, in patients with resectable non-small-cell lung cancer (NSCLC). METHODS AND RESULTS Surgical tissue specimens were obtained from 208 patients with NSCLC who underwent surgical resection. The expression levels of Hsp90β and GRP94 were assessed with tissue microarrays and immunohistochemistry. No correlations were observed between Hsp90β or GRP94 expression and several clinicopathological factors. The high-Hsp90β group [median overall survival (OS) 20.4 months; 95% confidence interval (CI) 0.000-40.864] showed a significant decrease in OS as compared with the low-Hsp90β group (median OS not reached; P = 0.003). In contrast to the Hsp90β analysis, the GRP94 analysis did not show a difference in OS. Moreover, in subgroup analyses of patients with squamous cell carcinoma histology, OS (P = 0.012) and relapse-free survival (P = 0.044) were significantly worse in the high-Hsp90β group than in the low-Hsp90β group. Multivariate analysis suggested that old age [hazard ratio (HR) 1.568; 95% CI 1.019-2.412; P = 0.041], advanced disease (HR 2.066; 95% CI 1.218-3.502; P = 0.007) and high Hsp90β expression (HR 1.802; 95% CI 1.061-3.060; P = 0.029) were independent poor prognostic factors for OS. CONCLUSIONS Hsp90β expression might be a useful marker of poor OS, although further large prospective studies are warranted to validate our findings.
Collapse
Affiliation(s)
- Seok-Hyun Kim
- Division of Haematology and Medical Oncology, Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Jun Ho Ji
- Division of Haematology and Medical Oncology, Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Kyung Tae Park
- Division of Haematology and Medical Oncology, Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Ji Hyun Lee
- Division of Pulmonology, Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Kyung Woo Kang
- Division of Pulmonology, Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Jae Hong Park
- Department of Thoracic and Cardiovascular Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Sang Won Hwang
- Department of Thoracic and Cardiovascular Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Eun Hee Lee
- Department of Pathology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Yu Ji Cho
- Division of Pulmonology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, Korea
| | - Yi Yeong Jeong
- Division of Pulmonology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, Korea
| | - Ho-Cheol Kim
- Division of Pulmonology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, Korea
| | - Jong Deog Lee
- Division of Pulmonology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, Korea
| | - Inseok Jang
- Department of Thoracic and Cardiovascular Surgery, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Jong Sil Lee
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Hyoun Wook Lee
- Department of Pathology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Gyeong-Won Lee
- Division of Haematology-Oncology, Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Korea
| |
Collapse
|
13
|
Chen H, Zhu Z, Zhu Y, Wang J, Mei Y, Cheng Y. Pathway mapping and development of disease-specific biomarkers: protein-based network biomarkers. J Cell Mol Med 2015; 19:297-314. [PMID: 25560835 PMCID: PMC4407592 DOI: 10.1111/jcmm.12447] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/22/2014] [Indexed: 01/06/2023] Open
Abstract
It is known that a disease is rarely a consequence of an abnormality of a single gene, but reflects the interactions of various processes in a complex network. Annotated molecular networks offer new opportunities to understand diseases within a systems biology framework and provide an excellent substrate for network-based identification of biomarkers. The network biomarkers and dynamic network biomarkers (DNBs) represent new types of biomarkers with protein-protein or gene-gene interactions that can be monitored and evaluated at different stages and time-points during development of disease. Clinical bioinformatics as a new way to combine clinical measurements and signs with human tissue-generated bioinformatics is crucial to translate biomarkers into clinical application, validate the disease specificity, and understand the role of biomarkers in clinical settings. In this article, the recent advances and developments on network biomarkers and DNBs are comprehensively reviewed. How network biomarkers help a better understanding of molecular mechanism of diseases, the advantages and constraints of network biomarkers for clinical application, clinical bioinformatics as a bridge to the development of diseases-specific, stage-specific, severity-specific and therapy predictive biomarkers, and the potentials of network biomarkers are also discussed.
Collapse
Affiliation(s)
- Hao Chen
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
14
|
Sethi G, Kwon Y, Burkhalter RJ, Pathak HB, Madan R, McHugh S, Atay S, Murthy S, Tawfik OW, Godwin AK. PTN signaling: Components and mechanistic insights in human ovarian cancer. Mol Carcinog 2014; 54:1772-85. [PMID: 25418856 DOI: 10.1002/mc.22249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/30/2014] [Accepted: 10/10/2014] [Indexed: 12/13/2022]
Abstract
Molecular vulnerabilities represent promising candidates for the development of targeted therapies that hold the promise to overcome the challenges encountered with non-targeted chemotherapy for the treatment of ovarian cancer. Through a synthetic lethality screen, we previously identified pleiotrophin (PTN) as a molecular vulnerability in ovarian cancer and showed that siRNA-mediated PTN knockdown induced apoptotic cell death in epithelial ovarian cancer (EOC) cells. Although, it is well known that PTN elicits its pro-tumorigenic effects through its receptor, protein tyrosine phosphatase receptor Z1 (PTPRZ1), little is known about the potential importance of this pathway in the pathogenesis of ovarian cancer. In this study, we show that PTN is expressed, produced, and secreted in a panel of EOC cell lines. PTN levels in serous ovarian tumor tissues are on average 3.5-fold higher relative to normal tissue and PTN is detectable in serum samples of patients with EOC. PTPRZ1 is also expressed and produced by EOC cells and is found to be up-regulated in serous ovarian tumor tissue relative to normal ovarian surface epithelial tissue (P < 0.05). Gene silencing of PTPRZ1 in EOC cell lines using siRNA-mediated knockdown shows that PTPRZ1 is essential for viability and results in significant apoptosis with no effect on the cell cycle phase distribution. In order to determine how PTN mediates survival, we silenced the gene using siRNA mediated knockdown and performed expression profiling of 36 survival-related genes. Through computational mapping of the differentially expressed genes, members of the MAPK (mitogen-activated protein kinase) family were found to be likely effectors of PTN signaling in EOC cells. Our results provide the first experimental evidence that PTN and its signaling components may be of significance in the pathogenesis of epithelial ovarian cancer and provide a rationale for clinical evaluation of MAPK inhibitors in PTN and/or PTPRZ1 expressing ovarian tumors.
Collapse
Affiliation(s)
- Geetika Sethi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Department of Biochemistry, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Youngjoo Kwon
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Rebecca J Burkhalter
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Harsh B Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas.,University of Kansas Cancer Center, Kansas City, Kansas
| | - Rashna Madan
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Sarah McHugh
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Safinur Atay
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Smruthi Murthy
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Ossama W Tawfik
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas.,University of Kansas Cancer Center, Kansas City, Kansas
| |
Collapse
|
15
|
Fu Z, Deng H, Wang X, Yang X, Wang Z, Liu L. Involvement of ER-α36 in the malignant growth of gastric carcinoma cells is associated with GRP94 overexpression. Histopathology 2013; 63:325-33. [PMID: 23829397 DOI: 10.1111/his.12171] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 04/20/2013] [Indexed: 01/30/2023]
Abstract
AIMS This study aimed to examine the involvement of glucose-regulated protein 94 (GRP94) in oestrogen receptor-α36 (ER-α36)-mediated oestrogen signalling in gastric cancer development. METHODS AND RESULTS A total of 130 formalin-fixed and paraffin-embedded gastric tumour samples with corresponding normal gastric and tumour-adjacent tissues were used. High levels of GRP94 expression (2+ or 3+) were observed in 109 of 130 gastric carcinomas (83.85%) by immunohistochemistry, and in 13 of 18 tumour specimens (72.22%) with Western blot analysis. GRP94 expression was correlated positively with gender, tumour stage, lymph node metastasis and ER-α36 expression (P < 0.05). Oestrogen treatment up-regulated both GRP94 and ER-α36 expression in gastric cancer SGC7901 cells. In addition, steady state levels of GRP94 protein were decreased in established gastric cancer SGC7901 cells with knocked-down levels of ER-α36 expression and in xenograft tumours formed by these cells. Forced expression of recombinant ER-α36 in SGC7901 cells, however, up-regulated the levels of GRP94 expression. CONCLUSIONS Glucose-regulated protein 94 is a downstream effector of ER-α36-mediated oestrogen signalling, and may be involved in ER-α36 function during gastric carcinogenesis.
Collapse
Affiliation(s)
- Zhengqi Fu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China; Jiangda Pathology Institute, Jianghan University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
16
|
ER stress in diffuse large B cell lymphoma: GRP94 is a possible biomarker in germinal center versus activated B-cell type. Leuk Res 2013; 37:3-8. [DOI: 10.1016/j.leukres.2012.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 07/09/2012] [Accepted: 08/13/2012] [Indexed: 01/12/2023]
|
17
|
Muinelo-Romay L, Villar-Portela S, Cuevas E, Gil-Martín E, Fernández-Briera A. Identification of α(1,6)fucosylated proteins differentially expressed in human colorectal cancer. BMC Cancer 2011; 11:508. [PMID: 22152070 PMCID: PMC3297542 DOI: 10.1186/1471-2407-11-508] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 12/07/2011] [Indexed: 12/30/2022] Open
Abstract
Summary
Collapse
Affiliation(s)
- Laura Muinelo-Romay
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Campus As Lagoas-Marcosende S/N, 36310 Vigo, Spain
| | | | | | | | | |
Collapse
|
18
|
Balasenthil S, Chen N, Lott ST, Chen J, Carter J, Grizzle WE, Frazier ML, Sen S, Killary AM. A migration signature and plasma biomarker panel for pancreatic adenocarcinoma. Cancer Prev Res (Phila) 2011; 4:137-49. [PMID: 21071578 PMCID: PMC3635082 DOI: 10.1158/1940-6207.capr-10-0025] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pancreatic ductal adenocarcinoma is a disease of extremely poor prognosis for which there are no reliable markers of asymptomatic disease. To identify pancreatic cancer biomarkers, we focused on a genomic interval proximal to the most common fragile site in the human genome, chromosome 3p12, which undergoes smoking-related breakage, loss of heterozygosity, and homozygous deletion as an early event in many epithelial tumors, including pancreatic cancers. Using a functional genomic approach, we identified a seven-gene panel (TNC, TFPI, TGFBI, SEL-1L, L1CAM, WWTR1, and CDC42BPA) that was differentially expressed across three different expression platforms, including pancreatic tumor/normal samples. In addition, Ingenuity Pathways Analysis (IPA) and literature searches indicated that this seven-gene panel functions in one network associated with cellular movement/morphology/development, indicative of a "migration signature" of the 3p pathway. We tested whether two secreted proteins from this panel, tenascin C (TNC) and tissue factor pathway inhibitor (TFPI), could serve as plasma biomarkers. Plasma ELISA assays for TFPI/TNC resulted in a combined area under the curve (AUC) of 0.88 and, with addition of CA19-9, a combined AUC for the three-gene panel (TNC/TFPI/CA19-9), of 0.99 with 100% specificity at 90% sensitivity and 97.22% sensitivity at 90% specificity. Validation studies using TFPI only in a blinded sample set increased the performance of CA19-9 from an AUC of 0.84 to 0.94 with the two-gene panel. Results identify a novel 3p pathway-associated migration signature and plasma biomarker panel that has utility for discrimination of pancreatic cancer from normal controls and promise for clinical application.
Collapse
Affiliation(s)
- Seetharaman Balasenthil
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Nanyue Chen
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Steven T. Lott
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Jinyun Chen
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Jennifer Carter
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - William E. Grizzle
- The Department of Pathology and The Comprehensive Cancer Center, The University of Alabama, Birmingham, Alabama
| | - Marsha L. Frazier
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Subrata Sen
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Ann McNeill Killary
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
19
|
Wu R, Zhao X, Wang Z, Zhou M, Chen Q. Novel Molecular Events in Oral Carcinogenesis via Integrative Approaches. J Dent Res 2010; 90:561-72. [PMID: 20940368 DOI: 10.1177/0022034510383691] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- R.Q. Wu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan, 610041, China
| | - X.F. Zhao
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan, 610041, China
| | - Z.Y. Wang
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan, 610041, China
| | - M. Zhou
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan, 610041, China
| | - Q.M. Chen
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan, 610041, China
| |
Collapse
|
20
|
Zheng HC, Takahashi H, Li XH, Hara T, Masuda S, Guan YF, Takano Y. Overexpression of GRP78 and GRP94 are markers for aggressive behavior and poor prognosis in gastric carcinomas. Hum Pathol 2008; 39:1042-9. [PMID: 18482745 DOI: 10.1016/j.humpath.2007.11.009] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 11/06/2007] [Accepted: 11/13/2007] [Indexed: 11/25/2022]
Abstract
Glucose-related proteins (GRPs) are ubiquitously expressed in endoplasmic reticulum and able to assist in protein folding and assembly; consequently, they are considered as molecular chaperones. GRP78 and GRP94 expression was induced by glucose starvation and up-regulated in the malignancies. To clarify the roles of both molecules in tumorigenesis and progression of gastric carcinomas, immunohistochemistry was used on tissue microarray containing gastric carcinomas, adenomas, and nonneoplastic mucosa using the antibodies against GRP78 and GRP94, with a comparison of their expression with clinicopathological parameters of carcinomas. Gastric carcinoma cell lines (MKN28, AGS, MKN45, KATO-III, and HGC-27) were studied for both proteins by immunohistochemistry and Western blot. There was more expression of both proteins in gastric carcinoma and adenoma than in nonneoplastic mucosas (P < .05). All gastric carcinoma cell lines showed their expression at different levels. They were positively correlated with tumor size, depth of invasion, lymphatic and venous invasion, lymph node metastasis, and Union Internationale Contre le Cancer staging (P < .05), with positive relationship between both proteins (P < .05). Univariate analysis indicated the postsurgical cumulative survival rate of patients with positive GRP78 or GRP94 expression to be lower than that in those without GRP78 or GRP94 expression (P < .05), but the close link disappeared if stratified according to depth of invasion (P > .05). Multivariate analysis showed that age, depth of invasion, lymphatic invasion, lymph node metastasis, Union Internationale Contre le Cancer staging, and Lauren classification (P < .05), but not GRP78 and GRP94 expression, were independent prognostic factors for carcinomas (P > .05). Up-regulated expression of GRP78 and GRP94 was possibly involved in pathogenesis, growth, invasion, and metastasis of gastric carcinomas. They were considered objective and effective markers for the aggressive behavior and poor prognosis in gastric carcinomas.
Collapse
Affiliation(s)
- Hua-chuan Zheng
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang 110003, China.
| | | | | | | | | | | | | |
Collapse
|