1
|
Zhou Z, Zheng X, Mei X, Li W, Qi S, Deng Y, Lei B. Hsa_circ_0080229 upregulates the expression of murine double minute-2 (MDM2) and promotes glioma tumorigenesis and invasion via the miR-1827 sponging mechanism. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:762. [PMID: 34268375 PMCID: PMC8246201 DOI: 10.21037/atm-20-7123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/21/2021] [Indexed: 12/17/2022]
Abstract
Background Glioma is the most common and fatal primary cranial tumor. The epidermal growth factor receptor (EGFR) plays an important role in the occurrence and treatment of glioma, which might function through a circular ribonucleic acid (circRNA)-related mechanism. Hsa_circ_0080229 (circ_0080229) has been identified as a circRNA arising from an EGFR gene in gliomas; however, little is known about its molecular mechanism to date. Methods To address this question, a series of experiments were conducted to confirm the effect of circ_0080229 in gliomas and identify the downstream mechanism. A quantitative real-time polymerase chain reaction (qRT-PCR) analysis and in-situ hybridization/fluorescence in-situ hybridization (ISH/FISH) testing were performed to identify the expression of circ_0080229 in patient samples. Bioinformatic analysis was carried out to explore the possible mechanism. Next, a series of in-vitro functional assays and in-vivo assays with a xenograft subcutaneous glioma model was carried out to confirm the effect of circ_0080229. Finally, qRT-PCR analysis and a Western Blot analysis were performed to verify the related mechanism. Results The expression of circ_0080229 was upregulated in both glioma tissues and cell lines related to unfavorable clinicopathologic characteristics. The expression of circ_0080229 was found to be inversely correlated with miR-1827, a micro-ribonucleic acid (miRNA) targeting murine double minute-2 (MDM2). The downregulation of circ_0080229 inhibited gliomas in vivo and suppressed U87 and U251 cell lines in vitro, which the transfection of the miR-1827 inhibitor could reverse. Concerning the mechanism, a block of circ_0080229 decreased MDM2 expression, while the inhibition of miR-1827 reversed this effect. Thus, circ_0080229 appears to target the downstream miR-1827/MDM2 signaling pathway. Conclusions Our results showed that the silencing of circ_0080229 upregulates the expression of miR-1827, which in turn resulted in the suppression of MDM2, and the mediation of the downstream P53 signaling pathway. Circ_0080229 exerted an effect in mediating tumor progression through the MDM2 signaling pathway by sponging miR-1827. Its importance as a potential prognostic biomarker in gliomas has thus been established.
Collapse
Affiliation(s)
- Zhiwei Zhou
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Xiuyuan Zheng
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xin Mei
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wengpeng Li
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuefei Deng
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bingxi Lei
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Jalilvand A, Yari K, Aznab M, Rahimi Z, Salahshouri Far I, Mohammadi P. A case-control study on the SNP309T → G and 40-bp Del1518 of the MDM2 gene and a systematic review for MDM2 polymorphisms in the patients with breast cancer. J Clin Lab Anal 2020; 34:e23529. [PMID: 32951271 PMCID: PMC7755803 DOI: 10.1002/jcla.23529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE The current research was conducted to study the association between the SNP309 and del1518 polymorphisms with the breast cancer in the patients with the Kurdish ethnic background from western Iran. Also, a systematic review of the relevant case-control studies on the MDM2 polymorphisms in the patients with breast cancer was performed. METHODOLOGY Two mL of peripheral blood was taken from 100 patients with breast cancer and 100 healthy individuals. The frequencies of MDM2 SNP309 and del1518 genotypes and alleles were determined using the PCR-RFLP and PCR methods, respectively. RESULTS The frequency of the TT, TG, and GG of MDM2-SNP309 genotypes in the patients was obtained as 23%, 52%, and 25%, and they were equal to 22%, 40%, and 38% in the control group, respectively. Also, considering the MDM2-del1518 polymorphism, the frequencies of ins/ins, ins/del, and del/del genotypes were equal to 52%, 41%, and 7% in the breast cancer group and they were equal to 62, 30, and 8% in the control group, respectively. Analysis of the results indicated that the GG genotype plays a protective role for the breast cancer in the recessive model (GG vs TT + TG) of SNP309 (χ2 = 3.916, P = .048, and OR = 0.54). CONCLUSION Our findings revealed that the GG genotype of MDM2-SNP309 can play a protective role in the breast cancer disease. Also, our systematic review indicated that the SNP309, SNP285, and del1518 of MDM2 gene in different populations mostly did not have a significant association with the risk of breast cancer.
Collapse
Affiliation(s)
- Amin Jalilvand
- Medical Biology Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Kheirollah Yari
- Medical Biology Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshahIran
- Zagros Bioidea CoRazi University IncubatorKermanshahIran
| | - Mozaffar Aznab
- Department of Internal MedicineMedical Oncologist‐HematologistKermanshah University of Medical SciencesKermanshahIran
| | - Zohreh Rahimi
- Medical Biology Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Iman Salahshouri Far
- Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Pantea Mohammadi
- Medical Biology Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
3
|
Soleymannejad M, Sheikhha MH, Neamatzadeh H. Association of Mouse Double Minute 2 -309T>G Polymorphism with Acute Myeloid Leukemia in an Iranian Population: A Case- Control Study. Asian Pac J Cancer Prev 2019; 20:3037-3041. [PMID: 31653152 PMCID: PMC6982679 DOI: 10.31557/apjcp.2019.20.10.3037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Genetic factors play a substantial role in acute myeloid leukemia (AML) etiology. Overexpression of the mousedouble minute 2 (MDM2) gene has been explored in many tumors. However, the role of MDM2 -309T>G (rs2279744) polymorphism in AML remains unclear. We have performed this study to examine the association of MDM2 -309T>G with AML in an Iranian population. Methods: We have examined the association of N MDM2 -309T>G polymorphism in 73 cases diagnosed with AML and 80 healthy controls by tetra-primer amplification refractory mutation system (ARMS) PCR assay. Odds ratios (OR) and 95% confidence intervals (CI) were calculated on the risk genotypes and alleles. Results: The TT, GG and GG genotypes of MDM2 -309T>G polymorphism in patients were 32.9%, 23.2% and 43.9%, while in controls were 86.2%, 7.5% and 6.3%, respectively. Moreover, Frequency of mutant allele (G) was 55.6% in cases with AML and 10.0% in controls. The mutant homozygote genotype (GG) was associated with an increased susceptibility to AML (OR 1.471; 95% CI: 1.062-1.844; p=0.004). Conclusion: Our results showed that the MDM2 -309T>G polymorphism was significantly associated with increased risk of AML in the Iranian population. Thus, the MDM2 -309T>G polymorphism might be useful genetic susceptibility factors in the pathogenesis of AML.
Collapse
Affiliation(s)
- Mona Soleymannejad
- Department of Biology, Ashkezar Branch, Islamic Azad University, Yazd, Iran
| | | | - Hossein Neamatzadeh
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
4
|
Low dose arsenite confers resistance to UV induced apoptosis via p53-MDM2 pathway in ketatinocytes. Oncogenesis 2017; 6:e370. [PMID: 28785074 PMCID: PMC5608918 DOI: 10.1038/oncsis.2017.67] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/17/2017] [Accepted: 06/26/2017] [Indexed: 12/17/2022] Open
Abstract
Chronic arsenite and ultraviolet (UV) exposure are associated with skin tumor. To investigate the details by low concentrations of arsenite and UV induced carcinogenesis in skin, hTERT-immortalized human keratinocytes were used as a cellular model with exposure to low concentrations of sodium arsenite and UV. The effect of NaAsO2 on UV treatment-induced apoptosis was measured by flow cytometry and Hoechst staining. We found that the cell apoptosis induced by UV exposure was significantly attenuated after exposure to low-dose arsenite, and knockdown of p53 could block UV-induced apoptosis indicating that this phenomenon depended on p53. Interestingly, the expression of murine double minute 2 (MDM2), including its protein and transcriptional levels, was remarkably high after exposure to low-dose arsenite. Moreover, low-dose arsenite treatment dramatically decreased the MDM2 gene promoter activity, suggesting that this effect has been mediated through transcription. In addition, treatment of PD98059 reversed low-dose arsenite-induced MDM2 expression, and the inhibition of ERK2 expression could significantly block MDM2 expression as a consequence, and p53 expression automatically was increased. To validate the role of p53 in exposure to low-dose arsenite, the expression of p53 was examined by immunohistochemistry in the skin of Sprague−Dawley rats model by chronic arsenite exposure for 6 months and in patients with arsenic keratosis, and the results showed that the expression of p53 was decreased in those samples. Taken together, our results demonstrated that low-dose arsenite-induced resistance to apoptosis through p53 mediated by MDM2 in keratinocytes.
Collapse
|
5
|
Mdm2 selectively suppresses DNA damage arising from inhibition of topoisomerase II independent of p53. Oncogene 2017; 36:6085-6096. [PMID: 28692049 DOI: 10.1038/onc.2017.229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/10/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022]
Abstract
Mdm2 is often overexpressed in tumors that retain wild-type TP53 but may affect therapeutic response independently of p53. Herein is shown that tumor cells with MDM2 amplification are selectively resistant to treatment with topoisomerase II poisons but not other DNA damaging agents. Tumor cells that overexpress Mdm2 have reduced DNA double-strand breaks in response to doxorubicin or etoposide. This latter result is not due to altered drug uptake. The selective attenuation of DNA damage in response to these agents is dependent on both Mdm2 levels and an intact ubiquitin ligase function. These findings reveal a novel, p53-independent activity of Mdm2 and have important implications for the choice of chemotherapeutic agents in the treatment of Mdm2-overexpressing tumors.
Collapse
|
6
|
Slabáková E, Kharaishvili G, Smějová M, Pernicová Z, Suchánková T, Remšík J, Lerch S, Straková N, Bouchal J, Král M, Culig Z, Kozubík A, Souček K. Opposite regulation of MDM2 and MDMX expression in acquisition of mesenchymal phenotype in benign and cancer cells. Oncotarget 2016; 6:36156-71. [PMID: 26416355 PMCID: PMC4742168 DOI: 10.18632/oncotarget.5392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/15/2015] [Indexed: 01/14/2023] Open
Abstract
Plasticity of cancer cells, manifested by transitions between epithelial and mesenchymal phenotypes, represents a challenging issue in the treatment of neoplasias. Both epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are implicated in the processes of metastasis formation and acquisition of stem cell-like properties. Mouse double minute (MDM) 2 and MDMX are important players in cancer progression, as they act as regulators of p53, but their function in EMT and metastasis may be contradictory. Here, we show that the EMT phenotype in multiple cellular models and in clinical prostate and breast cancer samples is associated with a decrease in MDM2 and increase in MDMX expression. Modulation of EMT-accompanying changes in MDM2 expression in benign and transformed prostate epithelial cells influences their migration capacity and sensitivity to docetaxel. Analysis of putative mechanisms of MDM2 expression control demonstrates that in the context of defective p53 function, MDM2 expression is regulated by EMT-inducing transcription factors Slug and Twist. These results provide an alternative context-specific role of MDM2 in EMT, cell migration, metastasis, and therapy resistance.
Collapse
Affiliation(s)
- Eva Slabáková
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., Brno, Czech Republic.,Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Gvantsa Kharaishvili
- Department of Clinical and Molecular Pathology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Monika Smějová
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., Brno, Czech Republic.,Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zuzana Pernicová
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., Brno, Czech Republic.,Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Tereza Suchánková
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., Brno, Czech Republic
| | - Ján Remšík
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., Brno, Czech Republic.,Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Stanislav Lerch
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Nicol Straková
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., Brno, Czech Republic.,Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Milan Král
- Department of Urology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Zoran Culig
- Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., Brno, Czech Republic.,Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
7
|
Cetkovská K, Šustová H, Kosztyu P, Uldrijan S. A Novel Interaction between TFII-I and Mdm2 with a Negative Effect on TFII-I Transcriptional Activity. PLoS One 2015; 10:e0144753. [PMID: 26656605 PMCID: PMC4676684 DOI: 10.1371/journal.pone.0144753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 11/23/2015] [Indexed: 11/24/2022] Open
Abstract
Williams-Beuren syndrome-associated transcription factor TFII-I plays a critical regulatory role in bone and neural tissue development and in immunity, in part by regulating cell proliferation in response to mitogens. Mdm2, a cellular oncogene responsible for the loss of p53 tumor suppressor activity in a significant proportion of human cancers, was identified in this study as a new binding partner for TFII-I and a negative regulator of TFII-I-mediated transcription. These findings suggest a new p53-independent mechanism by which increased Mdm2 levels found in human tumors could influence cancer cells. In addition to that, we present data indicating that TFII-I is an important cellular regulator of transcription from the immediate-early promoter of human cytomegalovirus, a promoter sequence frequently used in mammalian expression vectors, including vectors for gene therapy. Our observation that Mdm2 over-expression can decrease the ability of TFII-I to activate the CMV promoter might have implications for the efficiency of experimental gene therapy based on CMV promoter–derived vectors in cancers with Mdm2 gene amplification.
Collapse
Affiliation(s)
- Kateřina Cetkovská
- International Clinical Research Center—Center of Biomolecular and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Šustová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavlína Kosztyu
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Stjepan Uldrijan
- International Clinical Research Center—Center of Biomolecular and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
8
|
Thuy MN, Kam JK, Lee GC, Tao PL, Ling DQ, Cheng M, Goh SK, Papachristos AJ, Shukla L, Wall KL, Smoll NR, Jones JJ, Gikenye N, Soh B, Moffat B, Johnson N, Drummond KJ. A novel literature-based approach to identify genetic and molecular predictors of survival in glioblastoma multiforme: Analysis of 14,678 patients using systematic review and meta-analytical tools. J Clin Neurosci 2015; 22:785-99. [DOI: 10.1016/j.jocn.2014.10.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 10/21/2014] [Accepted: 10/25/2014] [Indexed: 01/08/2023]
|
9
|
Abstract
BACKGROUND The objective of this study was to perform a systematic review of correlations between the single-nucleotide polymorphism at nucleotide 309 (single-nucleotide polymorphism, SNP309) in the murine double-minute 2 (MDM2) gene promoter and susceptibility to leukemia. MATERIAL/METHODS We performed a computer search of relevant case-control studies published from January 1990 to Jan 2014 in databases such as Ovid, EBSCO, PubMed, CNKI, CBMDISC, VIP, and WanFang Data. The literature was screened based on inclusion and exclusion criteria. The data were retrieved, and the quality of the methodology used in the studies was evaluated. A meta-analysis was performed by calculating the combined odds ratios (OR) and 95% confidence intervals (CI) using RevMan 5.0 and Stata 10.0 software. Sensitivity was analyzed and publication bias was assessed. RESULTS A total of ten case-control studies from nine research papers were selected in this study, which included 1889 cases and 5707 controls. Meta-analysis showed that people who carried the G allele had increased susceptibility to leukemia compared to people who carried the T allele [OR=1.24, 95% CI (1.06, 1.45), P=0.007]. In a recessive model, the GG homozygotic population had a higher risk of leukemia than the heterozygotic GT+TT population [OR=1.47, 95% CI (1.11, 1.96), P=0.008]. We did not find significant difference in a dominant model [GG+GT vs. TT: OR=1.22, 95% CI (0.98, 1.52), P=0.07]. Publication bias was not significant. CONCLUSIONS SNP309 polymorphism in the MDM2 gene is associated with susceptibility to leukemia. The G allele may be a risk factor for leukemia.
Collapse
Affiliation(s)
- Wen-Bin Ou
- Out-Patient Department, Air Force General Hospital, Beijing, China (mainland)
| |
Collapse
|
10
|
Senescence induction in renal carcinoma cells by Nutlin-3: a potential therapeutic strategy based on MDM2 antagonism. Cancer Lett 2014; 353:211-9. [DOI: 10.1016/j.canlet.2014.07.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 12/16/2022]
|
11
|
Kim J, Lee SD, Chang B, Jin DH, Jung SI, Park MY, Han Y, Yang Y, Il Kim K, Lim JS, Kang YS, Lee MS. Enhanced antitumor activity of vitamin C via p53 in cancer cells. Free Radic Biol Med 2012; 53:1607-15. [PMID: 22892142 DOI: 10.1016/j.freeradbiomed.2012.07.079] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 07/10/2012] [Accepted: 07/30/2012] [Indexed: 11/19/2022]
Abstract
Ascorbate is an important natural antioxidant that can selectively kill cancer cells at pharmacological concentrations. Despite its benefit, it is quite difficult to predict the antitumor effects of ascorbate, because the relative cytotoxicity of ascorbate differs between cancer cell lines. Therefore, it is essential to examine the basis for this fundamental disagreement. Because p53 is activated by DNA-damaging stress and then regulates various cellular conditions, we hypothesized that p53 can sensitize cancer cells to ascorbate. Using isogenic cancer cells, we observed that the presence of p53 can affect ascorbate cytotoxicity, and also reactivation of p53 can make cancer cells sensitive to ascorbate. p53-dependent enhancement of ascorbate cytotoxicity is caused by increased reactive oxygen species generation via a differentially regulated p53 transcriptional network. We also found that transcriptionally activated p53 was derived from MDM2 ubiquitination by ascorbate and subsequently its signaling network renders cancer cells more susceptible to oxidative stress. Similar to the p53 effect on in vitro ascorbate cytotoxicity, inhibition of tumor growth is also stronger in p53-expressing tumors than in p53-deficient ones in vivo. This is the first observation that ascorbate cytotoxicity is positively related to p53 expression, activating its transcriptional network to worsen intracellular oxidative stress and consequently enhancing its cytotoxicity. Based on our study, reactivation of p53 may help to achieve more consistent cytotoxic effects of ascorbate in cancer therapies.
Collapse
Affiliation(s)
- Jinsun Kim
- Research Center for Women's Diseases, Department of Biological Sciences, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Elevated transcript levels from the MDM2 P1 promoter and low p53 transcript levels are associated with poor prognosis in human pancreatic ductal adenocarcinoma. Pancreas 2011; 40:265-70. [PMID: 21404460 DOI: 10.1097/mpa.0b013e3181f95104] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
UNLABELLED OBJECTDIVES: Mouse double minute 2 is a key negative regulator of the p53 protein, a central node in the mediation of tumor suppression. The MDM2 gene contains 2 differently regulated promoters, MDM2-P1 and MDM2-P2, which differ strongly in their biological and clinical importance. METHODS We assess the clinical significance of the expression of messenger RNA (mRNA) transcripts originating from both MDM2 promoters, measured with quantitative reverse transcription polymerase chain reaction in microdissected tissues from 57 patients with pancreatic ductal adenocarcinoma (PDAC). Furthermore, we determine the clinical relevance of p53 mRNA transcript expression and incorporate the somatic p53 mutational status into our analyses. RESULTS Interestingly, elevated transcript levels from the P1 promoter, but not the P2 promoter, associate significantly with up to 6.3-fold increased relative risk for tumor-related death (Cox multivariate analysis: P = 0.013). Furthermore, transcripts originating from both MDM2 promoters are found to correlate significantly with p53 mRNA levels (up to r = 0.315; P = 0.017). In addition, low p53 mRNA expression associates with worse PDAC prognosis (relative risk = 2.28; P = 0.021). CONCLUSIONS This study presents the first differentiated analysis of the MDM2-P1, MDM2-P2, and p53 transcript expression in human PDAC and demonstrates the significant clinical implications of those transcripts. Furthermore, it suggests an additional facet in the regulation of MDM2 via its P1 promoter in this malignancy.
Collapse
|
13
|
Bourne TD, Schiff D. Update on molecular findings, management and outcome in low-grade gliomas. Nat Rev Neurol 2010. [PMID: 21045797 DOI: 10.1038/nrneurol.2010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Low-grade infiltrating gliomas in adults include diffuse astrocytoma, oligoastrocytoma and oligodendroglioma. The current gold standard diagnosis of these tumors relies on histological classification; however, emerging molecular abnormalities discovered in these tumors are playing an increasingly prominent part in the process of tumor diagnosis and, consequently, patient management. The frequency and clinical importance of tumor protein p53 (TP53) abnormalities, deletions involving chromosomes 1p and 19q, O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation status, abnormalities in the PTEN tumor suppressor gene and the BRAF oncogene, and isocitrate dehydrogenase (IDH) mutations have become better defined. Molecular markers have not, historically, had an important role in determining the course of treatment for patients with low-grade gliomas, but ongoing phase III clinical trials incorporate 1p deletion or 1p19q codeletion status-and future trials plan to incorporate MGMT promoter methylation status-as stratification factors. Future trials will need to incorporate IDH mutational status in addition to these factors. Ultimately, molecular marker assessment will, hopefully, improve the accuracy of tumor diagnosis and enhance the effectiveness of treatment to achieve improved patient outcomes.
Collapse
Affiliation(s)
- T David Bourne
- University of Virginia Health System, Department of Pathology, Division of Neuropathology, Charlottesville, VA 22908-0214, USA
| | | |
Collapse
|
14
|
|
15
|
Giglio S, Mancini F, Pellegrino M, Di Conza G, Puxeddu E, Sacchi A, Pontecorvi A, Moretti F. Regulation of MDM4 (MDMX) function by p76(MDM2): a new facet in the control of p53 activity. Oncogene 2010; 29:5935-45. [PMID: 20697359 DOI: 10.1038/onc.2010.324] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Under basal growth conditions, p53 function is tightly controlled by the members of MDM family, MDM2 and MDM4. The Mdm2 gene codes, in addition to the full-length p90(MDM2), for a short protein, p76(MDM2) that lacks the p53-binding domain. Despite this property and at variance with p90(MDM2), this protein acts positively toward p53, although the molecular mechanism remains elusive. Here, we report that p76(MDM2) antagonizes MDM4 inhibitory function. We show that p76(MDM2) possesses intrinsic ubiquitinating and degrading activity, and through these activities controls MDM4 levels. Furthermore, the presence of p76(MDM2) decreases the association of MDM4 with p53 and p90(MDM2), and antagonizes p53 degradation by the heterodimer MDM4/p90(MDM2). The p76(MDM2)-mediated regulation of MDM4 occurs in the cytoplasm, under basal growth conditions. Conversely, upon DNA damage, phosphorylation of MDM4Ser403 dissociates p76(MDM2) and prevents MDM4 degradation. The overall negative control of MDM4 by p76(MDM2) reflects on p53 function as p76(MDM2) impairs MDM4-mediated inhibition of p53 activity. In agreement with the positive role of p76(MDM2) toward p53, the p76(MDM2)/p90(MDM2) ratio significantly decreases in a group of thyroid tumor samples compared with normal counterparts. Overall, these findings reveal a new mechanism in the control of p53 basal activity that may account for the distinct sensitivity of tissues to stress signals depending on the balance among MDM proteins. Moreover, these data suggest an oncosuppressive function for a product of the Mdm2 gene.
Collapse
Affiliation(s)
- S Giglio
- Institute of Neurobiology and Molecular Medicine, CNR/Fondazione Santa Lucia, Roma, Italy
| | | | | | | | | | | | | | | |
Collapse
|