1
|
Fiz F, Bottoni G, Ugolini M, Righi S, Cirone A, Garganese MC, Verrico A, Rossi A, Milanaccio C, Ramaglia A, Mastronuzzi A, Abate ME, Cacchione A, Gandolfo C, Colafati GS, Garrè ML, Morana G, Piccardo A. Diagnostic and Dosimetry Features of [ 64Cu]CuCl 2 in High-Grade Paediatric Infiltrative Gliomas. Mol Imaging Biol 2023; 25:391-400. [PMID: 36042116 DOI: 10.1007/s11307-022-01769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 03/12/2023]
Abstract
PURPOSE OF THE REPORT Paediatric diffuse high-grade gliomas (PDHGG) are rare central nervous system neoplasms lacking effective therapeutic options. Molecular imaging of tumour metabolism might identify novel diagnostic/therapeutic targets. In this study, we evaluated the distribution and the dosimetry aspects of [64Cu]CuCl2 in PDHGG subjects, as copper is a key element in cellular metabolism whose turnover may be increased in tumour cells. MATERIAL AND METHODS Paediatric patients with PDHGG were prospectively recruited. [64Cu]CuCl2 PET/CT was performed 1 h after tracer injection; if the scan was positive, it was repeated 24 and 72 h later. Lesion standardised uptake value (SUV) and target-to-background ratio (TBR) were calculated. Tumour and organ dosimetry were computed using the MIRD algorithm. Each patient underwent an MRI scan, including FLAIR, T2-weighted and post-contrast T1-weighted imaging. RESULTS Ten patients were enrolled (median age 9, range 6-16 years, 6 females). Diagnoses were diffuse midline gliomas (n = 8, 5 of which with H3K27 alterations) and diffuse hemispheric gliomas (n = 2). Six patients had visible tracer uptake (SUV: 1.0 ± 0.6 TBR: 5 ± 3.1). [64Cu]CuCl2 accumulation was always concordant with MRI contrast enhancement and was higher in the presence of radiological signs of necrosis. SUV and TBR progressively increased on the 24- and 72-h acquisitions (p < 0.05 and p < 0.01, respectively). The liver and the abdominal organs received the highest non-target dose. CONCLUSIONS [64Cu]CuCl2 is a well-tolerated radiotracer with reasonably favourable dosimetric properties, showing selective uptake in tumour areas with visible contrast enhancement and necrosis, thus suggesting that blood-brain barrier damage is a pre-requisite for its distribution to the intracranial structures. Moreover, tracer uptake showed an accumulating trend over time. These characteristics could deserve further analysis, to determine whether this radiopharmaceutical might have a possible therapeutic role as well.
Collapse
Affiliation(s)
- Francesco Fiz
- Department of Nuclear Medicine, E.O. Ospedali Galliera, Galliera Hospital, Mura delle Cappuccine 14, 16128, Genoa, Italy.
| | - Gianluca Bottoni
- Department of Nuclear Medicine, E.O. Ospedali Galliera, Galliera Hospital, Mura delle Cappuccine 14, 16128, Genoa, Italy
| | - Martina Ugolini
- Department of Nuclear Medicine, E.O. Ospedali Galliera, Galliera Hospital, Mura delle Cappuccine 14, 16128, Genoa, Italy
| | - Sergio Righi
- Medical Physics Department, E.O. Galliera Hospital, Genoa, Italy
| | - Alessio Cirone
- Medical Physics Department, E.O. Galliera Hospital, Genoa, Italy
| | - Maria Carmen Garganese
- Nuclear Medicine Unit/Imaging Department, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonio Verrico
- Neuro-Oncology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | | | - Antonia Ramaglia
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Angela Mastronuzzi
- Neuro-Oncology Unit, Department of Paediatric Haematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | | | - Antonella Cacchione
- Neuro-Oncology Unit, Department of Paediatric Haematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Carlo Gandolfo
- Imaging Department, Neuroradiology Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | | | - Giovanni Morana
- Department of Neurosciences, University of Turin, Turin, Italy
| | - Arnoldo Piccardo
- Department of Nuclear Medicine, E.O. Ospedali Galliera, Galliera Hospital, Mura delle Cappuccine 14, 16128, Genoa, Italy
| |
Collapse
|
2
|
Abdelaal MR, Ibrahim E, Elnagar MR, Soror SH, Haffez H. Augmented Therapeutic Potential of EC-Synthetic Retinoids in Caco-2 Cancer Cells Using an In Vitro Approach. Int J Mol Sci 2022; 23:ijms23169442. [PMID: 36012706 PMCID: PMC9409216 DOI: 10.3390/ijms23169442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer therapies have produced promising clinical responses, but tumor cells rapidly develop resistance to these drugs. It has been previously shown that EC19 and EC23, two EC-synthetic retinoids, have single-agent preclinical anticancer activity in colorectal carcinoma. Here, isobologram analysis revealed that they have synergistic cytotoxicity with retinoic acid receptor (RAR) isoform-selective agonistic retinoids such as AC261066 (RARβ2-selective agonist) and CD437 (RARγ-selective agonist) in Caco-2 cells. This synergism was confirmed by calculating the combination index (lower than 1) and the dose reduction index (higher than 1). Flow cytometry of combinatorial IC50 (the concentration causing 50% cell death) confirmed the cell cycle arrest at the SubG0-G1 phase with potentiated apoptotic and necrotic effects. The reported synergistic anticancer activity can be attributed to their ability to reduce the expression of ATP-binding cassette (ABC) transporters including P-glycoprotein (P-gp1), breast cancer resistance protein (BCRP) and multi-drug resistance-associated protein-1 (MRP1) and Heat Shock Protein 70 (Hsp70). This adds up to the apoptosis-promoting activity of EC19 and EC23, as shown by the increased Caspase-3/7 activities and DNA fragmentation leading to DNA double-strand breaks. This study sheds the light on the possible use of EC-synthetic retinoids in the rescue of multi-drug resistance in colorectal cancer using Caco-2 as a model and suggests new promising combinations between different synthetic retinoids. The current in vitro results pave the way for future studies on these compounds as possible cures for colorectal carcinoma.
Collapse
Affiliation(s)
- Mohamed R. Abdelaal
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Esraa Ibrahim
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Mohamed R. Elnagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11823, Egypt
| | - Sameh H. Soror
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
- Correspondence: ; Tel.: +20-1094-970-173
| |
Collapse
|
3
|
McCann CJ, Hasan NM, Padilla-Benavides T, Roy S, Lutsenko S. Heterogeneous nuclear ribonucleoprotein hnRNPA2/B1 regulates the abundance of the copper-transporter ATP7A in an isoform-dependent manner. Front Mol Biosci 2022; 9:1067490. [PMID: 36545508 PMCID: PMC9762481 DOI: 10.3389/fmolb.2022.1067490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/14/2022] [Indexed: 12/11/2022] Open
Abstract
Copper (Cu) is an essential micronutrient with a critical role in mammalian growth and development. Imbalance of Cu causes severe diseases in humans; therefore, cellular Cu levels are tightly regulated. Major Cu-transport proteins and their cellular behavior have been characterized in detail, whereas their regulation at the mRNA level and associated factors are not well-understood. We show that the heterogeneous nuclear ribonucleoprotein hnRNPA2/B1 regulates Cu homeostasis by modulating the abundance of Cu(I)-transporter ATP7A. Downregulation of hnRNPA2/B1 in HeLa cells increases the ATP7A mRNA and protein levels and significantly decreases cellular Cu; this regulation involves the 3' UTR of ATP7A transcript. Downregulation of B1 and B1b isoforms of hnRNPA2/B1 is sufficient to elevate ATP7A, whereas overexpression of either hnRNPA2 or hnRNPB1 isoforms decreases the ATP7A mRNA levels. Concurrent decrease in hnRNPA2/B1, increase in ATP7A, and a decrease in Cu levels was observed in neuroblastoma SH-SY5Y cells during retinoic acid-induced differentiation; this effect was reversed by overexpression of B1/B1b isoforms. We conclude that hnRNPA2/B1 is a new isoform-specific negative regulator of ATP7A abundance.
Collapse
Affiliation(s)
- Courtney J McCann
- Department of Physiology, Johns Hopkins University, Baltimore, MD, United States.,Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, United States
| | - Nesrin M Hasan
- Department of Physiology, Johns Hopkins University, Baltimore, MD, United States
| | | | - Shubhrajit Roy
- Department of Physiology, Johns Hopkins University, Baltimore, MD, United States
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
4
|
Lutsenko S. Dynamic and cell-specific transport networks for intracellular copper ions. J Cell Sci 2021; 134:272704. [PMID: 34734631 DOI: 10.1242/jcs.240523] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Copper (Cu) homeostasis is essential for the development and function of many organisms. In humans, Cu misbalance causes serious pathologies and has been observed in a growing number of diseases. This Review focuses on mammalian Cu(I) transporters and highlights recent studies on regulation of intracellular Cu fluxes. Cu is used by essential metabolic enzymes for their activity. These enzymes are located in various intracellular compartments and outside cells. When cells differentiate, or their metabolic state is otherwise altered, the need for Cu in different cell compartments change, and Cu has to be redistributed to accommodate these changes. The Cu transporters SLC31A1 (CTR1), SLC31A2 (CTR2), ATP7A and ATP7B regulate Cu content in cellular compartments and maintain Cu homeostasis. Increasing numbers of regulatory proteins have been shown to contribute to multifaceted regulation of these Cu transporters. It is becoming abundantly clear that the Cu transport networks are dynamic and cell specific. The comparison of the Cu transport machinery in the liver and intestine illustrates the distinct composition and dissimilar regulatory response of their Cu transporters to changing Cu levels.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Johns Hopkins Medical Institutes, Department of Physiology, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Greco M, Spinelli CC, De Riccardis L, Buccolieri A, Di Giulio S, Musarò D, Pagano C, Manno D, Maffia M. Copper Dependent Modulation of α-Synuclein Phosphorylation in Differentiated SHSY5Y Neuroblastoma Cells. Int J Mol Sci 2021; 22:ijms22042038. [PMID: 33670800 PMCID: PMC7922547 DOI: 10.3390/ijms22042038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/31/2021] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
Copper (Cu) dyshomeostasis plays a pivotal role in several neuropathologies, such as Parkinson's disease (PD). Metal accumulation in the central nervous system (CNS) could result in loss-of-function of proteins involved in Cu metabolism and redox cycling, generating reactive oxygen species (ROS). Moreover, neurodegenerative disorders imply the presence of an excess of misfolded proteins known to lead to neuronal damage. In PD, Cu accumulates in the brain, binds α-synuclein, and initiates its aggregation. We assessed the correlation between neuronal differentiation, Cu homeostasis regulation, and α-synuclein phosphorylation. At this purpose, we used differentiated SHSY5Y neuroblastoma cells to reproduce some of the characteristics of the dopaminergic neurons. Here, we reported that differentiated cells expressed a significantly higher amount of a copper transporter protein 1 (CTR1), increasing the copper uptake. Cells also showed a significantly more phosphorylated form of α-synuclein, further increased by copper treatment, without modifications in α-synuclein levels. This effect depended on the upregulation of the polo-like kinase 2 (PLK2), whereas the levels of the relative protein phosphatase 2A (PP2A) remained unvaried. No changes in the oxidative state of the cells were identified. The Cu dependent alteration of α-synuclein phosphorylation pattern might potentially offer new opportunities for clinical intervention.
Collapse
Affiliation(s)
- Marco Greco
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 73100 Lecce, Italy; (M.G.); (D.M.)
| | - Chiara Carmela Spinelli
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (C.C.S.); (L.D.R.); (A.B.); (S.D.G.); (D.M.); (C.P.)
| | - Lidia De Riccardis
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (C.C.S.); (L.D.R.); (A.B.); (S.D.G.); (D.M.); (C.P.)
| | - Alessandro Buccolieri
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (C.C.S.); (L.D.R.); (A.B.); (S.D.G.); (D.M.); (C.P.)
| | - Simona Di Giulio
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (C.C.S.); (L.D.R.); (A.B.); (S.D.G.); (D.M.); (C.P.)
| | - Debora Musarò
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (C.C.S.); (L.D.R.); (A.B.); (S.D.G.); (D.M.); (C.P.)
| | - Claudia Pagano
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (C.C.S.); (L.D.R.); (A.B.); (S.D.G.); (D.M.); (C.P.)
| | - Daniela Manno
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 73100 Lecce, Italy; (M.G.); (D.M.)
| | - Michele Maffia
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (C.C.S.); (L.D.R.); (A.B.); (S.D.G.); (D.M.); (C.P.)
- Correspondence: ; Tel.: +39-0832-298670
| |
Collapse
|
6
|
Costas-Rodríguez M, Colina-Vegas L, Solovyev N, De Wever O, Vanhaecke F. Cellular and sub-cellular Cu isotope fractionation in the human neuroblastoma SH-SY5Y cell line: proliferating versus neuron-like cells. Anal Bioanal Chem 2019; 411:4963-4971. [DOI: 10.1007/s00216-019-01871-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/26/2019] [Accepted: 04/16/2019] [Indexed: 12/29/2022]
|
7
|
Rotondo JC, Borghi A, Selvatici R, Mazzoni E, Bononi I, Corazza M, Kussini J, Montinari E, Gafà R, Tognon M, Martini F. Association of Retinoic Acid Receptor β Gene With Onset and Progression of Lichen Sclerosus-Associated Vulvar Squamous Cell Carcinoma. JAMA Dermatol 2018; 154:819-823. [PMID: 29898214 PMCID: PMC6128494 DOI: 10.1001/jamadermatol.2018.1373] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/07/2018] [Indexed: 01/03/2023]
Abstract
IMPORTANCE Molecular alterations in lichen sclerosus-associated vulvar squamous cell carcinoma (LS-VSCC) are largely unknown. OBJECTIVE To determine whether the retinoic acid receptor β (RARβ) tumor-suppressor gene is involved in the onset and/or progression of LS-VSCC. DESIGN, SETTING, AND PARTICIPANTS The case-control study, conducted at University-Hospital of Ferrara, Italy, included 20 LS-VSCC (mean [SD] age, 75 [3] years) and 20 cancer-associated vulvar LS (caVLS; mean [SD] age, 62 [11] years) formalin-fixed embedded tissue specimens, 20 cancer-free vulvar LS (cfVLS), and 20 normal skin fresh specimens from diagnostic biopsies and women surgically treated for nonmalignant skin lesions, respectively. RARβ gene expression and promoter methylation were investigated in LS-VSCC and caVLS adjacent to VSCC specimens, and in cfVLS and normal skin specimens, as controls, by RT-Q real-time polymerase chain reaction (PCR) analysis, and sequencing of PCR-amplified bisulfite-treated DNA. c-Jun expression, an RARβ pathway-related gene, was also investigated. MAIN OUTCOMES AND MEASURES RARβ expression, correlation with its promoter methylation and c-Jun expression, and association with onset or progression of LS-VSCC. RESULTS In LS-VSCC, RARβ messenger RNA was 3.4-, 3.6-, and 4.8-fold lower than in caVLS (P = .001), cfVLS (P = .005), and normal skin (P < .001), respectively. The RARβ mRNA levels were similar in caVLS, cfVLS, and normal skin. The RARβ promoter was hypermethylated in 18 (90%) of 20 LS-VSCC, 11 (55%) of 20 cfVLS, 10 (50%) of 20 caVLS, and 5 (25%) of 20 in the normal skin group. The degree of methylation of RARβ promoter was higher in LS-VSCC, ranging from 5 to 9 (full promoter methylation) CpGs methylated, than in caVLS (P = .02), cfVLS (P = .03), or normal skin (P < .001), which was up to 5 CpGs methylated. Importantly, 0 of 8 LS-VSCC with 5 to 6 CpGs methylated and 5 (63%) of 8 LS-VSCC with 7 to 8 CpGs methylated were from patients with lymph node metastasis at diagnosis, respectively, whereas there were 2 of 2 (100%) LS-VSCC samples with 9 CpG methylated from patients with lymph node metastasis at diagnosis and subsequent recurrence. In LS-VSCC c-Jun mRNA was 4.3-, 1.4-, and 2.6-fold higher than in caVLS (P < .001), cfVLS (P = .001), and normal skin (P < .001), respectively. The expression of c-Jun was similar in caVLS, cfVLS, and normal skin. CONCLUSIONS AND RELEVANCE Hypermethylation-induced RARβ down-expression was associated with LS-VSCC and correlates with the upregulation of c-Jun. The degree of methylation of RARβ promoter increased with the malignancy of LS-VSCC. Therefore, RARβ gene dysregulation may play a role in progression of LS-VSCC, and RARβ promoter methylation status may be used as a prognostic marker in clinical treatment of patients with LS-VSCC.
Collapse
Affiliation(s)
- John Charles Rotondo
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, via Fossato di Mortara 64/B, 44121 Ferrara, Italy
| | - Alessandro Borghi
- Section of Dermatology and Infectious Diseases, Department of Medical Sciences, University of Ferrara, via Savonarola 9, 44121 Ferrara, Italy
| | - Rita Selvatici
- Department of Medical Sciences, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Elisa Mazzoni
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, via Fossato di Mortara 64/B, 44121 Ferrara, Italy
| | - Ilaria Bononi
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, via Fossato di Mortara 64/B, 44121 Ferrara, Italy
| | - Monica Corazza
- Section of Dermatology and Infectious Diseases, Department of Medical Sciences, University of Ferrara, via Savonarola 9, 44121 Ferrara, Italy
| | - Jacqueline Kussini
- Section of Dermatology and Infectious Diseases, Department of Medical Sciences, University of Ferrara, via Savonarola 9, 44121 Ferrara, Italy
| | - Elena Montinari
- Section of Anatomic Pathology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara and S. Anna University Hospital Via Aldo Moro, 8, 44124 Cona, Ferrara, Italy
| | - Roberta Gafà
- Section of Anatomic Pathology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara and S. Anna University Hospital Via Aldo Moro, 8, 44124 Cona, Ferrara, Italy
| | - Mauro Tognon
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, via Fossato di Mortara 64/B, 44121 Ferrara, Italy
| | - Fernanda Martini
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, via Fossato di Mortara 64/B, 44121 Ferrara, Italy
| |
Collapse
|
8
|
The 1-Tosylpentan-3-one Protects against 6-Hydroxydopamine-Induced Neurotoxicity. Int J Mol Sci 2017; 18:ijms18051096. [PMID: 28534853 PMCID: PMC5455005 DOI: 10.3390/ijms18051096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 02/06/2023] Open
Abstract
Previous studies have demonstrated that the marine compound austrasulfone, isolated from the soft coral Cladiella australis, exerts a neuroprotective effect. The intermediate product in the synthesis of austrasulfone, dihydroaustrasulfone alcohol, attenuates several inflammatory responses. The present study uses in vitro and in vivo methods to investigate the neuroprotective effect of dihydroaustrasulfone alcohol-modified 1-tosylpentan-3-one (1T3O). Results from in vitro experiments show that 1T3O effectively inhibits 6-hydroxydopamine-induced (6-OHDA-induced) activation of both p38 mitogen-activated protein kinase (MAPK) and caspase-3 in SH-SY5Y cells; and enhances nuclear factor erythroid 2–related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression via phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling. Hoechst staining and Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining results reveal that 1T3O significantly inhibits 6-OHDA-induced apoptosis. In addition, the addition of an Akt or HO-1 inhibitor decreases the protective effect of 1T3O. Thus, we hypothesize that the anti-apoptotic activity of 1T3O in neuronal cells is mediated through the regulation of the Akt and HO-1 signaling pathways. In vivo experiments show that 1T3O can reverse 6-OHDA-induced reduction in locomotor behavior ability in zebrafish larvae, and inhibit 6-OHDA-induced tumor necrosis factor-alpha (TNF-α) increase at the same time. According to our in vitro and in vivo results, we consider that 1T3O exerts its anti-apoptotic activities at SH-SY5Y cells after 6-OHDA challenges, probably via the regulation of anti-oxidative signaling pathways. Therefore, this compound may be a promising therapeutic agent for neurodegenerations.
Collapse
|
9
|
Synthesis, anti-inflammatory and neuroprotective activity of pyrazole and pyrazolo[3,4-d]pyridazine bearing 3,4,5-trimethoxyphenyl. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1870-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway. Nat Commun 2016; 7:10640. [PMID: 26879543 PMCID: PMC4757759 DOI: 10.1038/ncomms10640] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/07/2016] [Indexed: 12/12/2022] Open
Abstract
Brain development requires a fine-tuned copper homoeostasis. Copper deficiency or excess results in severe neuro-pathologies. We demonstrate that upon neuronal differentiation, cellular demand for copper increases, especially within the secretory pathway. Copper flow to this compartment is facilitated through transcriptional and metabolic regulation. Quantitative real-time imaging revealed a gradual change in the oxidation state of cytosolic glutathione upon neuronal differentiation. Transition from a broad range of redox states to a uniformly reducing cytosol facilitates reduction of the copper chaperone Atox1, liberating its metal-binding site. Concomitantly, expression of Atox1 and its partner, a copper transporter ATP7A, is upregulated. These events produce a higher flux of copper through the secretory pathway that balances copper in the cytosol and increases supply of the cofactor to copper-dependent enzymes, expression of which is elevated in differentiated neurons. Direct link between glutathione oxidation and copper compartmentalization allows for rapid metabolic adjustments essential for normal neuronal function.
Collapse
|
11
|
Urso E, Maffia M. Behind the Link between Copper and Angiogenesis: Established Mechanisms and an Overview on the Role of Vascular Copper Transport Systems. J Vasc Res 2015; 52:172-96. [PMID: 26484858 DOI: 10.1159/000438485] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
Angiogenesis critically sustains the progression of both physiological and pathological processes. Copper behaves as an obligatory co-factor throughout the angiogenic signalling cascades, so much so that a deficiency causes neovascularization to abate. Moreover, the progress of several angiogenic pathologies (e.g. diabetes, cardiac hypertrophy and ischaemia) can be tracked by measuring serum copper levels, which are being increasingly investigated as a useful prognostic marker. Accordingly, the therapeutic modulation of body copper has been proven effective in rescuing the pathological angiogenic dysfunctions underlying several disease states. Vascular copper transport systems profoundly influence the activation and execution of angiogenesis, acting as multi-functional regulators of apparently discrete pro-angiogenic pathways. This review concerns the complex relationship among copper-dependent angiogenic factors, copper transporters and common pathological conditions, with an unusual accent on the multi-faceted involvement of the proteins handling vascular copper. Functions regulated by the major copper transport proteins (CTR1 importer, ATP7A efflux pump and metallo-chaperones) include the modulation of endothelial migration and vascular superoxide, known to activate angiogenesis within a narrow concentration range. The potential contribution of prion protein, a controversial regulator of copper homeostasis, is discussed, even though its angiogenic involvement seems to be mainly associated with the modulation of endothelial motility and permeability.
Collapse
Affiliation(s)
- Emanuela Urso
- Department of Biological and Environmental Science and Technologies, University of Salento, Lecce, Italy
| | | |
Collapse
|
12
|
Janesick A, Wu SC, Blumberg B. Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci 2015; 72:1559-76. [PMID: 25558812 PMCID: PMC11113123 DOI: 10.1007/s00018-014-1815-9] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 01/13/2023]
Abstract
The identification of neurological symptoms caused by vitamin A deficiency pointed to a critical, early developmental role of vitamin A and its metabolite, retinoic acid (RA). The ability of RA to induce post-mitotic, neural phenotypes in various stem cells, in vitro, served as early evidence that RA is involved in the switch between proliferation and differentiation. In vivo studies have expanded this "opposing signal" model, and the number of primary neurons an embryo develops is now known to depend critically on the levels and spatial distribution of RA. The proneural and neurogenic transcription factors that control the exit of neural progenitors from the cell cycle and allow primary neurons to develop are partly elucidated, but the downstream effectors of RA receptor (RAR) signaling (many of which are putative cell cycle regulators) remain largely unidentified. The molecular mechanisms underlying RA-induced primary neurogenesis in anamniote embryos are starting to be revealed; however, these data have been not been extended to amniote embryos. There is growing evidence that bona fide RARs are found in some mollusks and other invertebrates, but little is known about their necessity or functions in neurogenesis. One normal function of RA is to regulate the cell cycle to halt proliferation, and loss of RA signaling is associated with dedifferentiation and the development of cancer. Identifying the genes and pathways that mediate cell cycle exit downstream of RA will be critical for our understanding of how to target tumor differentiation. Overall, elucidating the molecular details of RAR-regulated neurogenesis will be decisive for developing and understanding neural proliferation-differentiation switches throughout development.
Collapse
Affiliation(s)
- Amanda Janesick
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
| | - Stephanie Cherie Wu
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
- Department of Pharmaceutical Sciences, University of California, Irvine, USA
| |
Collapse
|
13
|
Rotondo JC, Bosi S, Bassi C, Ferracin M, Lanza G, Gafà R, Magri E, Selvatici R, Torresani S, Marci R, Garutti P, Negrini M, Tognon M, Martini F. Gene expression changes in progression of cervical neoplasia revealed by microarray analysis of cervical neoplastic keratinocytes. J Cell Physiol 2015; 230:806-812. [PMID: 25205602 DOI: 10.1002/jcp.24808] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/05/2014] [Indexed: 12/28/2022]
Abstract
To evaluate the gene expression changes involved in neoplastic progression of cervical intraepithelial neoplasia. Using microarray analysis, large-scale gene expression profile was carried out on HPV16-CIN2, HPV16-CIN3, and normal cervical keratinocytes derived from two HPV16-CIN2, two HPV-CIN3 lesions, and two corresponding normal cervical tissues, respectively. Differentially expressed genes were analyzed in normal cervical keratinocytes compared with HPV16-CIN2 keratinocytes and in HPV16-CIN2 keratinocytes compared with HPV16-CIN3 keratinocytes; 37 candidate genes with continuously increasing or decreasing expression during CIN progression were identified. One of these genes, phosphoglycerate dehydrogenase, was chosen for further characterization. Quantitative reverse transcription-polymerase chain reaction and immunohistochemical analysis confirmed that expression of phosphoglycerate dehydrogenase consistently increases during progression of CIN toward cancer. Gene expression changes occurring during CIN progression were investigated using microarray analysis, for the first time, in CIN2 and CIN3 keratinocytes naturally infected with HPV16. Phosphoglycerate dehydrogenase is likely to be associated with tumorigenesis and may be a potential prognostic marker for CIN progression.
Collapse
Affiliation(s)
- John Charles Rotondo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, via Fossato di Mortara 64/B, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Telianidis J, Hung YH, Materia S, Fontaine SL. Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis. Front Aging Neurosci 2013; 5:44. [PMID: 23986700 PMCID: PMC3750203 DOI: 10.3389/fnagi.2013.00044] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/05/2013] [Indexed: 12/21/2022] Open
Abstract
Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer's, Parkinson's, and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-type ATPases (copper-ATPases), ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains, and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis, and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration.
Collapse
Affiliation(s)
- Jonathon Telianidis
- Strategic Research Centre for Molecular and Medical Research, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
| | - Ya Hui Hung
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
- Centre for Neuroscience Research, The University of MelbourneParkville, VIC, Australia
| | - Stephanie Materia
- Strategic Research Centre for Molecular and Medical Research, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
| | - Sharon La Fontaine
- Strategic Research Centre for Molecular and Medical Research, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
| |
Collapse
|
15
|
Affiliation(s)
- Hui Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | | |
Collapse
|
16
|
Chen WF, Chakraborty C, Sung CS, Feng CW, Jean YH, Lin YY, Hung HC, Huang TY, Huang SY, Su TM, Sung PJ, Sheu JH, Wen ZH. Neuroprotection by marine-derived compound, 11-dehydrosinulariolide, in an in vitro Parkinson’s model: a promising candidate for the treatment of Parkinson’s disease. Naunyn Schmiedebergs Arch Pharmacol 2011; 385:265-75. [DOI: 10.1007/s00210-011-0710-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 11/02/2011] [Indexed: 12/11/2022]
|
17
|
Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases. Pharmacol Ther 2011; 133:177-88. [PMID: 22115751 DOI: 10.1016/j.pharmthera.2011.10.006] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 10/27/2011] [Indexed: 12/21/2022]
Abstract
Iron (Fe) and copper (Cu) are essential to neuronal function; excess or deficiency of either is known to underlie the pathoetiology of several commonly known neurodegenerative disorders. This delicate balance of Fe and Cu in the central milieu is maintained by the brain barrier systems, i.e., the blood-brain barrier (BBB) between the blood and brain interstitial fluid and the blood-cerebrospinal fluid barrier (BCB) between the blood and cerebrospinal fluid (CSF). This review provides a concise description on the structural and functional characteristics of the brain barrier systems. Current understanding of Fe and Cu transport across the brain barriers is thoroughly examined, with major focuses on whether the BBB and BCB coordinate the direction of Fe and Cu fluxes between the blood and brain/CSF. In particular, the mechanism by which pertinent metal transporters in the barriers, such as the transferrin receptor (TfR), divalent metal transporter (DMT1), copper transporter (CTR1), ATP7A/B, and ferroportin (FPN), regulate metal movement across the barriers is explored. Finally, the detrimental consequences of dysfunctional metal transport by brain barriers, as a result of endogenous disorders or exogenous insults, are discussed. Understanding the regulation of Fe and Cu homeostasis in the central nervous system aids in the design of new drugs targeted on the regulatory proteins at the brain barriers for the treatment of metal's deficiency or overload-related neurological diseases.
Collapse
|
18
|
Crisponi G, Nurchi VM, Fanni D, Gerosa C, Nemolato S, Faa G. Copper-related diseases: From chemistry to molecular pathology. Coord Chem Rev 2010. [DOI: 10.1016/j.ccr.2009.12.018] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Lutsenko S, Bhattacharjee A, Hubbard AL. Copper handling machinery of the brain. Metallomics 2010; 2:596-608. [DOI: 10.1039/c0mt00006j] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Mammalian copper-transporting P-type ATPases, ATP7A and ATP7B: emerging roles. Int J Biochem Cell Biol 2009; 42:206-9. [PMID: 19922814 DOI: 10.1016/j.biocel.2009.11.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 11/09/2009] [Accepted: 11/09/2009] [Indexed: 12/20/2022]
Abstract
Copper (Cu) has a role in a diverse and increasing number of pathways, physiological and disease processes. These roles are testament to the fundamental importance of Cu in biology and the need to understand the mechanisms that regulate Cu homeostasis. The mammalian Cu-transporting P-type ATPases ATP7A and ATP7B are two key proteins that regulate the Cu status of the body. They transport Cu across cellular membranes for biosynthetic and protective functions, enabling Cu to fulfill its role as a catalytic and structural cofactor for many essential enzymes, and to prevent a toxic build-up of Cu inside cells. A variety of regulatory mechanisms operate at transcriptional and post-translational levels to ensure adequate Cu supplies for both physiological and pathophysiological processes. This review summarizes the recent literature that is revealing the emerging roles of the Cu-ATPases in health and disease.
Collapse
|
21
|
Veldhuis NA, Valova VA, Gaeth AP, Palstra N, Hannan KM, Michell BJ, Kelly LE, Jennings I, Kemp BE, Pearson RB, Robinson PJ, Camakaris J. Phosphorylation regulates copper-responsive trafficking of the Menkes copper transporting P-type ATPase. Int J Biochem Cell Biol 2009; 41:2403-12. [PMID: 19576997 DOI: 10.1016/j.biocel.2009.06.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 12/25/2022]
Abstract
The Menkes copper-translocating P-type ATPase (ATP7A) is a critical copper transport protein functioning in systemic copper absorption and supply of copper to cuproenzymes in the secretory pathway. Mutations in ATP7A can lead to the usually lethal Menkes disease. ATP7A function is regulated by copper-responsive trafficking between the trans-Golgi Network and the plasma membrane. We have previously reported basal and copper-responsive kinase phosphorylation of ATP7A but the specific phosphorylation sites had not been identified. As copper stimulates both trafficking and phosphorylation of ATP7A we aimed to identify all the specific phosphosites and to determine whether trafficking and phosphorylation are linked. We identified twenty in vivo phosphorylation sites in the human ATP7A and eight in hamster, all clustered within the N- and C-terminal cytosolic domains. Eight sites were copper-responsive and hence candidates for regulating copper-responsive trafficking or catalytic activity. Mutagenesis of the copper-responsive phosphorylation site Serine-1469 resulted in mislocalization of ATP7A in the presence of added copper in both polarized (Madin Darby canine kidney) and non-polarized (Chinese Hamster Ovary) cells, strongly suggesting that phosphorylation of specific serine residues is required for copper-responsive ATP7A trafficking to the plasma membrane. A constitutively phosphorylated site, Serine-1432, when mutated to alanine also resulted in mislocalization in the presence of added copper in polarized Madin Darby kidney cells. These studies demonstrate that phosphorylation of specific serine residues in ATP7A regulates its sub-cellular localization and hence function and will facilitate identification of the kinases and signaling pathways involved in regulating this pivotal copper transporter.
Collapse
Affiliation(s)
- Nicholas A Veldhuis
- Genetics Department, The University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|