1
|
Peng X, Zhu X, Cheng F, Zhou B, Zhu X, Zhu L. Correlation between thyroid autoantibodies and the risk of thyroid papillary carcinoma. Gland Surg 2020; 9:950-955. [PMID: 32953604 PMCID: PMC7475372 DOI: 10.21037/gs-20-445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/04/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND To investigate the correlation of thyroglobulin antibody (TgAb) and thyroid peroxidase antibody (TPOAb) with the risk of papillary thyroid carcinoma (PTC). METHODS The clinical data of 322 patients with pathologically confirmed thyroid nodules who underwent surgical treatment in Lishui Hospital of Zhejiang University from January 2018 to December 2019 were enrolled in this study. The enrolled patients were divided into a benign nodule group and a PTC group according their pathological results. Comparison was drawn based around the difference of thyroid autoantibody distribution between groups and its correlation with the risk of PTC. RESULTS The positive rate of TgAb in the PTC group was significantly higher than that in the benign nodule group (P<0.05). The incidence of PTC was significantly higher in TgAb positive patients in the presence of negative TPOAb (P<0.05). Further regression analysis revealed positive TgAb to be a risk factor of PTC (OR =3.097, P<0.05), while age ≥55 years old (OR =0.188, P<0.05) and nodule diameter ≥10 mm (OR =0.064, P<0.05) reduced the risk of PTC. Simultaneously, positive TgAb was also a risk factor for PTC in females (OR =3.532, P<0.05), but not in males (P>0.05). The risk of PTC in females was not associated with further increase in the titer of TgAb. CONCLUSIONS TgAb may be associated with an increased risk of PTC in females, but there is no clear correlation between the risk of PTC and higher antibody titer in these patients.
Collapse
Affiliation(s)
- Xuyang Peng
- Department of Cardiothoracic Surgery, Lishui People’s Hospital, Lishui 323000, China
| | - Xi Zhu
- Department of Thyroid and Breast Surgery, Lishui Hospital of Zhejiang University, Lishui 323000, China
| | - Feng Cheng
- Department of Thyroid and Breast Surgery, Lishui Hospital of Zhejiang University, Lishui 323000, China
| | - Bin Zhou
- Department of Thyroid and Breast Surgery, Lishui Hospital of Zhejiang University, Lishui 323000, China
| | - Xiaohua Zhu
- Department of Gynaecology and Obstetrics, Lishui Hospital of Zhejiang University, Lishui 323000, China
| | - Lei Zhu
- Department of Thyroid and Breast Surgery, Lishui Hospital of Zhejiang University, Lishui 323000, China
| |
Collapse
|
2
|
Martin TC, Šimurina M, Ząbczyńska M, Martinic Kavur M, Rydlewska M, Pezer M, Kozłowska K, Burri A, Vilaj M, Turek-Jabrocka R, Krnjajić-Tadijanović M, Trofimiuk-Müldner M, Ugrina I, Lityńska A, Hubalewska-Dydejczyk A, Trbojevic-Akmacic I, Lim EM, Walsh JP, Pocheć E, Spector TD, Wilson SG, Lauc G. Decreased Immunoglobulin G Core Fucosylation, A Player in Antibody-dependent Cell-mediated Cytotoxicity, is Associated with Autoimmune Thyroid Diseases. Mol Cell Proteomics 2020; 19:774-792. [PMID: 32024769 PMCID: PMC7196582 DOI: 10.1074/mcp.ra119.001860] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/17/2020] [Indexed: 11/06/2022] Open
Abstract
Autoimmune thyroid diseases (AITD) are the most common group of autoimmune diseases, associated with lymphocyte infiltration and the production of thyroid autoantibodies, like thyroid peroxidase antibodies (TPOAb), in the thyroid gland. Immunoglobulins and cell-surface receptors are glycoproteins with distinctive glycosylation patterns that play a structural role in maintaining and modulating their functions. We investigated associations of total circulating IgG and peripheral blood mononuclear cells glycosylation with AITD and the influence of genetic background in a case-control study with several independent cohorts and over 3,000 individuals in total. The study revealed an inverse association of IgG core fucosylation with TPOAb and AITD, as well as decreased peripheral blood mononuclear cells antennary α1,2 fucosylation in AITD, but no shared genetic variance between AITD and glycosylation. These data suggest that the decreased level of IgG core fucosylation is a risk factor for AITD that promotes antibody-dependent cell-mediated cytotoxicity previously associated with TPOAb levels.
Collapse
Affiliation(s)
- Tiphaine C Martin
- Department of Twin Research and Genetic Epidemiology, King's College, London, United Kingdom; School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Mirna Šimurina
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Marta Ząbczyńska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | | | - Magdalena Rydlewska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Marija Pezer
- Genos, Glycoscience Research Laboratory, Zagreb, Croatia
| | - Kamila Kozłowska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Andrea Burri
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand; Waitemata Pain Service, Department of Anaesthesia and Perioperative Medicine, North Shore Hospital, Auckland, New Zealand
| | - Marija Vilaj
- Genos, Glycoscience Research Laboratory, Zagreb, Croatia
| | - Renata Turek-Jabrocka
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Krakow, Poland; Department of Endocrinology, University Hospital in Krakow, Krakow, Poland
| | | | - Małgorzata Trofimiuk-Müldner
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Krakow, Poland; Department of Endocrinology, University Hospital in Krakow, Krakow, Poland
| | - Ivo Ugrina
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia; Genos, Glycoscience Research Laboratory, Zagreb, Croatia
| | - Anna Lityńska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Alicja Hubalewska-Dydejczyk
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Krakow, Poland; Department of Endocrinology, University Hospital in Krakow, Krakow, Poland
| | | | - Ee Mun Lim
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - John P Walsh
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College, London, United Kingdom
| | - Scott G Wilson
- Department of Twin Research and Genetic Epidemiology, King's College, London, United Kingdom; School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia; Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia; Genos, Glycoscience Research Laboratory, Zagreb, Croatia.
| |
Collapse
|
3
|
Martin TC, Ilieva KM, Visconti A, Beaumont M, Kiddle SJ, Dobson RJB, Mangino M, Lim EM, Pezer M, Steves CJ, Bell JT, Wilson SG, Lauc G, Roederer M, Walsh JP, Spector TD, Karagiannis SN. Dysregulated Antibody, Natural Killer Cell and Immune Mediator Profiles in Autoimmune Thyroid Diseases. Cells 2020; 9:E665. [PMID: 32182948 PMCID: PMC7140647 DOI: 10.3390/cells9030665] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
The pathogenesis of autoimmune thyroid diseases (AITD) is poorly understood and the association between different immune features and the germline variants involved in AITD are yet unclear. We previously observed systemic depletion of IgG core fucosylation and antennary α1,2 fucosylation in peripheral blood mononuclear cells in AITD, correlated with anti-thyroid peroxidase antibody (TPOAb) levels. Fucose depletion is known to potentiate strong antibody-mediated NK cell activation and enhanced target antigen-expressing cell killing. In autoimmunity, this may translate to autoantibody-mediated immune cell recruitment and attack of self-antigen expressing normal tissues. Hence, we investigated the crosstalk between immune cell traits, secreted proteins, genetic variants and the glycosylation patterns of serum IgG, in a multi-omic and cross-sectional study of 622 individuals from the TwinsUK cohort, 172 of whom were diagnosed with AITD. We observed associations between two genetic variants (rs505922 and rs687621), AITD status, the secretion of Desmoglein-2 protein, and the profile of two IgG N-glycan traits in AITD, but further studies need to be performed to better understand their crosstalk in AITD. On the other side, enhanced afucosylated IgG was positively associated with activatory CD335- CD314+ CD158b+ NK cell subsets. Increased levels of the apoptosis and inflammation markers Caspase-2 and Interleukin-1α positively associated with AITD. Two genetic variants associated with AITD, rs1521 and rs3094228, were also associated with altered expression of the thyrocyte-expressed ligands known to recognize the NK cell immunoreceptors CD314 and CD158b. Our analyses reveal a combination of heightened Fc-active IgG antibodies, effector cells, cytokines and apoptotic signals in AITD, and AITD genetic variants associated with altered expression of thyrocyte-expressed ligands to NK cell immunoreceptors. Together, TPOAb responses, dysregulated immune features, germline variants associated with immunoactivity profiles, are consistent with a positive autoreactive antibody-dependent NK cell-mediated immune response likely drawn to the thyroid gland in AITD.
Collapse
Affiliation(s)
- Tiphaine C. Martin
- Department of Twin Research and Genetic Epidemiology, King’s College, London SE1 7EH, UK; (A.V.); (M.B.); (M.M.); (C.J.S.); (J.T.B.); (S.G.W.); (T.D.S.)
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristina M. Ilieva
- St John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK; (K.M.I.); (S.N.K.)
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
| | - Alessia Visconti
- Department of Twin Research and Genetic Epidemiology, King’s College, London SE1 7EH, UK; (A.V.); (M.B.); (M.M.); (C.J.S.); (J.T.B.); (S.G.W.); (T.D.S.)
| | - Michelle Beaumont
- Department of Twin Research and Genetic Epidemiology, King’s College, London SE1 7EH, UK; (A.V.); (M.B.); (M.M.); (C.J.S.); (J.T.B.); (S.G.W.); (T.D.S.)
| | - Steven J. Kiddle
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London SE5 8AF, UK; (S.J.K.); (R.J.B.D.)
- MRC Biostatistics Unit, University of Cambridge, Cambridge CB2 0SR, UK
| | - Richard J. B. Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London SE5 8AF, UK; (S.J.K.); (R.J.B.D.)
- Health Data Research UK (HDR UK), London Institute of Health Informatics, University College London, London NW1 2DA, UK
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College, London SE1 7EH, UK; (A.V.); (M.B.); (M.M.); (C.J.S.); (J.T.B.); (S.G.W.); (T.D.S.)
- NIHR Biomedical Research Centre at Guy’s and St. Thomas’s NHS Foundation Trust, London SE1 9RT, UK
| | - Ee Mun Lim
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia; (E.M.L.); (J.P.W.)
- Medical School, The University of Western Australia, Crawley, WA 6009, Australia
- PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Marija Pezer
- Genos, Glycoscience Research Laboratory, 10000 Zagreb, Croatia; (M.P.); (G.L.)
| | - Claire J. Steves
- Department of Twin Research and Genetic Epidemiology, King’s College, London SE1 7EH, UK; (A.V.); (M.B.); (M.M.); (C.J.S.); (J.T.B.); (S.G.W.); (T.D.S.)
| | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, King’s College, London SE1 7EH, UK; (A.V.); (M.B.); (M.M.); (C.J.S.); (J.T.B.); (S.G.W.); (T.D.S.)
| | - Scott G. Wilson
- Department of Twin Research and Genetic Epidemiology, King’s College, London SE1 7EH, UK; (A.V.); (M.B.); (M.M.); (C.J.S.); (J.T.B.); (S.G.W.); (T.D.S.)
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia; (E.M.L.); (J.P.W.)
| | - Gordan Lauc
- Genos, Glycoscience Research Laboratory, 10000 Zagreb, Croatia; (M.P.); (G.L.)
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA;
| | - John P. Walsh
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia; (E.M.L.); (J.P.W.)
- Medical School, The University of Western Australia, Crawley, WA 6009, Australia
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College, London SE1 7EH, UK; (A.V.); (M.B.); (M.M.); (C.J.S.); (J.T.B.); (S.G.W.); (T.D.S.)
| | - Sophia N. Karagiannis
- St John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK; (K.M.I.); (S.N.K.)
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
| |
Collapse
|
4
|
Phenotypic and Functional Changes in Peripheral Blood Natural Killer Cells in Crohn Disease Patients. Mediators Inflamm 2020; 2020:6401969. [PMID: 32148442 PMCID: PMC7049869 DOI: 10.1155/2020/6401969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/12/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022] Open
Abstract
We investigated activation status, cytotoxic potential, and gut homing ability of the peripheral blood Natural Killer (NK) cells in Crohn disease (CD) patients. For this purpose, we compared the expression of different activating and inhibitory receptors (KIR and non-KIR) and integrins on NK cells as well as their recent degranulation history between the patients and age-matched healthy controls. The study was conducted using freshly obtained peripheral blood samples from the study participants. Multiple color flow cytometry was used for these determinations. Our results show that NK cells from treatment-naïve CD patients expressed higher levels of activating KIR as well as other non-KIR activating receptors vis-à-vis healthy controls. They also showed increased frequencies of the cells expressing these receptors. The expression of several KIR and non-KIR inhibitory receptors tended to decrease compared with the cells from healthy donors. NK cells from the patients also expressed increased levels of different gut-homing integrin molecules and showed a history of increased recent degranulation events both constitutively and in response to their in vitro stimulation. Furthermore, treatment of the patients tended to reverse these NK cell changes. Our results demonstrate unequivocally, for the first time, that peripheral blood NK cells in treatment-naïve CD patients are more activated and are more poised to migrate to the gut compared to their counterpart cells from healthy individuals. Moreover, they show that treatment of the patients tends to normalize their NK cells. The results suggest that NK cells are very likely to play a role in the immunopathogenesis of Crohn disease.
Collapse
|
5
|
Ząbczyńska M, Polak K, Kozłowska K, Sokołowski G, Pocheć E. The Contribution of IgG Glycosylation to Antibody-Dependent Cell-Mediated Cytotoxicity (ADCC) and Complement-Dependent Cytotoxicity (CDC) in Hashimoto's Thyroiditis: An in Vitro Model of Thyroid Autoimmunity. Biomolecules 2020; 10:biom10020171. [PMID: 31979029 PMCID: PMC7072644 DOI: 10.3390/biom10020171] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) are involved in destruction of thyroid tissue in Hashimoto’s thyroiditis (HT). N-glycosylation of the Fc fragment affects the effector functions of IgG by enhancing or suppressing the cytotoxicity effect. The aim of the present study was to assess the impact of HT-specific IgG glycosylation in ADCC and CDC, using in vitro models. The normal thyroid Nthy-ori 3-1 cell line and thyroid carcinoma FTC-133 cells were used as the target cells. Peripheral blood mononuclear cells (PBMCs) from healthy donors and the HL-60 human promyelotic leukemia cell line served as the effector cells. IgG was isolated from sera of HT and healthy donors and then treated with α2-3,6,8-neuraminidase to cut off sialic acids (SA) from N-glycans. We observed more intensive cytotoxicity in the presence of IgG from HT patients than in the presence of IgG from healthy donors. Removal of SA from IgG N-glycans increased ADCC intensity and reduced CDC. We conclude that the enhanced thyrocyte lysis resulted from the higher anti-TPO content in the whole IgG pool of HT donors and from altered IgG glycosylation in HT autoimmunity.
Collapse
Affiliation(s)
- Marta Ząbczyńska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (M.Z.); (K.P.); (K.K.)
| | - Katarzyna Polak
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (M.Z.); (K.P.); (K.K.)
| | - Kamila Kozłowska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (M.Z.); (K.P.); (K.K.)
| | - Grzegorz Sokołowski
- Department of Endocrinology, University Hospital in Kraków, Kopernika 17, 31-501 Kraków, Poland;
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (M.Z.); (K.P.); (K.K.)
- Correspondence: ; Tel.: +48-12-664-6467
| |
Collapse
|
6
|
Godlewska M, Banga PJ. Thyroid peroxidase as a dual active site enzyme: Focus on biosynthesis, hormonogenesis and thyroid disorders of autoimmunity and cancer. Biochimie 2019; 160:34-45. [DOI: 10.1016/j.biochi.2019.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/05/2019] [Indexed: 01/02/2023]
|
7
|
Li FX, Wei LJ, Zhang H, Li SX, Liu JT. Significance of Thrombocytosis in Clinicopathologic Characteristics and Prognosis of Gastric Cancer. Asian Pac J Cancer Prev 2014; 15:6511-7. [DOI: 10.7314/apjcp.2014.15.16.6511] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
8
|
A mouse monoclonal antibody against dengue virus type 1 Mochizuki strain targeting envelope protein domain II and displaying strongly neutralizing but not enhancing activity. J Virol 2013; 87:12828-37. [PMID: 24049185 DOI: 10.1128/jvi.01874-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dengue fever and its more severe form, dengue hemorrhagic fever, are major global concerns. Infection-enhancing antibodies are major factors hypothetically contributing to increased disease severity. In this study, we generated 26 monoclonal antibodies (MAbs) against the dengue virus type 1 Mochizuki strain. We selected this strain because a relatively large number of unique and rare amino acids were found on its envelope protein. Although most MAbs showing neutralizing activities exhibited enhancing activities at subneutralizing doses, one MAb (D1-IV-7F4 [7F4]) displayed neutralizing activities without showing enhancing activities at lower concentrations. In contrast, another MAb (D1-V-3H12 [3H12]) exhibited only enhancing activities, which were suppressed by pretreatment of cells with anti-FcγRIIa. Although antibody engineering revealed that antibody subclass significantly affected 7F4 (IgG3) and 3H12 (IgG1) activities, neutralizing/enhancing activities were also dependent on the epitope targeted by the antibody. 7F4 recognized an epitope on the envelope protein containing E118 (domain II) and had a neutralizing activity 10- to 1,000-fold stronger than the neutralizing activity of previously reported human or humanized neutralizing MAbs targeting domain I and/or domain II. An epitope-blocking enzyme-linked immunosorbent assay (ELISA) indicated that a dengue virus-immune population possessed antibodies sharing an epitope with 7F4. Our results demonstrating induction of these antibody species (7F4 and 3H12) in Mochizuki-immunized mice may have implications for dengue vaccine strategies designed to minimize induction of enhancing antibodies in vaccinated humans.
Collapse
|