1
|
Celi AB, Goldstein J, Rosato-Siri MV, Pinto A. Role of Globotriaosylceramide in Physiology and Pathology. Front Mol Biosci 2022; 9:813637. [PMID: 35372499 PMCID: PMC8967256 DOI: 10.3389/fmolb.2022.813637] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/21/2022] [Indexed: 12/14/2022] Open
Abstract
At first glance, the biological function of globoside (Gb) clusters appears to be that of glycosphingolipid (GSL) receptors for bacterial toxins that mediate host-pathogen interaction. Indeed, certain bacterial toxin families have been evolutionarily arranged so that they can enter eukaryotic cells through GSL receptors. A closer look reveals this molecular arrangement allocated on a variety of eukaryotic cell membranes, with its role revolving around physiological regulation and pathological processes. What makes Gb such a ubiquitous functional arrangement? Perhaps its peculiarity is underpinned by the molecular structure itself, the nature of Gb-bound ligands, or the intracellular trafficking unleashed by those ligands. Moreover, Gb biological conspicuousness may not lie on intrinsic properties or on its enzymatic synthesis/degradation pathways. The present review traverses these biological aspects, focusing mainly on globotriaosylceramide (Gb3), a GSL molecule present in cell membranes of distinct cell types, and proposes a wrap-up discussion with a phylogenetic view and the physiological and pathological functional alternatives.
Collapse
Affiliation(s)
- Ana Beatriz Celi
- Laboratorio de Neurofisiopatología, Instituto de Fisiología y Biofísica “Houssay”, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge Goldstein
- Laboratorio de Neurofisiopatología, Instituto de Fisiología y Biofísica “Houssay”, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Victoria Rosato-Siri
- Departamento de Física Médica/Instituto de Nanociencia y Nanotecnología, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Alipio Pinto
- Laboratorio de Neurofisiopatología, Instituto de Fisiología y Biofísica “Houssay”, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Alipio Pinto,
| |
Collapse
|
2
|
Qu Z, Zhou L. Drug Development in the Field of Sphinogolipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:169-188. [PMID: 35503181 DOI: 10.1007/978-981-19-0394-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Reza S, Ugorski M, Suchański J. Glucosylceramide and galactosylceramide, small glycosphingolipids with significant impact on health and disease. Glycobiology 2021; 31:1416-1434. [PMID: 34080016 PMCID: PMC8684486 DOI: 10.1093/glycob/cwab046] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/26/2022] Open
Abstract
Numerous clinical observations and exploitation of cellular and animal models indicate that glucosylceramide (GlcCer) and galactosylceramide (GalCer) are involved in many physiological and pathological phenomena. In many cases, the biological importance of these monohexosylcermides has been shown indirectly as the result of studies on enzymes involved in their synthesis and degradation. Under physiological conditions, GalCer plays a key role in the maintenance of proper structure and stability of myelin and differentiation of oligodendrocytes. On the other hand, GlcCer is necessary for the proper functions of epidermis. Such an important lysosomal storage disease as Gaucher disease (GD) and a neurodegenerative disorder as Parkinson’s disease are characterized by mutations in the GBA1 gene, decreased activity of lysosomal GBA1 glucosylceramidase and accumulation of GlcCer. In contrast, another lysosomal disease, Krabbe disease, is associated with mutations in the GALC gene, resulting in deficiency or decreased activity of lysosomal galactosylceramidase and accumulation of GalCer and galactosylsphingosine. Little is known about the role of both monohexosylceramides in tumor progression; however, numerous studies indicate that GlcCer and GalCer play important roles in the development of multidrug-resistance by cancer cells. It was shown that GlcCer is able to provoke immune reaction and acts as a self-antigen in GD. On the other hand, GalCer was recognized as an important cellular receptor for HIV-1. Altogether, these two molecules are excellent examples of how slight differences in chemical composition and molecular conformation contribute to profound differences in their physicochemical properties and biological functions.
Collapse
Affiliation(s)
- Safoura Reza
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375, Wroclaw, Poland
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375, Wroclaw, Poland
| | - Jarosław Suchański
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375, Wroclaw, Poland
| |
Collapse
|
4
|
Guimarães AJ, de Cerqueira MD, Zamith-Miranda D, Lopez PH, Rodrigues ML, Pontes B, Viana NB, DeLeon-Rodriguez CM, Rossi DCP, Casadevall A, Gomes AMO, Martinez LR, Schnaar RL, Nosanchuk JD, Nimrichter L. Host membrane glycosphingolipids and lipid microdomains facilitate Histoplasma capsulatum internalisation by macrophages. Cell Microbiol 2018; 21:e12976. [PMID: 30427108 DOI: 10.1111/cmi.12976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/03/2018] [Accepted: 09/17/2018] [Indexed: 12/17/2022]
Abstract
Recognition and internalisation of intracellular pathogens by host cells is a multifactorial process, involving both stable and transient interactions. The plasticity of the host cell plasma membrane is fundamental in this infectious process. Here, the participation of macrophage lipid microdomains during adhesion and internalisation of the fungal pathogen Histoplasma capsulatum (Hc) was investigated. An increase in membrane lateral organisation, which is a characteristic of lipid microdomains, was observed during the first steps of Hc-macrophage interaction. Cholesterol enrichment in macrophage membranes around Hc contact regions and reduced levels of Hc-macrophage association after cholesterol removal also suggested the participation of lipid microdomains during Hc-macrophage interaction. Using optical tweezers to study cell-to-cell interactions, we showed that cholesterol depletion increased the time required for Hc adhesion. Additionally, fungal internalisation was significantly reduced under these conditions. Moreover, macrophages treated with the ceramide-glucosyltransferase inhibitor (P4r) and macrophages with altered ganglioside synthesis (from B4galnt1-/- mice) showed a deficient ability to interact with Hc. Coincubation of oligo-GM1 and treatment with Cholera toxin Subunit B, which recognises the ganglioside GM1, also reduced Hc association. Although purified GM1 did not alter Hc binding, treatment with P4 significantly increased the time required for Hc binding to macrophages. The content of CD18 was displaced from lipid microdomains in B4galnt1-/- macrophages. In addition, macrophages with reduced CD18 expression (CD18low ) were associated with Hc at levels similar to wild-type cells. Finally, CD11b and CD18 colocalised with GM1 during Hc-macrophage interaction. Our results indicate that lipid rafts and particularly complex gangliosides that reside in lipid rafts stabilise Hc-macrophage adhesion and mediate efficient internalisation during histoplasmosis.
Collapse
Affiliation(s)
- Allan J Guimarães
- Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Rio de Janeiro, Brazil.,Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Mariana Duarte de Cerqueira
- Department of General Microbiology, Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Zamith-Miranda
- Department of General Microbiology, Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pablo H Lopez
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marcio L Rodrigues
- Department of General Microbiology, Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Bruno Pontes
- LPO-COPEA, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathan B Viana
- LPO-COPEA, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,LPO-COPEA, Institute of Physics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos M DeLeon-Rodriguez
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Diego Conrado Pereira Rossi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Andre M O Gomes
- Program of Structural Biology, Institute of Medical Biochemistry Leopoldo de Meis and National Institute of Science and Technology of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis R Martinez
- Biological Sciences, The University of Texas at El Paso, El Paso, Texas
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joshua D Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Leonardo Nimrichter
- Department of General Microbiology, Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Huang H, Tong TT, Yau LF, Chen CY, Mi JN, Wang JR, Jiang ZH. LC-MS based sphingolipidomic study on A549 human lung adenocarcinoma cell line and its taxol-resistant strain. BMC Cancer 2018; 18:799. [PMID: 30089463 PMCID: PMC6083515 DOI: 10.1186/s12885-018-4714-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/01/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Resistance to chemotherapy drugs (e.g. taxol) has been a major obstacle in successful cancer treatment. In A549 human lung adenocarcinoma, acquired resistance to the first-line chemotherapy taxol has been a critical problem in clinics. Sphingolipid (SPL) controls various aspects of cell growth, survival, adhesion, and motility in cancer, and has been gradually regarded as a key factor in drug resistance. To better understand the taxol-resistant mechanism, a comprehensive sphingolipidomic approach was carried out to investigate the sphingolipid metabolism in taxol-resistant strain of A549 cell (A549T). METHODS A549 and A549T cells were extracted according to the procedure with optimal condition for SPLs. Sphingolipidomic analysis was carried out by using an UHPLC coupled with quadrupole time-of-flight (Q-TOF) MS system for qualitative profiling and an UHPLC coupled with triple quadrupole (QQQ) MS system for quantitative analysis. The differentially expressed sphingolipids between taxol-sensitive and -resistant cells were explored by using multivariate analysis. RESULTS Based on accurate mass and characteristic fragment ions, 114 SPLs, including 4 new species, were clearly identified. Under the multiple reaction monitoring (MRM) mode of QQQ MS, 75 SPLs were further quantified in both A549 and A549T. Multivariate analysis explored that the levels of 57 sphingolipids significantly altered in A549T comparing to those of A549 (p < 0.001 and VIP > 1), including 35 sphingomyelins (SMs), 14 ceramides (Cers), 3 hexosylceramides (HexCers), 4 lactosylceramides (LacCers) and 1 sphingosine. A significant decrease of SM and Cer levels and overall increase of HexCer and LacCer represent the major SPL metabolic characteristic in A549T. CONCLUSIONS This study investigated sphingolipid profiles in human lung adenocarcinoma cell lines, which is the most comprehensive sphingolipidomic analysis of A549 and A549T. To some extent, the mechanism of taxol-resistance could be attributed to the aberrant sphingolipid metabolism, "inhibition of the de novo synthesis pathway" and "activation of glycosphingolipid pathway" may play the dominant role for taxol-resistance in A549T. This study provides insights into the strategy for clinical diagnosis and treatment of taxol resistant lung cancer.
Collapse
Affiliation(s)
- Hao Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China.,College of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Tian-Tian Tong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Lee-Fong Yau
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Cheng-Yu Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Jia-Ning Mi
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Jing-Rong Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China.
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China. .,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Lee WK, Kolesnick RN. Sphingolipid abnormalities in cancer multidrug resistance: Chicken or egg? Cell Signal 2017; 38:134-145. [PMID: 28687494 DOI: 10.1016/j.cellsig.2017.06.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 06/25/2017] [Accepted: 06/25/2017] [Indexed: 12/12/2022]
Abstract
The cancer multidrug resistance (MDR) phenotype encompasses a myriad of molecular, genetic and cellular alterations resulting from progressive oncogenic transformation and selection. Drug efflux transporters, in particular the MDR P-glycoprotein ABCB1, play an important role in MDR but cannot confer the complete phenotype alone indicating parallel alterations are prerequisite. Sphingolipids are essential constituents of lipid raft domains and directly participate in functionalization of transmembrane proteins, including providing an optimal lipid microenvironment for multidrug transporters, and are also perturbed in cancer. Here we postulate that increased sphingomyelin content, developing early in some cancers, recruits and functionalizes plasma membrane ABCB1 conferring a state of partial MDR, which is completed by glycosphingolipid disturbance and the appearance of intracellular vesicular ABCB1. In this review, the independent and interdependent roles of sphingolipid alterations and ABCB1 upregulation during the transformation process and resultant conferment of partial and complete MDR phenotypes are discussed.
Collapse
Affiliation(s)
- Wing-Kee Lee
- Laboratory of Signal Transduction, Sloan Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, United States; Institute for Physiology, Pathophysiology and Toxicology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany.
| | - Richard N Kolesnick
- Laboratory of Signal Transduction, Sloan Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, United States
| |
Collapse
|
7
|
Foroozesh M, Goyal N, Jackson T, Do C, Booker S, Hill T, Liu J. OPTIMIZATION OF SCALE-UP SYNTHESIS OF ANTI-CANCER CERAMIDE ANALOG 315. JOURNAL OF UNDERGRADUATE CHEMISTRY RESEARCH 2017; 16:89-90. [PMID: 30220887 PMCID: PMC6138050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ceramides, serve as central mediators in sphingolipid metabolism and signaling pathways. They function in signaling events which induce apoptosis, cell cycle arrest, and autophagic responses. In cancer cells, ceramide levels are often suppressed by the up-regulation of ceramide-metabolizing enzymes or the down-regulation of ceramide-generating enzymes, resulting in increased cancer cell survival. Chemotherapeutic drugs and radiation therapy have been shown to increase intracellular ceramide levels leading to anti-cancer effects. Anti-cancer effects have also been seen in cancer cells with the use of exogenous short-chain ceramides. Our laboratory has synthesized a library of ceramide analogs and tested their effects on breast cancer cell lines. Analog 315 has been shown to be the most effective ceramide analog in our library. Here, we are reporting a large-scale synthesis of that analog is reported.
Collapse
Affiliation(s)
- Maryam Foroozesh
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA, 70125
| | - Navneet Goyal
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA, 70125
| | - Taylor Jackson
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA, 70125
| | - Camilla Do
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA, 70125
| | - Sydney Booker
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA, 70125
| | - Tarius Hill
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA, 70125
| | - Jiawang Liu
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA, 70125
| |
Collapse
|
8
|
Extended ultrastructural characterization of chordoma cells: the link to new therapeutic options. PLoS One 2014; 9:e114251. [PMID: 25479055 PMCID: PMC4257693 DOI: 10.1371/journal.pone.0114251] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/05/2014] [Indexed: 01/25/2023] Open
Abstract
Chordomas are rare bone tumors, developed from the notochord and largely resistant to chemotherapy. A special feature of this tumor is the heterogeneity of its cells. By combining high pressure freezing (HPF) with electron tomography we were able to illustrate the connections within the cells, the cell-cell interface, and the mitochondria-associated endoplasmic reticulum membrane complex that appears to play a special role among the characteristics of chordoma. These lipid raft-like regions are responsible for lipid syntheses and for calcium signaling. Compared to other tumor cells, chordoma cells show a close connection of rough endoplasmic reticulum and mitochondria, which may influence the sphingolipid metabolism and calcium release. We quantified levels of ceramide and glycosylceramide species by the methyl tert-butyl ether extraction method and we assessed the intracellular calcium concentration with the ratiometric fluorescent dye Fura-2AM. Measurements of the changes in the intracellular calcium concentration revealed an increase in calcium due to the application of acetylcholine. With regard to lipid synthesis, glucosylceramide levels in the chordoma cell line were significantly higher than those in normal healthy cells. The accumulation of glycosylceramide in drug resistant cancer cells has been confirmed in many types of cancer and may also account for drug resistance in chordoma. This study aimed to provide a deep morphological description of chordoma cells, it demonstrated that HPF analysis is useful in elucidating detailed structural information. Furthermore we demonstrate how an accumulation of glycosylceramide in chordoma provides links to drug resistance and opens up the field for new research options.
Collapse
|
9
|
Don AS, Lim XY, Couttas TA. Re-configuration of sphingolipid metabolism by oncogenic transformation. Biomolecules 2014; 4:315-53. [PMID: 24970218 PMCID: PMC4030989 DOI: 10.3390/biom4010315] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/11/2014] [Accepted: 02/27/2014] [Indexed: 12/15/2022] Open
Abstract
The sphingolipids are one of the major lipid families in eukaryotes, incorporating a diverse array of structural variants that exert a powerful influence over cell fate and physiology. Increased expression of sphingosine kinase 1 (SPHK1), which catalyses the synthesis of the pro-survival, pro-angiogenic metabolite sphingosine 1-phosphate (S1P), is well established as a hallmark of multiple cancers. Metabolic alterations that reduce levels of the pro-apoptotic lipid ceramide, particularly its glucosylation by glucosylceramide synthase (GCS), have frequently been associated with cancer drug resistance. However, the simple notion that the balance between ceramide and S1P, often referred to as the sphingolipid rheostat, dictates cell survival contrasts with recent studies showing that highly potent and selective SPHK1 inhibitors do not affect cancer cell proliferation or survival, and studies demonstrating higher ceramide levels in some metastatic cancers. Recent reports have implicated other sphingolipid metabolic enzymes such as acid sphingomyelinase (ASM) more strongly in cancer pathogenesis, and highlight lysosomal sphingolipid metabolism as a possible weak point for therapeutic targeting in cancer. This review describes the evidence implicating different sphingolipid metabolic enzymes and their products in cancer pathogenesis, and suggests how newer systems-level approaches may improve our overall understanding of how oncogenic transformation reconfigures sphingolipid metabolism.
Collapse
Affiliation(s)
- Anthony S Don
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Xin Y Lim
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Timothy A Couttas
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
10
|
Wang X, Beitler JJ, Wang H, Lee MJ, Huang W, Koenig L, Nannapaneni S, Amin ARMR, Bonner M, Shin HJC, Chen ZG, Arbiser JL, Shin DM. Honokiol enhances paclitaxel efficacy in multi-drug resistant human cancer model through the induction of apoptosis. PLoS One 2014; 9:e86369. [PMID: 24586249 PMCID: PMC3934844 DOI: 10.1371/journal.pone.0086369] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/08/2013] [Indexed: 11/19/2022] Open
Abstract
Resistance to chemotherapy remains a major obstacle in cancer therapy. This study aimed to evaluate the molecular mechanism and efficacy of honokiol in inducing apoptosis and enhancing paclitaxel chemotherapy in pre-clinical multi-drug resistant (MDR) cancer models, including lineage-derived human MDR (KB-8-5, KB-C1, KB-V1) and their parental drug sensitive KB-3-1 cancer cell lines. In vitro analyses demonstrated that honokiol effectively inhibited proliferation in KB-3-1 cells and the MDR derivatives (IC50 ranging 3.35±0.13 µg/ml to 2.77±0.22 µg/ml), despite their significant differences in response to paclitaxel (IC50 ranging 1.66±0.09 ng/ml to 6560.9±439.52 ng/ml). Honokiol induced mitochondria-dependent and death receptor-mediated apoptosis in MDR KB cells, which was associated with inhibition of EGFR-STAT3 signaling and downregulation of STAT3 target genes. Combined treatment with honokiol and paclitaxel synergistically augmented cytotoxicity in MDR KB cells, compared with treatment with either agent alone in vitro. Importantly, the combined treatment significantly inhibited in vivo growth of KB-8-5 tumors in a subcutaneous model. Tumor tissues from the combination group displayed a significant inhibition of Ki-67 expression and an increase in TUNEL-positive cells compared with the control group. These results suggest that targeting multidrug resistance using honokiol in combination with chemotherapy drugs may provide novel therapeutic opportunities.
Collapse
Affiliation(s)
- Xu Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jonathan J. Beitler
- Department of Radiation Oncology and Otolaryngology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Hong Wang
- Department of Radiation Oncology and Otolaryngology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Michael J. Lee
- Emory College of Arts and Sciences, Atlanta, Georgia, United States of America
| | - Wen Huang
- Department of Radiation Oncology and Otolaryngology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Lydia Koenig
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Sreenivas Nannapaneni
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - A. R. M. Ruhul Amin
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Michael Bonner
- Department of Dermatology, Winship Cancer Institute, Emory University School of Medicine, and Atlanta Veterans Administration Medical Center, Atlanta, Georgia, United States of America
| | | | - Zhuo Georgia Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jack L. Arbiser
- Department of Dermatology, Winship Cancer Institute, Emory University School of Medicine, and Atlanta Veterans Administration Medical Center, Atlanta, Georgia, United States of America
| | - Dong M. Shin
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
11
|
Abstract
Ceramide serves as a central mediator in sphingolipid metabolism and signaling pathways, regulating many fundamental cellular responses. It is referred to as a 'tumor suppressor lipid', since it powerfully potentiates signaling events that drive apoptosis, cell cycle arrest, and autophagic responses. In the typical cancer cell, ceramide levels and signaling are usually suppressed by overexpression of ceramide-metabolizing enzymes or downregulation of ceramide-generating enzymes. However, chemotherapeutic drugs as well as radiotherapy increase intracellular ceramide levels, while exogenously treating cancer cells with short-chain ceramides leads to anticancer effects. All evidence currently points to the fact that the upregulation of ceramide levels is a promising anticancer strategy. In this review, we exhibit many anticancer ceramide analogs as downstream receptor agonists and ceramide-metabolizing enzyme inhibitors.
Collapse
|
12
|
Ponnapakam AP, Liu J, Bhinge KN, Drew BA, Wang TL, Antoon JW, Nguyen TT, Dupart PS, Wang Y, Zhao M, Liu YY, Foroozesh M, Beckman BS. 3-Ketone-4,6-diene ceramide analogs exclusively induce apoptosis in chemo-resistant cancer cells. Bioorg Med Chem 2014; 22:1412-20. [PMID: 24457089 DOI: 10.1016/j.bmc.2013.12.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/16/2013] [Accepted: 12/26/2013] [Indexed: 02/07/2023]
Abstract
Multidrug-resistance is a major cause of cancer chemotherapy failure in clinical treatment. Evidence shows that multidrug-resistant cancer cells are as sensitive as corresponding regular cancer cells under the exposure to anticancer ceramide analogs. In this work we designed five new ceramide analogs with different backbones, in order to test the hypothesis that extending the conjugated system in ceramide analogs would lead to an increase of their anticancer activity and selectivity towards resistant cancer cells. The analogs with the 3-ketone-4,6-diene backbone show the highest apoptosis-inducing efficacy. The most potent compound, analog 406, possesses higher pro-apoptotic activity in chemo-resistant cell lines MCF-7TN-R and NCI/ADR-RES than the corresponding chemo-sensitive cell lines MCF-7 and OVCAR-8, respectively. However, this compound shows the same potency in inhibiting the growth of another pair of chemo-sensitive and chemo-resistant cancer cells, MCF-7 and MCF-7/Dox. Mechanism investigations indicate that analog 406 can induce apoptosis in chemo-resistant cancer cells through the mitochondrial pathway. Cellular glucosylceramide synthase assay shows that analog 406 does not interrupt glucosylceramide synthase in chemo-resistant cancer cell NCI/ADR-RES. These findings suggest that due to certain intrinsic properties, ceramide analogs' pro-apoptotic activity is not disrupted by the normal drug-resistance mechanisms, leading to their potential use for overcoming cancer multidrug-resistance.
Collapse
Affiliation(s)
- Adharsh P Ponnapakam
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, United States
| | - Jiawang Liu
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, United States
| | - Kaustubh N Bhinge
- College of Pharmacy Basic Pharmaceutical Sciences, University of Louisiana at Monroe, 1800 Bienville, Monroe, LA 71209, United States
| | - Barbara A Drew
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, United States
| | - Tony L Wang
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, United States
| | - James W Antoon
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, United States
| | - Thong T Nguyen
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, United States
| | - Patrick S Dupart
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, United States
| | - Yuji Wang
- College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Ming Zhao
- College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Yong-Yu Liu
- College of Pharmacy Basic Pharmaceutical Sciences, University of Louisiana at Monroe, 1800 Bienville, Monroe, LA 71209, United States
| | - Maryam Foroozesh
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, United States.
| | - Barbara S Beckman
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, United States
| |
Collapse
|
13
|
Liu YY, Hill RA, Li YT. Ceramide glycosylation catalyzed by glucosylceramide synthase and cancer drug resistance. Adv Cancer Res 2013; 117:59-89. [PMID: 23290777 DOI: 10.1016/b978-0-12-394274-6.00003-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glucosylceramide synthase (GCS), converting ceramide to glucosylceramide, catalyzes the first reaction of ceramide glycosylation in sphingolipid metabolism. This glycosylation by GCS is a critical step regulating the modulation of cellular activities by controlling ceramide and glycosphingolipids (GSLs). An increase of ceramide in response to stresses, such as chemotherapy, drives cells to proliferation arrest and apoptosis or autophagy; however, ceramide glycosylation promptly eliminates ceramide and consequently, these induced processes, thus protecting cancer cells. Further, persistently enhanced ceramide glycosylation can increase GSLs, participating in selecting cancer cells to drug resistance. GCS is overexpressed in diverse drug-resistant cancer cells and in tumors of breast, colon, and leukemia that display poor response to chemotherapy. As ceramide glycosylation by GCS is a rate-limiting step in GSL synthesis, inhibition of GCS sensitizes cancer cells to anticancer drugs and eradicates cancer stem cells. Mechanistic studies indicate that uncoupling ceramide glycosylation can modulate gene expression, decreasing MDR1 through the cSrc/β-catenin pathway and restoring p53 expression via RNA splicing. These studies not only expand our knowledge in understanding how ceramide glycosylation affects cancer cells but also provide novel therapeutic approaches for targeting refractory tumors.
Collapse
Affiliation(s)
- Yong-Yu Liu
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA, USA.
| | | | | |
Collapse
|
14
|
Di Sano F, Piacentini M. Reticulon Protein-1C: A New Hope in the Treatment of Different Neuronal Diseases. Int J Cell Biol 2012; 2012:651805. [PMID: 22693512 PMCID: PMC3368183 DOI: 10.1155/2012/651805] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 03/18/2012] [Indexed: 12/15/2022] Open
Abstract
Reticulons (RTNs) are a group of membrane proteins localized on the ER and known to regulate ER structure and functions. Several studies have suggested that RTNs are involved in different important cellular functions such as changes in calcium homeostasis, ER-stress-mediated cell death, and autophagy. RTNs have been demonstrated to exert a cancer specific proapoptotic function via the interaction or the modulation of specific proteins. Reticulons have also been implicated in different signaling pathways which are at the basis of the pathogenesis of several neurodegenerative diseases. In this paper we discuss the accumulating evidence identifying RTN-1C protein as a promising target in the treatment of different pathologies such as cancer or neurodegenerative disorders.
Collapse
Affiliation(s)
- Federica Di Sano
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
- National Institute for Infectious Diseases IRCCS “L. Spallanzani”, Via Portuense, 00149 Rome, Italy
| |
Collapse
|
15
|
Phonghanpot S, Punya J, Tachaleat A, Laoteng K, Bhavakul V, Tanticharoen M, Cheevadhanarak S. Biosynthesis of xyrrolin, a new cytotoxic hybrid polyketide/non-ribosomal peptide pyrroline with anticancer potential, in Xylaria sp. BCC 1067. Chembiochem 2012; 13:895-903. [PMID: 22438295 DOI: 10.1002/cbic.201100746] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Indexed: 01/22/2023]
Abstract
A gene from Xylaria sp. BCC 1067, pks3, that encodes a putative 3660-residue hybrid polyketide synthase (PKS)/non-ribosomal peptide synthetase (NRPS) was characterised by targeted gene disruption in combination with comprehensive product identification. Studies of the features of a corresponding mutant, YA3, allowed us to demonstrate that pks3 is responsible for the synthesis of a new pyrroline compound, named xyrrolin, in the wild-type Xylaria sp. BCC 1067. The structure of xyrrolin was established by extensive spectroscopic and spectrometric analyses, including low- and high-resolution MS, IR, (1)H NMR, (13)C NMR, (13)C NMR with Dept135, HMQC 2D NMR, HMBC 2D NMR and COSY 2D NMR. On the basis of the Pks3 domain organisation and the chemical structure of xyrrolin, we proposed that biosynthesis of this compound requires the condensation of a tetraketide and an L-serine unit, followed by Dieckmann or reductive cyclisation and enzymatic removal of ketone residue(s). Bioassays of the pure xyrrolin further displayed cytotoxicity against an oral cavity (KB) cancer cell line.
Collapse
Affiliation(s)
- Suranat Phonghanpot
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, 49 Soi Tientalay 25, Takham, Bangkhuntien, Bangkok 10150, Thailand
| | | | | | | | | | | | | |
Collapse
|
16
|
Baran Y, Bielawski J, Gunduz U, Ogretmen B. Targeting glucosylceramide synthase sensitizes imatinib-resistant chronic myeloid leukemia cells via endogenous ceramide accumulation. J Cancer Res Clin Oncol 2011; 137:1535-44. [PMID: 21833718 DOI: 10.1007/s00432-011-1016-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 07/20/2011] [Indexed: 12/20/2022]
Abstract
PURPOSE Drug resistance presents a major obstacle for the treatment of some patients with chronic myeloid leukemia (CML). Pro-apoptotic ceramide mediates imatinib-induced apoptosis, and metabolism of ceramide by glucosylceramide synthase (GCS) activity, converting ceramide to glucosyl ceramide, might contribute to imatinib resistance. In this study, we investigated the role of ceramide metabolism by GCS in the regulation of imatinib-induced apoptosis in drug-sensitive and drug-resistant K562 and K562/IMA-0.2 and K562/IMA-1 human CML cells, which exhibit about 2.3- and 19-fold imatinib resistance, respectively. METHODS Cytotoxic effects of PDMP and imatinib were determined by XTT cell proliferation assay. Expression levels of GCS were determined by RT-PCR and western blot. Intracellular ceramide levels were determined by LC-MS. Cell viability analyses was conducted by Trypan blue dye exclusion assay. Cell cycle and apoptosis analyses were examined by flow cytometry. RESULTS We first showed that mRNA and protein levels of GCS are increased in drug-resistant K562/IMA as compared to sensitive K562 cells. Next, forced expression of GCS in sensitive K562 cells conferred resistance to imatinib-induced apoptosis. In reciprocal experiments, targeting GCS using its known inhibitor, PDMP, enhanced ceramide accumulation and increased cell death in response to imatinib in K562/IMA cells. CONCLUSION Our data suggest the involvement of GCS in resistance to imatinib-induced apoptosis, and that targeting GCS by PDMP increased imatinib-induced cell death in drug-sensitive and drug-resistant K562 cells via enhancing ceramide accumulation.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Benzamides
- Cell Cycle/drug effects
- Ceramides/metabolism
- Drug Resistance, Neoplasm
- Glucosyltransferases/antagonists & inhibitors
- Glucosyltransferases/physiology
- Humans
- Imatinib Mesylate
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Morpholines/pharmacology
- Piperazines/pharmacology
- Pyrimidines/pharmacology
Collapse
Affiliation(s)
- Yusuf Baran
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Faculty of Science, Gulbahce Campus, 35430, Urla, Izmir, Turkey.
| | | | | | | |
Collapse
|
17
|
Verotoxin-1 treatment or manipulation of its receptor globotriaosylceramide (gb3) for reversal of multidrug resistance to cancer chemotherapy. Toxins (Basel) 2010; 2:2467-77. [PMID: 22069561 PMCID: PMC3153170 DOI: 10.3390/toxins2102467] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 10/15/2010] [Accepted: 10/19/2010] [Indexed: 01/08/2023] Open
Abstract
A major problem with anti-cancer drug treatment is the development of acquired multidrug resistance (MDR) of the tumor cells. Verotoxin-1 (VT-1) exerts its cytotoxicity by targeting the globotriaosylceramide membrane receptor (Gb3), a glycolipid associated with multidrug resistance. Gb3 is overexpressed in many human tumors and tumor cell lines with inherent or acquired MDR. Gb3 is co-expressed and interplays with the membrane efflux transporter P-gp encoded by the MDR1 gene. P-gp could act as a lipid flippase and stimulate Gb3 induction when tumor cells are exposed to cancer chemotherapy. Recent work has shown that apoptosis and inherent or acquired multidrug resistance in Gb3-expressing tumors could be affected by VT-1 holotoxin, a sub-toxic concentration of the holotoxin concomitant with chemotherapy or its Gb3-binding B-subunit coupled to cytotoxic or immunomodulatory drug, as well as chemical manipulation of Gb3 expression. The interplay between Gb3 and P-gp thus gives a possible physiological approach to augment the chemotherapeutic effect in multidrug resistant tumors.
Collapse
|
18
|
Abstract
Multidrug-resistance (MDR) is the major reason for failure of cancer therapy. ATP-binding cassette (ABC) transporters contribute to drug resistance via ATP-dependent drug efflux. P-glycoprotein (Pgp), which is encoded by MDR1 gene, confers resistance to certain anticancer agents. The development of agents able to modulate MDR mediated by Pgp and other ABC transporters remained a major goal for the past 20 years. The calcium blocker verapamil was the first drug shown to be a modulator of Pgp, and since many different chemical compounds have been shown to exert the same effect in vitro by blocking Pgp activity. These included particularly immunosuppressors. Cyclosporin A (CSA) was the first immunosuppressor that have been shown to modulate Pgp activity in laboratory models and entered very early into clinical trials for reversal of MDR. The proof of reversing activity of CSA was found in phase II studies with myeloma and acute leukemia. In phase III studies, the results were less convincing regarding the response rate, progression-free survival, and overall survival, which were detected in advanced refractory myeloma. The non-immunosuppressive derivative PSC833 (valspodar) was subsequently developed. This compound showed tenfold higher potency in reversal of MDR mediated by Pgp. However, pharmacokinetic interactions required reductions in the dose of the concurrently administered anticancer agents. The pharmacokinetic interactions were likely because of decreased clearance of the anticancer agents, possibly as a result of Pgp inhibition in organs such as the gastrointestinal tract and kidney, as well as inhibition of cytochrome P450. Finally, CSA and PSC833 have been shown also to modulate the ceramide metabolism which stands as second messenger of anticancer agent-induced apoptosis. In fact, CSA and PSC833 are also able to respectively inhibit ceramide glycosylation and stimulate de novo ceramide synthesis. This could enhance the cellular level of ceramide and potentiate apoptosis induced by some anticancer agents.
Collapse
Affiliation(s)
- Hamid Morjani
- MEDyC Unité CNRS UMR6237, Reims Pharmacy School, Reims Cedex, France.
| | | |
Collapse
|
19
|
Liu Y, Xie KM, Yang GQ, Bai XM, Shi YP, Mu HJ, Qiao WZ, Zhang B, Xie P. GCS induces multidrug resistance by regulating apoptosis-related genes in K562/AO2 cell line. Cancer Chemother Pharmacol 2009; 66:433-9. [PMID: 19936984 DOI: 10.1007/s00280-009-1177-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 11/04/2009] [Indexed: 11/24/2022]
Abstract
We have previously shown that the expression of glucosylceramide synthase (GCS) gene in drug-resistant K562/AO2 human leukemia cell was higher than that in drug-sensitive K562 cell, and the sensitivity to adriamycin of K562/AO2 cell was enhanced by inhibiting GCS. It is concluded that the overexpression of GCS gene is one of the reasons which lead to multidrug resistance (MDR) of leukemia cell. Meanwhile, we also found that higher expression of Bcl-2 gene and protein were exhibited in K562/AO2 cell compared with K562 cell. Basing on this, we hypothesized that the high expression of GCS gene which results in MDR of leukemia cell is correlated with Bcl-2 signal transduction. In order to validate the hypothesis, the inhibition of GCS gene in K562/AO2 cell was observed by using chemical suppressor PPMP and siRNA targeted at GCS, and applying RT-PCR and flow cytometry, the expression levels of apoptosis-related gene Bcl-2 and Bax were analyzed before and after inhibiting GCS gene in K562/AO2 cell. The results demonstrated that the gene and protein of Bcl-2 in K562/AO2 cell were both down-regulated significantly after GCS gene being inhibited; however, the Bax mRNA expression had no apparent change in different groups. This suggested that GCS gene may contributed to MDR of human leukemia cell K562/AO2 by Bcl-2 signal transduction.
Collapse
Affiliation(s)
- Yan Liu
- Wuxi Higher Health Vocational Technology School, Wuxi, Jiangsu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Türk D, Hall MD, Chu BF, Ludwig JA, Fales HM, Gottesman MM, Szakács G. Identification of compounds selectively killing multidrug-resistant cancer cells. Cancer Res 2009; 69:8293-301. [PMID: 19843850 DOI: 10.1158/0008-5472.can-09-2422] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
There is a great need for the development of novel chemotherapeutic agents that overcome the emergence of multidrug resistance (MDR) in cancer. We catalogued the National Cancer Institute's DTP drug repository in search of compounds showing increased toxicity in MDR cells. By comparing the sensitivity of parental cell lines with MDR derivatives, we identified 22 compounds possessing MDR-selective activity. Analysis of structural congeners led to the identification of 15 additional drugs showing increased toxicity in Pgp-expressing cells. Analysis of MDR-selective compounds led to the formulation of structure activity relationships and pharmacophore models. This data mining coupled with experimental data points to a possible mechanism of action linked to metal chelation. Taken together, the discovery of the MDR-selective compound set shows the robustness of the developing field of MDR-targeting therapy as a new strategy for resolving Pgp-mediated MDR.
Collapse
Affiliation(s)
- Dóra Türk
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
21
|
Targeting glucosylceramide synthase downregulates expression of the multidrug resistance gene MDR1 and sensitizes breast carcinoma cells to anticancer drugs. Breast Cancer Res Treat 2009; 121:591-9. [PMID: 19693666 DOI: 10.1007/s10549-009-0513-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Accepted: 08/10/2009] [Indexed: 02/08/2023]
Abstract
Drug resistance in breast cancer remains a major cause for the failure of chemotherapy. Glucosylceramide synthase (GCS) plays an important role in multidrug resistance (MDR) in breast cancer. P-glycoprotein (P-gp) also confers a cross-resistance of many unrelated drugs. In this study, we studied the MDR effect and potential mechanisms of breast cancer after constructing permanent breast cancer cell lines with GCS knockout by using recombinant vectors targeting GCS (pSUPER-GCSshRNAs). The GCSshRNA stably transfected cells were successfully established and significant lower levels of GCS mRNA and protein expression were confirmed. In in vitro experiments, the GCSshRNA stably transfected cells showed a significantly reduced level of MDR1 and P-gp expression and decreased drug efflux ability. Reduced level of GCS expression conveyed a significant reversal of drug resistance by MTT assay and increased caspase-3 activity. In in vivo experiments by using nude mice with xenograft tumors, a significant inhibition of tumor growth was observed after comparing with the control group. Furthermore, enhanced response of chemotherapy was acquired by reduced expression of GCS as well as MDR1 in vivo. In conclusion, GCSshRNA could efficiently suppress GCS and MDR1 expression in vitro and in vivo and these findings may be used as one of the methods to reverse MDR in breast cancer.
Collapse
|
22
|
Ruckhäberle E, Karn T, Hanker L, Gätje R, Metzler D, Holtrich U, Kaufmann M, Rody A. Prognostic relevance of glucosylceramide synthase (GCS) expression in breast cancer. J Cancer Res Clin Oncol 2008; 135:81-90. [PMID: 18560890 DOI: 10.1007/s00432-008-0436-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 06/03/2008] [Indexed: 12/14/2022]
Abstract
PURPOSE Multidrug resistance (MDR) has been linked to sphingolipid metabolism and preclinical data ascribe glucosylceramide synthase (GCS) a major role for MDR especially in breast cancer cells but no profound data are available on the expression of this potential therapeutic target in clinical breast cancer specimens. METHODS We analyzed microarray data of GCS expression in a large cohort of 1,681 breast tumors. RESULTS Expression of GCS was associated with a positive estrogen receptor (ER) status, lower histological grading, low Ki67 levels and ErbB2 negativity (P < 0.001 for all). In univariate analysis there was a benefit for disease free survival for patients with tumors displaying low levels of GCS expression but this significance was lost in multivariate Cox regression. CONCLUSIONS Our results suggest ER positive tumors may be the most promising candidates for a potential therapeutic application of GCS inhibitors.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/enzymology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/secondary
- Carcinoma, Lobular/enzymology
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/secondary
- Cell Proliferation
- Child
- Female
- Gene Expression Profiling
- Glucosyltransferases/genetics
- Glucosyltransferases/metabolism
- Humans
- Ki-67 Antigen/genetics
- Ki-67 Antigen/metabolism
- Middle Aged
- Oligonucleotide Array Sequence Analysis
- Prognosis
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Survival Rate
- Young Adult
Collapse
Affiliation(s)
- Eugen Ruckhäberle
- Department of Gynecology, J. W. Goethe-University, Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
De Rosa MF, Ackerley C, Wang B, Ito S, Clarke DM, Lingwood C. Inhibition of multidrug resistance by adamantylgb3, a globotriaosylceramide analog. J Biol Chem 2007; 283:4501-11. [PMID: 18003606 DOI: 10.1074/jbc.m705473200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance (MDR) via the ABC drug transporter (ABCB1), P-glycoprotein (P-gp/MDR1) overexpression, is a major obstacle in cancer chemotherapy. Many inhibitors reverse MDR but, like cyclosporin A (CsA), have significant toxicities. MDR1 is also a translocase that flips glucosylceramide inside the Golgi to enhance neutral glycosphingolipid (GSL) synthesis. We observed partial MDR1/globotriaosylceramide (Gb3) cell surface co-localization, and GSL removal depleted cell surface MDR1. MDR1 may therefore interact with GSLs. AdamantylGb3, a water-soluble Gb3 mimic, but not other GSL analogs, reversed MDR1-MDCK cell drug resistance. Cell surface MDR1 was up-regulated 1 h after treatment with CsA or adaGb3, but at 72 h, cell surface expression was lost. Intracellular MDR1 accumulated throughout, suggesting long term defects in plasma membrane MDR1 trafficking. AdaGb3 or CsA rapidly reduced rhodamine 123 cellular efflux. MDR1 also mediates gastrointestinal epithelial drug efflux, restricting oral bioavailability. Vinblastine apical-to-basal transport in polarized human intestinal C2BBe1 cells was significantly increased when adaGb3 was added to both sides, or to the apical side only, comparable with verapamil, a standard MDR1 inhibitor. Disulfide cross-linking of mutant MDR1s showed no binding of adaGb3 to the MDR1 verapamil/cyclosporin-binding site between surface proximal helices of transmembrane segments (TM) 6 and TM7, but rather to an adjacent site nearer the center of TM6 and the TM7 extracellular face, i.e. close to the bilayer leaflet interface. Verotoxin-mediated Gb3 endocytosis also up-regulated total MDR1 and inhibited drug efflux. Thus, a functional interplay between membrane Gb3 and MDR1 provides a more physiologically based approach to MDR1 regulation to increase the bioavailability of chemotherapeutic drugs.
Collapse
Affiliation(s)
- María Fabiana De Rosa
- Division of Molecular Structure and Function, Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Heffeter P, Jakupec M, Körner W, Chiba P, Pirker C, Dornetshuber R, Elbling L, Sutterlüty H, Micksche M, Keppler B, Berger W. Multidrug-resistant cancer cells are preferential targets of the new antineoplastic lanthanum compound KP772 (FFC24). Biochem Pharmacol 2007; 73:1873-86. [PMID: 17445775 PMCID: PMC3371634 DOI: 10.1016/j.bcp.2007.03.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 02/08/2007] [Accepted: 03/05/2007] [Indexed: 10/23/2022]
Abstract
Recently, we have introduced [tris(1,10-phenanthroline)lanthanum(III)] trithiocyanate (KP772, FFC24) as a new lanthanum compound which has promising anticancer properties in vivo and in vitro. Aim of this study was to investigate the impact of ABC transporter-mediated multidrug resistance (MDR) on the anticancer activity of KP772. Here, we demonstrate that all MDR cell models investigated, overexpressing ABCB1 (P-glycoprotein), ABCC1 (multidrug resistance protein 1), or ABCG2 (breast cancer resistance protein) either due to drug selection or gene transfection, were significantly hypersensitive against KP772. Using ABCB1-overexpressing KBC-1 cells as MDR model, KP772 hypersensitivity was demonstrated to be based on stronger apoptosis induction and/or cell cycle arrest at unaltered cellular drug accumulation. KP772 did neither stimulate ABCB1 ATPase activity nor alter rhodamine 123 accumulation arguing against a direct interaction with ABCB1. Accordingly, several drug resistance modulators did not sensitize but rather protect MDR cells against KP772-induced cytotoxicity. Moreover, long-term KP772 treatment of KBC-1 cells at subtoxic concentrations led within 20 passages to a complete loss of drug resistance based on blocked MDR1 gene expression. When exposing parental KB-3-1 cells to subtoxic, stepwise increasing KP772 concentrations, we observed, in contrast to several other metallo-drugs, no acquisition of KP772 resistance. Summarizing, our data demonstrate that KP772 is hyperactive in MDR cells and might have chemosensitizing properties by blocking ABCB1 expression. Together with the disability of tumor cells to acquire KP772 resistance, our data suggest that KP772 should be especially active against notoriously drug-resistant tumor types and as second line treatment after standard chemotherapy failure.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/metabolism
- Adenocarcinoma/drug therapy
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Breast Neoplasms/drug therapy
- Carcinoma, Small Cell/drug therapy
- Cell Cycle/drug effects
- Cell Line, Tumor
- Dose-Response Relationship, Drug
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Formazans/metabolism
- HL-60 Cells
- Humans
- Lanthanum/chemistry
- Lanthanum/pharmacology
- Lanthanum/therapeutic use
- Lung Neoplasms/drug therapy
- Molecular Structure
- Neoplasm Proteins/metabolism
- Organic Anion Transporters/metabolism
- Organometallic Compounds/chemistry
- Organometallic Compounds/pharmacology
- Organometallic Compounds/therapeutic use
- Phenanthrolines/chemistry
- Phenanthrolines/pharmacology
- Phenanthrolines/therapeutic use
- Sensitivity and Specificity
- Tetrazolium Salts/metabolism
Collapse
Affiliation(s)
- P. Heffeter
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - M.A. Jakupec
- Institute of Inorganic Chemistry, University of Vienna, Austria
| | - W. Körner
- Institute for Geological Sciences, University of Vienna, Austria
| | - P. Chiba
- Institute of Medical Chemistry, Department of Physiology and Pathophysiology, Medical University of Vienna, Austria
| | - C. Pirker
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - R. Dornetshuber
- Department of Pharmacology and Toxicology, University of Vienna, Austria
| | - L. Elbling
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - H. Sutterlüty
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - M. Micksche
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - B.K. Keppler
- Institute of Inorganic Chemistry, University of Vienna, Austria
| | - W. Berger
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Corresponding author. Tel.: +43 1 4277 65173; fax: +43 1 4277 65169. (W. Berger)
| |
Collapse
|
25
|
Yamane M, Yamane S. The induction of colonocyte differentiation in CaCo-2 cells by sodium butyrate causes an increase in glucosylceramide synthesis in order to avoid apoptosis based on ceramide. Arch Biochem Biophys 2007; 459:159-68. [PMID: 17303065 DOI: 10.1016/j.abb.2007.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 01/05/2007] [Accepted: 01/06/2007] [Indexed: 10/23/2022]
Abstract
To examine the relationship between apoptosis accompanying differentiation and sphingolipid-metabolism, CaCo-2 cells were used as a model of human intestinal epithelial cells and the variation in cellular Cer/GlcCer-content and related enzyme activities during butyrate-induced differentiation were investigated. The simultaneous administration of PDMP as a GlcCer synthase inhibitor caused a significant increase in the amount of Cers, especially palmitoyl-Cer. Butyrate caused an increase in the amount of GlcCers, especially alpha-hydroxy fatty acid-GlcCers, and in cellular GlcCer synthase activity. Cellular Cer content related to apoptosis was mainly regulated by the GlcCer synthase-based metabolism of Cers.
Collapse
Affiliation(s)
- Mototeru Yamane
- Department of Biochemistry, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160, Japan.
| | | |
Collapse
|
26
|
Gouaze-Andersson V, Cabot MC. Glycosphingolipids and drug resistance. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:2096-103. [PMID: 17010304 DOI: 10.1016/j.bbamem.2006.08.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 08/23/2006] [Accepted: 08/23/2006] [Indexed: 01/31/2023]
Abstract
Drug resistance, an all too frequent characteristic of cancer, represents a serious barrier to successful treatment. Although many resistance mechanisms have been described, those that involve membrane-resident proteins belonging to the ABC (ATP binding cassette) transporter superfamily are of particular interest. In addition to cancer, the ABC transporter proteins are active in diseases such as malaria and leishmaniasis. A recent renaissance in lipid metabolism, specifically ceramide and sphingolipids, has fueled research and provided insight into the role of glycosphingolipids in multidrug resistance. This article reviews current knowledge on ceramide, glucosylceramide synthase and cerebrosides, and the relationship of these lipids to cellular response to anticancer agents.
Collapse
Affiliation(s)
- Valerie Gouaze-Andersson
- Department of Experimental Therapeutics, The John Wayne Cancer Institute at Saint John's Health Center, 2200 Santa Monica Blvd., Santa Monica, CA 90404, USA
| | | |
Collapse
|
27
|
Curfman CL, Kirkland K, Merrill AH. Recent anticancer agents targeting sphingolipid pathways. Expert Opin Ther Pat 2006. [DOI: 10.1517/13543776.16.8.1129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Ségui B, Andrieu-Abadie N, Jaffrézou JP, Benoist H, Levade T. Sphingolipids as modulators of cancer cell death: potential therapeutic targets. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:2104-20. [PMID: 16925980 DOI: 10.1016/j.bbamem.2006.05.024] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 05/04/2006] [Accepted: 05/06/2006] [Indexed: 02/07/2023]
Abstract
Through modifications in the fine membrane structure, cell-cell or cell-matrix interactions, and/or modulation of intracellular signaling pathways, sphingolipids can affect the tumorigenic potential of numerous cell types. Whereas ceramide and its metabolites have been described as regulators of cell growth and apoptosis, these lipids as well as other sphingolipid molecules can modulate the ability of malignant cells to grow and resist anticancer treatments, and their susceptibility to non-apoptotic cell deaths. This review summarizes our current knowledge on the properties of sphingolipids in the regulation of cancer cell death and tumor development. It also provides an update on the potential perspectives of manipulating sphingolipid metabolism and using sphingolipid analogues in anticancer therapy.
Collapse
Affiliation(s)
- Bruno Ségui
- INSERM U.466, Laboratoire de Biochimie, Institut Louis Bugnard, Centre Hospitalier Universitaire de Rangueil, BP 84225, 31432 Toulouse Cedex 4, France
| | | | | | | | | |
Collapse
|
29
|
Darwiche N, Abou-Lteif G, Najdi T, Kozhaya L, Abou Tayyoun A, Bazarbachi A, Dbaibo G. Human T-cell lymphotropic virus type I-transformed T-cells have a partial defect in ceramide synthesis in response to N-(4-hydroxyphenyl)retinamide. Biochem J 2006; 392:231-9. [PMID: 16086670 PMCID: PMC1317682 DOI: 10.1042/bj20050578] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Treatment with the synthetic retinoid HPR [N-(4-hydroxyphenyl)-retinamide] causes growth arrest and apoptosis in HTLV-I (human T-cell lymphotropic virus type-I)-positive and HTLV-I-negative malignant T-cells. It was observed that HPR-mediated growth inhibition was associated with ceramide accumulation only in HTLV-I-negative cells. The aim of the present study was to investigate the mechanism by which HPR differentially regulates ceramide metabolism in HTLV-I-negative and HTLV-I-positive malignant T-cells. Clinically achievable concentrations of HPR caused early dose-dependent increases in ceramide levels only in HTLV-I-negative cells and preceded HPR-induced growth suppression. HPR induced de novo synthesis of ceramide in HTLV-I-negative, but not in HTLV-I-positive, cells. Blocking ceramide glucosylation in HTLV-I-positive cells, which leads to accumulation of endogenous ceramide, rendered these cells more sensitive to HPR. Exogenous cell-permeant ceramides that function partially by generating endogenous ceramide induced growth suppression in all tested malignant lymphocytes, were consistently found to be less effective in HTLV-I-positive cells confirming their defect in de novo ceramide synthesis. Owing to its multipotent activities, the HTLV-I-encoded Tax protein was suspected to inhibit ceramide synthesis. Tax-transfected Molt-4 and HELA cells were less sensitive to HPR and C6-ceramide mediated growth inhibition respectively and produced lower levels of endogenous ceramide. Together, these results indicate that HTLV-I-positive cells are defective in de novo synthesis of ceramide and that therapeutic modalities that bypass this defect are more likely to be successful.
Collapse
Affiliation(s)
- Nadine Darwiche
- *Department of Biology, American University of Beirut, Beirut, Lebanon
- Correspondence should be addressed to either author (email and )
| | - Ghada Abou-Lteif
- *Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Tarek Najdi
- *Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Lina Kozhaya
- †Department of Biochemistry, American University of Beirut, Beirut, Lebanon
| | | | - Ali Bazarbachi
- ‡Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Ghassan S. Dbaibo
- †Department of Biochemistry, American University of Beirut, Beirut, Lebanon
- §Department of Pediatrics, American University of Beirut, Beirut, Lebanon
- Correspondence should be addressed to either author (email and )
| |
Collapse
|
30
|
Eckford P, Sharom F. The reconstituted P-glycoprotein multidrug transporter is a flippase for glucosylceramide and other simple glycosphingolipids. Biochem J 2005; 389:517-26. [PMID: 15799713 PMCID: PMC1175130 DOI: 10.1042/bj20050047] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Pgp (P-glycoprotein) multidrug transporter, which is linked to multidrug resistance in human cancers, functions as an efflux pump for non-polar drugs, powered by the hydrolysis of ATP at its nucleotide binding domains. The drug binding sites of Pgp appear to be located within the cytoplasmic leaflet of the membrane bilayer, suggesting that Pgp may function as a 'flippase' for hydrophobic compounds. Pgp has been shown to translocate fluorescent phospholipids, and it has been suggested that it may also interact with GlcCer (glucosylceramide). Here we use a dithionite fluorescence quenching technique to show that reconstituted Pgp can flip several NBD (nitrobenzo-2-oxa-1,3-diazole)-labelled simple glycosphingolipids, including NBD-GlcCer, from one leaflet of the bilayer to the other in an ATP-dependent, vanadate-sensitive fashion. The rate of NBD-GlcCer flipping was similar to that observed for NBD-labelled PC (phosphatidylcholine). NBD-GlcCer flipping was inhibited in a concentration-dependent, saturable fashion by various Pgp substrates and modulators, and inhibition correlated well with the Kd for binding to the protein. The addition of a second sugar to the headgroup of the glycolipid to form NBD-lactosylceramide drastically reduced the rate of flipping compared with NBD-PC, probably because of the increased size and polarity contributed by the additional sugar residue. We conclude that Pgp functions as a broad-specificity outwardly-directed flippase for simple glycosphingolipids and membrane phospholipids.
Collapse
Affiliation(s)
- Paul D. W. Eckford
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Frances J. Sharom
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- To whom correspondence should be addressed (email )
| |
Collapse
|
31
|
Aouali N, Eddabra L, Macadré J, Morjani H. Immunosuppressors and reversion of multidrug-resistance. Crit Rev Oncol Hematol 2005; 56:61-70. [PMID: 15978826 DOI: 10.1016/j.critrevonc.2004.12.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 11/30/2004] [Accepted: 12/10/2004] [Indexed: 11/25/2022] Open
Abstract
Drug resistance is the major reason for failure of cancer therapy. When one drug elicits a response in tumour cells resulting in resistance to a large variety of chemically unrelated drugs, this is called multidrug-resistance (MDR). ATP-binding cassette (ABC) transporters contribute to drug resistance via ATP-dependent drug efflux. P-glycoprotein (Pgp) encoded by MDR1 gene, confers resistance to certain anticancer agents. The development of agents able to modulate MDR mediated by Pgp and ABC transporters remained a major goal for the past 10 years. Immunosuppressors, cyclosporin A (CSA) in particular, were shown to modulate Pgp activity in laboratory models and entered very early into clinical trials for reversal of MDR. The proof of reversing activity of CSA was found in phase II studies with myeloma and acute leukaemia. In phase III studies, the results were less convincing regarding the response rate, progression-free survival and overall survival were detected in advanced refractory myeloma. The non-immunosuppressive derivative PSC833 was then extensively studied. This compound shows 10-fold higher potency in reversal of MDR mediated by Pgp. Results from clinical trials with this modulator are still emerging and the notable finding was the need to reduce the dose of anticancer agent used in combination with it. Other effects of CSA and PSC833 on MDR have been described. These two molecules have been shown to have an action on the metabolism of ceramide which stands as second messenger of anticancer agents-induced apoptosis. PSC833 stimulates de novo ceramide synthesis and enhances cell death induced by anticancer agents, such as camptothecins and anthracyclines. In addition, ceramide glycosylation and storage in some cell lines have been described to play a crucial role in resistance to anticancer drugs. CSA is able to inhibit ceramide glucosylation and modulate MDR phenotype. The emergence of other modulators with several ABC protein targets like VX710 are of clinical interest in malignancies expressing several efflux pumps.
Collapse
Affiliation(s)
- Nassera Aouali
- Roswell Park Cancer Institute, Department of Cancer Genetique, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | |
Collapse
|
32
|
Takeshita A, Shinoda H, Nakabayashi Y, Takano A, Matsumoto K, Suetsugu M, Miyazawa K, Tanaka S, Endo H, Tanaka S, Ueyama Y, Hanzawa A, Suda Y, Kanegae H, Yasui T. Sphingosine 1-phosphate acts as a signal molecule in ceramide signal transduction of TNF-alpha-induced activator protein-1 in osteoblastic cell line MC3T3-E1 cells. J Oral Sci 2005; 47:43-51. [PMID: 15881228 DOI: 10.2334/josnusd.47.43] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
We previously demonstrated that tumor necrosis factor (TNF)-alpha stimulated the production of activation protein (AP)-1, a transcriptional factor, in mouse osteoblastic MC3T3-E1 cells. Recent studies have shown the importance of ceramide and its metabolites as signal molecules for TNF-alpha-induced gene expression in several cell types. Therefore, our interest was to investigate whether sphingosine metabolites are involved in TNF-alpha-induced signaling in MC3T3-E1 cells. DL-threo-1-phenyl-2-hexadecanoyl-amino-3-pyrrolidino-1-propanol (PPPP), which causes accumulation of intracellular ceramide, stimulated the TNF-alpha-induced expression of the c-fos and c-jun genes. Gel shift assay clearly showed that PPPP increased the cytokine-induced specific binding of nuclear proteins to the 12-tetra-decanoyl phorbol 13-acetate-responsive element (TRE), a consensus sequence for AP-1. In addition, cell-permeable ceramide (N-acetylsphingosine, N-hexanoylsphingosine or N-octanoylsphingosine) stimulated expression of the c-fos and c-jun genes and nuclear protein binding to TRE. Interestingly, DL-threo-dihydrosphingosine (DHS), an inhibitor of sphingosine kinase, clearly blocked the ceramide analogue-induced stimulation. Sphingosine 1-phosphate (SPP) actually induced expression of these oncogenes and activated AP-1. Although TNF-alpha stimulated the AP-1-mediated expression of the monocyte chemoattractant JE/MCP-1, this stimulation was inhibited by DHS. SPP also stimulated JE/MCP-1 gene expression. The present study thus suggests that SPP acts as a signal molecule in ceramide-dependent signal transduction in TNF-alpha-induced AP-1 in osteoblastic MC3T3-E1 cells.
Collapse
Affiliation(s)
- Akira Takeshita
- Department of Oral Health and Preventive Dentistry, Meikai University School of Dentistry, Keyakidai, Sakado-city, Saitama 350-0283, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Turzanski J, Grundy M, Shang S, Russell N, Pallis M. P-glycoprotein is implicated in the inhibition of ceramide-induced apoptosis in TF-1 acute myeloid leukemia cells by modulation of the glucosylceramide synthase pathway. Exp Hematol 2005; 33:62-72. [PMID: 15661399 DOI: 10.1016/j.exphem.2004.10.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 09/23/2004] [Accepted: 10/06/2004] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Ceramide, an intermediate of apoptosis induction in response to chemotherapy, can be detoxified by glycosylation at the cytoplasmic surface of the Golgi membrane. P-glycoprotein (p-gp) might augment ceramide glycosylation by translocating glucosylceramide (GC) across the Golgi membrane. We aimed to show that glucosylceramide synthase (GCS) activity is linked to p-gp expression and resistance to ceramide-induced apoptosis in acute myeloid leukemia (AML). METHODS Apoptosis and cell-cycle analysis were measured using propidium iodide staining and flow cytometry. Fluorescent microscopy assessed p-gp expression in, and rhodamine 123 uptake by, the Golgi. P-gp interaction with GC was assessed by modulation of rhodamine accumulation. The GCS activity assay was based upon the transfer of UDP-(3)H-glucose to C8-ceramide to form radiolabeled GC, by rate-limiting cell-derived GCS. TLC and fluorimetry were used to measure the metabolites of fluorescent ceramide. Cell viability was measured using 7-amino-actinomycin D staining and flow cytometry with an internal standard for cell enumeration. RESULTS P-gp(+) cell lines (KG1a, TF-1) were resistant to C8-ceramide-induced apoptosis compared to p-gp(-) cell lines (HL-60, U937). P-gp inhibitors GF120918 and cyclosporin A enhanced ceramide-induced apoptosis in the p-gp expressing cells. P-gp expression was identified in the Golgi of these cells. Pgp's efflux function in TF-1 but not KG1a cells was inhibited by glucosylceramide. In the presence of p-gp inhibitors, R123 accumulation in the Golgi of TF-1 cells was lost, and GCS activity and lactosylceramide formation were downregulated. Intact cells were necessary for the involvement of p-gp in the regulation of GCS activity. CONCLUSION Our data suggests that ceramide induces apoptosis in AML cells and that p-gp confers resistance to ceramide-induced apoptosis, with modulation of the ceramide-glucosylceramide pathway making a marked contribution to this resistance in TF-1 cells.
Collapse
Affiliation(s)
- Julie Turzanski
- Division of Haematology, University of Nottingham and Nottingham City Hospital, Nottingham, UK
| | | | | | | | | |
Collapse
|
34
|
Rehman F, Shanmugasundaram P, Schrey MP. Fenretinide stimulates redox-sensitive ceramide production in breast cancer cells: potential role in drug-induced cytotoxicity. Br J Cancer 2004; 91:1821-8. [PMID: 15505623 PMCID: PMC2410057 DOI: 10.1038/sj.bjc.6602212] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The synthetic retinoid N-(4-hydroxphenyl) retinamide (4HPR) has manifold actions, which may contribute to its chemopreventive effects on breast cancer cell growth and progression. A role for ceramide as a stress-response signal is investigated here during the cytotoxic action of 4HPR in MCF-7 cells. N-(4-hydroxphenyl) retinamide induced a dose-dependent decline in cell growth and survival associated with a maximal 10-fold increase in ceramide production at 10 μM. N-(4-hydroxphenyl) retinamide exhibited a greater potency than all-trans retinoic acid (ATRA) on growth inhibition and ceramide production. The synthetic peroxisome proliferator-activated receptors agonist troglitazone (TGZ), but not the native ligand 15-deoxy-delta 12,14-prostaglandin J2, abrogated both these actions of 4HPR but not that of ATRA. The antioxidant N-acetylcysteine mimicked the abrogative effect of TGZ on 4HPR action, while the exogenous oxidant H2O2 also stimulated ceramide production. The inhibitors of de novo ceramide synthesis, fumonisin B1 and myriocin, blocked the ceramide response to 4HPR and partially reversed the apoptotic response, but did not prevent the overall decline in cell survival. The pancaspase inhibitor Z-VAD fmk reduced the decrease in cell survival caused by 4HPR, but did not affect the ceramide response. These findings describe a novel redox-sensitive elevation of ceramide levels associated with the cytotoxic response of breast cancer cells to 4HPR. However, a major mediatory role for this sphingolipid in this context remains equivocal.
Collapse
Affiliation(s)
- F Rehman
- Section of Endocrinology & Metabolic Medicine, Imperial College London, St Mary's Hospital, Praed Street, London W2 1NY, UK
| | - P Shanmugasundaram
- Section of Endocrinology & Metabolic Medicine, Imperial College London, St Mary's Hospital, Praed Street, London W2 1NY, UK
| | - M P Schrey
- Section of Endocrinology & Metabolic Medicine, Imperial College London, St Mary's Hospital, Praed Street, London W2 1NY, UK
- Section of Endocrinology & Metabolic Medicine, Imperial College London, St Mary's Hospital, Praed Street, London W2 1NY, UK. E-mail:
| |
Collapse
|
35
|
Ito Y, Sato S, Ohashi T, Nakayama S, Shimokata K, Kume H. Reduction of airway anion secretion via CFTR in sphingomyelin pathway. Biochem Biophys Res Commun 2004; 324:901-8. [PMID: 15474513 DOI: 10.1016/j.bbrc.2004.09.134] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Indexed: 11/22/2022]
Abstract
The present study concerns the involvement of the ceramide produced through sphingomyelinase (SMase)-mediated catalysis in airway anion secretion of Calu-3 cells. Short-circuit current (Isc) measurement revealed that isoproterenol (ISO, 0.1 microM)-induced anion secretion was prevented by pretreatment with SMase (0.3 U/ml, for 30 min) from the basolateral but not the apical side, although basal and 1-ethyl-2-benzimidazolinone (1-EBIO, a Ca2+-activated K+ channel opener)-induced Isc were unaffected. The effects of SMase were reproduced in responses to forskolin (20 microM) or 8-bromo-cAMP (2 mM). C2-ceramide, a cell-permeable analog, also repressed the 8-bromo-cAMP-induced responses. Nystatin permeabilization studies confirmed that the SMase- and C2-ceramide-induced repressions were due to hindrance of augmentation of cystic fibrosis transmembrane conductance regulator (CFTR)-mediated conductance across the apical membrane. Further, SMase failed to influence K+ conductance across the basolateral membrane. These results suggest that the ceramide originating from basolateral sphingomyelin acts on activated CFTR from the cytosolic side, hindering anion secretion.
Collapse
Affiliation(s)
- Yasushi Ito
- Division of Respiratory Medicine, Department of Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Watanabe M, Kitano T, Kondo T, Yabu T, Taguchi Y, Tashima M, Umehara H, Domae N, Uchiyama T, Okazaki T. Increase of Nuclear Ceramide through Caspase-3-Dependent Regulation of the “Sphingomyelin Cycle” in Fas-Induced Apoptosis. Cancer Res 2004; 64:1000-7. [PMID: 14871831 DOI: 10.1158/0008-5472.can-03-1383] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Regardless of the existence of ceramide-related molecules, such as sphingomyelin (SM), neutral sphingomyelinase (nSMase), and SM synthase, in the nucleus, the regulation of ceramide in the nucleus is poorly understood in stress-induced apoptosis. In Fas-induced Jurkat T-cell apoptosis, we found a time- and dose-dependent increase of ceramide content in the nuclear and microsomal fractions. Fas-induced increase of ceramide content in the nucleus also was detected by confocal microscopy using anticeramide antibody. Activation of nSMase and inhibition of SM synthase were evident in the nuclear fraction after Fas cross-linking, whereas nSMase was activated, but SM synthase was not affected, in the microsomal fraction. Pretreatment with D-609, a putative SM synthase inhibitor, enhanced Fas-induced increase of ceramide in the nucleus and induction of apoptosis along with increase of Fas-induced inhibition of nuclear SM synthase. Fas-induced activation of caspase-3 was detected in the nuclear fraction and in whole cell lysate. A caspase-3 inhibitor, acetyl-Asp-Glu-Val-Asp-chloromethyl ketone, blocked not only Fas-induced increases of apoptosis and ceramide content but also Fas-induced activation of nSMase and inhibition of SM synthase in the nuclear fraction. Taken together, it is suggested that the nucleus is a site for ceramide increase and caspase-3 activation in Fas-induced Jurkat T-cell apoptosis and that caspase-3-dependent regulation of the "SM cycle" consisting of nSMase and SM synthase plays a role in Fas-induced ceramide increase in the nucleus.
Collapse
Affiliation(s)
- Mitsumasa Watanabe
- Department of Hematology, Graduate School of Medicine, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Grazide S, Terrisse AD, Lerouge S, Laurent G, Jaffrézou JP. Cytoprotective effect of glucosylceramide synthase inhibition against daunorubicin-induced apoptosis in human leukemic cell lines. J Biol Chem 2004; 279:18256-61. [PMID: 14766899 DOI: 10.1074/jbc.m314105200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several studies have shown that ceramide (CER) glucosylation contributes to drug resistance in multidrug-resistant cells and that inhibition of glucosylceramide synthase sensitizes cells to various drug treatments. However, the role of glucosylceramide synthase has not been studied in drug-sensitive cancer cells. We have demonstrated previously that the anthracycline daunorubicin (DNR) rapidly induces interphasic apoptosis through neutral sphingomyelinase-mediated CER generation in human leukemic cell lines. We now report that inhibition of glucosylceramide synthase using d,l-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) or 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP) protected U937 and HL-60 cells from DNR-induced apoptosis. Moreover, blocking CER glucosylation did not lead to increased CER levels but to increased CER galactosylation. We also observed that pretreating cells with galactosylceramide (GalCER) significantly inhibited DNR-induced apoptosis. Finally, we show that GalCER-enriched lymphoblast cells (Krabbe's disease) were significantly more resistant to DNR- and cytosine arabinoside-induced apoptosis as compared with normal lymphoblasts, whereas glucosylceramide-enriched cells (Gaucher's disease) were more sensitive. In conclusion, this study suggests that sphingomyelin-derived CER in itself is not a second messenger but rather a precursor of both an apoptosis second messenger (GD3) and an apoptosis "protector" (GalCER).
Collapse
Affiliation(s)
- Solène Grazide
- INSERM U563-Centre de Physiopathologie Toulouse Purpan, Institut Claudius Régaud, Toulouse 31052, France
| | | | | | | | | |
Collapse
|
38
|
Dagan A, Wang C, Fibach E, Gatt S. Synthetic, non-natural sphingolipid analogs inhibit the biosynthesis of cellular sphingolipids, elevate ceramide and induce apoptotic cell death. Biochim Biophys Acta Mol Cell Biol Lipids 2003; 1633:161-9. [PMID: 14499735 DOI: 10.1016/s1388-1981(03)00122-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Numerous studies have demonstrated the participation of sphingolipids in signal transduction and regulation of cell growth. Several cellular stress agents have been shown to elevate ceramide, the basic precursor of all sphingolipids, initiating a cascade of events leading to arrest of the cell cycle, apoptosis and cell death. Aiming at inhibiting metabolic pathways of sphingolipid metabolism that might lead to an increase of cellular ceramide, we have synthesized non-natural analogs of ceramide, sphingosine and trimethylsphingosine. When the respective analogs were applied to HL60 human myeloid leukemic cells they inhibited the biosynthesis of sphingomyelin (SPM) and glycosphingolipids and induced apoptosis that led to cell death. A fluorescent procedure which has been developed for quantifying the biosynthesis of cellular ceramide indicated an increase in the ceramide content following an incubation with the synthetic analogs. These results suggest that the newly synthesized sphingolipid analogs might be valuable for potential application as a therapeutic modality in leukemia and other malignancies.
Collapse
Affiliation(s)
- Arie Dagan
- Department of Biochemistry, Hebrew University-Hadassah School of Medicine, Jerusalem, Israel.
| | | | | | | |
Collapse
|
39
|
Wu JYC, Fong WF, Zhang JX, Leung CH, Kwong HL, Yang MS, Li D, Cheung HY. Reversal of multidrug resistance in cancer cells by pyranocoumarins isolated from Radix Peucedani. Eur J Pharmacol 2003; 473:9-17. [PMID: 12877932 DOI: 10.1016/s0014-2999(03)01946-0] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The pyranocoumarins, (+/-)-3'-angeloyl-4'-acetoxy-cis-khellactone, were isolated from Radix Peucedani, the dry root of Peucedanum praeruptorum Dunn, through bioassay-guided fractionation. The chemical structure of pyranocoumarins was determined by mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. X-ray crystallography showed that there are eight molecules (i.e. two each of four conformers) in each unit cell with their optical activities equally cancelled out. The four conformers are 3'(R)-angeloyl-4'(R)-acetoxy-khellactone in two conformational forms, and 3'(S)-angeloyl-4'(S)-acetoxy-khellactone in two conformational forms. Pyranocoumarins caused apoptotic cell death with IC50 of 41.9+/-2.8 and 17.3+/-8.2 microM for drug-sensitive KB-3-1 and multidrug resistant (MDR) KB-V1, respectively. The two- to threefold sensitivity difference between the two cell lines is interesting considering that the same ratio for doxorubicin is 50-300. Strong synergistic interactions were demonstrated when pyranocoumarins were combined with common anti-tumor drugs including doxorubicin, paclitaxel, puromycin or vincristine in MDR KB-V1 cell line, but not in drug-sensitive KB-3-1 cells. Pyranocoumarins increased doxorubicin accumulation in KB-V1 cells by about 25% after 6 h of incubation. Pyranocoumarins treatment for 24 h down-regulated the expression of P-glycoprotein in KB-V1 cells at both protein and mRNA levels. Pyranocoumarins also transiently reduced the cellular ATP contents in KB-V1 cells in a dose-dependent manner. Our results suggest that pyranocoumarins could be a potential MDR reversing agent.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Adenosine Triphosphate/metabolism
- Antineoplastic Agents/pharmacology
- Apiaceae/chemistry
- Blotting, Western
- Cell Line, Tumor
- Crystallography, X-Ray
- Down-Regulation
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Drug Synergism
- Humans
- Magnetic Resonance Spectroscopy
- Mass Spectrometry
- Plant Extracts/pharmacology
- Plant Roots/chemistry
- Plants, Medicinal/chemistry
- Pyranocoumarins/pharmacology
- RNA, Messenger/biosynthesis
- Reverse Transcriptase Polymerase Chain Reaction
- Stereoisomerism
Collapse
Affiliation(s)
- Jimmy Yiu-Cheong Wu
- Department of Biology and Chemistry, Bioactive Products Research Group, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Nicholson KM, Quinn DM, Kellett GL, Warr JR. LY294002, an inhibitor of phosphatidylinositol-3-kinase, causes preferential induction of apoptosis in human multidrug resistant cells. Cancer Lett 2003; 190:31-6. [PMID: 12536074 DOI: 10.1016/s0304-3835(02)00615-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Protein kinase B (PKB), a kinase downstream of phosphatidylinositol 3-kinase (PI3-kinase) provides anti-apoptotic and survival signals via phosphorylation of various targets. Inhibiting PI3-kinase with a 12 h exposure to 10 microM LY294002 induces levels of apoptosis of 30.39+/-1.53% in the KB-V1 multidrug resistant (MDR) cell line compared to 4.54+/-1.00% in drug sensitive KB-3-1 cells (P<0.001). This occurred in conjunction with a preferential reduction in activated PKB in MDR cells. These results suggest the PI3-kinase/PKB signalling pathway is important for the survival of MDR cells and inhibition of this pathway results in the selective induction of apoptosis in MDR cells.
Collapse
Affiliation(s)
- K M Nicholson
- Department of Biology, University of York, PO Box 373, York YO10 5YW, UK
| | | | | | | |
Collapse
|
41
|
Shtil AA. P-glycoprotein as a therapeutic target: good news. Leukemia 2002; 16:2169-70. [PMID: 12357378 DOI: 10.1038/sj.leu.2402664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2002] [Accepted: 04/30/2002] [Indexed: 11/08/2022]
|
42
|
Kawakami A, Hida A, Yamasaki S, Miyashita T, Nakashima K, Tanaka F, Ida H, Furuyama M, Migita K, Origuchi T, Eguchi K. Modulation of the expression of membrane-bound CD54 (mCD54) and soluble form of CD54 (sCD54) in endothelial cells by glucosyl transferase inhibitor: possible role of ceramide for the shedding of mCD54. Biochem Biophys Res Commun 2002; 296:26-31. [PMID: 12147222 DOI: 10.1016/s0006-291x(02)00829-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
1-Phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) is a synthetic inhibitor toward glucosyl transferase. Here, we showed the functional role of sphingolipids on CD54 expression of endothelial cells (ECs) by the use of PDMP. CD54 mRNA expression in human umbilical vein endothelial cells (HUVECs) was not changed by PDMP; however, PDMP treatment significantly enhanced the expression of membrane-bound CD54 (mCD54) on HUVECs. In contrast, the amount of soluble form of CD54 (sCD54) in the culture supernatants of HUVECs was diminished by PDMP. Similar results were obtained when HUVECs were incubated with metalloproteinase inhibitor, KB-R8301, or in the presence of C2-ceramide. The above effect of PDMP, KB-R8301, and C2-ceramide in HUVECs was commonly found in unstimulated, TNF-alpha-stimulated, and IL-1beta-stimulated HUVECs. These data provide the possibility that the shedding of mCD54 into sCD54 by metalloproteinase-like enzyme is inhibited by PDMP, in which PDMP-induced accumulation of ceramide may act as a second messenger.
Collapse
Affiliation(s)
- Atsushi Kawakami
- The First Department of Internal Medicine, Nagasaki University School of Medicine, 1-7-1 Sakamoto, 852-8501, Nagasaki, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Levade T, Malagarie-Cazenave S, Gouazé V, Ségui B, Tardy C, Betito S, Andrieu-Abadie N, Cuvillier O. Ceramide in apoptosis: a revisited role. Neurochem Res 2002; 27:601-7. [PMID: 12374195 DOI: 10.1023/a:1020215815013] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The sphingolipid ceramide has recently emerged as a new transducer or modulator of apoptotic cell death. This function, however, has recently been challenged. Here, in the light of recent observations, the role of ceramide in apoptosis signaling is discussed.
Collapse
Affiliation(s)
- Thierry Levade
- INSERM U.466, Laboratoire de Biochimie, CHU Rangueil, Toulouse, France.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Plo I, Lehne G, Beckstrøm KJ, Maestre N, Bettaïeb A, Laurent G, Lautier D. Influence of ceramide metabolism on P-glycoprotein function in immature acute myeloid leukemia KG1a cells. Mol Pharmacol 2002; 62:304-12. [PMID: 12130682 DOI: 10.1124/mol.62.2.304] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have emphasized the role of glucosylceramide (Glu-Cer) synthase in multidrug resistance (MDR) regulation. However, the mechanism by which the inhibition of this enzyme results in increased drug retention and cytotoxicity remains unclear. In this study, we investigated the respective role of ceramide (Cer) accumulation and Glu-Cer derivatives depletion in MDR reversal effect of 1-phenyl-2-decanoylamino-3-morpholino-1-propanolol (PDMP), a Glu-Cer synthase inhibitor. We show here that treatment with PDMP resulted in increased rhodamine 123 (Rh123) retention and potent chemosensitization of P-glycoprotein (P-gp)-expressing cells, including KG1a cells, KG1a/200 cells, K562/138 cells, and K562/mdr-1 cells. Metabolic studies revealed that PDMP induced not only time-dependent Cer accumulation but also reduction of all glycosylated forms of Cer, including Glu-Cer, lactosylceramide (Lac-Cer), monosialo ganglioside (GM3) and disialo ganglioside (GD3). The influence of these metabolites on P-gp function was investigated by measuring Rh123 retention in PDMP-treated cells. P-gp function was found to be stimulated only by the addition of gangliosides in all resistant cell lines, whereas Glu-Cer, Lac-Cer, and Cer had no effect. Moreover, in KG1a/200 cells, GD3 and, to a lesser extent, GM3 were found to phosphorylate P-gp on serine residues. Altogether, these results suggest that, at least in leukemic cells, gangliosides depletion accounts for PDMP-mediated MDR reversal effect, and that gangliosides are important P-gp regulators perhaps through their capacity to modulate P-gp phosphorylation.
Collapse
Affiliation(s)
- Isabelle Plo
- Institut National de la Santé et de la Recherche Médicale (INSERM) E9910, Institut Claudius Régaud, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Pallis M, Turzanski J, Higashi Y, Russell N. P-glycoprotein in acute myeloid leukaemia: therapeutic implications of its association with both a multidrug-resistant and an apoptosis-resistant phenotype. Leuk Lymphoma 2002; 43:1221-8. [PMID: 12152989 DOI: 10.1080/10428190290026277] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
P-glycoprotein (Pgp) expression is an independent prognostic factor for response to remission-induction chemotherapy in acute myeloblastic leukaemia, particularly in the elderly. There are several potential agents for modulating Pgp-mediated multi-drug resistance, such as cyclosporin A and PSC833, which are currently being evaluated in clinical trials. An alternative therapeutic strategy is to increase the use of drugs which are unaffected by Pgp. However, in this review, we explain why this may be more difficult than it appears. Evidence from in vitro studies of primary AML blasts supports the commonly held supposition that chemoresistance may be linked to apoptosis-resistance. We have found that Pgp has a drug-independent role in the inhibition of in vitro apoptosis in AML blasts. Modulation of cytokine efflux, signalling lipids and intracellular pH have all been suggested as ways by which Pgp may affect cellular resistance to apoptosis; these are discussed in this review. For a chemosensitising agent to be successful, it may be more important for it to enhance apoptosis than to increase drug uptake.
Collapse
Affiliation(s)
- Monica Pallis
- Academic Haematology, Nottingham City Hospital, Nottingham, UK.
| | | | | | | |
Collapse
|
46
|
Warr JR, Bamford A, Quinn DM. The preferential induction of apoptosis in multidrug-resistant KB cells by 5-fluorouracil. Cancer Lett 2002; 175:39-44. [PMID: 11734334 DOI: 10.1016/s0304-3835(01)00721-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
It has been previously been shown that multidrug resistance may be associated with biochemical changes which increase the sensitivity of resistant cells to the induction of apoptosis by certain agents. We have shown here that 48 h exposure to 5-fluorouracil (5-FU) induces both a significantly greater proportion of apoptotic cells and much greater cleavage of the apoptosis-related protein poly-(ADP-ribose)-polymerase in the multidrug-resistant (MDR) carcinoma cell line, KB-A1, than in corresponding drug-sensitive control KB-3.1 cells. Exposure to 5-FU also reduced the level of the anti-apoptotic protein, protein kinase B, in the MDR cells, but not in the control cells.
Collapse
Affiliation(s)
- J R Warr
- Department of Biology, University of York, P.O. Box 373, YO10 5YW, York, UK.
| | | | | |
Collapse
|
47
|
|
48
|
Shabbits JA, Krishna R, Mayer LD. Molecular and pharmacological strategies to overcome multidrug resistance. Expert Rev Anticancer Ther 2001; 1:585-94. [PMID: 12113091 DOI: 10.1586/14737140.1.4.585] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multidrug resistance is a major obstacle to the effective treatment of cancer. Despite vast improvements in our understanding of the mechanisms of drug resistance, relatively few significant advances have been made towards effectively circumventing it in a clinical setting. The ability to modulate multidrug resistance has been complicated by the fact that many human tumors simultaneously exhibit multiple resistance mechanisms. In order to effectively overcome multidrug resistance it will be necessary to design new strategies that combine multiple modulating agents and approaches. This review provides an overview of the major causes of multidrug resistance and summarizes many of the current approaches being taken to overcome it. We also describe how liposomal drug delivery systems can be utilized to aid in achieving these goals.
Collapse
Affiliation(s)
- J A Shabbits
- Department of Advanced Therapeutics, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
| | | | | |
Collapse
|
49
|
Kanto T, Kalinski P, Hunter OC, Lotze MT, Amoscato AA. Ceramide mediates tumor-induced dendritic cell apoptosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3773-84. [PMID: 11564794 DOI: 10.4049/jimmunol.167.7.3773] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Induction of apoptosis in dendritic cells (DC) is one of the escape mechanisms of tumor cells from the immune surveillance system. This study aimed to clarify the underlying mechanisms of tumor-induced DC apoptosis. The supernatants (SN) of murine tumor cell lines B16 (melanoma), MCA207, and MCA102 (fibrosarcoma) increased C16 and C24 ceramide as determined by electrospray mass spectrometry and induced apoptosis in bone marrow-derived DC. N-oleoylethanolamine or D-L-threo 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), which inhibits acid ceramidase or glucosylceramide synthase and then increases endogenous ceramide, enhanced DC apoptosis and ceramide levels in the presence of tumor SN. Pretreatment with L-cycloserine, an inhibitor of de novo ceramide synthesis, or phorbol ester, 12-O-tetradecanoylphorbol-13-acetate reduced endogenous ceramide levels and protected DC from tumor-induced apoptosis. However, other DC survival factors, including LPS and TNF-alpha, failed to do so. The protective activity of 12-O-tetradecanoylphorbol-13-acetate is abrogated by pretreatment with phosphoinositide 3-kinase (PI3K) inhibitor, LY294002. Therefore, down-regulation of PI3K is the major facet of tumor-induced DC apoptosis. Tumor SN, N-oleoylethanolamine, or PDMP suppressed Akt, NF-kappaB, and bcl-x(L) in DC, suggesting that the accumulation of ceramide impedes PI3K-mediated survival signals. Taken together, ceramide mediates tumor-induced DC apoptosis by down-regulation of the PI3K pathway.
Collapse
Affiliation(s)
- T Kanto
- Department of Surgery, Division of Biologic Therapeutics and Surgical Oncology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
50
|
Olshefski RS, Ladisch S. Glucosylceramide synthase inhibition enhances vincristine-induced cytotoxicity. Int J Cancer 2001; 93:131-8. [PMID: 11391632 DOI: 10.1002/ijc.1301] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
As a strategy to enhance tumor cell sensitivity to vincristine, we tested whether modulation of sphingolipid metabolism would alter vincristine cytotoxicity since this is linked to accumulation of the intermediate metabolite, ceramide. We blocked ceramide metabolism in a series of variably vincristine-resistant cell lines derived from CCRF-CEM leukemia cells using an inhibitor of glucosylceramide synthase, DL-threo-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (PPPP). PPPP alone (1.0 microM), while nearly completely blocking glucosylceramide synthesis, was not toxic and did not increase cellular ceramide levels. Vincristine alone was toxic, caused apoptosis or programmed cell death (PCD) and caused an elevation in ceramide levels. Strikingly, the combination of PPPP and vincristine resulted in a further increase, over that of vincristine alone, of (i) cellular ceramide concentration, (ii) cytotoxicity associated with PCD and (iii) G2/M cell-cycle arrest. PPPP had no effect on P-glycoprotein expression or function. We conclude that vincristine cytotoxicity occurs in part through a ceramide-dependent mechanism, resulting in both G2/M block as well as PCD, and that the blockade of glucosylceramide synthase, in itself not toxic, causes augmented accumulation of ceramide resulting from vincristine exposure, which in turn maximizes ceramide-dependent, vincristine-induced cytotoxicity. Inhibition of glucosylceramide synthesis may be a means of circumventing drug resistance by enhancing signaling through a cell-death pathway.
Collapse
Affiliation(s)
- R S Olshefski
- Glycobiology Program, Center for Cancer and Transplantation Biology, Children's Research Institute, Children's National Medical Center, Washington, DC, USA
| | | |
Collapse
|