1
|
Oliveira NF, Monteiro MMLV, Mainieri NS, Tamura AS, Pereira LM, Crepaldi LD, Coutinho-Silva R, Savio LEB, Silva CLM. P2Y 2-P2X7 receptors cross-talk in primed mesenteric endothelial cells upregulates NF-κB signaling favoring mononuclear cell adhesion in schistosomiasis. Front Immunol 2024; 14:1328897. [PMID: 38239348 PMCID: PMC10794548 DOI: 10.3389/fimmu.2023.1328897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024] Open
Abstract
Schistosomiasis is an intravascular infectious disease that impacts over 200 million people globally. In its chronic stage, it leads to mesenteric inflammation with significant involvement of monocytes/macrophages. Endothelial cells lining the vessel lumens play a crucial role, and mount of evidence links this disease to a downregulation of endoprotective cell signaling favoring a primed and proinflammatory endothelial cell phenotype and therefore the loss of immunovascular homeostasis. One hallmark of infectious and inflammatory conditions is the release of nucleotides into the extracellular milieu, which, in turn, act as innate messengers, activating purinergic receptors and triggering cell-to-cell communication. ATP influences the progression of various diseases through P2X and P2Y purinergic receptor subtypes. Among these receptors, P2Y2 (P2Y2R) and P2X7 (P2X7R) receptors stand out, known for their roles in inflammation. However, their specific role in schistosomiasis has remained largely unexplored. Therefore, we hypothesized that endothelial P2Y2R and P2X7R could contribute to monocyte adhesion to mesenteric endothelial cells in schistosomiasis. Using a preclinical murine model of schistosomiasis associated with endothelial dysfunction and age-matched control mice, we showed that endothelial P2Y2R and P2X7R activation increased monocyte adhesion to cultured primary endothelial cells in both groups. However, a distinct upregulation of endothelial P2Y2R-driven canonical Ca2+ signaling was observed in the infected group, amplifying adhesion. In the control group, the coactivation of endothelial P2Y2R and P2X7R did not alter the maximal monocyte adhesion induced by each receptor individually. However, in the infected group, this coactivation induced a distinct upregulation of P2Y2R-P2X7R-driven canonical signaling, IL-1β release, and VCAM-1 expression, with underlying mechanisms involving inflammasome and NF-κB signaling. Therefore, current data suggest that schistosomiasis alters endothelial cell P2Y2R/P2X7R signaling during inflammation. These discoveries advance our understanding of schistosomiasis. This intricate interplay, driven by PAMP-triggered endothelial P2Y2R/P2X7R cross-talk, emerges as a potential key player in the mesenteric inflammation during schistosomiasis.
Collapse
Affiliation(s)
- Nathália Ferreira Oliveira
- Laboratório de Farmacologia Bioquímica e Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Nathália Santos Mainieri
- Laboratório de Farmacologia Bioquímica e Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Augusto Shuiti Tamura
- Laboratório de Imunofisiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Letícia Massimo Pereira
- Laboratório de Farmacologia Bioquímica e Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leticia Diniz Crepaldi
- Laboratório de Imunofisiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Laboratório de Imunofisiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Claudia Lucia Martins Silva
- Laboratório de Farmacologia Bioquímica e Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Raghavan S, Brishti MA, Collier DM, Leo MD. Hypoxia induces purinergic receptor signaling to disrupt endothelial barrier function. Front Physiol 2022; 13:1049698. [PMID: 36479340 PMCID: PMC9720161 DOI: 10.3389/fphys.2022.1049698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/10/2022] [Indexed: 09/15/2023] Open
Abstract
Blood-brain-barrier permeability is regulated by endothelial junctional proteins and is vital in limiting access to and from the blood to the CNS. When stressed, several cells, including endothelial cells, can release nucleotides like ATP and ADP that signal through purinergic receptors on these cells to disrupt BBB permeability. While this process is primarily protective, unrestricted, uncontrolled barrier disruption during injury or inflammation can lead to serious neurological consequences. Purinergic receptors are broadly classified into two families: the P1 adenosine and P2 nucleotide receptors. The P2 receptors are further sub-classified into the P2XR ion channels and the P2YR GPCRs. While ATP mainly activates P2XRs, P2YRs have a broader range of ligand selectivity. The P2Y1R, essential for platelet function, is reportedly ubiquitous in its expression. Prior studies using gene knockout and specific antagonists have shown that these approaches have neuroprotective effects following occlusive stroke. Here we investigated the expression of P2Y1R in primary cultured brain endothelial cells and its relation to the maintenance of BBB function. Results show that following in vitro hypoxia and reoxygenation, P2Y1R expression is upregulated in both control and diabetic cells. At the same time, endothelial junctional markers, ZO-1 and VE-cadherin, were downregulated, and endothelial permeability increased. siRNA knockdown of P2Y1R and MRS 2500 effectively blocked this response. Thus, we show that P2Y1R signaling in endothelial cells leads to the downregulation of endothelial barrier function.
Collapse
Affiliation(s)
| | | | | | - M. Dennis Leo
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
3
|
Forcaia G, Formicola B, Terribile G, Negri S, Lim D, Biella G, Re F, Moccia F, Sancini G. Multifunctional Liposomes Modulate Purinergic Receptor-Induced Calcium Wave in Cerebral Microvascular Endothelial Cells and Astrocytes: New Insights for Alzheimer's disease. Mol Neurobiol 2021; 58:2824-2835. [PMID: 33511502 PMCID: PMC8128821 DOI: 10.1007/s12035-021-02299-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 01/15/2021] [Indexed: 12/20/2022]
Abstract
In light of previous results, we assessed whether liposomes functionalized with ApoE-derived peptide (mApoE) and phosphatidic acid (PA) (mApoE-PA-LIP) impacted on intracellular calcium (Ca2+) dynamics in cultured human cerebral microvascular endothelial cells (hCMEC/D3), as an in vitro human blood-brain barrier (BBB) model, and in cultured astrocytes. mApoE-PA-LIP pre-treatment actively increased both the duration and the area under the curve (A.U.C) of the ATP-evoked Ca2+ waves in cultured hCMEC/D3 cells as well as in cultured astrocytes. mApoE-PA-LIP increased the ATP-evoked intracellular Ca2+ waves even under 0 [Ca2+]e conditions, thus indicating that the increased intracellular Ca2+ response to ATP is mainly due to endogenous Ca2+ release. Indeed, when Sarco-Endoplasmic Reticulum Calcium ATPase (SERCA) activity was blocked by cyclopiazonic acid (CPA), the extracellular application of ATP failed to trigger any intracellular Ca2+ waves, indicating that metabotropic purinergic receptors (P2Y) are mainly involved in the mApoE-PA-LIP-induced increase of the Ca2+ wave triggered by ATP. In conclusion, mApoE-PA-LIP modulate intracellular Ca2+ dynamics evoked by ATP when SERCA is active through inositol-1,4,5-trisphosphate-dependent (InsP3) endoplasmic reticulum Ca2+ release. Considering that P2Y receptors represent important pharmacological targets to treat cognitive dysfunctions, and that P2Y receptors have neuroprotective effects in neuroinflammatory processes, the enhancement of purinergic signaling provided by mApoE-PA-LIP could counteract Aβ-induced vasoconstriction and reduction in cerebral blood flow (CBF). Our obtained results could give an additional support to promote mApoE-PA-LIP as effective therapeutic tool for Alzheimer’s disease (AD).
Collapse
Affiliation(s)
- Greta Forcaia
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, MB, Italy
| | - Beatrice Formicola
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, MB, Italy
| | - Giulia Terribile
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, MB, Italy
| | - Sharon Negri
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio, 6-28100, Novara, Italy
| | - Gerardo Biella
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Francesca Re
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, MB, Italy.,Nanomedicine Center, Neuroscience Center, School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, MB, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Giulio Sancini
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, MB, Italy. .,Nanomedicine Center, Neuroscience Center, School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, MB, Italy.
| |
Collapse
|
4
|
Osipova ED, Semyachkina-Glushkovskaya OV, Morgun AV, Pisareva NV, Malinovskaya NA, Boitsova EB, Pozhilenkova EA, Belova OA, Salmin VV, Taranushenko TE, Noda M, Salmina AB. Gliotransmitters and cytokines in the control of blood-brain barrier permeability. Rev Neurosci 2018; 29:567-591. [DOI: 10.1515/revneuro-2017-0092] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/26/2017] [Indexed: 11/15/2022]
Abstract
AbstractThe contribution of astrocytes and microglia to the regulation of neuroplasticity or neurovascular unit (NVU) is based on the coordinated secretion of gliotransmitters and cytokines and the release and uptake of metabolites. Blood-brain barrier (BBB) integrity and angiogenesis are influenced by perivascular cells contacting with the abluminal side of brain microvessel endothelial cells (pericytes, astrocytes) or by immune cells existing (microglia) or invading the NVU (macrophages) under pathologic conditions. The release of gliotransmitters or cytokines by activated astroglial and microglial cells is provided by distinct mechanisms, affects intercellular communication, and results in the establishment of microenvironment controlling BBB permeability and neuroinflammation. Glial glutamate transporters and connexin and pannexin hemichannels working in the tight functional coupling with the purinergic system serve as promising molecular targets for manipulating the intercellular communications that control BBB permeability in brain pathologies associated with excessive angiogenesis, cerebrovascular remodeling, and BBB-mediated neuroinflammation. Substantial progress in deciphering the molecular mechanisms underlying the (patho)physiology of perivascular glia provides promising approaches to novel clinically relevant therapies for brain disorders. The present review summarizes the current understandings on the secretory machinery expressed in glial cells (glutamate transporters, connexin and pannexin hemichannels, exocytosis mechanisms, membrane-derived microvesicles, and inflammasomes) and the role of secreted gliotransmitters and cytokines in the regulation of NVU and BBB permeability in (patho)physiologic conditions.
Collapse
|
5
|
Kristiansen SB, Sheykhzade M, Edvinsson L, Haanes KA. Changes in vasodilation following myocardial ischemia/reperfusion in rats. Nitric Oxide 2017; 70:68-75. [PMID: 28919322 DOI: 10.1016/j.niox.2017.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/01/2017] [Accepted: 09/12/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Blockage of a coronary artery, usually caused by arteriosclerosis, can lead to life threatening acute myocardial infarction. Opening with PCI (percutaneous coronary intervention), may be lifesaving, but reperfusion might exacerbate the cellular damage, and changes in the endothelium are believed to be involved in this worsened outcome. AIM The aim of the present study was to compare endothelial dependent and independent vasodilatory effect after experimental myocardial ischemia/reperfusion (I/R). METHODS A well-established rat model of myocardial ischemia with 24 h of reperfusion was applied, followed by a study in a wire myograph. RESULTS Endothelial NO dependent relaxation in response to carbachol, was sensitive to arterial depolarization, and was unaffected by I/R. In contrast, endothelial NO dependent ADPβS signalling, which was not sensitive to arterial depolarization, was significantly reduced after I/R. Following I/R, an H2O2 dependent EDH induced dilation appears in response to both of the above agonists. In addition, calcitonin gene-related peptide (CGRP) induced vasodilation was reduced. CONCLUSION These data show that NO dependent ADPβS induced dilation is reduced after I/R. However, there is some compensation by released H2O2 causing an EDH. Combined with a loss of maximal dilation in response to CGRP, the reduced vasodilation could be an important factor in understanding the exacerbated damage after I/R.
Collapse
Affiliation(s)
- Sarah Brøgger Kristiansen
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Majid Sheykhzade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark
| | - Kristian Agmund Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark.
| |
Collapse
|
6
|
Abstract
Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P2Y receptors on endothelial cells to produce nitric oxide and endothelium-derived hyperpolarizing factor, which dilates vessels. ATP is also released from sensory-motor nerves during antidromic reflex activity to produce relaxation of some blood vessels. In this review, we stress the differences in neural and endothelial factors in purinergic control of different blood vessels. The long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides in promoting migration and proliferation of both vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis and vessel remodeling during restenosis after angioplasty are described. The pathophysiology of blood vessels and therapeutic potential of purinergic agents in diseases, including hypertension, atherosclerosis, ischemia, thrombosis and stroke, diabetes, and migraine, is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; and Department of Pharmacology, The University of Melbourne, Australia.
| | | |
Collapse
|
7
|
De Bock M, Wang N, Decrock E, Bol M, Gadicherla AK, Culot M, Cecchelli R, Bultynck G, Leybaert L. Endothelial calcium dynamics, connexin channels and blood-brain barrier function. Prog Neurobiol 2013; 108:1-20. [PMID: 23851106 DOI: 10.1016/j.pneurobio.2013.06.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 01/11/2023]
Abstract
Situated between the circulation and the brain, the blood-brain barrier (BBB) protects the brain from circulating toxins while securing a specialized environment for neuro-glial signaling. BBB capillary endothelial cells exhibit low transcytotic activity and a tight, junctional network that, aided by the cytoskeleton, restricts paracellular permeability. The latter is subject of extensive research as it relates to neuropathology, edema and inflammation. A key determinant in regulating paracellular permeability is the endothelial cytoplasmic Ca(2+) concentration ([Ca(2+)]i) that affects junctional and cytoskeletal proteins. Ca(2+) signals are not one-time events restricted to a single cell but often appear as oscillatory [Ca(2+)]i changes that may propagate between cells as intercellular Ca(2+) waves. The effect of Ca(2+) oscillations/waves on BBB function is largely unknown and we here review current evidence on how [Ca(2+)]i dynamics influence BBB permeability.
Collapse
Affiliation(s)
- Marijke De Bock
- Dept. of Basic Medical Sciences, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Purine receptors and Ca(2+) signalling in the human blood-brain barrier endothelial cell line hCMEC/D3. Purinergic Signal 2011; 8:71-80. [PMID: 21956217 DOI: 10.1007/s11302-011-9262-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 09/13/2011] [Indexed: 01/02/2023] Open
Abstract
The expression and physiology of purine receptors of the human blood-brain barrier endothelial cells were characterised by application of molecular biological, gene-silencing and Ca(2+)-imaging techniques to hCMEC/D3 cells. Reverse transcription polymerase chain reaction showed the expression of the G-protein-coupled receptors P2Y(2)-, P2Y(6)-, P2Y(11)- as well as the ionotropic P2X(4)-, P2X(5)- and P2X(7)-receptors. Fura-2 ratiometry revealed that adenosine triphosphate (ATP) or uridine triphosphate (UTP) mediated a change in the intracellular Ca(2+) concentration ([Ca(2+)](i)) from 150 to 300 nM in single cells. The change in [Ca(2+)](i) corresponded to a fourfold to fivefold increase in the fluorescence intensity of Fluo-4, which was used for high-throughput experiments. Pharmacological dissection using different agonists [UTPγS, ATPγS, uridine diphosphate (UDP), adenosine diphosphate (ADP), BzATP, αβ-meATP] and antagonist (MRS2578 or NF340) as well as inhibitors of intracellular mediators (U73122 and 2-APB) showed a PLC-IP(3) cascade-mediated Ca(2+) release, indicating that the nucleotide-induced Ca(2+) signal was mainly related to P2Y(2, 6 and 11) receptors. The gene silencing of the P2Y(2) receptor reduced the ATP- or UTP-induced Ca(2+) signal and suppressed the Ca(2+) signal mediated by P2Y(6) and P2Y(11) more specific agonists like UDP (P2Y(6)), BzATP (P2Y(11)) and ATPγS (P2Y(11)). This report identifies the P2Y(2) receptor subtype as the main purine receptor involved in Ca(2+) signalling of the hCMEC/D3 cells.
Collapse
|
9
|
Hartmann C, Zozulya A, Wegener J, Galla HJ. The impact of glia-derived extracellular matrices on the barrier function of cerebral endothelial cells: an in vitro study. Exp Cell Res 2007; 313:1318-25. [PMID: 17346702 DOI: 10.1016/j.yexcr.2007.01.024] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 12/14/2006] [Accepted: 01/23/2007] [Indexed: 10/23/2022]
Abstract
The blood-brain barrier (BBB) is composed of the cerebral microvascular endothelium, which, together with astrocytes, pericytes, and the extracellular matrix (ECM), contributes to a "neurovascular unit". It was our objective to clarify the impact of endogenous extracellular matrices on the barrier function of BBB microvascular endothelial cells cultured in vitro. The study was performed in two consecutive steps: (i) The ECM-donating cells (astrocytes, pericytes, endothelial cells) were grown to confluence and then removed from the growth substrate by a protocol that leaves the ECM behind. (ii) Suspensions of cerebral endothelial cells were seeded on the endogenous matrices and barrier formation was followed with time. In order to quantify the tightness of the cell junctions, all experiments were performed on planar gold-film electrodes that can be used to read the electrical resistance of the cell layers as a direct measure for endothelial barrier function (electric cell-substrate impedance sensing, ECIS). We observed that endogenously isolated ECM from both, astrocytes and pericytes, improved the tightness of cerebral endothelial cells significantly compared to ECM that was derived from the endothelial cells themselves as a control. Moreover, when cerebral endothelial cells were grown on extracellular matrices produced by non-brain endothelial cells (aorta), the electrical resistances were markedly reduced. Our observations indicate that glia-derived ECM - as an essential part of the BBB - is required to ensure proper barrier formation of cerebral endothelial cells.
Collapse
Affiliation(s)
- Christoph Hartmann
- Institut für Biochemie, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Strasse 2, D-48149 Münster, Germany
| | | | | | | |
Collapse
|
10
|
Abbott NJ. Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol 2005; 25:5-23. [PMID: 15962506 PMCID: PMC11529509 DOI: 10.1007/s10571-004-1374-y] [Citation(s) in RCA: 308] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Accepted: 08/15/2003] [Indexed: 02/04/2023]
Abstract
(1) Three main barrier layers at the interface between blood and tissue protect the central nervous system (CNS): the endothelium of brain capillaries, and the epithelia of the choroid plexus (CP) and the arachnoid. The classical work on these barriers in situ until the 1970s laid the foundations for modern understanding. Techniques for brain endothelial cell isolation and culture pioneered by Ferenc Joó in the 1970s opened up new fields of examination, enabling study of mechanisms at the cellular and molecular level. (2) Astrocytic glial cells are closely associated with the brain endothelial barrier. During evolution the barrier appears to have shifted from the glial to the endothelial layer, in parallel with the increasing importance of the microvasculature and its regulation. Vestiges of the barrier potential of glia remain in the modern mammalian CNS. (3) Evolutionary evidence suggests that the advantage derived from ionic homeostasis around central synapses was the major selective pressure leading to refinement of CNS barrier systems. This is one element of the modern 'multitasking' barrier function. (4) While epithelia are constitutively able to form barriers at appropriate interfaces, the 'default' condition for endothelia is more leaky; inductive influences from associated cells especially astrocytes are important in generating the full blood-brain barrier (BBB) phenotype in brain capillaries. The underlying mechanisms are being elucidated at the molecular and genomics level. (5) The barrier layers of the nervous system can be modulated by a number of receptor-mediated processes, involving several signal transduction pathways, both calcium dependent and independent. Some agents acting as 'inducers' in the long term can act as 'modulators' in the short-term, with some overlap of signaling pathways. Modulating agents may be derived both from the blood and from cells associated with cerebral vessels. Less is known about the modulation of the CP. (6) The challenge for the next era of CNS barrier studies will be to apply new knowledge from proteomics and genomics to understanding the in vivo condition in physiology and pathology.
Collapse
Affiliation(s)
- N Joan Abbott
- Blood-Brain Barrier Group, Wolfson Centre for Age Related Diseases, King's College University of London, London, UK.
| |
Collapse
|
11
|
Burnstock G, Knight GE. Cellular Distribution and Functions of P2 Receptor Subtypes in Different Systems. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:31-304. [PMID: 15548415 DOI: 10.1016/s0074-7696(04)40002-3] [Citation(s) in RCA: 584] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ?cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London NW3 2PF, United Kingdom
| | | |
Collapse
|
12
|
Csanády L, Adam-Vizi V. Ca(2+)- and voltage-dependent gating of Ca(2+)- and ATP-sensitive cationic channels in brain capillary endothelium. Biophys J 2003; 85:313-27. [PMID: 12829486 PMCID: PMC1303087 DOI: 10.1016/s0006-3495(03)74476-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2002] [Accepted: 04/10/2003] [Indexed: 10/21/2022] Open
Abstract
Biophysical properties of the Ca(2+)-activated nonselective cation channel expressed in brain capillaries were studied in inside-out patches from primary cultures of rat brain microvascular endothelial cells. At -40 mV membrane potential, open probability (P(o)) was activated by cytosolic [Ca(2+)] > 1 micro M and was half-maximal at approximately 20 micro M. Increasing [Ca(2+)] stimulated opening rate with little effect on closing rate. At constant [Ca(2+)], P(o) was voltage-dependent, and effective gating charge corresponded to 0.6 +/- 0.1 unitary charges. Depolarization accelerated opening and slowed closing, thereby increasing apparent affinity for Ca(2+). Within approximately 1 min of excision, P(o) declined to a lower steady state with decreased sensitivity toward activating Ca(2+) when studied at a fixed voltage, and toward activating voltage when studied at a fixed [Ca(2+)]. Deactivated channels opened approximately 5-fold slower and closed approximately 10-fold faster. The sulfhydryl-reducing agent dithiotreitol (1 mM) completely reversed acceleration of closing rate but failed to recover opening rate. Single-channel gating was complex; distributions of open and closed dwell times contained at least four and five exponential components, respectively. The longest component of the closed-time distribution was markedly sensitive to both [Ca(2+)] and voltage. We conclude that the biophysical properties of gating of this channel are remarkably similar to those of large-conductance Ca(2+)-activated K(+) channels.
Collapse
Affiliation(s)
- László Csanády
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.
| | | |
Collapse
|
13
|
Horiuchi T, Dietrich HH, Hongo K, Dacey RG. Comparison of P2 receptor subtypes producing dilation in rat intracerebral arterioles. Stroke 2003; 34:1473-8. [PMID: 12730558 DOI: 10.1161/01.str.0000071527.10129.65] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE P2 receptors are important regulators of cerebrovascular tone. However, there is functional heterogeneity of P2Y receptors along the vascular tree, and the functionality of P2Y receptors in small arterioles has not been studied in detail. We investigated the effects of activating P2Y1 and P2Y2 receptors and their underlying dilator mechanisms in rat intracerebral arterioles. METHODS We used computer-aided videomicroscopy to measure diameter responses from isolated and pressurized rat penetrating arterioles (39.9+/-1.2 microm) to the natural P2 receptor agonist ATP in addition to ADP-beta-S (P2Y1-selective) and ATP-gamma-S (P2Y2-selective) and inhibitors of signaling pathways. RESULTS Extraluminal application of ATP-gamma-S and ADP-beta-S initiated a biphasic response (initial constriction followed by the secondary dilation) similar to ATP-induced responses. Pyridoxal phosphate-6-azophenyl-2',4'-disulphonic acid (0.1 mmol/L; a P2Y1 receptor antagonist) blocked ADP-beta-S- but not ATP-gamma-S-induced dilation and affected the ATP-mediated dilation at low concentrations. Nomega-Monomethyl-l-arginine partially inhibited the dilation of ATP and ADP-beta-S but not ATP-gamma-S. High K+ saline suppressed the dilation of all agonists. Indomethacin had no effect. CONCLUSIONS Both P2Y1 and P2Y2 receptors are functionally present in cerebral arterioles. ATP stimulates P2Y1 receptors at low concentrations, while high concentrations of ATP activate P2Y2 in addition to P2Y1 receptors. Nitric oxide is involved in P2Y1 but not P2Y2 receptor activation. Potassium channels play an important role in the regulation of P2Y receptor-mediated dilation.
Collapse
Affiliation(s)
- Tetsuyoshi Horiuchi
- Department of Neurosurgery, Washington University School of Medicine, Box 8057, 660 S Euclid Ave, St Louis, Mo 63110, USA
| | | | | | | |
Collapse
|
14
|
Dunzendorfer S, Reinisch CM, Kaneider NC, Pechlaner C, Wiedermann CJ. Inhibition of plasma-dependent monocyte chemokinesis and cytokine-triggered endothelial activation for neutrophil transmigration by administration of clopidogrel in man. ACTA MEDICA AUSTRIACA 2002; 29:100-6. [PMID: 12168564 DOI: 10.1046/j.1563-2571.2002.02015.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mediators released by spontaneously activated platelets may contribute to alterations in endothelial and leukocyte dysfunctions. We investigated the roles of clopidogrel and aspirin in ex vivo endothelial activation for interactions with leukocytes. Eight healthy volunteers received clopidogrel or aspirin for 8 days. Blood samples were taken before, during, and after treatment. Levels of adhesion molecules and platelet-derived mediators in these samples were measured using commercially available test kits, and effects of plasma on endothelial cells and leukocytes were investigated in neutrophil transendothelial migration, monocyte-endothelial adhesion and leukocyte migration assays. Plasma samples from clopidogrel-treated persons induced diminished chemokinesis of monocytes. Tumour necrosis factor-induced priming of endothelial cells for enhanced neutrophil transmigration was also diminished by pretreatment of endothelial cells, but not of neutrophils, with plasma derived from subjects during clopidogrel treatment. Plasma from the aspirin group had no such effects. Administration of clopidogrel but not aspirin significantly decreased serum levels of soluble intercellular adhesion molecule-1, whereas no changes in levels of soluble vascular cell adhesion molecule-1, P-selectin, L-selectin, von Willebrand factor, platelet-derived growth factor, vascular-endothelial growth factor, and transforming growth factor-beta were observed. Inhibition of plasma-promoted endothelial activation by clopidogrel may indicate a novel role in the prevention of atherosclerosis.
Collapse
Affiliation(s)
- St Dunzendorfer
- Division of General Internal Medicine, Department of Internal Medicine, University of Innsbruck
| | | | | | | | | |
Collapse
|
15
|
Abstract
The blood-brain barrier (BBB) is formed by brain endothelial cells lining the cerebral microvasculature, and is an important mechanism for protecting the brain from fluctuations in plasma composition, and from circulating agents such as neurotransmitters and xenobiotics capable of disturbing neural function. The barrier also plays an important role in the homeostatic regulation of the brain microenvironment necessary for the stable and co-ordinated activity of neurones. The BBB phenotype develops under the influence of associated brain cells, especially astrocytic glia, and consists of more complex tight junctions than in other capillary endothelia, and a number of specific transport and enzyme systems which regulate molecular traffic across the endothelial cells. Transporters characteristic of the BBB phenotype include both uptake mechanisms (e.g. GLUT-1 glucose carrier, L1 amino acid transporter) and efflux transporters (e.g. P-glycoprotein). In addition to a role in long-term barrier induction and maintenance, astrocytes and other cells can release chemical factors that modulate endothelial permeability over a time-scale of seconds to minutes. Cell culture models, both primary and cell lines, have been used to investigate aspects of barrier induction and modulation. Conditioned medium taken from growing glial cells can reproduce some of the inductive effects, evidence for involvement of diffusible factors. However, for some features of endothelial differentiation and induction, the extracellular matrix plays an important role. Several candidate molecules have been identified, capable of mimicking aspects of glial-mediated barrier induction of brain endothelium; these include TGFbeta, GDNF, bFGF, IL-6 and steroids. In addition, factors secreted by brain endothelial cells including leukaemia inhibitory factor (LIF) have been shown to induce astrocytic differentiation. Thus endothelium and astrocytes are involved in two-way induction. Short-term modulation of brain endothelial permeability has been shown for a number of small chemical mediators produced by astrocytes and other nearby cell types. It is clear that endothelial cells are involved in both long- and short-term chemical communication with neighbouring cells, with the perivascular end feet of astrocytes being of particular importance. The role of barrier induction and modulation in normal physiology and in pathology is discussed.
Collapse
Affiliation(s)
- N Joan Abbott
- Centre for Neuroscience Research, King's College London, UK.
| |
Collapse
|
16
|
Xu HL, Feinstein DL, Santizo RA, Koenig HM, Pelligrino DA. Agonist-specific differences in mechanisms mediating eNOS-dependent pial arteriolar dilation in rats. Am J Physiol Heart Circ Physiol 2002; 282:H237-43. [PMID: 11748068 DOI: 10.1152/ajpheart.2002.282.1.h237] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO), derived from the endothelial isoform of NO synthase (eNOS), is a vital mediator of cerebral vasodilation. In the present study, we addressed the issue of whether the mechanisms responsible for agonist-induced eNOS activation differ according to the specific receptor being stimulated. Thus we examined whether heat shock protein 90 (HSP90), phosphatidylinositol-3-kinase (PI3K), and tyrosine kinase participate in ACh- versus ADP-induced eNOS activation in cerebral arterioles in vivo. Pial arteriolar diameter changes in anesthetized male rats were measured during sequential applications of ACh and ADP in the absence and presence of the nonselective NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME), the neuronal NOS (nNOS)-selective inhibitor ARR-17477, the HSP90 blocker 17-(allylamino)-17-demethoxygeldanamycin (AAG), the PI3K inhibitor wortmannin (Wort), or the tyrosine kinase blocker tyrphostin 47 (T-47). Only NOS inhibition with L-NAME (not ARR-17477) reduced ACh and ADP responses (by 65-75%), which suggests that all of the NO dependence in the vasodilating actions of those agonists derived from eNOS. Suffusions of AAG, Wort, and T-47 were accompanied by substantial reductions in ACh-induced dilations but no changes in the responses to ADP. These findings suggest that muscarinic (ACh) and purinergic (ADP) receptor-mediated eNOS activation in cerebral arterioles involve distinctly different signal transduction pathways.
Collapse
Affiliation(s)
- H-L Xu
- Neuroanesthesia Research Laboratory, University of Illinois at Chicago, MBRB (M/C 513), 900 South Ashland Ave., Chicago, IL 60607, USA
| | | | | | | | | |
Collapse
|
17
|
Gerencsér AA AA, Adam-Vizi V. Selective, high-resolution fluorescence imaging of mitochondrial Ca2+ concentration. Cell Calcium 2001; 30:311-21. [PMID: 11733937 DOI: 10.1054/ceca.2001.0238] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have developed a digital image processing technique based on highpass filtering of microfluorimetric images for selective transmission of fine image details corresponding to mitochondria. This technique enabled the detection of the mitochondrial calcium signals with high selectivity, simultaneously with the cytosolic calcium signal. The validity of this technique was supported in primary cultures of rat brain capillary endothelial cells loaded with X-rhod-1 by the results that (i) inhibition of the mitochondrial Ca2+ uptake by discharging the mitochondrial membrane potential selectively abolished the transient of the highpass filtered signal evoked by ATP, and (ii) CGP-37157, a selective blocker of the mitochondrial Na+/Ca2+ exchanger, increased the peak amplitude of highpass filtered (mitochondrial) Ca2+ transients and caused a sustained plateau. The highpass filtering technique enabled the analysis of the mitochondrial Ca2+ transients in high temporal resolution. We found a uniform and monophasic rise of [Ca2+] in the mitochondrial population of the cell, following the cytosolic [Ca2+] with a delay at onset and peak. The introduced highpass filtering technique is a powerful tool in the high spatial and temporal resolution analysis of mitochondrial calcium transients, and it could be especially important in specimens where genetically targeted probes fail.
Collapse
Affiliation(s)
- A A Gerencsér AA
- Department of Medical Biochemistry, Semmelweis University, Budapest, H-1444 P.O. Box 262, Hungary
| | | |
Collapse
|