1
|
Guan X, Li L, Li J, Jiang W, Li H, Wang X, Han L, Liu Y, Gong M, Zhang H. High preoperative bradykinin level is a risk factor for severe postoperative hypoxaemia in acute aortic dissection surgery. Exp Physiol 2023; 108:683-691. [PMID: 36934370 PMCID: PMC10988494 DOI: 10.1113/ep091054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/28/2023] [Indexed: 03/20/2023]
Abstract
NEW FINDINGS What is the central question of this study? Hypoxaemia can lead to increased postoperative mortality in patients: what are the independent risk factors for severe hypoxaemia after acute Stanford type A aortic dissection? What is the main finding and its importance? Severe postoperative hypoxaemia was found in 36.4% of patients, and it was determined that high preoperative bradykinin levels and increased BMI were independent predictors of severe postoperative hypoxaemia in patients with acute Stanford type A aortic dissection. For obese patients with high preoperative bradykinin levels, more attention should be paid to preventing severe postoperative hypoxaemia. ABSTRACT Severe hypoxaemia after cardiac surgery is associated with serious complications and a high risk of mortality. The purpose of this study is to investigate the independent risk factors of severe postoperative hypoxaemia in patients with acute Stanford type A aortic dissection. We collected 77 patients with acute Stanford type A aortic dissection who underwent surgical treatment. The primary outcome was severe postoperative hypoxaemia (PaO2 /FiO2 ≤ 100 mmHg), and a multivariate logistic regression analysis was performed to assess the independent predictors of risk for this. A mixed-effects analysis of variance model and a receiver operating characteristic (ROC) curve were generated to evaluate the predictive probabilities of risk factors for severe postoperative hypoxaemia. A total of 36.4% of patients developed severe postoperative hypoxaemia. The multivariate logistic regression analysis identified high preoperative bradykinin level (odds ratio (OR) = 55.918, P < 0.001) and increased body mass index (BMI; OR = 1.292, P = 0.032) as independent predictors of severe postoperative hypoxaemia in patients with acute Stanford type A aortic dissection. The mixed-effect analysis of variance model and ROC curve indicated that high preoperative bradykinin level and BMI were significant predictors of severe postoperative hypoxaemia (area under the ROC curve = 0.834 and 0.764, respectively). High preoperative bradykinin levels and obesity were independent risk factors for severe postoperative hypoxaemia in patients with acute Stanford type A aortic dissection. For obese patients with high levels of bradykinin before surgery, clinicians should actively take measures to block bradykinin-mediated inflammatory reactions.
Collapse
Affiliation(s)
- XinLiang Guan
- Department of Cardiac Surgery, Beijing Aortic Disease Center, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
- Beijing Advanced Innovation Center for Big Data‐Based Precision MedicineCapital Medical UniversityBeijingChina
- Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
- Beijing Laboratory for Cardiovascular Precision MedicineKey Laboratory of Medical Engineering for Cardiovascular DiseaseBeijingChina
| | - Lei Li
- Department of Cardiac Surgery, Beijing Aortic Disease Center, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
- Beijing Advanced Innovation Center for Big Data‐Based Precision MedicineCapital Medical UniversityBeijingChina
- Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
- Beijing Laboratory for Cardiovascular Precision MedicineKey Laboratory of Medical Engineering for Cardiovascular DiseaseBeijingChina
| | - JinZhang Li
- Department of Cardiac Surgery, Beijing Aortic Disease Center, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
- Beijing Advanced Innovation Center for Big Data‐Based Precision MedicineCapital Medical UniversityBeijingChina
- Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
- Beijing Laboratory for Cardiovascular Precision MedicineKey Laboratory of Medical Engineering for Cardiovascular DiseaseBeijingChina
| | - WenJian Jiang
- Department of Cardiac Surgery, Beijing Aortic Disease Center, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
- Beijing Advanced Innovation Center for Big Data‐Based Precision MedicineCapital Medical UniversityBeijingChina
- Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
- Beijing Laboratory for Cardiovascular Precision MedicineKey Laboratory of Medical Engineering for Cardiovascular DiseaseBeijingChina
| | - HaiYang Li
- Department of Cardiac Surgery, Beijing Aortic Disease Center, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
- Beijing Advanced Innovation Center for Big Data‐Based Precision MedicineCapital Medical UniversityBeijingChina
- Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
- Beijing Laboratory for Cardiovascular Precision MedicineKey Laboratory of Medical Engineering for Cardiovascular DiseaseBeijingChina
| | - XiaoLong Wang
- Department of Cardiac Surgery, Beijing Aortic Disease Center, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
- Beijing Advanced Innovation Center for Big Data‐Based Precision MedicineCapital Medical UniversityBeijingChina
- Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
- Beijing Laboratory for Cardiovascular Precision MedicineKey Laboratory of Medical Engineering for Cardiovascular DiseaseBeijingChina
| | - Lu Han
- Department of Cardiac Surgery, Beijing Aortic Disease Center, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
- Beijing Advanced Innovation Center for Big Data‐Based Precision MedicineCapital Medical UniversityBeijingChina
- Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
- Beijing Laboratory for Cardiovascular Precision MedicineKey Laboratory of Medical Engineering for Cardiovascular DiseaseBeijingChina
| | - YuYong Liu
- Department of Cardiac Surgery, Beijing Aortic Disease Center, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
- Beijing Advanced Innovation Center for Big Data‐Based Precision MedicineCapital Medical UniversityBeijingChina
- Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
- Beijing Laboratory for Cardiovascular Precision MedicineKey Laboratory of Medical Engineering for Cardiovascular DiseaseBeijingChina
| | - Ming Gong
- Department of Cardiac Surgery, Beijing Aortic Disease Center, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
- Beijing Advanced Innovation Center for Big Data‐Based Precision MedicineCapital Medical UniversityBeijingChina
- Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
- Beijing Laboratory for Cardiovascular Precision MedicineKey Laboratory of Medical Engineering for Cardiovascular DiseaseBeijingChina
| | - HongJia Zhang
- Department of Cardiac Surgery, Beijing Aortic Disease Center, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
- Beijing Advanced Innovation Center for Big Data‐Based Precision MedicineCapital Medical UniversityBeijingChina
- Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
- Beijing Laboratory for Cardiovascular Precision MedicineKey Laboratory of Medical Engineering for Cardiovascular DiseaseBeijingChina
| |
Collapse
|
2
|
Reid MM, Obenaus A, Mukherjee PK, Khoutorova L, Roque CR, Petasis NA, Oria RB, Belayev L, Bazan NG. Synergistic Neuroprotection by a PAF Antagonist Plus a Docosanoid in Experimental Ischemic Stroke: Dose-Response and Therapeutic Window. J Stroke Cerebrovasc Dis 2022; 31:106585. [PMID: 35717719 PMCID: PMC9976619 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE We tested the hypothesis that blocking pro-inflammatory platelet-activating factor receptor (PAFR) with LAU-0901 (LAU) plus administering a selected docosanoid, aspirin-triggered neuroprotectin D1 (AT-NPD1), which activates cell-survival pathways after middle cerebral artery occlusion (MCAo), would lead to neurological recovery. Dose-response and therapeutic window were investigated. MATERIALS AND METHODS Male SD rats were subjected to 2 hours of MCAo. Behavior testing (days 1-7) and ex vivo MRI on day 7 were conducted. In dose-response, rats were treated with LAU (45 and 60 mg/kg; IP), AT-NPD1 (111, 222, 333 µg/kg; IV), LAU+AT-NPD1 (LAU at 3 hours and AT-NPD1 at 3.15 hours) or vehicle. In the therapeutic window, vehicle, LAU (60 mg/kg), AT-NPD1 (222 µg/kg), and LAU+AT-NPD1 were administered at 3, 4, 5, and 6 hours after onset of MCAo. RESULTS LAU and AT-NPD1 treatments alone improved behavior by 40-42% and 20-30%, respectively, and LAU+AT-NPD1 by 40% compared to the vehicle group. T2-weighted imaging (T2WI) volumes were reduced with all doses of LAU and AT-NPD1 by 73-90% and 67-83% and LAU+AT-NPD1 by 94% compared to vehicle. In the therapeutic window, LAU+AT-NPD1, when administered at 3, 4, 5, and 6 hours, improved behavior by 50, 56, 33, and 26% and reduced T2WI volumes by 93, 90, 82, and 84% compared to vehicle. CONCLUSIONS We have shown here for the first time that LAU plus AT-NPD1 treatment affords high-grade neuroprotection in MCAo, equaling or exceeding that afforded by LAU or AT-NPD1 alone at considerably moderate doses. It has a broad therapeutic window extending to 6 hours after stroke onset.
Collapse
Affiliation(s)
- Madigan M. Reid
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Andre Obenaus
- Department of Pediatrics, School of Medicine, University of California, Irvine, CA, USA.
| | - Pranab K. Mukherjee
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Larissa Khoutorova
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA.
| | - Cassia R. Roque
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Nicos A. Petasis
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Reinaldo B. Oria
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Ludmila Belayev
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA.
| | - Nicolas G. Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| |
Collapse
|
3
|
Kawadkar M, Mandloi AS, Singh N, Mukharjee R, Dhote VV. Combination therapy for cerebral ischemia: do progesterone and noscapine provide better neuroprotection than either alone in the treatment? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:167-185. [PMID: 34988596 DOI: 10.1007/s00210-021-02187-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/20/2021] [Indexed: 10/19/2022]
Abstract
Ischemic stroke presents multifaceted pathological outcomes with overlapping mechanisms of cerebral injury. High mortality and disability with stroke warrant a novel multi-targeted therapeutic approach. The neuroprotection with progesterone (PG) and noscapine (NOS) on cerebral ischemia-reperfusion (I-R) injury was demonstrated individually, but the outcome of combination treatment to alleviate cerebral damage is still unexplored. Randomly divided groups of rats (n = 6) were Sham-operated, I-R, PG (8 mg/kg), NOS (10 mg/kg), and PG + NOS (8 mg/kg + 10 mg/kg). The rats were exposed to bilateral common carotid artery occlusion, except Sham-operated, to investigate the therapeutic outcome of PG and NOS alone and in combination on I-R injury. Besides the alterations in cognitive and motor abilities, we estimated infarct area, oxidative stress, blood-brain barrier (BBB) permeability, and histology after treatment. Pharmacokinetic parameters like Cmax, Tmax, half-life, and AUC0-t were estimated in biological samples to substantiate the therapeutic outcomes of the combination treatment. We report PG and NOS prevent loss of motor ability and improve spatial memory after cerebral I-R injury. Combination treatment significantly reduced inflammation and restricted infarction; it attenuated oxidative stress and BBB damage and improved grip strength. Histopathological analysis demonstrated a significant reduction in leukocyte infiltration with the most profound effect in the combination group. Simultaneous analysis of PG and NOS in plasma revealed enhanced peak drug concentration, improved AUC, and prolonged half-life; the drug levels in the brain have increased significantly for both. We conclude that PG and NOS have beneficial effects against brain damage and the co-administration further reinforced neuroprotection in the cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Manisha Kawadkar
- Department of Pharmacology, Faculty of Pharmacy, VNS Group of Institutions, Vidya Vihar, Neelbud, Bhopal, Madhya Pradesh, 462044, India
| | - Avinash S Mandloi
- Department of Pharmacology, Faculty of Pharmacy, VNS Group of Institutions, Vidya Vihar, Neelbud, Bhopal, Madhya Pradesh, 462044, India
| | - Nidhi Singh
- Department of Pharmacology, Faculty of Pharmacy, VNS Group of Institutions, Vidya Vihar, Neelbud, Bhopal, Madhya Pradesh, 462044, India
| | - Rajesh Mukharjee
- Department of Pharmacology, Faculty of Pharmacy, VNS Group of Institutions, Vidya Vihar, Neelbud, Bhopal, Madhya Pradesh, 462044, India
| | - Vipin V Dhote
- Department of Pharmacology, Faculty of Pharmacy, VNS Group of Institutions, Vidya Vihar, Neelbud, Bhopal, Madhya Pradesh, 462044, India.
| |
Collapse
|
4
|
Primary prevention of myocardial infarction with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in hypertensive patients with rheumatoid arthritis-A nationwide cohort study. PLoS One 2017; 12:e0188720. [PMID: 29216228 PMCID: PMC5720761 DOI: 10.1371/journal.pone.0188720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is regarded as a high risk factor for myocardial infarction. Hypertension is a major modifiable risk factor contributing to increased risk of myocardial infarction (MI). Dual blood pressure (BP)-lowering and anti-inflammatory effect of renin-angiotensin-system (RAS) inhibitors may possess protective effect from MI in RA population. However, treatment of hypertension with RAS inhibitors and MI in RA population remains unclear. Methods We investigated whether RAS blockade could decrease risk of incident MI in hypertensive patients with RA. We identified patients with RA and hypertension from the Registry for Catastrophic Illness, a nation-wide database encompassing almost all of the RA patients in Taiwan from 1995 to 2008. The primary endpoint was MI and the median duration of follow up was 2,986 days. Propensity score weighting and Cox proportional hazards regression models were used to estimate hazard ratios for MI. Results Among 27,335 subjects, 9.9% received angiotensin-converting enzyme inhibitors (ACEIs), 25.9% received angiotensin II receptor blockers (ARBs) and 20.0% received ACEIs or ARBs alternatively. The incidence of MI significantly decreased in patients treated with ACEIs (hazard ratio 0.707; 95% confidence interval 0.595–0.840), ARBs (0.641; 0.550–0.747) and ACEIs/ARBs (0.631; 0.539–0.739). The protective effect of ACEI or ARB therapy was significantly better in patients taking longer duration. The effect remained robust in subgroup analyses. Conclusions Therapy of ACEIs or ARBs is associated with a lower risk of MI among patients with RA. Hence, hypertension in patients with RA could comprise a compelling indication for RAS inhibitors.
Collapse
|
5
|
Cassini-Vieira P, Felipetto M, Prado LB, Verano-Braga T, Andrade SP, Santos RAS, Teixeira MM, de Lima ME, Pimenta AMC, Barcelos LS. Ts14 from Tityus serrulatus boosts angiogenesis and attenuates inflammation and collagen deposition in sponge-induced granulation tissue in mice. Peptides 2017; 98:63-69. [PMID: 27732900 DOI: 10.1016/j.peptides.2016.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 12/18/2022]
Abstract
We have previously described a 25mer anti-hypertensive peptide, previously named TsHpt-I (Tityus serrulatus Hypotensin-I), now Ts14, as an agonist of B2 kinin receptor. Bradykinin is known to play physiological roles in angiogenic, inflammatory, and fibrogenic processes, mostly mediated by B2 receptor. Therefore, we investigated whether Ts14 could modulate key events (neovascularization, inflammatory cell recruitment, and extracellular matrix deposition) of the fibrovascular tissue, induced by polyether-polyurethane sponge implants in mice. Sponges were implanted in the dorsum of 7-week-old C57Bl/6 male mice that received daily intrasponge treatment with Ts14 (27.25μg/sponge/day in 10μL PBS) or vehicle (10μL PBS/sponge/day) and were assessed on day 7 after surgery. Hemoglobin content, blood flow (laser Doppler perfusion imaging), and VEGF levels in the implants, used as indices of vascularization, indicated that Ts14 enhanced angiogenesis in implants relative to the PBS-treated group. Interestingly, Ts14 reduced TNF-α levels and neutrophil infiltration, although stimulated macrophage infiltration into implants, as determined by myeloperoxidase (MPO) and N-acetyl-β-d-glucosaminidase (NAG) enzyme activities, respectively. Regarding the fibrogenic component (soluble collagen content and Sirius-red histological staining), we observed that Ts14 inhibited collagen deposition in the implants. Overall, our results suggest that Ts14 exerts proangiogenic, anti-inflammatory, and anti-fibrogenic activities. These effects may indicate a therapeutical potential of this peptide in conditions where angiogenesis, inflammation, and fibrogenesis contribute to disease progression and chronicity.
Collapse
Affiliation(s)
- Puebla Cassini-Vieira
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Mariane Felipetto
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Leandro Barbosa Prado
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Thiago Verano-Braga
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Silvia Passos Andrade
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Robson A S Santos
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Maria Elena de Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Adriano M C Pimenta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Luciola Silva Barcelos
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil.
| |
Collapse
|
6
|
Chao J, Li P, Chao L. Kallistatin suppresses cancer development by multi-factorial actions. Crit Rev Oncol Hematol 2017; 113:71-78. [PMID: 28427524 PMCID: PMC5441310 DOI: 10.1016/j.critrevonc.2017.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 02/17/2017] [Accepted: 03/11/2017] [Indexed: 01/07/2023] Open
Abstract
Kallistatin was first identified in human plasma as a tissue kallikrein-binding protein and a serine proteinase inhibitor. Kallistatin via its two structural elements regulates differential signaling cascades, and thus a wide spectrum of biological functions. Kallistatin's active site is essential for: inhibiting tissue kallikrein's activity; stimulating endothelial nitric oxide synthase and sirtuin 1 expression and activation; and modulating the synthesis of the microRNAs, miR-34a, miR-21 and miR-203. Kallistatin's heparin-binding site is crucial for antagonizing the signaling pathways of vascular endothelial growth factor, tumor necrosis factor-α, Wnt, transforming growth factor-β and epidermal growth factor. Circulating kallistatin levels are markedly reduced in patients with prostate and colon cancer. Kallistatin administration attenuates angiogenesis, inflammation, tumor growth and invasion in animal models and cultured cells. Therefore, tumor progression may be substantially suppressed by kallistatin's pleiotropic activities. In this review, we will discuss the role and mechanisms of kallistatin in the regulation of cancer development.
Collapse
Affiliation(s)
- Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
| | - Pengfei Li
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Lee Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
7
|
Shireman TI, Mahnken JD, Phadnis MA, Ellerbeck EF, Wetmore JB. Comparative Effectiveness of Renin-Angiotensin System Antagonists in Maintenance Dialysis Patients. Kidney Blood Press Res 2016; 41:873-885. [PMID: 27871075 DOI: 10.1159/000452590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND/AIMS Whether angiotensin converting enzyme inhibitors (ACE) and angiotensin receptor blockers (ARB) are differentially associated with reductions in cardiovascular events and mortality in patients receiving maintenance dialysis is uncertain. We compared outcomes between ACE and ARB users among hypertensive, maintenance dialysis patients. METHODS National retrospective cohort study of hypertensive, Medicare-Medicaid eligible patients initiating chronic dialysis between 1/1/2000 to 12/31/2005. The exposure of interest was new use of either an ACEI or ARB. Outcomes were all-cause mortality (ACM) and combined cardiovascular hospitalization or death (CV-endpoint). Cox proportion hazards models were used to compare the effect of ACEI vs ARB use on ACM and, separately, CV-endpoint. RESULTS ACM models were based on 3,555 ACEI and 1,442 ARB new users, while CV-endpoint models included 3,289 ACEI and 1,346 ARB new users. After statistical adjustments, ACEI users had higher hazard ratios for ACM (AHR = 1.22, 99% CI 1.05-1.42) and CV-endpoint (AHR = 1.12, 99% CI 0.99-1.27). CONCLUSIONS Patients initiating maintenance dialysis who received an ACEI faced an increased risk for mortality and a trend towards an increased risk for CV-endpoints when compared to patients who received an ARB. Validation of these results in a rigorous clinical trial is warranted.
Collapse
Affiliation(s)
- Theresa I Shireman
- Center for Gerontology & Health Care Research, Department of Health Services, Policy & Practice, Brown University School of Public Health, Providence, RI, USA
| | | | | | | | | |
Collapse
|
8
|
Chen F, Wang W, Ding H, Yang Q, Dong Q, Cui M. The glucagon-like peptide-1 receptor agonist exendin-4 ameliorates warfarin-associated hemorrhagic transformation after cerebral ischemia. J Neuroinflammation 2016; 13:204. [PMID: 27566245 PMCID: PMC5002167 DOI: 10.1186/s12974-016-0661-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 07/14/2016] [Indexed: 12/25/2022] Open
Abstract
Background As the number of patients with cardioembolic ischemic stroke is predicted to be double by 2030, increased burden of warfarin-associated hemorrhagic transformation (HT) after cerebral ischemia is an expected consequence. However, thus far, no effective treatment strategy is available for HT prevention in routine clinical practice. While the glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 (Ex-4) is known to protect against oxidative stress and neuronal cell death caused by ischemic brain damage, its effect on preventing warfarin-associated HT after cerebral ischemia is yet unknown. Therefore, we hypothesized that Ex-4 would stabilize the blood-brain barrier (BBB) and suppress neuroinflammation through PI3K-Akt-induced inhibition of glycogen synthase kinase-3β (GSK-3β) after warfarin-associated HT post-cerebral ischemia. Methods We used male C57BL/6 mice for all experiments. A 5-mg warfarin sodium tablet was dissolved in animals’ drinking water (effective warfarin uptake 0.04 mg (2 mg/kg) per mouse). The mice were fed for 0, 6, 12, and 24 h with ad libitum access to the treated water. To study the effects of Ex-4, temporary middle cerebral artery occlusion (MCAO) was performed. Then, either Ex-4 (10 mg/kg) or saline was injected through the tail vein, and in the Ex-4 + wortmannin group, PI3K inhibitor wortmannin was intravenously injected, after reperfusion. The infarct volume, neurological deficits, and integrity of the BBB were assessed 72 h post MCAO. One- or two-way ANOVA was used to test the difference between means followed by Newman–Keuls post hoc testing for pair-wise comparison. Results We observed that Ex-4 ameliorated warfarin-associated HT and preserved the integrity of the BBB after cerebral ischemia through the PI3K/Akt/GSK-3β pathway. Furthermore, Ex-4 suppressed oxidative DNA damage and lipid peroxidation, attenuated pro-inflammatory cytokine expression levels, and suppressed microglial activation and neutrophil infiltration in warfarin-associated HT post-cerebral ischemia. However, these effects were totally abolished in the mice treated with Ex-4 + the PI3K inhibitor—wortmannin. The PI3K/Akt-GSK-3β signaling pathway appeared to contribute to the protection afforded by Ex-4 in the warfarin-associated HT model. Conclusions GLP-1 administration could reduce warfarin-associated HT in mice. This beneficial effect of GLP-1 is associated with attenuating neuroinflammation and BBB disruption by inactivating GSK-3β through the PI3K/Akt pathway. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0661-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fangzhe Chen
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Weifeng Wang
- The Department of Clinical Laboratory, Central Laboratory, Jing'an District Centre Hospital of Shanghai, Huashan Hospital Fudan University Jing'an Branch, No. 259 Xi Kang Road, Shanghai, 200040, China
| | - Hongyan Ding
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Qi Yang
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China.
| | - Mei Cui
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China.
| |
Collapse
|
9
|
Sevoflurane Versus Desflurane on the Incidence of Postreperfusion Syndrome During Living Donor Liver Transplantation: A Randomized Controlled Trial. Transplantation 2016; 100:600-6. [PMID: 26335917 DOI: 10.1097/tp.0000000000000874] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Various interventions to reduce postreperfusion syndrome during liver transplantation have been explored, but the effect of volatile anesthetics used during liver transplantation on the incidence of postreperfusion syndrome has not been evaluated. A randomized controlled trial was performed to compare the incidence of postreperfusion syndrome between 2 commonly used volatile anesthetics, sevoflurane and desflurane. METHODS Sixty-two adult liver recipients scheduled for living-donor liver transplantation were randomized to receive either sevoflurane or desflurane for general anesthesia. The incidence of postreperfusion syndrome, use of vasoactive drugs, and postoperative course were compared. The risk factors associated with postreperfusion syndrome were also analyzed. RESULTS There was significantly less postreperfusion syndrome in the sevoflurane group compared to the desflurane group (38.7% vs 77.4%, P = 0.004) and less epinephrine was required in the sevoflurane group than the desflurane group (19.4% vs 45.2%, P = 0.030). Postoperative intensive care unit and hospital length of stay and postoperative course were similar between the groups. Multivariate analysis identified desflurane (compared to sevoflurane) as the only risk factor (odds ratio 7.314, P = 0.001) for reperfusion syndrome. CONCLUSIONS When using volatile anesthetics for elective living donor liver transplantation, sevoflurane seems to be a better option than desflurane for reducing the incidence of postreperfusion syndrome.
Collapse
|
10
|
Granger DN, Holm L, Kvietys P. The Gastrointestinal Circulation: Physiology and Pathophysiology. Compr Physiol 2016; 5:1541-83. [PMID: 26140727 DOI: 10.1002/cphy.c150007] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) circulation receives a large fraction of cardiac output and this increases following ingestion of a meal. While blood flow regulation is not the intense phenomenon noted in other vascular beds, the combined responses of blood flow, and capillary oxygen exchange help ensure a level of tissue oxygenation that is commensurate with organ metabolism and function. This is evidenced in the vascular responses of the stomach to increased acid production and in intestine during periods of enhanced nutrient absorption. Complimenting the metabolic vasoregulation is a strong myogenic response that contributes to basal vascular tone and to the responses elicited by changes in intravascular pressure. The GI circulation also contributes to a mucosal defense mechanism that protects against excessive damage to the epithelial lining following ingestion of toxins and/or noxious agents. Profound reductions in GI blood flow are evidenced in certain physiological (strenuous exercise) and pathological (hemorrhage) conditions, while some disease states (e.g., chronic portal hypertension) are associated with a hyperdynamic circulation. The sacrificial nature of GI blood flow is essential for ensuring adequate perfusion of vital organs during periods of whole body stress. The restoration of blood flow (reperfusion) to GI organs following ischemia elicits an exaggerated tissue injury response that reflects the potential of this organ system to generate reactive oxygen species and to mount an inflammatory response. Human and animal studies of inflammatory bowel disease have also revealed a contribution of the vasculature to the initiation and perpetuation of the tissue inflammation and associated injury response.
Collapse
Affiliation(s)
- D Neil Granger
- Department of Molecular and Cellular Physiology, LSU Health Science Center-Shreveport, Shreveport, Louisiana, USA
| | - Lena Holm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Peter Kvietys
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Mendonça LR, Joviliano EE, Ramalho FS, Ramalho LNZ, Evora PRB, Piccinato CE. Bradykinin Impairs and HOE 140 does not Protect Rat Hindlimb Skeletal Muscle Against Tourniquet-induced Reperfusion Injury. J INVEST SURG 2015; 29:13-9. [PMID: 26375056 DOI: 10.3109/08941939.2015.1041656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Bradykinin (BK) is used in different tissues. Dose-dependent studies have demonstrated that low doses protect against ischemia/reperfusion (I/R) injury while higher doses lead to adverse effects. Although the beneficial effects of BK infusion were observed in myocardium, its role on the I/R impact in skeletal muscle (SM) has not been fully clarified. OBJECTIVE This study was carried out to evaluate the effects of BK, administered in the hindlimbs of rats subjected to I/R. METHODS The study design included three experimental groups: Group 1 control (saline), Group 2 (bradykinin), and Group 3 (HOE 140, a BK2 receptor blocker). In all three groups, rats were subjected to hindlimb ischemia for a total of 2 h followed by continuous 4 h of reperfusion with pharmacological interventions. The methods include analysis of enzymes (lactate dehydrogenase-LDH and creatinine phosphokinase-CPK), cell membrane marker of injury (malondialdeyde-MDA), recruitment of neutrophils (myeloperoxidase-MPO), and apoptosis index (immunohistochemistry TUNEL in situ peroxidase dead end). RESULTS Except for the apoptotic index, all parameters studied were shown to be elevated in the reperfusion group intervened with BK. The blocking of BK2 receptors by HOE 140 did not affect the I/R injury. CONCLUSION After 2 h of total ischemia, infusion of bradykinin during 4 h of reperfusion, worsened the I/R injury in the hindlimb skeletal muscle.
Collapse
Affiliation(s)
- Luciano R Mendonça
- a Divisions of Vascular and Endovascular Surgery and Cardiovascular Surgery, Ribeirão Preto School of Medicine, Department of Surgery and Anatomy, University of São Paulo
| | - Edwaldo E Joviliano
- a Divisions of Vascular and Endovascular Surgery and Cardiovascular Surgery, Ribeirão Preto School of Medicine, Department of Surgery and Anatomy, University of São Paulo
| | - Fernando S Ramalho
- b Ribeirão Preto School of Medicine, Department of Pathology and Legal Medicine, University of São Paulo
| | - Leandra N Z Ramalho
- b Ribeirão Preto School of Medicine, Department of Pathology and Legal Medicine, University of São Paulo
| | - Paulo R B Evora
- a Divisions of Vascular and Endovascular Surgery and Cardiovascular Surgery, Ribeirão Preto School of Medicine, Department of Surgery and Anatomy, University of São Paulo
| | - Carlos E Piccinato
- a Divisions of Vascular and Endovascular Surgery and Cardiovascular Surgery, Ribeirão Preto School of Medicine, Department of Surgery and Anatomy, University of São Paulo
| |
Collapse
|
12
|
Pereira RL, Felizardo RJF, Cenedeze MA, Hiyane MI, Bassi EJ, Amano MT, Origassa CST, Silva RC, Aguiar CF, Carneiro SM, Pesquero JB, Araújo RC, Keller ADC, Monteiro RC, Moura IC, Pacheco-Silva A, Câmara NOS. Balance between the two kinin receptors in the progression of experimental focal and segmental glomerulosclerosis in mice. Dis Model Mech 2014; 7:701-10. [PMID: 24742784 PMCID: PMC4036477 DOI: 10.1242/dmm.014548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Focal and segmental glomerulosclerosis (FSGS) is one of the most important renal diseases related to end-stage renal failure. Bradykinin has been implicated in the pathogenesis of renal inflammation, whereas the role of its receptor 2 (B2RBK; also known as BDKRB2) in FSGS has not been studied. FSGS was induced in wild-type and B2RBK-knockout mice by a single intravenous injection of Adriamycin (ADM). In order to further modulate the kinin receptors, the animals were also treated with the B2RBK antagonist HOE-140 and the B1RBK antagonist DALBK. Here, we show that the blockage of B2RBK with HOE-140 protects mice from the development of FSGS, including podocyte foot process effacement and the re-establishment of slit-diaphragm-related proteins. However, B2RBK-knockout mice were not protected from FSGS. These opposite results were due to B1RBK expression. B1RBK was upregulated after the injection of ADM and this upregulation was exacerbated in B2RBK-knockout animals. Furthermore, treatment with HOE-140 downregulated the B1RBK receptor. The blockage of B1RBK in B2RBK-knockout animals promoted FSGS regression, with a less-inflammatory phenotype. These results indicate a deleterious role of both kinin receptors in an FSGS model and suggest a possible cross-talk between them in the progression of disease.
Collapse
Affiliation(s)
- Rafael Luiz Pereira
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo, São Paulo 04023-900, Brazil. Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo 05508-000, Brazil
| | - Raphael José Ferreira Felizardo
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo, São Paulo 04023-900, Brazil
| | - Marcos Antônio Cenedeze
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo, São Paulo 04023-900, Brazil
| | - Meire Ioshie Hiyane
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo 05508-000, Brazil
| | - Enio José Bassi
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo, São Paulo 04023-900, Brazil
| | - Mariane Tami Amano
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo, São Paulo 04023-900, Brazil
| | - Clarice Sylvia Taemi Origassa
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo, São Paulo 04023-900, Brazil
| | - Reinaldo Correia Silva
- Laboratory of Clinical and Experimental Immunology, Translational Medicine Division, Federal University of São Paulo, São Paulo 04039-002, Brazil
| | - Cristhiane Fávero Aguiar
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo 05508-000, Brazil
| | - Sylvia Mendes Carneiro
- Laboratory of Cellular Biology, Instituto Butantan, Av. Vital Brazil 1500, São Paulo 05503-900, Brazil
| | - João Bosco Pesquero
- Department of Biophysics, Federal University of São Paulo (UNIFESP), São Paulo 04023-062, Brazil
| | - Ronaldo Carvalho Araújo
- Department of Biophysics, Federal University of São Paulo (UNIFESP), São Paulo 04023-062, Brazil
| | - Alexandre de Castro Keller
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo 04023-062, Brazil
| | - Renato C Monteiro
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 699, Paris 75870, France
| | - Ivan Cruz Moura
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 699, Paris 75870, France
| | - Alvaro Pacheco-Silva
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo, São Paulo 04023-900, Brazil. Instituto Israelita de Ensino e Pesquisa Albert Einstein, Renal Transplantation Unit, Albert Einstein Hospital, São Paulo 05521-000, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo, São Paulo 04023-900, Brazil. Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo 05508-000, Brazil.
| |
Collapse
|
13
|
Khanmoradi M, Ali Mard S, Aboutaleb N, Nobakht M, Mahmoudian M. The protective activity of noscapine on renal ischemia-reperfusion injury in male Wistar rat. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2014; 17:244-9. [PMID: 24904716 PMCID: PMC4046240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/11/2013] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Bradykinin is a part of the kinin-kallikrein system which is involved in ischemia-reperfusion injury via B1 and B2 receptors. Noscapine is a non-competitive antagonist of bradykinin receptors. Noscapine has been reported to to be able to protect some organs against ischemia-reperfusion injury but its effect on renal ischemia-reperfusion injury (RIR) in rats is unknown. Therefore, the present study was designed to evaluate the effect of noscapine on renal ischemia-reperfusion injury in rats. MATERIALS AND METHODS Twenty four rats were randomly assigned to four groups; sham, RIR control, pre-and post-treatment with noscapine. To induce RIR injury, 20 days after right nephrectomy, animals underwent a midline laparotomy and the renal artery was clamped for 40 min to induce ischemia, and the clamp was then removed to allow reperfusion for 48 hr. Animals received noscapine or vehicle 1 hr before RIR or just prior to reperfusion. At the end of the experiment, animals were killed by cardiac exsanguination. Blood samples were collected to assess blood urea nitrogen (BUN) and creatinine. The kidneys were also removed for histopathlogical and western-blot analysis. RESULTS Noscapine treatment 1 hr before RIR or just prior to reperfusion protects the renal tissue structure as compared with the control. The expression levels of the studied inflammatory mediators, TNF-α and MCP-1in pretreated-, and treated-noscapine groups decreased as compared with the control group. The levels of BUN and creatinine in pre-, and post-treated noscapine groups were significantly lower than in control animals. CONCLUSION Noscapine protects renal tissue structure and function against RIR through down-regulation of the inflammatory mediators.
Collapse
Affiliation(s)
- Mehrangiz Khanmoradi
- Physiology Research Center and Phyiology Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyyed Ali Mard
- Physiology Research Center (PRC), Research Institute for Infectious Diseases of Digestive System and Department of Physiology, School of Medicine, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nahid Aboutaleb
- Physiology Research Center and Phyiology Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran,Corresponding author: Nahid Abotaleb, Physiology Research Center, Department of Phyiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. Tel: +98-21-82944549;
| | - Malihe Nobakht
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Mahmoudian
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Chao J, Bledsoe G, Chao L. Tissue kallikrein-kinin therapy in hypertension and organ damage. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 69:37-57. [PMID: 25130039 DOI: 10.1007/978-3-319-06683-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Tissue kallikrein is a serine proteinase that cleaves low molecular weight kininogen to produce kinin peptides, which in turn activate kinin receptors to trigger multiple biological functions. In addition to its kinin-releasing activity, tissue kallikrein directly interacts with the kinin B2 receptor, protease-activated receptor-1, and gamma-epithelial Na channel. The tissue kallikrein-kinin system (KKS) elicits a wide spectrum of biological activities, including reducing hypertension, cardiac and renal damage, restenosis, ischemic stroke, and skin wound injury. Both loss-of-function and gain-of-function studies have shown that the KKS plays an important endogenous role in the protection against health pathologies. Tissue kallikrein/kinin treatment attenuates cardiovascular, renal, and brain injury by inhibiting oxidative stress, apoptosis, inflammation, hypertrophy, and fibrosis and promoting angiogenesis and neurogenesis. Approaches that augment tissue kallikrein-kinin activity might provide an effective strategy for the treatment of hypertension and associated organ damage.
Collapse
|
15
|
Contribution of endogenous bradykinin to fibrinolysis, inflammation, and blood product transfusion following cardiac surgery: a randomized clinical trial. Clin Pharmacol Ther 2012; 93:326-34. [PMID: 23361105 DOI: 10.1038/clpt.2012.249] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bradykinin increases during cardiopulmonary bypass (CPB) and stimulates the release of nitric oxide, inflammatory cytokines, and tissue-type plasminogen activator (t-PA), acting through its B2 receptor. This study tested the hypothesis that endogenous bradykinin contributes to the fibrinolytic and inflammatory response to CPB and that bradykinin B2 receptor antagonism reduces fibrinolysis, inflammation, and subsequent transfusion requirements. Patients (N = 115) were prospectively randomized to placebo, ε-aminocaproic acid (EACA), or HOE 140, a bradykinin B2 receptor antagonist. Bradykinin B2 receptor antagonism decreased intraoperative fibrinolytic capacity as much as EACA, but only EACA decreased D-dimer formation and tended to decrease postoperative bleeding. Although EACA and HOE 140 decreased fibrinolysis and EACA attenuated blood loss, these treatments did not reduce the proportion of patients transfused. These data suggest that endogenous bradykinin contributes to t-PA generation in patients undergoing CPB, but that additional effects on plasmin generation contribute to decreased D-dimer concentrations during EACA treatment.
Collapse
|
16
|
Gamboa JL, Pretorius M, Todd-Tzanetos DR, Luther JM, Yu C, Ikizler TA, Brown NJ. Comparative effects of angiotensin-converting enzyme inhibition and angiotensin-receptor blockade on inflammation during hemodialysis. J Am Soc Nephrol 2011; 23:334-42. [PMID: 22158433 DOI: 10.1681/asn.2011030287] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Biomarkers of oxidative stress and inflammation predict cardiovascular events in maintenance hemodialysis patients. Angiotensin-converting enzyme (ACE) inhibitors and angiotensin-receptor blockers (ARBs) reduce cardiovascular mortality in the general population, but their benefit in maintenance hemodialysis patients is not fully explored. To test whether ACE inhibitors and ARBs differentially affect markers of oxidative stress, inflammation, and fibrinolysis during hemodialysis, we conducted a randomized, double-blind, placebo-controlled 3×3 crossover study. We randomly assigned 15 participants undergoing hemodialysis to placebo, ramipril (5 mg/d), and valsartan (160 mg/d) for 7 days, with a washout period of 3 weeks in between the treatments. On the morning of the seventh day of drug treatment, participants underwent serial blood sampling during hemodialysis. Neither ramipril nor valsartan affected BP during hemodialysis. Ramipril increased IL-1β concentrations (P=0.02) and decreased IL-10 concentrations (P=0.04) compared with placebo. Valsartan and ramipril both lowered IL-6 levels during dialysis (P<0.01 for each compared with placebo). Valsartan increased F(2)-isoprostane levels, and ramipril suggested a similar trend (P=0.09). Valsartan and ramipril both lowered D-dimer levels (P<0.01 for both), whereas only ramipril seemed to prevent a rise in vWf levels (P=0.04). In summary, during hemodialysis, valsartan induces a greater anti-inflammatory effect compared with ramipril, although ramipril seems to prevent dialysis-induced endothelial dysfunction as measured by levels of vWf. A prospective clinical trial is necessary to determine whether ACE inhibitors and ARBs also differ with respect to their effects on cardiovascular mortality in this population.
Collapse
Affiliation(s)
- Jorge L Gamboa
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-2372, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Menezes GB, Mansur DS, McDonald B, Kubes P, Teixeira MM. Sensing sterile injury: opportunities for pharmacological control. Pharmacol Ther 2011; 132:204-14. [PMID: 21763344 DOI: 10.1016/j.pharmthera.2011.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 12/22/2022]
Abstract
Sterile injury can trigger an acute inflammatory response, which might be responsible for the pathogenesis of several diseases, including rheumatoid arthritis, lung fibrosis and acute liver failure. A key event for the pathogenesis of these diseases is the recruitment of leukocytes to necrotic areas. Much is known about the mechanisms of recruitment to sites of infection. However, only now is it becoming clear how leukocytes, especially neutrophils, are recruited to areas of tissue damage and necrosis in the absence of infection. Here, we review and discuss mechanisms responsible for sensing and driving the influx of leukocytes, specifically neutrophils, into sites of sterile injury. This knowledge clearly opens new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Gustavo B Menezes
- Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Brazil.
| | | | | | | | | |
Collapse
|
18
|
Jiang W, Kirkup AJ, Grundy D. Mast cells drive mesenteric afferent signalling during acute intestinal ischaemia. J Physiol 2011; 589:3867-82. [PMID: 21669977 DOI: 10.1113/jphysiol.2011.209478] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acute intestinal ischaemia stimulates visceral afferent nerves but the mechanisms responsible for this excitation are not fully understood. Mast cells may participate in this process as they are known to signal to mesenteric afferents during intestinal anaphylaxis and contribute to early inflammation and neuronal damage in response to cerebral ischaemia. We therefore hypothesised that mast cells are early responders to acute intestinal ischaemia and their activation initiates rapid signalling to the CNS via the excitation of mesenteric afferents. Primary afferent firing was recorded from a mesenteric nerve bundle supplying a segment of jejunum in anaesthetized adult rats. Acute focal ischaemia was produced by clamping theme senteric vessels for 8 min, and reperfusion followed removal of the vessel clip. Two episodes of ischaemia–reperfusion (I–R) separated by a 30 min interval were performed. Drugs or their vehicles were administered 10 min before the 2nd I–R episode. Ischaemia caused a reproducible, intense and biphasic afferent firing that was temporally dissociated from the concomitantly triggered complex pattern of intestinal motor activity. The L-type calcium channel blocker, nifedipine, significantly attenuated this afferent firing by a mechanism independent of its action on intestinal tone. Ischaemia-induced afferent firing was also abrogated by the mast cell stabilizer, doxantrazole, and the H1 histamine receptor antagonist, pyrilamine. In contrast, the nicotinic receptor antagonist, hexamethonium, and the N-type calcium channel toxin, ω-conotoxin GVIA, each reduced the ischaemia-evoked motor inhibition but not the concurrent afferent discharge. Similarly, the cyclooxygenase inhibitor, naproxen, had no effect on the ischaemic afferent response but reduced the intestinal tone shortly from the onset of ischaemia to the early period of reperfusion. These data support a critical role for mast cell-derived histamine in the direct chemoexcitation of mesenteric afferents during acute intestinal ischaemia, whereas enteric reflex mechanisms and cyclooxygenase products contribute primarily to ischaemia-induced changes in intestinal motility. Therefore, targeting mast cells may provide benefits in patients with abdominal pain resulting from an ischaemic insult to the gastrointestinal tract.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Biomedical Science, Florey Building, Firth Court, University of Sheffield, Sheffield S10 2TN, UK
| | | | | |
Collapse
|
19
|
Gouveia TLF, Scorza FA, Silva MJV, Bandeira TDA, Perosa SR, Argañaraz GA, Silva MDP, Araujo TR, Frangiotti MIB, Amado D, Cavalheiro EA, Silva JA, Naffah-Mazzacoratti MDG. Lovastatin decreases the synthesis of inflammatory mediators in the hippocampus and blocks the hyperthermia of rats submitted to long-lasting status epilepticus. Epilepsy Behav 2011; 20:1-5. [PMID: 21130693 DOI: 10.1016/j.yebeh.2010.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/21/2010] [Accepted: 10/03/2010] [Indexed: 01/13/2023]
Abstract
Statins may act on inflammatory responses, decreasing oxidative stress and also reducing temperature after a brain ischemic insult. Previous data have indicated that statins protect neurons from death during long-lasting status epilepticus (SE) and attenuate seizure behaviors in animals treated with kainic acid. In this context, the study described here aimed to investigate the effect of lovastatin on body temperature and on mRNA expression levels of hippocampal cytokines such as interleukin-1β, interleukin-6, tumor necrosis factor α, and kinin B1 and B2 receptors of rats submitted to pilocarpine-induced SE. Quantitative real-time polymerase chain reaction showed a significant decrease in mRNA expression of interleukin-1β, interleukin-6, tumor necrosis factor α, and kinin B1 receptor in animals with SE treated with lovastatin, compared with untreated animals with SE (P<0.001). Lovastatin also reduced SE-induced hyperthermia, indicating that mechanisms related to brain protection are triggered by this drug under conditions associated with acute excitotoxicity or long-lasting SE.
Collapse
|
20
|
Chao J, Shen B, Gao L, Xia CF, Bledsoe G, Chao L. Tissue kallikrein in cardiovascular, cerebrovascular and renal diseases and skin wound healing. Biol Chem 2010; 391:345-55. [PMID: 20180644 DOI: 10.1515/bc.2010.042] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tissue kallikrein (KLK1) processes low-molecular weight kininogen to produce vasoactive kinins, which exert biological functions via kinin receptor signaling. Using various delivery approaches, we have demonstrated that tissue kallikrein through kinin B2 receptor signaling exhibits a wide spectrum of beneficial effects by reducing cardiac and renal injuries, restenosis and ischemic stroke, and by promoting angiogenesis and skin wound healing, independent of blood pressure reduction. Protection by tissue kallikrein in oxidative organ damage is attributed to the inhibition of apoptosis, inflammation, hypertrophy and fibrosis. Tissue kallikrein also enhances neovascularization in ischemic heart and limb. Moreover, tissue kallikrein/kinin infusion not only prevents but also reverses kidney injury, inflammation and fibrosis in salt-induced hypertensive rats. Furthermore, there is a wide time window for kallikrein administration in protection against ischemic brain infarction, as delayed kallikrein infusion for 24 h after cerebral ischemia in rats is effective in reducing neurological deficits, infarct size, apoptosis and inflammation. Importantly, in the clinical setting, human tissue kallikrein has been proven to be effective in the treatment of patients with acute brain infarction when injected within 48 h after stroke onset. Finally, kallikrein promotes skin wound healing and keratinocyte migration by direct activation of protease-activated receptor 1.
Collapse
Affiliation(s)
- Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, 29425, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Su J, Cui M, Tang Y, Zhou H, Liu L, Dong Q. Blockade of bradykinin B2 receptor more effectively reduces postischemic blood-brain barrier disruption and cytokines release than B1 receptor inhibition. Biochem Biophys Res Commun 2009; 388:205-11. [PMID: 19647718 DOI: 10.1016/j.bbrc.2009.07.135] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 07/27/2009] [Indexed: 01/04/2023]
Abstract
Blood-brain barrier disruption and brain edema are detrimental in ischemic stroke. The kallikrein-kinin system appears to play an important role in the regulation of vascular permeability and is invoked in edema formation. The effects of kinins are mediated by bradykinin receptors B1R and B2R. However, little is known about the exact roles of bradykinin receptors in the early stage of cerebral ischemia. In this study, we demonstrated that ischemia upregulated the level of B1R and B2R at 24h after reperfusion by immunofluorescence assays, mainly expressed in astrocytes and neurons, respectively, in the ischemic penumbra. Moreover, B2R inhibition more effectively reduced neurological severity scores, blood-brain barrier permeability and cytokines release than B1R inhibition did. Additionally, B2R inhibition also significantly suppressed B1R protein level. Therefore, blockade of B2R may be a more effective strategy for the treatment of ischemic brain injury than B1R inhibition within 24h after reperfusion.
Collapse
Affiliation(s)
- Jingjing Su
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | | | | | | | | | | |
Collapse
|
22
|
Chang W, Chen J, Schlueter CF, Hoyle GW. Common pathways for activation of proinflammatory gene expression by G protein-coupled receptors in primary lung epithelial and endothelial cells. Exp Lung Res 2009; 35:324-43. [PMID: 19415549 DOI: 10.1080/01902140802712738] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Acute lung injury is associated with an inflammatory response resulting from the action of multiple mediators. Many proinflammatory mediators released during lung injury exert effects by binding to G protein-coupled receptors (GPCRs). The authors' earlier studies showed that substance P (SP), a ligand for the tachykinin 1 receptor, induced nuclear factor (NF)-kappa B activation and interleukin (IL)-8 up-regulation through a G(q)-dependent pathway. Here the authors extend these findings by examining effects of multiple ligands for G(q)-coupled GPCRs in primary human small airway epithelial cells (SAECs) and rat lung microvessel endothelial cells (RLMVECs). SP, bradykinin, protease activated receptor 2 agonist, and platelet-activating factor (PAF) stimulated IL-8 production in SAECs, whereas only SP and PAF up-regulated CINC-1 (a rat IL-8 homolog) in RLMVECs. Using signaling inhibitors, the authors investigated PAF-induced IL-8 expression and SP-induced CINC-1 expression in primary cells. Signaling cascades were similar in SAECs and RLMVECs and involved phospholipase C/calcium/protein kinase C (PKC) and Ras/Raf/Erk pathways. In addition, the tyrosine kinase inhibitor AG 17 and the proteasome inhibitor MG132 significantly reduced IL-8 and CINC-1 expression induced by GPCR ligands. The results demonstrate a common signaling pathway in primary lung epithelial and endothelial cells, suggesting a generalized mechanism for the induction of proinflammatory gene expression by G(q)-coupled GPCRs following lung injury.
Collapse
Affiliation(s)
- Weiyuan Chang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | |
Collapse
|
23
|
Oltean M, Zhu C, Mera S, Pullerits R, Mattsby-Baltzer I, Mölne J, Hallberg E, Blomgren K, Olausson M. Reduced liver injury and cytokine release after transplantation of preconditioned intestines. J Surg Res 2009; 154:30-37. [PMID: 19084239 DOI: 10.1016/j.jss.2008.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 04/09/2008] [Accepted: 05/13/2008] [Indexed: 12/25/2022]
Abstract
BACKGROUND The postischemic intestine liberates pro-inflammatory mediators (cytokines, lipopolysaccharide [LPS], free radicals) proportional with the local injury that may trigger a systemic inflammatory response and multi-system organ failure. Previously, intestines from donors receiving Tacrolimus revealed improved morphology and abrogated nuclear factor kappa B (NF-kappaB) activation. Because of its pivotal role in inflammation, we investigated if NF-kappaB intragraft inhibition influences the posttransplant inflammatory response and remote organ injury. MATERIALS AND METHODS Donor Sprague Dawley rats received tacrolimus (0.3 mg/kg) or saline i.v. 6 h before graft harvest. The intestines were preserved for 3 h and then transplanted heterotopically. Hepatic microcirculation was assessed at 20 min, 6 h, 12 h, or 24 h post-reperfusion (postR) using laser-Doppler flowmetry (n = 10/group). Blood pressure measurements and liver sampling were performed at 6, 12, or 24 h postR. Blood samples were obtained at 1, 3, 6, 12, and 24 h postR. Hepatic intercellular adhesion molecule 1 (ICAM-1) expression, caspase-3 and -9 activity, and circulating tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta), IL-6, and LPS were studied. RESULTS Pretreated graft (PG) recipients had superior cardiovascular parameters at 6 and 12 h postR, while liver perfusion was similar between groups at all time points. Recipients of PG had lower transaminase levels and ICAM-1 liver expression. Liver caspase 3 and 9 activity were similar at 6 and 12 h but increased at 24 h in both groups. At every time point, circulating tumor necrosis factor alph, IL-1beta, and IL-6 were lower in animals receiving PG. LPS was found increased only at the last time point. CONCLUSIONS Transplantation of tacrolimus-pretreated intestines triggered a milder inflammatory response and decreased liver injury early posttransplantation compared with untreated grafts. Cytokines, but not neutrophils, hypoperfusion, or LPS may underlie the dysfunction.
Collapse
Affiliation(s)
- Mihai Oltean
- Institute for Clinical Sciences, Department of Surgery, University of Gothenburg, Göteborg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dos Santos AC, Roffê E, Arantes RME, Juliano L, Pesquero JL, Pesquero JB, Bader M, Teixeira MM, Carvalho-Tavares J. Kinin B2 receptor regulates chemokines CCL2 and CCL5 expression and modulates leukocyte recruitment and pathology in experimental autoimmune encephalomyelitis (EAE) in mice. J Neuroinflammation 2008; 5:49. [PMID: 18986535 PMCID: PMC2596102 DOI: 10.1186/1742-2094-5-49] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 11/05/2008] [Indexed: 01/11/2023] Open
Abstract
Background Kinins are important mediators of inflammation and act through stimulation of two receptor subtypes, B1 and B2. Leukocyte infiltration contributes to the pathogenesis of autoimmune inflammation in the central nervous system (CNS), occurring not only in multiple sclerosis (MS) but also in experimental autoimmune encephalomyelitis (EAE). We have previously shown that the chemokines CCL2 and CCL5 play an important role in the adhesion of leukocytes to the brain microcirculation in EAE. The aim of the present study was to evaluate the relevance of B2 receptors to leukocyte-endothelium interactions in the cerebral microcirculation, and its participation in CNS inflammation in the experimental model of myelin-oligodendrocyte-glycoprotein (MOG)35–55-induced EAE in mice. Methods In order to evaluate the role of B2 receptor in the cerebral microvasculature we used wild-type (WT) and kinin B2 receptor knockout (B2-/-) mice subjected to MOG35–55-induced EAE. Intravital microscopy was used to investigate leukocyte recruitment on pial matter vessels in B2-/- and WT EAE mice. Histological documentation of inflammatory infiltrates in brain and spinal cords was correlated with intravital findings. The expression of CCL5 and CCL2 in cerebral tissue was assessed by ELISA. Results Clinical parameters of disease were reduced in B2-/- mice in comparison to wild type EAE mice. At day 14 after EAE induction, there was a significant decrease in the number of adherent leukocytes, a reduction of cerebral CCL5 and CCL2 expressions, and smaller inflammatory and degenerative changes in B2-/- mice when compared to WT. Conclusion Our results suggest that B2 receptors have two major effects in the control of EAE severity: (i) B2 regulates the expression of chemokines, including CCL2 and CCL5, and (ii) B2 modulates leukocyte recruitment and inflammatory lesions in the CNS.
Collapse
Affiliation(s)
- Adriana C Dos Santos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jungmann P, Wilhelmi M, Oberleithner H, Riethmüller C. Bradykinin does not induce gap formation between human endothelial cells. Pflugers Arch 2007; 455:1007-16. [PMID: 17909849 DOI: 10.1007/s00424-007-0352-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 09/10/2007] [Indexed: 01/17/2023]
Abstract
Generally, a formation of paracellular gaps is considered to be the main pathway for fluid passage across endothelia. A model substance for studies in vitro is the vasodilatory peptide bradykinin, which has important functions in inflammation and vascular fluid balance. The mechanisms by which it increases endothelial permeability are not as yet clearly defined. Paracellular gap formation was approached using atomic force microscopy (AFM) on human umbilical vein endothelial cells grown on permeable filter supports. To further distinguish between para- vs transcellular fluid passage, a standard permeability assay was modified by a rapid cooling protocol to specifically inhibit vesicular transport pathways. Cell layers stimulated with bradykinin (1 microM) did not show significant alterations at the cellular junctions. However, gap formation was easily detectable by AFM after addition of the Ca(2+)-ionophore ionomycin (1 microM), which was taken as a positive control for cellular contraction. At 37 degrees C, bradykinin enhanced fluorescein isothiocyanate-dextran permeability by 48 +/- 11%. This was blocked by rapid cooling of the sample, indicating a vesicular mechanism of fluid transport. Contrastingly, ionomycin-induced permeability (259 +/- 43%) persisted after cooling (230 +/- 44%), thereby confirming paracellular gap formation. Accordingly, endocytotic vesicle formation, as detected by fluorescence microscopy, was upregulated by 68 +/- 15% through bradykinin action, while ionomycin did not show a significant effect (7 +/- 26%). The combined results of both permeability and morphometric studies lead to the conclusion that bradykinin promotes transcellular fluid passage rather than increasing paracellular diffusion.
Collapse
Affiliation(s)
- Pia Jungmann
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149 Münster, Germany
| | | | | | | |
Collapse
|
26
|
Souza DG, Ferreira FL, Fagundes CT, Amaral FA, Vieira AT, Lisboa RA, Andrade MVM, Trifilieff A, Teixeira MM. Effects of PKF242-484 and PKF241-466, novel dual inhibitors of TNF-alpha converting enzyme and matrix metalloproteinases, in a model of intestinal reperfusion injury in mice. Eur J Pharmacol 2007; 571:72-80. [PMID: 17619015 DOI: 10.1016/j.ejphar.2007.05.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 05/21/2007] [Accepted: 05/24/2007] [Indexed: 11/28/2022]
Abstract
Tumor necrosis factor (TNF)-alpha plays an important role in the mediation of reperfusion-induced tissue injury and lethality. Here, we assessed the effects of PKF242-484 and PKF241-466, two dual inhibitors of TNF-alpha converting enzyme (TACE) and matrix metalloproteinases (MMPs), in a model of ischemia and reperfusion injury in mice. Reperfused animals that received PKF242-484 or PKF241-466 treatment had a dose-dependent reduction of TNF-alpha concentrations in serum. Both drugs delayed and partially inhibited the reperfusion-associated lethality. Maximal inhibition occurred at 10 mg/kg. At this dose, both inhibitors reduced reperfusion-associated local and remote tissue injury, as assessed by changes in vascular permeability, neutrophil recruitment and hemorrhage. In addition, the compounds markedly reduced production of TNF-alpha, CXCL1 (keratinocyte-derived chemokine, KC) and CCL2 (monocyte chemoattractant protein-1, MCP-1) in intestine and lungs of animals which underwent reperfusion. FN-439, an inhibitor of MMPs which possesses no effect on TACE, decreased MMP-2 and MMP-3 activity, but failed to affect tissue injury, TNF-alpha production or lethality. Thus, combined TACE and MMP inhibitors might be effective co-adjuvants in treatments of injuries that follow reperfusion of an ischemic vascular territory. The effects of these drugs on TNF-alpha production appear to be more relevant than their effects on MMP inhibition.
Collapse
Affiliation(s)
- Danielle G Souza
- Immunopharmacology, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Perosa SR, Argañaraz GA, Goto EM, Costa LGP, Konno AC, Varella PPV, Santiago JFC, Pesquero JB, Canzian M, Amado D, Yacubian EM, Carrete H, Centeno RS, Cavalheiro EA, Silva JA, Mazzacoratti MDGN. Kinin B1 and B2 receptors are overexpressed in the hippocampus of humans with temporal lobe epilepsy. Hippocampus 2007; 17:26-33. [PMID: 17094085 DOI: 10.1002/hipo.20239] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular biology tools have been employed to investigate the participation of peptides in human temporal lobe epilepsy (TLE). Active polypeptides and their receptors have been related to several brain processes, such as inflammation, apoptosis, brain development, K(+) and Ca(2+) channels' activation, cellular growth, and induction of neuronal differentiation. Previous works have shown a neuroprotector effect for kinin B2 receptor and a deleterious, pro-epileptogenic action for kinin B1 receptor in animal models of TLE. The present work was delineated to analyze the kinin B1 and B2 receptors expression in the hippocampus of patients presenting refractory mesial TLE. The hippocampi were removed during the patients surgery in a procedure used for seizure control and compared with tissues obtained after autopsy. Nissl staining was performed to study the tissue morphology and immunohistochemistry, and Western blot was used to compare the distribution and levels of both receptors in the hippocampus. In addition, real time PCR was employed to analyze the gene expression of these receptors. Nissl staining showed sclerotic hippocampi with hilar, granular, and pyramidal cell loss in TLE patients. Immunohistochemistry and Western blot analyses showed increased expression of kinin B1 and B2 receptors but the real-time PCR data demonstrated increased mRNA level only for kinin B2 receptors, when compared with controls. These data show for the first time a relationship between human TLE and the kallikrein-kinin system, confirming ours previous results, obtained from experimental models of epilepsy.
Collapse
Affiliation(s)
- Sandra Regina Perosa
- Departamento de Neurologia Experimental, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Natarajan R, Fisher BJ, Fowler AA. Hypoxia inducible factor-1 modulates hemin-induced IL-8 secretion in microvascular endothelium. Microvasc Res 2007; 73:163-72. [PMID: 17336340 DOI: 10.1016/j.mvr.2007.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 01/05/2007] [Accepted: 01/27/2007] [Indexed: 10/23/2022]
Abstract
Ischemia/Reperfusion injury and hemolysis are characterized by erythrocyte lysis and release of free heme into the microcirculation. Following substantial erythrocyte lysis, heme overwhelms circulatory heme-binding protein networks rapidly forming hemin, the oxidized form of iron protoporphyrin IX. Hemin's role in modulating inflammatory responses in microvascular endothelium (MVEC) remains ill-defined. We studied the impact of hemin exposure on human MVEC interleukin-8 (IL-8) expression. Hemin significantly up-regulated MVEC IL-8 secretion and was associated with cellular iron loading. Hemin-induced IL-8 up-regulation was significantly attenuated by increasing environmental serum concentrations. As well, hemin-induced IL-8 secretion was significantly reduced in a concentration-dependent fashion following pyrrolidine dithiocarbamate exposure, suggesting that induction occurred via an oxidant-sensitive mechanism. Interestingly, transfection studies revealed that oxidant-driven transcription factors NF-kappaB and AP-1 played no role in hemin-induced IL-8 transcription. In studies employing actinomycin D, hemin was found to dramatically lengthen IL-8 mRNA half-life. Of major importance in the current report was the finding that hypoxia inducible factor-1 (HIF-1), a powerful transcription factor mediating tissue responses to hypoxia, potently regulated hemin-induced IL-8 secretion in human MVEC. Activation of HIF-1 via the prolyl hydroxylase inhibitor dimethyloxalylglycine attenuated hemin-induced IL-8 secretion. These studies were confirmed via DNA-directed siRNA silencing of HIF-1alpha. In conclusion, hemin induces a serum protein-sensitive pro-inflammatory phenotype in MVEC via an oxidant-sensitive mechanism that is powerfully regulated by HIF-1.
Collapse
Affiliation(s)
- Ramesh Natarajan
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University Medical Center, Box 980050, Richmond, VA 23298, USA
| | | | | |
Collapse
|
29
|
Pompermayer K, Amaral FA, Fagundes CT, Vieira AT, Cunha FQ, Teixeira MM, Souza DG. Effects of the treatment with glibenclamide, an ATP-sensitive potassium channel blocker, on intestinal ischemia and reperfusion injury. Eur J Pharmacol 2007; 556:215-22. [PMID: 17182029 DOI: 10.1016/j.ejphar.2006.10.065] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 10/19/2006] [Accepted: 10/30/2006] [Indexed: 01/04/2023]
Abstract
Intestinal ischemia and reperfusion injury is dependent on the recruitment and activation of neutrophils. Glibenclamide, an ATP-sensitive potassium channel (K(ATP)) blocker, has been shown to suppress neutrophil migration and chemotaxis during acute inflammatory responses by a mechanism dependent on its K(ATP) channel blocking activity. In the present study, we evaluated whether the treatment with glibenclamide prevented local, remote and systemic injury following reperfusion of the ischemic superior mesenteric artery in rats. The artery was made ischemic for a period of 30 or 120 min followed by 30 (mild I/R) or 120 (severe I/R) min of reperfusion, respectively. Glibenclamide (0.8 to 20 mg/kg) or vehicle was administered subcutaneously 40 min prior to the reperfusion. Glibenclamide dose-dependently inhibited the reperfusion-associated increase in vascular permeability and neutrophil accumulation in mild I/R. In the severe injury model, glibenclamide inhibited inflammatory parameters, as assessed by Evans blue extravasation, neutrophil influx and haemoglobin content, and the increase in TNF-alpha (tumor necrose factor-alpha) and IL (interleukin)-6 levels in the intestine and lung. The drug did not affect the increase in IL-1beta and IL-10 levels. TEA, a nonselective potassium channel blocker, also inhibited reperfusion injury in both intestine and lungs of animals submitted to mild and severe I/R. Our experiments suggest a role for K(ATP) channels in mediating neutrophil influx and consequent reperfusion-associated injury in rats. The lack of effect of these drugs on the reperfusion-associated hypotension and lethality may limit their usefulness after severe reperfusion injury.
Collapse
Affiliation(s)
- Kenia Pompermayer
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | | | | | | | | | | | | |
Collapse
|
30
|
Arndt PG, Young SK, Poch KR, Nick JA, Falk S, Schrier RW, Worthen GS. Systemic inhibition of the angiotensin-converting enzyme limits lipopolysaccharide-induced lung neutrophil recruitment through both bradykinin and angiotensin II-regulated pathways. THE JOURNAL OF IMMUNOLOGY 2007; 177:7233-41. [PMID: 17082641 DOI: 10.4049/jimmunol.177.10.7233] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recruitment of neutrophils to the lung is a sentinel event in acute lung inflammation. Identifying mechanisms that regulate neutrophil recruitment to the lung may result in strategies to limit lung damage and improve clinical outcomes. Recently, the renin angiotensin system (RAS) has been shown to regulate neutrophil influx in acute inflammatory models of cardiac, neurologic, and gastrointestinal disease. As a role for the RAS in LPS-induced acute lung inflammation has not been described, we undertook this study to examine the possibility that the RAS regulates neutrophil recruitment to the lung after LPS exposure. Pretreatment of mice with the angiotensin-converting enzyme (ACE) inhibitor enalapril, but not the anti-hypertensive hydralazine, decreased pulmonary neutrophil recruitment after exposure to LPS. We hypothesize that inhibition of LPS-induced neutrophil accumulation to the lung with enalapril occurred through both an increase in bradykinin, and a decrease in angiotensin II (ATII), mediated signaling. Bradykinin receptor blockade reversed the inhibitory effect of enalapril on neutrophil recruitment. Similarly, pretreatment with bradykinin receptor agonists inhibited IL-8-induced neutrophil chemotaxis and LPS-induced neutrophil recruitment to the lung. Inhibition of ATII-mediated signaling, with the ATII receptor 1a inhibitor losartan, decreased LPS-induced pulmonary neutrophil recruitment, and this was suggested to occur through decreased PAI-1 levels. LPS-induced PAI-1 levels were diminished in animals pretreated with losartan and in those deficient for the ATII receptor 1a. Taken together, these results suggest that ACE regulates LPS-induced pulmonary neutrophil recruitment via modulation of both bradykinin- and ATII-mediated pathways, each regulating neutrophil recruitment by separate, but distinct, mechanisms.
Collapse
Affiliation(s)
- Patrick G Arndt
- Division of Pulmonary and Critical Care Medicine, University of Colorado Health Sciences Center, Denver, CO 80206, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Nielsen EW, Waage C, Fure H, Brekke OL, Sfyroera G, Lambris JD, Mollnes TE. Effect of supraphysiologic levels of C1-inhibitor on the classical, lectin and alternative pathways of complement. Mol Immunol 2006; 44:1819-26. [PMID: 17101176 DOI: 10.1016/j.molimm.2006.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 10/03/2006] [Accepted: 10/13/2006] [Indexed: 11/18/2022]
Abstract
C1-inhibitor is increasingly used experimentally and clinically in inflammatory conditions like septicemia and ischemia-reperfusion injury. Several mechanisms may account for the anti-inflammatory effects of C1-inhibitor, including inhibition of complement. The aim of the present study was to investigate and compare the supraphysiologic effect of C1-inhibitor on the three complement pathways. Novel assays for specific evaluation of the classical, lectin and alternative pathways were employed using normal human serum supplemented with increasing concentrations of C1-inhibitor. Solid-phase classical- and lectin pathway activation was dose-dependently and significantly reduced up to 85% in the range of 2-28 times physiologic C1-inhibitor concentration. The lectin pathway was more potently inhibited than the classical at low doses. A functional lectin pathway assay demonstrated a significant reduction of C4 deposition up to 86% even at low concentration of C1-inhibitor and documented the effect to be at the level of MBL/MASPs. In contrast, C1-inhibitor had no effect on solid-phase alternative pathway activation, but significantly reduced cobra venom factor-induced fluid-phase activation up to 88%. The negative controls albumin and IgG had no effect on complement activation. The positive inhibitory controls compstatin (C3 inhibition), EDTA- or MBL-deficient sera reduced complement activation by 82-100%. We conclude that C1-inhibitor in high physiologic doses differentially inhibits all three-complement pathways. The inhibition pattern was strikingly different in the classical and lectin pathway, compared to the alternative. Previous studies interpreting the effects of C1-inhibitor as only due to classical pathway inhibition needs reconsideration. The data has implications for the therapeutic use of C1-inhibitor.
Collapse
Affiliation(s)
- Erik Waage Nielsen
- Department of Anesthesiology, Nordland Hospital, N-8092 Bodø, Norway; University of Tromsø, Norway.
| | | | | | | | | | | | | |
Collapse
|
32
|
Chiang WC, Chien CT, Lin WW, Lin SL, Chen YM, Lai CF, Wu KD, Chao J, Tsai TJ. Early activation of bradykinin B2 receptor aggravates reactive oxygen species generation and renal damage in ischemia/reperfusion injury. Free Radic Biol Med 2006; 41:1304-14. [PMID: 17015177 DOI: 10.1016/j.freeradbiomed.2006.07.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 06/09/2006] [Accepted: 07/11/2006] [Indexed: 11/20/2022]
Abstract
The kallikrein/kinin system is beneficial in ischemia/reperfusion injury in heart, controversial in brain, but detrimental in lung, liver, and intestine. We examined the role of the kallikrein/kinin system in acute ischemia/reperfusion renal injury induced by 40 min occlusion of the renal artery followed by reperfusion. Rats were infused with tissue kallikrein protein 5 days before (pretreated group) or after (treated group) ischemia. Two days later, the pretreated group exhibited the worst renal dysfunction, followed by the treated group, then the control group. Kallikrein increased tubular necrosis and inflammatory cell infiltration with generation of more tumor necrosis factor-alpha and monocyte chemoattractant protein-1. Reactive oxygen species (ROS), malondialdehyde, and reduced/oxidized glutathione measurement revealed that the oxidative stress was augmented by kallikrein administration in both ischemic and reperfusion phases. The groups with more ROS generation also had more apoptotic renal cells. The deleterious effects of kallikrein on ischemia/reperfusion injury were reversed by cotreatment with bradykinin B2 receptor (B2R) antagonist, but not B1 receptor antagonist, and were not associated with hemodynamic changes. We conclude that early activation of B2R augmented ROS generation in ischemia/reperfusion renal injury, resulting in subsequent apoptosis, inflammation, and tissue damage. This finding suggests the potential application of B2R antagonists in acute ischemic renal disease associated with bradykinin activation.
Collapse
Affiliation(s)
- Wen-Chih Chiang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10016, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Freise H, Palmes D, Spiegel HU. Inhibition of Angiotensin-Converting Enzyme Reduces Rat Liver Reperfusion Injury Via Bradykinin-2-Receptor. J Surg Res 2006; 134:231-7. [PMID: 16513137 DOI: 10.1016/j.jss.2005.10.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 09/16/2005] [Accepted: 10/24/2005] [Indexed: 11/16/2022]
Abstract
BACKGROUND Bradykinin is both a potent vasodilatator and a central inflammatory mediator. Similar to findings in myocardial reperfusion injury, bradykinin might mediate the protective effects of angiotensin-converting enzyme (ACE) inhibition after liver ischemia via increased bradykinin-2-receptor (B-2) stimulation. On the other hand, B-2-inhibition has been shown to reduce liver reperfusion injury. This study was designed to investigate the role of Bradykinin in hepatic reperfusion injury. MATERIALS AND METHODS Twenty eight rats were allocated randomly to Sham procedure (Sham), 30-min normothermic ischemia (ischemia), ischemia with Ramiprilat (ACE-I), or ischemia with Ramiprilat and B-2-inhibitor HOE 140 (ACE-I+B-2-I). Liver microcirculation and leukocyte adherence were investigated using intravital microscopy 30 min after reperfusion (n = 7 per group). In addition, serum activities of AST and ALT were measured for 7 days (n = 28). RESULTS Ischemia was associated with a loss of perfused sinusoids, sinusoidal vasoconstriction, and a reduction in microvascular blood flow. Permanent leukocyte adherence increased both in sinusoids and in postsinusoidal venoles. ACE-I restored sinusoidal perfusion, normalized vasoregulation, maintained sinusoidal blood flow, and inhibited leukocyte adhesion. ACE-I+B-2-I abolished the protective effects linked to ACE-I. Ischemia-induced liver cell injury after 5 h of reperfusion was ameliorated by ACE-I. In the ACE-I+B-2-I group, reduction in liver cell injury was reversed. CONCLUSION After hepatic ischemia, ACE-I reduced reperfusion injury in a B-2-dependent manner. These results suggest a pivotal role for bradykinin in the treatment of reperfusion injury by Ramiprilat, mediating sinusoidal dilation and blunting hepatic inflammation.
Collapse
Affiliation(s)
- Hendrik Freise
- Department of General Surgery, Surgical Research, University Hospital Muenster, Muenster, Germany.
| | | | | |
Collapse
|
34
|
Chao J, Bledsoe G, Yin H, Chao L. The tissue kallikrein-kinin system protects against cardiovascular and renal diseases and ischemic stroke independently of blood pressure reduction. Biol Chem 2006; 387:665-75. [PMID: 16800727 DOI: 10.1515/bc.2006.085] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tissue kallikrein (hK1) cleaves low-molecular-weight kininogen to produce kinin peptide, which binds to kinin receptors and triggers a wide spectrum of biological effects. Tissue kallikrein levels are reduced in humans and in animal models with hypertension, cardiovascular and renal diseases. Transgenic mice or rats over-expressing human tissue kallikrein or kinin B2 receptor are permanently hypotensive, and somatic kallikrein gene delivery reduces blood pressure in several hypertensive rat models. Moreover, kallikrein gene delivery or kallikrein protein infusion can directly improve cardiac, renal and neurological function without blood pressure reduction. Kallikrein has pleiotropic effects in inhibiting apoptosis, inflammation, proliferation, hypertrophy and fibrosis, and promoting angiogenesis and neurogenesis in different experimental animal models. Kallikrein's effects can be blocked by kinin B2 receptor antagonists. Mechanistically, tissue kallikrein/kinin leads to increased nitric oxide levels and Akt activation, and reduced reactive oxygen species formation, TGF-beta1 expression, MAPK and nuclear factor-kappaB activation. Our studies indicate that tissue kallikrein, through the kinin B2 receptor and nitric oxide formation, can protect against oxidative damage in cardiovascular and renal diseases and ischemic stroke. These novel findings suggest that kallikrein/kinin may serve as new drug targets for the prevention and treatment of heart failure, renal disease and stroke in humans.
Collapse
Affiliation(s)
- Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|
35
|
Vieira AT, Pinho V, Lepsch LB, Scavone C, Ribeiro IM, Tomassini T, Ribeiro-dos-Santos R, Soares MBP, Teixeira MM, Souza DG. Mechanisms of the anti-inflammatory effects of the natural secosteroids physalins in a model of intestinal ischaemia and reperfusion injury. Br J Pharmacol 2005; 146:244-51. [PMID: 16025143 PMCID: PMC1576270 DOI: 10.1038/sj.bjp.0706321] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Reperfusion of an ischaemic tissue is associated with an intense inflammatory response and inflammation-mediated tissue injury. Physalins, a group of substances with secosteroidal chemical structure, are found in Physalis angulata stems and leaves. Here, we assessed the effects of physalins on the local, remote and systemic injuries following intestinal ischaemia and reperfusion (I/R) in mice and compared with the effects of dexamethasone. Following I/R injury, dexamethasone (10 mg kg(-1)) or physalin B or F markedly prevented neutrophil influx, the increase in vascular permeability in the intestine and the lungs. Maximal inhibition occurred at 20 mg kg(-1). Moreover, there was prevention of haemorrhage in the intestine of reperfused animals. Dexamethasone or physalins effectively suppressed the increase in tissue (intestine and lungs) and serum concentrations of TNF-alpha. Interestingly, treatment with the compounds was associated with enhancement of IL-10. The anti-inflammatory effects of dexamethasone or physalins were reversed by pretreatment with the corticoid receptor antagonist RU486 (25 mg kg(-1)). The drug compounds suppressed steady-state concentrations of corticosterone, but did not alter the reperfusion-associated increase in levels of corticosterone. The IL-10-enhancing effects of the drugs were not altered by RU486. In conclusion, the in vivo anti-inflammatory actions of physalins, natural steroidal compounds, appear to be mostly due to the activation of glucocorticoid receptors. Compounds derived from these natural secosteroids may represent novel therapeutic options for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Angélica T Vieira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 – Pampulha, 31270-901 Belo Horizonte MG Brazil
| | - Vanessa Pinho
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 – Pampulha, 31270-901 Belo Horizonte MG Brazil
| | - Lucilia B Lepsch
- Laboratorio de Neurofarmacologia Molecular, Departamento de Farmacologia, Universidade de São Paulo, São Paulo-SP, Brazil
| | - Cristóforo Scavone
- Laboratorio de Neurofarmacologia Molecular, Departamento de Farmacologia, Universidade de São Paulo, São Paulo-SP, Brazil
| | | | | | | | | | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 – Pampulha, 31270-901 Belo Horizonte MG Brazil
| | - Danielle G Souza
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 – Pampulha, 31270-901 Belo Horizonte MG Brazil
- Author for correspondence:
| |
Collapse
|
36
|
Souza DG, Vieira AT, Pinho V, Sousa LP, Andrade AA, Bonjardim CA, McMillan M, Kahn M, Teixeira MM. NF-kappaB plays a major role during the systemic and local acute inflammatory response following intestinal reperfusion injury. Br J Pharmacol 2005; 145:246-54. [PMID: 15765103 PMCID: PMC1576137 DOI: 10.1038/sj.bjp.0706190] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1 The nuclear translocation of transcription factors may be a critical factor in the intracellular pathway involved in ischaemia/reperfusion (I/R) injury. Here, we examined whether NF-kappaB and AP-1 participated in the cascade of events leading to TNF-alpha production, neutrophil recruitment, tissue injury and lethality following intestinal I/R. 2 The superior mesenteric artery (SMA) of mice was made ischaemic for 60 min followed by 30 min of reperfusion. The effects of NF-kappaB and AP-1 were studied by the administration of the thioredoxin inhibitor, MOL-294 (methyl 4-hydroxy-4-(8-methyl-1,3-dioxo-2-phenyl-2,3,5,8-tetrahydro-1H-[1,2,4]triazolo[1,2-a]pyridazin-5-yl)but-2-ynoate), and the AP-1 inhibitor, PNRI-299 (N-benzyl-2-(3-cyanophenyl)-1,3,7-trioxo-2,3,7,8-tetrahydro-1H-[1,2,4]triazolo[1,2-a]pyridazine-5-carboxamide). After I/R, there was increase of translocation of NF-kappaB, but not of AP-1, in the intestine and lungs, as assessed by a gel shift assay. 3 Treatment with MOL-294 inhibited the increase in vascular permeability, neutrophil accumulation, hemorrhage and proinflammatory cytokine levels, induced by intestinal I/R injury in the intestine. In the lungs, MOL-294 partially inhibited edema formation, TNF-alpha production, but did not alter neutrophil recruitment. 4 Treatment with MOL-294 inhibited reperfusion-associated lethality, an effect likely to be secondary to the inhibition of systemic TNF-alpha levels. PNRI-299 had no effects on the inflammatory changes or lethality induced by I/R injury. 5 Our results point to an important role for NF-kappaB in triggering endogenous proinflammatory networks during intestinal I/R injury. Inhibition of NF-kappaB prevents tissue injury and lethality, and this was associated with inhibition of TNF-alpha production and decrease in neutrophil recruitment.
Collapse
Affiliation(s)
- Danielle G Souza
- Immunopharmacology, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 – Pampulha, 31270-901, Belo Horizonte MG, Brazil
| | - Angélica T Vieira
- Immunopharmacology, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 – Pampulha, 31270-901, Belo Horizonte MG, Brazil
| | - Vanessa Pinho
- Immunopharmacology, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 – Pampulha, 31270-901, Belo Horizonte MG, Brazil
| | - Lirlândia P Sousa
- Immunopharmacology, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 – Pampulha, 31270-901, Belo Horizonte MG, Brazil
| | - Anderson A Andrade
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 – Pampulha, 31270-901 Belo Horizonte MG, Brazil
| | - Cláudio A Bonjardim
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 – Pampulha, 31270-901 Belo Horizonte MG, Brazil
| | - Michael McMillan
- Institute for Chemical Genomics, University of Washington, Seattle, WA, U.S.A
| | - Michael Kahn
- Institute for Chemical Genomics, University of Washington, Seattle, WA, U.S.A
- Deparment of Pathobiology, University of Washington, Seattle, WA, U.S.A
| | - Mauro M Teixeira
- Immunopharmacology, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 – Pampulha, 31270-901, Belo Horizonte MG, Brazil
- Author for correspondence:
| |
Collapse
|
37
|
Souza DG, Teixeira MM. The balance between the production of tumor necrosis factor-alpha and interleukin-10 determines tissue injury and lethality during intestinal ischemia and reperfusion. Mem Inst Oswaldo Cruz 2005; 100 Suppl 1:59-66. [PMID: 15962100 DOI: 10.1590/s0074-02762005000900011] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A major goal in the treatment of acute ischemia of a vascular territory is to restore blood flow to normal values, i.e. to "reperfuse" the ischemic vascular bed. However, reperfusion of ischemic tissues is associated with local and systemic leukocyte activation and trafficking, endothelial barrier dysfunction in postcapillary venules, enhanced production of inflammatory mediators and great lethality. This phenomenon has been referred to as "reperfusion injury" and several studies demonstrated that injury is dependent on neutrophil recruitment. Furthermore, ischemia and reperfusion injury is associated with the coordinated activation of a series of cytokines and adhesion molecules. Among the mediators of the inflammatory cascade released, TNF-alpha appears to play an essential role for the reperfusion-associated injury. On the other hand, the release of IL-10 modulates pro-inflammatory cytokine production and reperfusion-associated tissue injury. IL-1beta, PAF and bradykinin are mediators involved in ischemia and reperfusion injury by regulating the balance between TNF-alpha and IL-10 production. Strategies that enhance IL-10 and/or prevent TNF-alpha concentration may be useful as therapeutic adjuvants in the treatment of the tissue injury that follows ischemia and reperfusion.
Collapse
Affiliation(s)
- Danielle G Souza
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brasil
| | | |
Collapse
|
38
|
Souza DG, Lomez ESL, Pinho V, Pesquero JB, Bader M, Pesquero JL, Teixeira MM. Role of bradykinin B2 and B1 receptors in the local, remote, and systemic inflammatory responses that follow intestinal ischemia and reperfusion injury. THE JOURNAL OF IMMUNOLOGY 2004; 172:2542-8. [PMID: 14764727 DOI: 10.4049/jimmunol.172.4.2542] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The administration of bradykinin may attenuate ischemia and reperfusion (I/R) injury by acting on B(2)Rs. Blockade of B(2)R has also been shown to ameliorate lesions associated with I/R injury. In an attempt to explain these contradictory results, the objective of the present work was to investigate the role of and interaction between B(1) and B(2) receptors in a model of intestinal I/R injury in mice. The bradykinin B(2)R antagonist (HOE 140) inhibited reperfusion-induced inflammatory tissue injury and delayed lethality. After I/R, there was an increase in the expression of B(1)R mRNA that was prevented by HOE 140. In mice that were deficient in B(1)Rs (B(1)R(-/-) mice), inflammatory tissue injury was abrogated, and lethality was delayed and partially prevented. Pretreatment with HOE 140 reversed the protective anti-inflammatory and antilethality effects provided by the B(1)R(-/-) phenotype. Thus, B(2)Rs are a major driving force for B(1)R activation and consequent induction of inflammatory injury and lethality. In contrast, activation of B(2)Rs may prevent exacerbated tissue injury and lethality, an effect unmasked in B(1)R(-/-) mice and likely dependent on the vasodilatory actions of B(2)Rs. Blockade of B(1)Rs could be a more effective strategy than B(2) or B(1)/B(2) receptor blockade for the treatment of the inflammatory injuries that follow I/R.
Collapse
Affiliation(s)
- Danielle G Souza
- Departamentos de. Bioquímica e Imunologia, e Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | | | | | | | | | | | | |
Collapse
|