1
|
Afzal S, Sattar MA, Albokhadaim I, Attiq A, Kandeel M, Manap ASA, Alhojaily SM. Interaction between Nuclear Receptor and Alpha-Adrenergic Agonist Subtypes in Metabolism and Systemic Hemodynamics of Spontaneously Hypertensive Rats. PPAR Res 2024; 2024:5868010. [PMID: 38899161 PMCID: PMC11186691 DOI: 10.1155/2024/5868010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/22/2023] [Accepted: 05/03/2024] [Indexed: 06/21/2024] Open
Abstract
Partial and full PPAR-γ agonists have shown promising effects and antihypertensive and antidiabetic agents through increased plasma adiponectin concentration. This study is aimed at examining the role of PPAR-γ, alpha-adrenoceptors, and adiponectin receptors in the modulation of vasopressor responses to angiotensin II (Ang II) and adrenergic agonists, after a subset treatment of partial and full PPAR-γ agonists, each individually, and also when coupled with adiponectin in SHRs. The antioxidant potential and metabolic indices for these animals were also determined. Group I (WKY) and group II (SHR) were designated as normotensive control and hypertensive control, respectively. Groups III (SHR) and IV (SHR) received irbesartan (30 mg/kg) and pioglitazone (10 mg/kg) orally for 28 days, and groups V (SHR), VI (SHR), and VII (SHR) were treated with adiponectin (2.5 μg/kg) intraperitoneally alone, in combination with irbesartan, and in combination with pioglitazone, respectively, from days 21 to 28 only. On day 29, sodium pentobarbitone (60 mg/kg) was used to anesthetize all test animals, and systemic hemodynamic and plasma adiponectin concentrations and in vitro and in vivo antioxidant potential were measured. As compared to the WKY control, the SHR control group's noninvasive blood pressure and basal mean arterial pressure were significantly greater, along with increased arterial stiffness, lower plasma nitric oxide, adiponectin concentration, and antioxidant enzyme levels (all P < 0.05). However, they were gradually normalized by single drug treatments in all groups, and to a greater extent in the SHR + Irb + Adp group (P < 0.05). In the acute study, the dose dependant mean arterial pressure responses to intravenously administered adrenergic agonists and angiotensin-II were significantly larger in SHRs as compared to WKY by 20-25%. Adiponectin alone and in combination significantly blunted vasopressor responses to these alpha-adrenergic agonists in the SHR + Pio + Adp group by 63%, whereas attenuated responses to ANG-II administration to 70% in SHR + Irb + Adp. In conclusion, the combined treatment of adiponectin with PPAR-agonists reduced the systemic vascular responses to adrenergic agonists and improved arterial stiffness. This an evidence of the interaction of adiponectin receptors, PPAR-γ, alpha-adrenoceptors, and ANG-II in the systemic vasculature of SHRs. A significant level of synergism has also been proved among full PPAR-γ agonists and adiponectin receptors.
Collapse
Affiliation(s)
- Sheryar Afzal
- Department of Biomedical ScienceCollege of Veterinary MedicineKing Faisal University, Al Hofuf, Saudi Arabia
- Discipline of PharmacologySchool of Pharmaceutical SciencesUniversiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Munavvar Abdul Sattar
- Discipline of PharmacologySchool of Pharmaceutical SciencesUniversiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Ibrahim Albokhadaim
- Department of Biomedical ScienceCollege of Veterinary MedicineKing Faisal University, Al Hofuf, Saudi Arabia
| | - Ali Attiq
- Discipline of PharmacologySchool of Pharmaceutical SciencesUniversiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Mahmoud Kandeel
- Department of Biomedical ScienceCollege of Veterinary MedicineKing Faisal University, Al Hofuf, Saudi Arabia
| | - Aimi Syamima Abdul Manap
- Department of Biomedical ScienceCollege of Veterinary MedicineKing Faisal University, Al Hofuf, Saudi Arabia
| | - Sameer M. Alhojaily
- Department of Biomedical ScienceCollege of Veterinary MedicineKing Faisal University, Al Hofuf, Saudi Arabia
| |
Collapse
|
2
|
Afzal S, Sattar MA, Eseyin OA, Attiq A, Johns EJ. Crosstalk relationship between adiponectin receptors, PPAR-γ and α-adrenoceptors in renal vasculature of diabetic WKYs. Eur J Pharmacol 2022; 917:174703. [PMID: 34973951 DOI: 10.1016/j.ejphar.2021.174703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022]
Abstract
Hypoadiponectinemia is associated with renal dysfunctions. Irbesartan and pioglitazone activate Peroxisome proliferator-activated gamma receptor (PPAR-γ) as partial and full agonists. We investigated a crosstalk interaction and synergistic action between adiponectin receptors, PPAR-γ agonists in attenuating renal hemodynamics to adrenergic agonists in diabetic Wistar Kyoto rats (WKY). Streptozotocin (40 mg/kg) was used to induce diabetes, whereas, pioglitazone (10 mg/kg/day), irbesartan (30 mg/kg/day) administered orally for 28 days and adiponectin intraperitoneally (2.5 μg/kg/day) for last 7 days. Metabolic and plasma samples were analyzed on days 0, 8, 21, and 28. During the acute study (day 29), renal vasoconstrictor actions to adrenergic agonists and angiotensin-II were determined. Diabetic WKYs had lower plasma adiponectin, higher creatinine clearance, urinary and fractional sodium excretion but were normalized to a greater extent in pioglitazone and adiponectin combined treatment. Responses to intra-renal administration of adrenergic agonists including noradrenaline (NA), phenylephrine (PE), methoxamine (ME), and angiotensin-II (ANG-II) were larger in diabetic WKY, but significantly blunted with adiponectin treatment in diabetic WKYs to 35-40%, and further reduced by 65-70% in combination with pioglitazone. Attenuation to ANG-II responses in adiponectin and combination with irbesartan was 30-35% and 75-80%, respectively (P < 0.05). Pharmacodynamically, a crosstalk interaction exists between PPAR-γ, adiponectin receptors (adipo R1 & R2), alpha adrenoceptors, and angiotensin-I (ATI) receptors in the renal vasculature of diabetic WKYs. Exogenously administered adiponectin with full PPAR-γ agonist substantially attenuated renal hemodynamics and improved excretory functions, signifying their renoprotective action. Additionally, a degree of synergism exists between adiponectin and pioglitazone to a large extent compared to combination therapy with irbesartan (partial PPAR-γ agonist) in attenuating the renal vascular receptiveness to adrenergic agonists.
Collapse
Affiliation(s)
- Sheryar Afzal
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, MAHSA University, Selangor, Malaysia.
| | | | | | - Ali Attiq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, MAHSA University, Selangor, Malaysia.
| | | |
Collapse
|
3
|
Afzal S, Abdul Sattar M, Johns EJ, Eseyin OA. Renoprotective and haemodynamic effects of adiponectin and peroxisome proliferator-activated receptor agonist, pioglitazone, in renal vasculature of diabetic Spontaneously hypertensive rats. PLoS One 2020; 15:e0229803. [PMID: 33170841 PMCID: PMC7654782 DOI: 10.1371/journal.pone.0229803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/14/2020] [Indexed: 01/17/2023] Open
Abstract
Pioglitazone, a therapeutic drug for diabetes, possesses full PPAR-γ agonist activity and increase circulating adiponectin plasma concentration. Plasma adiponectin concentration decreases in hypertensive patients with renal dysfunctions. Present study investigated the reno-protective, altered excretory functions and renal haemodynamic responses to adrenergic agonists and ANG II following separate and combined therapy with pioglitazone in diabetic model of hypertensive rats. Pioglitazone was given orally [10mg/kg/day] for 28 days and adiponectin intraperitoneally [2.5μg/kg/day] for last 7 days. Groups of SHR received either pioglitazone or adiponectin in combination. A group of Wistar Kyoto rats [WKY] served as normotensive controls, whereas streptozotocin administered SHRs served as diabetic hypertensive rats. Metabolic data and plasma samples were taken on day 0, 8, 21 and 28. In acute studies, the renal vasoconstrictor actions of Angiotensin II [ANGII], noradrenaline [NA], phenylephrine [PE] and methoxamine [ME] were determined. Diabetic SHRs control had a higher basal mean arterial blood pressure than the WKY, lower RCBP and plasma adiponectin, higher creatinine clearance and urinary sodium excretion compared to WKY [all P<0.05] which were normalized by the individual drug treatments and to greater degree following combined treatment. Responses to intra-renal administration of NA, PE, ME and ANGII were larger in diabetic SHR than WKY and SHRs [P<0.05]. Adiponectin significantly blunted responses to NA, PE, ME and ANG II in diabetic treated SHRs by 40%, whereas the pioglitazone combined therapy with adiponectin further attenuated the responses to adrenergic agonists by 65%. [all P <0.05]. These findings suggest that adiponectin possesses renoprotective effects and improves renal haemodynamics through adiponectin receptors and PPAR-γ in diabetic SHRs, suggesting that synergism exists between adiponectin and pioglitazone. A cross-talk relationship also supposed to exists between adiponectin receptors, PPAR-γ and alpha adrenoceptors in renal vasculature of diabetic SHRs.
Collapse
Affiliation(s)
- Sheryar Afzal
- School of Pharmaceutical Sciences, University Sains Malaysia, Penang, Malaysia
- Faculty of Pharmacy, MAHSA University, Selangor, Malaysia
- * E-mail:
| | - Munavvar Abdul Sattar
- School of Pharmaceutical Sciences, University Sains Malaysia, Penang, Malaysia
- Faculty of Pharmacy, MAHSA University, Selangor, Malaysia
| | | | - Olorunfemi A. Eseyin
- School of Pharmaceutical Sciences, University Sains Malaysia, Penang, Malaysia
- Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
4
|
Rodríguez JE, Ruiz-Hernández A, Hernández-DíazCouder A, Huang F, Hong E, Villafaña S. Chronic diabetes and hypertension impair the in vivo functional response to phenylephrine independent of α 1-adrenoceptor expression. Eur J Pharmacol 2020; 883:173283. [PMID: 32619676 DOI: 10.1016/j.ejphar.2020.173283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
Abstract
Diabetes and hypertension can coexist and exacerbate each other. In the early stages of diabetes, there is a decreased vascular response of the sympathetic nervous system (SNS), probably due to lower expression of α1-adrenoceptors; however, it is unclear how diabetes in advanced stages changes the functionality of the SNS, especially the expression of α1-adrenoceptors. Thus, the aim of this work was to analyse the functional response to phenylephrine, a selective α1-adrenoceptor agonist, and the expression of α1-adrenoceptors in chronic diabetes and hypertension. Male SHR and WKY rats aged 10-12 weeks were administered either streptozotocin (60 mg/kg i.p.) or a vehicle (control group). Eight weeks after administration, dose-response curves to phenylephrine were generated and the gene and protein expression of α1-adrenoceptor subtypes (α1A-, α1B- and α1D-adrenoceptors) in the heart and aorta were measured. The response to phenylephrine was diminished in hypertensive rats and in normotensive diabetic rats. The coexistence of both diabetes and hypertension produced an even smaller response to phenylephrine than that observed for each condition separately. In the heart and aorta of diabetic rats, no changes in α1A-, α1B- or α1D-adrenoceptor mRNA expression were observed; however, protein expression was increased, mainly for the α1D-adrenoceptor. Hypertension increased mRNA and protein expression of α1-adrenoceptors in a tissue-dependent manner. The coexistence of both diabetes and hypertension produced differences in the regulation of mRNA and protein expression (increase or decrease) in both the heart and aorta. In conclusion, diabetes, hypertension and the coexistence of both pathologies impairs the in vivo response to phenylephrine. However, the differences in α1A-, α1B- and α1D-adrenoceptor expression cannot explain the reduced response to the agonist. This should be further explored in future experiments.
Collapse
Affiliation(s)
- Jessica E Rodríguez
- Laboratorio de Farmacognosia, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Morelos, México; Bioquímica Clínica, Carrera de Químico Farmacéutico Biólogo, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, México
| | - Armando Ruiz-Hernández
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | | | - Fengyang Huang
- Departamento de Farmacología y Toxicología, Hospital Infantil de México "Federico Gómez", Ciudad de México, México
| | - Enrique Hong
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Santiago Villafaña
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México.
| |
Collapse
|
5
|
The Impact of the Nitric Oxide (NO)/Soluble Guanylyl Cyclase (sGC) Signaling Cascade on Kidney Health and Disease: A Preclinical Perspective. Int J Mol Sci 2018; 19:ijms19061712. [PMID: 29890734 PMCID: PMC6032334 DOI: 10.3390/ijms19061712] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic Kidney Disease (CKD) is a highly prevalent disease with a substantial medical need for new and more efficacious treatments. The Nitric Oxide (NO), soluble guanylyl cyclase (sGC), cyclic guanosine monophosphate (cGMP) signaling cascade regulates various kidney functions. cGMP directly influences renal blood flow, renin secretion, glomerular function, and tubular exchange processes. Downregulation of NO/sGC/cGMP signaling results in severe kidney pathologies such as CKD. Therefore, treatment strategies aiming to maintain or increase cGMP might have beneficial effects for the treatment of progressive kidney diseases. Within this article, we review the NO/sGC/cGMP signaling cascade and its major pharmacological intervention sites. We specifically focus on the currently known effects of cGMP on kidney function parameters. Finally, we summarize the preclinical evidence for kidney protective effects of NO-donors, PDE inhibitors, sGC stimulators, and sGC activators.
Collapse
|
6
|
Interaction between nitric oxide and renal α1-adrenoreceptors mediated vasoconstriction in rats with left ventricular hypertrophyin Wistar Kyoto rats. PLoS One 2018; 13:e0189386. [PMID: 29447158 PMCID: PMC5844246 DOI: 10.1371/journal.pone.0189386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/26/2017] [Indexed: 01/19/2023] Open
Abstract
Left ventricular hypertrophy (LVH) is associated with decreased responsiveness of
renal α1-adrenoreceptors subtypes to adrenergic agonists. Nitric
oxide donors are known to have antihypertrophic effects however their impact on
responsiveness of renal α1-adrenoreceptors subtypes is unknown. This
study investigated the impact of nitric oxide (NO) and its potential interaction
with the responsiveness of renal α1-adrenoreceptors subtypes to
adrenergic stimulation in rats with left ventricular hypertrophy (LVH). This
study also explored the impact of NO donor on CSE expression in normal and LVH
kidney. LVH was induced using isoprenaline and caffeine in drinking water for 2
weeks while NO donor (L-arginine, 1.25g/Lin drinking water) was given for 5
weeks. Intrarenal noradrenaline, phenylephrine and methoxamine responses were
determined in the absence and presence of selective α1-adrenoceptor
antagonists, 5- methylurapidil (5-MeU), chloroethylclonidine (CeC) and BMY 7378.
Renal cortical endothelial nitric oxide synthase mRNA was upregulated 7 fold
while that of cystathione γ lyase was unaltered in the NO treated LVH rats
(LVH-NO) group compared to LVH group. The responsiveness of renal
α1A, α1B and α1D-adrenoceptors in the low dose
and high dose phases of 5-MeU, CEC and BMY7378 to adrenergic agonists was
increased along with cGMP in the kidney of LVH-NO group. These findings suggest
that exogenous NO precursor up-regulated the renal eNOS/NO/cGMP pathway in LVH
rats and resulted in augmented α1A, α1B and α1D
adrenoreceptors responsiveness to the adrenergic agonists. There is a positive
interaction between H2S and NO production in normal animals but this
interaction appears absent in LVH animals.
Collapse
|
7
|
Kazi RN, Sattar MA, Johns EJ. Antidiuretic and antinatriuretic response to high salt load in normotensive Wistar-Kyoto rats: Role of alpha-1A-adrenoreceptors. AUTONOMIC & AUTACOID PHARMACOLOGY 2017; 37:13-18. [PMID: 28332265 DOI: 10.1111/aap.12053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/29/2016] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
Altered renal adrenergic responses have been recognized as pathophysiological responses to high salt intake. This study aims to investigate the influence of 6 weeks of high salt diet on α1A -adrenoceptor regulation of renal tubular antinatriuretic and antidiuretic response in normal Wistar Kyoto rats. To achieve the above objective, antinatriuretic and antidiuretic response to phenylephrine was measured in the absence and presence of 5-methylurapidil (5-MeU) using the inulin clearance method. Systemic mean arterial blood pressure and renal haemodynamics were also measured simultaneously. Six weeks of high salt intake in Wistar-Kyoto (WKY) rats did not bring any significant increase in mean arterial blood pressure. WKY rat on high salt diet (WKYHNa) showed an exaggerated increase in absolute and fractional sodium excretion. There was a significant involvement of α1A -adrenoceptor in carrying out renal tubular antinatriuretic and antidiuretic response in Wistar Kyoto rats on normal sodium diet (WKYNNa). However, α1A -adrenoceptor played a minimal role in handling the tubular reabsorptive response in WKY rats on high salt diet.
Collapse
Affiliation(s)
- R N Kazi
- College of Applied Medical Science, Prince Sattam Bin Abdul-Aziz University, Wadi Ad Dawaser, Saudi Arabia
- School of Pharmaceutical Sciences, University Sains Malaysia, Penang, Malaysia
| | - M A Sattar
- School of Pharmaceutical Sciences, University Sains Malaysia, Penang, Malaysia
| | - E J Johns
- Department of Physiology, Aras Windle, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Nakamura T, Kamishikiryo J, Morita T. Prazosin-stimulated release of hepatic triacylglyceride lipase from primary cultured rat hepatocytes is involved in the regulation of cAMP-dependent protein kinase through activation of the Ca2+/calmodulin-dependent protein kinase-II. Pharmacol Rep 2016; 68:649-53. [DOI: 10.1016/j.pharep.2016.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/06/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
|
9
|
Cystathione gamma lyase/Hydrogen Sulphide Pathway Up Regulation Enhances the Responsiveness of α1A and α1B-Adrenoreceptors in the Kidney of Rats with Left Ventricular Hypertrophy. PLoS One 2016; 11:e0154995. [PMID: 27191852 PMCID: PMC4871510 DOI: 10.1371/journal.pone.0154995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/22/2016] [Indexed: 01/19/2023] Open
Abstract
The purpose of the present study was to investigate the interaction between H2S and NO (nitric oxide) in the kidney and to evaluate its impact on the functional contribution of α1A and α1B-adrenoreceptors subtypes mediating the renal vasoconstriction in the kidney of rats with left ventricular hypertrophy (LVH). In rats the LVH induction was by isoprenaline administration and caffeine in the drinking water together with intraperitoneal administration of H2S. The responsiveness of α1A and α1B to exogenous noradrenaline, phenylephrine and methoxaminein the absence and presence of 5-methylurapidil (5-MeU) and chloroethylclonidine (CEC) was studied. Cystathione gamma lyase (CSE), cystathione β synthase (CBS), 3-mercaptopyruvate sulphar transferase (3-MST) and endothelial nitric oxide synthase (eNOS) were quantified. There was significant up regulation of CSE and eNOS in the LVH-H2S compared to the LVH group (P<0.05). Baseline renal cortical blood perfusion (RCBP) was increased (P<0.05) in the LVH-H2S compared to the LVH group. The responsiveness of α1A-adrenergic receptors to adrenergic agonists was increased (P<0.05) after administration of low dose 5-Methylurapidil in the LVH-H2S group while α1B-adrenergic receptors responsiveness to adrenergic agonists were increased (P<0.05) by both low and high dose chloroethylclonidine in the LVH-H2S group. Treatment of LVH with H2S resulted in up-regulation of CSE/H2S, CBS, and 3-MST and eNOS/NO/cGMP pathways in the kidney. These up regulation of CSE/H2S, CBS, and 3-MST and eNOS/NO/cGMP pathways enhanced the responsiveness of α1A and α1B-adrenoreceptors subtypes to adrenergic agonists in LVH-H2S. These findings indicate an important role for H2S in modulating deranged signalling in the renal vasculature resulting from LVH development.
Collapse
|
10
|
AHMAD A, SATTAR MA, RATHORE HA, KHAN SA, ABDULLAH NA, JOHNS EJ. Downregulation of cystathionine γ lyase and endothelial nitric oxide synthase and reduced responsiveness of α1A adrenergic receptors in the kidneys of left ventricular hypertrophied Wistar Kyoto rats. Turk J Biol 2016. [DOI: 10.3906/biy-1506-78] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
11
|
Ahmad A, Sattar MA, Rathore HA, Abdulla MH, Khan SA, Abdullah NA, Kaur G, Johns EJ. Functional contribution of α1D-adrenoceptors in the renal vasculature of left ventricular hypertrophy induced with isoprenaline and caffeine in Wistar-Kyoto rats. Can J Physiol Pharmacol 2014; 92:1029-35. [PMID: 25403946 DOI: 10.1139/cjpp-2014-0236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the role of α1D-adrenoceptor in the modulation of renal haemodynamics in rats with left ventricular hypertrophy (LVH). LVH was established in Wistar-Kyoto (WKY) rats with isoprenaline (5.0 mg · (kg body mass)(-1), by subcutaneous injection every 72 h) and caffeine (62 mg · L(-1) in drinking water, daily for 14 days). Renal vasoconstrictor responses were measured for noradrenaline (NA), phenylephrine (PE), and methoxamine (ME) before and immediately after low or high dose intrarenal infusions of BMY 7378, a selective α1D-adrenoceptor blocker. The rats with LVH had higher mean arterial blood pressure and circulating NA levels, but lower renal cortical blood perfusion compared with the control group (all P < 0.05). In the LVH group, the magnitude of the renal vasoconstrictor response to ME was blunted, but not the response to NA or PE (P < 0.05), compared with the control group (LVH vs. C, 38% vs. 50%). The magnitude of the drop in the vasoconstrictor responses to NA, PE, and ME in the presence of a higher dose of BMY 7378 was significantly greater in the LVH group compared with the control group (LVH vs. C, 45% vs. 25% for NA, 52% vs. 33% for PE, 66% vs. 53% for ME, all P < 0.05). These findings indicate an impaired renal vasoconstrictor response to adrenergic agonists during LVH. In addition, the α1D-adrenoceptor subtype plays a key role in the modulation of vascular responses in this diseased state.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- a School of Pharmaceutical Sciences, University Sains Malaysia, Penang 11800, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
PURPOSE This review highlights the physiological mechanisms underlying the neural regulation of the kidney, normally to maintain cardiovascular homeostasis, and in pathophysiological states of hypertension and renal disease. It is relevant because of the demonstration that bilateral renal denervation in different hypertensive groups causes a sustained reduction in blood pressure. RECENT FINDINGS There are patients groups in whom their hypertension is resistant to antihypertensive drugs or with renal diseases in which they are contraindicated. Recently, medical devices have been developed to manipulate the sympathetic nervous system, for example, implantation of carotid sinus nerve stimulating electrodes and ablation of the renal innervation. These approaches have been relatively successful but there remains a lack of understanding of the neural mechanisms impinging on the kidney that regulate long-term control of blood pressure. SUMMARY The observation that bilateral renal nerve ablation can reduce blood pressure represents an important therapeutic milestone. Nonetheless, questions arise as to the underlying mechanisms, the long-term consequences, whether there may be re-innervation over a number of years, or whether some unknown consequence to the denervation may arise. This may point to the development of novel compounds targeted to the innervation of the kidney.
Collapse
|
13
|
Rodriguez JE, Resendiz-Albor AA, Arciniega-Martinez IM, Campos-Rodriguez R, Hong E, Huang F, Villafaña S. Effect of Early Diabetes on the Expression of Alpha-1 Adrenergic Receptors in Aorta and Carotid Arteries of Wistar Kyoto and Spontaneously Hypertensive Rats. Clin Exp Hypertens 2012; 35:389-95. [DOI: 10.3109/10641963.2012.739233] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Abdulla MH, Sattar MA, Abdullah NA, Johns EJ. The effect of losartan and carvedilol on renal haemodynamics and altered metabolism in fructose-fed Sprague-Dawley rats. J Physiol Biochem 2012; 68:353-63. [PMID: 22281695 DOI: 10.1007/s13105-012-0147-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 01/11/2012] [Indexed: 12/31/2022]
Abstract
The aim of this study is to assess the effects of losartan and carvedilol on metabolic parameters and renal haemodynamic responses to angiotensin II (Ang II) and adrenergic agonists in the model of fructose-fed rat. Thirty-six Sprague-Dawley rats were fed for 8 weeks either 20% fructose solution (F) or tap water (C) ad libitum. F or C group received either losartan or carvedilol (10 mg/kg p.o.) daily for the last 3 weeks of the study (FL and L) and (FCV and CV), respectively, then in acute studies the renal vasoconstrictor actions of Ang II, noradrenaline (NA), phenylephrine (PE) and methoxamine (ME) were determined. Data, mean±SEM were analysed using ANOVA with significance at P <0.05. Losartan and carvedilol decreased the area under the glucose tolerance curve of the fructose-fed group. The responses (%) to NA, PE, ME and Ang II in F were lower (P <0.05) than C (F vs. C, 17±2 vs. 38±3; 24±2 vs. 48±2; 12±2 vs. 34±2; 17±2 vs. 26±2), respectively. L had higher (P <0.05) responses to NA and PE while CV had blunted (P <0.05) responses to NA, PE and Ang II compared to C (L, CV vs. C, 47±3, 9±2 vs. 38±3; 61±3, 29±3 vs. 48±2; 16±3, 4±3 vs. 26±2), respectively. FL but not FCV group had enhanced (P <0.05) responses to NA, PE and ME compared to F (FL vs. F, 33±3 vs. 17±2; 45±3 vs. 24±2; 26±3 vs. 12±2), respectively. Losartan and carvedilol had an important ameliorating effect on fructose-induced insulin resistance. Losartan treatment could be an effective tool to restore normal vascular reactivity in the renal circulation of the fructose-fed rat.
Collapse
Affiliation(s)
- Mohammed H Abdulla
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800 Penang, Malaysia,
| | | | | | | |
Collapse
|
15
|
High-fructose feeding impacts on the adrenergic control of renal haemodynamics in the rat. Br J Nutr 2011; 107:218-28. [DOI: 10.1017/s0007114511002716] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The present study explored the hypothesis that a prolonged 8 weeks exposure to a high fructose intake suppresses adrenergic and angiotensin II (Ang II)-mediated vasoconstriction and is associated with a higher contribution of α1D-adrenoceptors. A total of thirty-two Sprague–Dawley rats received either 20 % fructose solution (FFR) or tap water (control, C) to drink ad libitum for 8 weeks. Metabolic and haemodynamic parameters were assessed weekly. The renal cortical vasoconstrictor responses to noradrenaline (NA), phenylephrine (PE), methoxamine (ME) and Ang II were determined in the presence and absence of BMY7378 (α1D-adrenoceptor antagonist). FFR had increased blood pressure, plasma levels of glucose, TAG and insulin. FFR expressed reduced renal vascular responses to adrenergic agonists and Ang II (NA: 50 %, PE: 50 %, ME, 65 %, Ang II: 54 %). Furthermore in the C group, the magnitude of the renal cortical vasoconstriction to all agonists was blunted in the presence of the low or high dose of BMY7378 (NA: 30 and 31 %, PE: 23 and 33 %, ME: 19 and 44 %, Ang II: 53 and 77 %), respectively, while in the FFR, vasoconstriction was enhanced to adrenergic agonists and reduced to Ang II (NA: 8 and 83 %, PE: 55 %, ME, 2 and 177 %, Ang II: 61 and 31 %). Chronic high fructose intake blunts vascular sensitivity to adrenergic agonists and Ang II. Moreover, blocking of the α1D-adrenoceptor subtype results in enhancement of renal vasoconstriction to adrenergic agonists, suggesting an inhibitory action of α1D-adrenoceptors in the FFR. α1D-Adrenoceptors buffer the AT1-receptor response in the renal vasculature of normal rats and fructose feeding suppressed this interaction.
Collapse
|
16
|
Effect of the two new calcium channel blockers mebudipine and dibudipine on vascular flow of isolated kidney of normal and diabetic rats. PATHOPHYSIOLOGY 2011; 18:175-84. [DOI: 10.1016/j.pathophys.2010.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 09/06/2010] [Indexed: 11/18/2022] Open
|
17
|
Abdulla MH, Sattar MA, Johns EJ, Abdullah NA, Khan MAH. Evidence for the role of α1A-adrenoceptor subtype in the control of renal haemodynamics in fructose-fed Sprague-Dawley rat. Eur J Nutr 2011; 50:689-97. [PMID: 21373947 DOI: 10.1007/s00394-011-0180-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 02/17/2011] [Indexed: 12/19/2022]
Abstract
AIM To explore the hypothesis that high fructose intake results in a higher functional contribution of α1A-adrenoceptors and blunts the adrenergically and angiotensin II (Ang II)-induced renal vasoconstriction. METHODS Twelve Sprague-Dawley rats received either 20% fructose solution [FFR] or tap water [C] to drink ad libitum for 8 weeks. The renal vasoconstrictor response to noradrenaline (NA), phenylephrine (PE), methoxamine (ME) and Ang II was determined in the presence and absence of 5-methylurapidil (5-MU) (α1A-adrenoceptor antagonist) in a three-phase experiment (pre-drug, low- and high-dose 5-MU). Data, mean ± SEM were analysed by ANOVA or Student's unpaired t-test with significance at P < 0.05. RESULTS FFR exhibited insulin resistance (HOMA index), hypertension and significant increases in plasma levels of glucose and insulin. All agonists caused dose-related reductions in cortical blood perfusion that were larger in C than in FFR while the magnitudes of the responses were progressively reduced with increasing doses of 5-MU in both C and FFR. The degree of 5-MU attenuation of the renal cortical vasoconstriction due to NA, ME and Ang II was significantly greater in the FFR compared to C. CONCLUSIONS Fructose intake for 8 weeks results in smaller vascular response to adrenergic agonists and Ang II. The α1A-adrenoceptor subtype is the functional subtype that mediates renal cortical vasoconstriction in control rats, and this contribution becomes higher due to fructose feeding.
Collapse
Affiliation(s)
- Mohammed H Abdulla
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| | | | | | | | | |
Collapse
|
18
|
Abdulla MH, Sattar MA, Abdullah NA, Khan MAH, Anand Swarup KRL, Johns EJ. The effect of losartan and carvedilol on vasopressor responses to adrenergic agonists and angiotensin II in the systemic circulation of Sprague Dawley rats. ACTA ACUST UNITED AC 2010; 31:13-20. [PMID: 21166975 DOI: 10.1111/j.1474-8673.2010.00461.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1 Interaction between renin-angiotensin (RAS) and sympathetic nervous systems (SNS) was investigated by examining the effect of cumulative blockade of angiotensin II (Ang II) and adrenergic receptors in normal Sprague Dawley rats. 2 Rats were treated with losartan (10 mg/kg), carvedilol (5 mg/kg), or losartan plus carvedilol (10+5 mg/kg) orally for 7 days. On day 8, the animals were anaesthetized with pentobarbitone and prepared for systemic haemodynamic study. Dose-response relationships for the elevation of mean arterial pressure or change in heart rate (HR) in response to intravenous injections of noradrenaline (NA), phenylephrine (PE), methoxamine (ME) and Ang II were determined. 3 Losartan or the combination of losartan with carvedilol blunted vasopressor responses to ME and Ang II. Dose-response relationships for agonist action on HR were significantly inhibited by all treatments except for the combination of losartan and carvedilol on the decrease in HR induced by PE. Carvedilol decreased vasopressor responses to NA, PE and Ang II, and HR responses to NA, ME and Ang II. Combination treatment produced similar effects to losartan on the vasopressor and HR responses but had a greater effect on vasopressor responses to ME and Ang II, and on HR responses to NA and Ang II than carvedilol alone. 4 It is concluded that peripheral vasoconstriction induced by Ang II is partly mediated by adrenergic action and that the vasopressor responses to adrenergic agonists depend on an intact RAS. These observations suggest an interactive relationship between RAS and SNS in determining systemic haemodynamic responses in 'normal' rats.
Collapse
Affiliation(s)
- M H Abdulla
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, 11800 Penang, Malaysia
| | | | | | | | | | | |
Collapse
|
19
|
The contribution of α1B-adrenoceptor subtype in the renal vasculature of fructose-fed Sprague–Dawley rats. Eur J Nutr 2010; 50:251-60. [DOI: 10.1007/s00394-010-0133-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/16/2010] [Indexed: 10/19/2022]
|
20
|
Sepehr-Ara L, Sepehr-Ara M, Mahmoudian M. Effect of the two new calcium channel blockers mebudipine and dibudipine in comparison to amlodipine on vascular flow of isolated kidney of diabetic rat. ACTA PHYSIOLOGICA HUNGARICA 2010; 97:281-9. [PMID: 20843766 DOI: 10.1556/aphysiol.97.2010.3.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Calcium channel blockers are clinically useful vasodilators, used widely in the treatment of hypertension. These agents are reported to preserve or improve renal function in patients with essential hypertensive renal disease or diabetic renal disease. Among the classes of calcium channel blockers, dihydropyridine derivatives are widely used because of their potent vasodilating activity and weak cardiodepressant action. Mebudipine and dibudipine are two new 1,4-dihydropyridine calcium channel blockers that recently have been synthesized. In previous research mebudipine and dibudipine showed considerable relaxant effects on vascular and ileal smooth muscle cells. In this study we investigated the effects of these new drugs on vascular flow of isolated kidney of diabetic rat and compare their potencies to amlodipine. It is concluded that mebudipine and dibudipine (1-10 μM) are at least as potent as amlodipine in inhibiting PE-induced perfusion pressure in isolated kidney of diabetic rats. These new dihydropyridines improve kidney perfusion of diabetic rat in the setting of PE infusion. Similarly, amlodipine.
Collapse
Affiliation(s)
- L Sepehr-Ara
- Islamic Azad University, Kazeroon Branch, Department of Biology, Kazeroon, Iran.
| | | | | |
Collapse
|
21
|
Salman IM, Sattar MA, Abdullah NA, Ameer OZ, Yam MF, Kaur G, Khan MAH, Johns EJ. Renal Ischemic Injury Affects Renal Hemodynamics and Excretory Functions in Sprague Dawley Rats: Involvement of Renal Sympathetic Tone. Ren Fail 2010; 32:96-102. [DOI: 10.3109/08860220903389196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ibrahim M. Salman
- Department of Cardiovascular and Renal Physiology and Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Munavvar A. Sattar
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nor A. Abdullah
- Department of Cardiovascular and Renal Physiology and Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Omar Z. Ameer
- Department of Integrative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia,
| | - Mun F. Yam
- Tulane Hypertension and Renal Center of Excellence, Tulane University Health Science Center, New Orleans, Louisiana, USA
| | - Gurjeet Kaur
- Department of Physiology, Aras Windle, University College Cork, College Road, Cork, Ireland
| | - Md. Abdul Hye Khan
- Department of Cardiovascular and Renal Physiology and Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Edward J. Johns
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Rathore HA, Munavvar AS, Abdullah NA, Khan AH, Fathihah B, NurJannah MH, Raisa NA, Anand Swarup KRL, Abdullah MH, Salman IM, Johns EJ. Interaction between renin-angiotensin and sympathetic nervous systems in a rat model of pressure overload cardiac hypertrophy. ACTA ACUST UNITED AC 2009; 29:171-80. [PMID: 19740088 DOI: 10.1111/j.1474-8665.2009.00445.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
1 A raised cardiac workload activates neurohormones which will increase muscle mass and shift contractility to the right along the Frank-Starling curve. 2 This study examined the interaction between the SNS and RAS in contributing to vascular responsiveness following the development of cardiac hypertrophy due to aortic banding. 3 Sprague Dawley rats (180-200 g) were assigned to one of six groups; Normal, Sham-operated, Aortic Banded (AB), Aortic Banded treated with losartan (ABLOS), Aortic Banded treated with 6-hydroxydopamine (ABSYMP) and Aortic banded treated with both losartan and 6-hydroxydopamine (ABSYMPLOS). A constricting band was placed around the supra renal aorta on day zero with drug treatment from day 37 to day 44. Vasopressor responses to noradrenaline, phenylephrine, methoxamine and angiotensin II were measured on day 45. 4 The magnitudes of the MAP responses to all vasoactive agents, expressed as percentage changes, were similar in Normal and Sham groups, but reduced in the AB group. ABLOS group showed attenuated response to ANGII whereas all responses were enhanced in the ABSYM group. 5 A positive interaction between the two systems was observed with alpha(1A)-adrenoceptors identified as a major component of SNS and AT(1) receptors of RAS to induce vasopressor effects.
Collapse
Affiliation(s)
- H A Rathore
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kazi RN, Munavvar AS, Abdullah NA, Khan AH, Johns EJ. Influence of high dietary sodium intake on the functional subtypes of alpha-adrenoceptors in the renal cortical vasculature of Wistar-Kyoto rats. ACTA ACUST UNITED AC 2009; 29:25-31. [PMID: 19302553 DOI: 10.1111/j.1474-8673.2009.00428.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1 Increased renal vascular resistance is one renal functional abnormality that contributes to hypertension, and alpha(1)-adrenoceptors play a pivotal role in modulating this renal vascular resistance. This study investigates the functional contribution of alpha(1)-adrenoceptor subtypes in the renal cortical vasculature of Wistar-Kyoto rats on a normal sodium diet (WKYNNa) compared with those given saline to drink for 6 weeks (WKYHNa). 2 The renal cortical vascular responses to the adrenergic agonists noradrenaline (NA), methoxamine (ME) and phenylephrine (PE) were measured in WKYHNa and WKYNNa rats either in the absence (the control phase) or presence of chloroethylclonidine (CEC), an alpha(1B)-adrenoceptor antagonist, 5-methylurapidil (5-MeU), an alpha(1A) antagonist, or BMY7378, an alpha(1D) antagonist. 3 Results showed a greater renal cortical vascular sensitivity to NA, PE and ME in the WKYHNa compared with WKYNNa rats (P < 0.05). Moreover, 5-MeU and BMY7378 attenuated adrenergically induced renal cortical vasoconstriction in WKYHNa and WKYNNa rats; this response was largely blunted in CEC-treated WKYHNa rats (all P < 0.05) but not in CEC-treated WKYNNa rats. 4 The data suggest that irrespective of dietary sodium content, in Wistar-Kyoto rats alpha(1A)- and alpha(1D)-subtypes are the major alpha(1)-adrenoceptors in renal cortical vasculature; however, there appears to be a functional involvement of alpha(1B)-adrenoceptors in the WKYHNa rats.
Collapse
Affiliation(s)
- R N Kazi
- University Sains Malaysia, Penang, Malaysia
| | | | | | | | | |
Collapse
|
24
|
Khan AH, Sattar MA, Abdullah NA, Johns EJ. EFFECT OF CALCIUM CHANNEL BLOCKADE ON ADRENERGICALLY INDUCED RENAL VASOCONSTRICTION IN RAT MODELS OF RENAL IMPAIRMENT. Clin Exp Pharmacol Physiol 2009; 36:501-8. [DOI: 10.1111/j.1440-1681.2008.05098.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Chronic treatment with losartan and carvedilol differentially modulates renal vascular responses to sympathomimetics compared to treatment with individual agents in normal Wistar Kyoto and spontaneously hypertensive rats. Eur J Pharmacol 2009; 612:69-74. [PMID: 19356722 DOI: 10.1016/j.ejphar.2009.03.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 03/09/2009] [Accepted: 03/23/2009] [Indexed: 12/20/2022]
Abstract
This study set out to investigate the impact of chronic cumulative blockade of angiotensin II and adrenoceptors in WKY and SHR and to explore how the renovascular responses to adrenergic and angiotensin II receptor agonists may be interdependent. Rats were treated with either losartan, carvedilol or losartan+carvedilol for 7 days and on day eight, animals were pentobarbitone anaesthetized and prepared for renal haemodynamic study. Dose-response relationships were determined in terms of reduction/elevation in the magnitude of renal blood flow in response to intrarenal arterial injection of dopamine, phenylephrine and isoprenaline. Renal vascular responses were blunted in WKY and SHR treated with either losartan or carvedilol as compared to their untreated counterparts (P<0.05). In the combined treated rats, the vascular responses to isoprenaline and phenylephrine were restored to levels observed in the untreated rats, but the renal vasoconstrictor responses to dopamine decreased (P<0.05) in both WKY and SHR. There was a reduction of (P<0.05) in the magnitude of the isoprenaline induced renal vasodilation in all SHR as compared to WKY groups. The data obtained showed that the renal vascular action of dopamine, phenylephrine and isoprenaline depended on an intact renin-angiotensin system (RAS) in WKY and SHR. Treatment with losartan or carvedilol blunted the renal vasoconstrictor/vasodilator responses to sympathomimetics which was attenuated with the combined treatment. These observations using chronic blockade of adrenergic and angiotensin receptors demonstrated that there was a long standing interdependency between the RAS and sympathetic nervous system (SNS) in determining the responsiveness of the renal vasculature of normal and hypertensive rats.
Collapse
|
26
|
Abdulla MH, Sattar MA, Khan MAH, Abdullah NA, Johns EJ. Influence of sympathetic and AT-receptor blockade on angiotensin II and adrenergic agonist-induced renal vasoconstrictions in spontaneously hypertensive rats. Acta Physiol (Oxf) 2009; 195:397-404. [PMID: 19183357 DOI: 10.1111/j.1748-1716.2008.01895.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM This study investigated the influence of angiotensin II (Ang II) receptor and adrenergic blockade on the renal vasoconstrictions caused by Ang II and adrenergic agonists in spontaneously hypertensive rats (SHR). METHODS Forty-eight SHR were subjected to 7 days of losartan (10 mg kg(-1) day(-1) p.o.), carvedilol (5 mg kg(-1) day(-1) p.o.) or losartan + carvedilol (10 mg kg(-1) day(-1) + 5 mg kg(-1) day(-1) p.o.). On day 8, the rats were anaesthetized and renal vasoconstrictor experiments performed. One group of rats underwent acute unilateral renal denervation. RESULTS There were significant (P < 0.05) reductions in the renal vasoconstrictor responses to noradrenaline, phenylephrine, methoxamine and Ang II after losartan and carvedilol treatments compared with that in untreated rats (all P < 0.05). However, in renally denervated SHR treated with carvedilol, the vasoconstrictor responses to all the vasoactive agents were enhanced compared with those in SHR with intact renal nerves treated with carvedilol. Intact SHR given both losartan and carvedilol showed greater renal vasoconstrictor responses to the vasoactive agents than when given either losartan or carvedilol alone (all P < 0.05). CONCLUSION Carvedilol reduced the vasoconstrictor response to Ang II and all the adrenergic agonists in the presence of the renal nerves, but, following the removal of renal sympathetic activity, carvedilol enhanced the sensitivity of both renal alpha(1)-adrenoceptors and AT(1) receptors to the vasoactive agents. Co-treatment with losartan and carvedilol reduced the renal vasoconstrictor responses to exogenously administered vasoactive agents but to a lesser extent than losartan or carvedilol alone. The results obtained demonstrate an interaction between Ang II receptors and adrenergic neurotransmission in the SHR.
Collapse
Affiliation(s)
- M H Abdulla
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia.
| | | | | | | | | |
Collapse
|
27
|
Salman I, Sattar M, Abdullah N, Ameer O, Abdulla M, Khan M, Johns E. Quantification of Acute Renal Denervation Diuresis and Natriuresis
in Sprague Dawley and Spontaneously Hypertensive Rats. INT J PHARMACOL 2008. [DOI: 10.3923/ijp.2009.30.36] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Abdulla MH, Sattar MA, Abdullah NA, Hazim AI, Anand Swarup KRL, Rathore HA, Khan MAH, Johns EJ. Inhibition of Ang II and renal sympathetic nerve influence dopamine-and isoprenaline-induced renal haemodynamic changes in normal Wistar-Kyoto and spontaneously hypertensive rats. ACTA ACUST UNITED AC 2008; 28:95-101. [DOI: 10.1111/j.1474-8673.2008.00422.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Armenia A, Sattar MA, Abdullah NA, Khan MAH, Johns EJ. Functional subtypes of renal alpha1-adrenoceptor in diabetic and non-diabetic 2K1C Goldblatt renovascular hypertension. Acta Pharmacol Sin 2008; 29:564-72. [PMID: 18430364 DOI: 10.1111/j.1745-7254.2008.00788.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM This study investigates the subtypes of the alpha1-adrenoceptor mediating the adrenergically-induced renal vasoconstrictor responses in streptozotocin-induced diabetic and non-diabetic 2-kidney one clip (2K1C) Goldblatt hypertensive rats. METHODS The renal blood flow responses to renal nerve stimulation, noradrenaline, phenylephrine, and methoxamine were measured in the absence and presence of nitrendipine, 5-methylurapidil, chloroethylclonidine and BMY 7378. RESULTS The renal vasoconstrictor responses were markedly attenuated by nitrendipine and 5- methylurapidil in the diabetic rats (all P< 0.05). In the non-diabetic rats, these responses were markedly attenuated by nitrendipine, 5-methylurapidil, and BMY 7378 (all P< 0.05). In both experimental groups, chloroethylclonidine markedly accentuated the renal vasoconstrictions caused by all the adrenergic stimuli (all P< 0.05). CONCLUSION These observations indicate that alpha 1A-adrenoceptor subtypes play a major role in mediating adrenergically-induced renal vasoconstriction in the diabetic 2K1C Goldblatt hypertensive rats. In the non-diabetic 2K1C Goldblatt hypertensive rats, contributions of alpha 1A and alpha 1D-adrenoceptor subtypes were proposed. Apart from post-synaptic alpha 1-adrenoceptors, both in the diabetic and non-diabetic 2K1C Goldblatt hypertensive rats, the potential involvement of presynaptic alpha 1- adrenoceptors is also suggested.
Collapse
Affiliation(s)
- A Armenia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | | | | | | |
Collapse
|
30
|
Abdulla MH, Sattar MA, Salman IM, Abdullah NA, Ameer OZ, Khan MAH, Johns EJ. Effect of acute unilateral renal denervation on renal hemodynamics in spontaneously hypertensive rats. ACTA ACUST UNITED AC 2008; 28:87-94. [DOI: 10.1111/j.1474-8673.2008.00421.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
31
|
Hiong LC, Voon KL, Abdullah NA, Sattar MA, Rahman NA, Khan AH, Johns EJ. Effect of TGF-beta1 antisense oligodeoxynucleotide on renal function in chronic renal failure rats. Acta Pharmacol Sin 2008; 29:451-7. [PMID: 18358091 DOI: 10.1111/j.1745-7254.2008.00772.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM The aim of the present study was to investigate the effectiveness of transforming growth factor (TGF)-beta1 antisense oligodeoxynucleotides (ODN) in ameliorating deteriorated kidney function in rats with puromycin-induced chronic renal failure (CRF). METHODS Saline, puromycin, puromycin+TGF-beta1 antisense ODN or puromycin+scrambled ODN were administered to unilaterally nephrectomized rats. Renal hemodynamic and excretory measurements were taken in the anaesthetized rats that had undergone surgical procedure. RESULTS It was observed that in the CRF rats, there was a marked reduction in the renal blood flow (RBF), glomerular filtration rate (GFR), severe proteinuria, and almost 6-fold increased fractional excretion of sodium (FE Na+) as compared to that in the control rats (all P<0.05). It was further observed that in the CRF rats, the treatment with TGF-beta1 antisense, but not scrambled ODN, markedly attenuated the reduction of RBF, GFR, and proteinuria and markedly prevented the increase of the FE Na+ (all P<0.05). In addition, the renal hypertrophy in the CRF group (P<0.05 vs non-renal failure control) was markedly attenuated after treatment with TGF-1 antisense ODN (P<0.05). Focal segmental glomerulosclerosis was evident only in the untreated and scrambled ODN-treated CRF groups. An interesting observation of this study was that in the CRF rats, although there was marked attenuating and preventive effects of the TGF-beta1 antisense ODN on the deteriorated renal functions, the antisense treatment did not cause any marked change in the renal expression of TGF-beta1 at the protein level. CONCLUSION Collectively, the data obtained suggests that TGF-beta1 antisense ODN possesses beneficial effects in puromycininduced chronic renal failure and that the deterioration in morphology and impaired renal function in this pathological state is in part dependent upon the action of TGF-beta1 within the kidney.
Collapse
Affiliation(s)
- Law Chung Hiong
- Department of Pharmacology, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | | | | | | | | | | | |
Collapse
|
32
|
Influence of combined hypertension and renal failure on functional alpha(1)-adrenoceptor subtypes in the rat kidney. Br J Pharmacol 2008; 153:1232-41. [PMID: 18246093 DOI: 10.1038/bjp.2008.13] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE This study investigated whether the alpha(1)-adrenoceptor responsiveness of the renal vasculature was altered in the state of hypertension combined with renal failure. EXPERIMENTAL APPROACH Male spontaneously hypertensive rats (SHR) received cisplatin (5 mg kg(-1) i.p.) to induce renal failure. Seven days later, the rats were anaesthetized and the reductions in renal blood flow (RBF) to electrical renal nerve stimulation (RNS) and intrarenal administration of three adrenoceptor agonists (noradrenaline, phenylephrine and methoxamine) were determined before and after amlodipine, 5-methylurapidil, chloroethylclonidine or BMY 7378. KEY RESULTS In renal failure SHR (RFSHR), RBF and creatinine clearance were significantly reduced (approximately 70%), while urine output and fractional sodium excretion were four and twenty-fold higher, respectively, compared to SHR. Vasoconstrictions induced by RNS or the adrenoceptor agonists were greater in RFSHR than SHR, and these responses were blunted by 5-methylurapidil, BMY 7378 and amlodipine in the SHR, while chloroethylclonidine had no effect. In the RFSHR, all renal vasoconstrictions were reduced by amlodipine and BMY 7378 but 5-methylurapidil attenuated those caused by RNS, noradrenaline and methoxamine while those to phenylephrine were enhanced. Chloroethylclonidine potentiated renal vasoconstrictor responses to methoxamine and phenylephrine but not RNS or noradrenaline in RFSHR. CONCLUSIONS AND IMPLICATIONS These findings suggest alpha(1A)- and alpha(1D)-adrenoceptors mediated the renal vasoconstrictor responses in SHR and RFSHR. In the RFSHR, other alpha(1)-adrenoceptor subtypes, for example, alpha(1B)-adrenoceptors appeared to play a greater role.
Collapse
|
33
|
Khan MAH, Sattar MA, Abdullah NA, Johns EJ. Alpha1B-adrenoceptors mediate adrenergically-induced renal vasoconstrictions in rats with renal impairment. Acta Pharmacol Sin 2008; 29:193-203. [PMID: 18215348 DOI: 10.1111/j.1745-7254.2008.00727.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM This study examined whether alpha1B-adrenoceptors are involved in mediating adrenergically-induced renal vasoconstrictor responses in rats with pathophysiological and normal physiological states. METHODS Male Wistar Kyoto and spontaneously hypertensive rats were induced with acute renal failure or experimental early diabetic nephropathy by cisplatin or streptozotocin, respectively. Cisplatin-induced renal failure was confirmed by impaired renal function and pronounced tubular damage. Experimental early diabetic nephropathy was confirmed by hyperglycemia, changes in physiological parameters, and renal function. The hemodynamic study was conducted on anesthetized rats after 7 d of cisplatin (renal failure) and 4 weeks of streptozotocin (experimental early diabetic nephropathy). RESULTS In the rats with renal failure and experimental early diabetic nephropathy, there were marked reductions in their baseline renal blood flow (P<0.01). The baseline mean arterial blood pressure was either unaltered or lower (all P>0.05) in the renal failure and experimental early diabetic nephropathy rats, respectively, as compared to their non-renal failure and non-diabetic nephropathy controls. In the rats with renal impairment, chloroethylclonidine caused either accentuation or attenuation (all P<0.01) of the renal vasoconstrictor responses elicited by the adrenergic stimuli. However, in the non-renal failure and in the non-diabetic nephropathy rats, chloroethylclonidine did not cause any alteration in such responses (P>0.05). CONCLUSION This study demonstrated the presence of functional alpha1B-adrenoceptors that mediated the adrenergically-induced renal vasoconstrictions in rats with renal impairment, but not in rats with normal renal function.
Collapse
Affiliation(s)
- Md Abdul Hye Khan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | | | | | | |
Collapse
|
34
|
Sattar MA, Abdullah NA, Khan MAH, Johns EJ. α1A- and α1D-adrenoceptors are the major functional subtypes of renal α1-adrenoceptors in streptozotocin-induced diabetic and normal Sprague–Dawley rats. ACTA ACUST UNITED AC 2008; 28:1-10. [DOI: 10.1111/j.1474-8673.2007.00412.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Hye Khan MA, Abdul Sattar M, Abdullah NA, Johns EJ. Cisplatin-induced nephrotoxicity causes altered renal hemodynamics in Wistar Kyoto and spontaneously hypertensive rats: Role of augmented renal alpha-adrenergic responsiveness. ACTA ACUST UNITED AC 2007; 59:253-60. [PMID: 17764917 DOI: 10.1016/j.etp.2007.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 05/16/2007] [Indexed: 10/22/2022]
Abstract
The pathogenesis of cisplatin-induced renal failure is related to reduced renal blood flow due to severe tubular damage and enhanced renovascular resistance. It is also known that alpha(1)-adrenoceptors, the major subtype of alpha-adrenoceptors in renal vasculature play the pivotal role in regulating renal hemodynamics. With this background, we have hypothesized that the altered renal hemodynamics and enhanced renovascular resistance in cisplatin-induced renal failure might be caused by the altered alpha-adrenergic responsiveness with a possible involvement of alpha(1)-adrenoceptors in the renal vasculature. In a unique experimental approach with anesthetized rats, this study has therefore examined if there is any shift in the renovascular responsiveness to renal nerve stimulation and a series of alpha-adrenergic agonists in Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats with cisplatin-induced renal failure in comparison with their body weight-matched normal controls. Thirty-two male rats of both WKY (n=16) and SHR (n=16) origin with body weight 236+/-7.9 g received cisplatin (5mg/kg i.p.). The renal failure was confirmed in terms of significantly reduced renal blood flow, reduced creatinine clearance, increased fractional excretion of sodium, increased kidney index (all P<0.05) and tubular damage. After 7 days of cisplatin, the overnight fasted rats were anesthetized (sodium pentobarbitone, 60 mg/kg i.p.) and renal vasoconstrictor experiments were done. The changes in the vasoconstrictor responses were determined in terms of reductions in renal blood flow caused by electrical renal nerve stimulation or intrarenal administration of noradrenaline, phenylephrine and methoxamine. It was observed that in the cisplatin-treated renal failure WKY and SHR rats there were significant (all P<0.05) reductions in the renal blood flow along with significantly (P<0.05) higher renal adrenergic responsiveness as compared with their non-renal failure controls. The data showed that in the renal failure WKY and SHR rats, the altered renal hemodynamics might be caused by an augmented renal adrenergic responsiveness. The results obtained further led us to suggest that the augmented renal adrenergic responsiveness in the cisplatin-induced renal failure rats were possibly mediated by the alpha(1)-adrenoceptors.
Collapse
Affiliation(s)
- Md Abdul Hye Khan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, 11800 Penang, Malaysia
| | | | | | | |
Collapse
|
36
|
Khan AH, Sattar MA, Abdullah NA, Johns EJ. Influence of cisplatin-induced renal failure on the α1-adrenoceptor subtype causing vasoconstriction in the kidney of the rat. Eur J Pharmacol 2007; 569:110-8. [PMID: 17559832 DOI: 10.1016/j.ejphar.2007.04.063] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 04/17/2007] [Accepted: 04/20/2007] [Indexed: 10/23/2022]
Abstract
This study investigated whether the alpha(1)-adrenoceptor subtype(s) mediating the vasoconstrictor actions of the renal sympathetic nerves were altered in rats with cisplatin-induced renal failure. Male Wistar Kyoto rats were used and half received cisplatin (5 mg/kg i.p.) to induce renal failure and were taken for study 7 days later. The renal blood flow reductions caused by electrical renal nerve stimulation and close intra-renal administration of noradrenaline, phenylephrine and methoxamine were determined before and after amlodopine (AMP), 5-methylurapidil (MeU), chloroethylclonidine (CEC) or BMY 7378. Water intake and creatinine clearance were decreased (P<0.05) by 40-50% while fractional excretion of sodium was increased two-fold in the cisplatin treated rats. Mean arterial pressure was higher, 110+/-2 versus 102+/-3 mmHg and renal blood flow was lower, 10.7+/-0.9 versus 18.9+/-0.1 ml/min/kg in the renal failure rats (both P<0.05). AMP, MeU and BMY 7378 decreased (all P<0.05) the adrenergically induced renal vasoconstrictor responses in the renal failure groups by 30 to 50% and in normal rats by 20 to 40%. In the presence of CEC, renal nerve stimulation and noradrenaline and methoxamine induced renal vasoconstrictor responses were enhanced (all P<0.05) in the renal failure but not in the normal rats. These data showed that alpha(1A)- and alpha(1D)-adrenoceptors were the major subtypes in mediating adrenergically induced renal vasoconstriction but there was no substantial shift in subtype in renal failure. The contribution of alpha(1B)-adrenoceptor subtypes either pre- or post-synaptic appeared to be raised in the renal failure rats.
Collapse
Affiliation(s)
- Abdul H Khan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | | | | |
Collapse
|
37
|
Lewis SJ, Hoque A, Sandock K, Robertson TP, Bates JN, Kooy NW. Differential effects of peroxynitrite on the function of arginine vasopressin V1a receptors and alpha1-adrenoceptors in vivo. Vascul Pharmacol 2007; 46:24-34. [PMID: 16861049 DOI: 10.1016/j.vph.2006.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 06/08/2006] [Accepted: 06/09/2006] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The aim of this study was to provide evidence that peroxynitrite may differentially affect the function of arginine vasopressin (AVP) V(1a) receptors and alpha(1)-adrenoceptors in vascular smooth muscle of the rat METHODS The vasoconstrictor responses elicited by AVP, or the alpha(1)-adrenoceptor agonist, phenylephrine, were determined in anesthetized rats before and after injections of (i) peroxynitrite, the thiol chelator, para-hydroxymercurobenzoic acid (PHMBA), or the electron acceptor, nitroblue tetrazolium (NBT). The ability of the reducing agent, glutathione, to reverse the loss of response to phenylephrine and AVP in peroxynitrite-treated rats was also examined. RESULTS The AVP-induced responses were suppressed 10-20 min but not 60-70 min after the administration of peroxynitrite. Glutathione reversed the above loss of response to AVP at 10-20 min. The responses elicited by phenylephrine were suppressed 10-20 min and 60-70 min after administration of peroxynitrite. Glutathione did not reverse the above losses of response to phenylephrine. In addition, the vasoconstrictor actions of AVP and phenylephrine were markedly suppressed after administration of PHMBA or nitroblue tetrazolium. CONCLUSIONS The above findings provide evidence that exogenously administered peroxynitrite may differentially affect the function of AVP V(1a) receptors and alpha(1)-adrenoceptors in vascular smooth muscle of the rat. The possibility that peroxynitrite impairs AVP V(1a) receptor function by transient oxidation events whereas peroxynitrite impairs alpha(1)-adrenoceptor function by transient oxidation and permanent nitration events will be discussed.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/drug effects
- Arginine Vasopressin/pharmacology
- Blood Pressure/drug effects
- Glutathione/pharmacology
- Hydroxymercuribenzoates/pharmacology
- Male
- Mesenteric Artery, Superior/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nitrates/metabolism
- Nitroblue Tetrazolium/pharmacology
- Oxidation-Reduction/drug effects
- Peroxynitrous Acid/metabolism
- Peroxynitrous Acid/pharmacology
- Phenylephrine/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha-1/drug effects
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Vasopressin/drug effects
- Receptors, Vasopressin/metabolism
- Renal Artery/drug effects
- Time Factors
- Vascular Resistance/drug effects
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Stephen J Lewis
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-7389, USA.
| | | | | | | | | | | |
Collapse
|