1
|
Jaka O, Iturria I, van der Toorn M, Hurtado de Mendoza J, Latino DARS, Alzualde A, Peitsch MC, Hoeng J, Koshibu K. Effects of Natural Monoamine Oxidase Inhibitors on Anxiety-Like Behavior in Zebrafish. Front Pharmacol 2021; 12:669370. [PMID: 34079463 PMCID: PMC8165606 DOI: 10.3389/fphar.2021.669370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/28/2021] [Indexed: 01/28/2023] Open
Abstract
Monoamine oxidases (MAO) are a valuable class of mitochondrial enzymes with a critical role in neuromodulation. In this study, we investigated the effect of natural MAO inhibitors on novel environment-induced anxiety by using the zebrafish novel tank test (NTT). Because zebrafish spend more time at the bottom of the tank when they are anxious, anxiolytic compounds increase the time zebrafish spend at the top of the tank and vice versa. Using this paradigm, we found that harmane, norharmane, and 1,2,3,4-tetrahydroisoquinoline (TIQ) induce anxiolytic-like effects in zebrafish, causing them to spend more time at the top of the test tank and less time at the bottom. 2,3,6-trimethyl-1,4-naphtoquinone (TMN) induced an interesting mix of both anxiolytic- and anxiogenic-like effects during the first and second halves of the test, respectively. TIQ was unique in having no observable effect on general movement. Similarly, a reference MAO inhibitor clorgyline—but not pargyline—increased the time spent at the top in a concentration-dependent manner. We also demonstrated that the brain bioavailability of these compounds are high based on the ex vivo bioavailability assay and in silico prediction models, which support the notion that the observed effects on anxiety-like behavior in zebrafish were most likely due to the direct effect of these compounds in the brain. This study is the first investigation to demonstrate the anxiolytic-like effects of MAO inhibitors on novel environment-induced anxiety in zebrafish.
Collapse
Affiliation(s)
- Oihane Jaka
- Biobide, Gipuzkoa Scientific and Technological Park, San Sebastian, Spain
| | - Iñaki Iturria
- Biobide, Gipuzkoa Scientific and Technological Park, San Sebastian, Spain
| | - Marco van der Toorn
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchâtel, Switzerland
| | | | - Diogo A R S Latino
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchâtel, Switzerland
| | - Ainhoa Alzualde
- Biobide, Gipuzkoa Scientific and Technological Park, San Sebastian, Spain
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchâtel, Switzerland
| | - Kyoko Koshibu
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchâtel, Switzerland
| |
Collapse
|
2
|
Assessment of Insecticidal Activity of Benzylisoquinoline Alkaloids from Chilean Rhamnaceae Plants against Fruit-Fly Drosophila melanogaster and the Lepidopteran Crop Pest Cydia pomonella. Molecules 2020; 25:molecules25215094. [PMID: 33153001 PMCID: PMC7663414 DOI: 10.3390/molecules25215094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022] Open
Abstract
The Chilean plants Discaria chacaye, Talguenea quinquenervia (Rhamnaceae), Peumus boldus (Monimiaceae), and Cryptocarya alba (Lauraceae) were evaluated against Codling moth: Cydia pomonella L. (Lepidoptera: Tortricidae) and fruit fly Drosophila melanogaster (Diptera: Drosophilidae), which is one of the most widespread and destructive primary pests of Prunus (plums, cherries, peaches, nectarines, apricots, almonds), pear, walnuts, and chestnuts, among other. Four benzylisoquinoline alkaloids (coclaurine, laurolitsine, boldine, and pukateine) were isolated from the above mentioned plant species and evaluated regarding their insecticidal activity against the codling moth and fruit fly. The results showed that these alkaloids possess acute and chronic insecticidal effects. The most relevant effect was observed at 10 µg/mL against D. melanogaster and at 50 µg/mL against C. pomonella, being the alteration of the feeding, deformations, failure in the displacement of the larvae in the feeding medium of D. melanogaster, and mortality visible effects. In addition, the docking results show that these type of alkaloids present a good interaction with octopamine and ecdysone receptor showing a possible action mechanism.
Collapse
|
3
|
Cassels BK, Fuentes-Barros G, Castro-Saavedra S. Boldo, Its Secondary Metabolites and their Derivatives. CURRENT TRADITIONAL MEDICINE 2019. [DOI: 10.2174/2215083804666181113112928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Boldo leaves (Boldo folium, from Peumus boldus Mol.) are very frequently used as a medicinal herb in Chile and are exported to many countries to be used in teas or as extracts included in herbal remedies, primarily as an aid to digestion and as a mild sedative. Scientific support for these uses is scanty, and boldine, an alkaloid viewed as characteristic of the tree and present in high concentration in the bark, is extracted by specialized companies and sold as the supposed main active constituent. Consequently, boldine has been the subject of a considerable number of research papers, while some of the other alkaloids present to a greater extent in the leaves have been relatively neglected except when found in large amounts in other species. These studies range from assays of antioxidant activity to anti-inflammatory, antineoplastic and other medical applications. The essential oil, usually containing a large percentage of the toxic ascaridole, was once used as a vermifuge and is now regarded with caution, but is still of interest as a possible natural insecticide, fungicide, antiparasitic and herbicide. The last decade has seen an explosive increase in papers pointing to possible uses of boldo and its constituents. This review attempts to bring these publications together in a comprehensive way with the purpose of stimulating and orienting further research into the useful properties of this Chilean endemic tree.
Collapse
Affiliation(s)
- Bruce K. Cassels
- Department of Chemistry, Faculty of Sciences, University of Chile, Santiago, Chile
| | | | | |
Collapse
|
4
|
Reyes-Parada M, Iturriaga-Vasquez P. The development of novel polypharmacological agents targeting the multiple binding sites of nicotinic acetylcholine receptors. Expert Opin Drug Discov 2016; 11:969-81. [DOI: 10.1080/17460441.2016.1227317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Leonti M, Casu L. Soma, food of the immortals according to the Bower Manuscript (Kashmir, 6th century A.D.). JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:373-386. [PMID: 24907429 DOI: 10.1016/j.jep.2014.05.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/31/2014] [Accepted: 05/08/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Food is medicine and vice versa. In Hindu and Ayurvedic medicine, and among human cultures of the Indian subcontinent in general, the perception of the food-medicine continuum is especially well established. The preparation of the exhilarating, gold-coloured Soma, Amrita or Ambrosia, the elixir and food of the 'immortals'-the Hindu pantheon-by the ancient Indo-Aryans, is described in the Rigveda in poetic hymns. Different theories regarding the botanical identity of Soma circulate, but no pharmacologically and historically convincing theory exists to date. We intend to contribute to the botanical, chemical and pharmacological characterisation of Soma through an analysis of two historical Amrita recipes recorded in the Bower Manuscript. The recipes are referred therein as panaceas (clarified butter) and also as a medicine to treat nervous diseases (oil), while no exhilarating properties are mentioned. Notwithstanding this, we hypothesise, that these recipes are related to the ca. 1800 years older Rigvedic Soma. We suppose that the psychoactive Soma ingredient(s) are among the components, possibly in smaller proportions, of the Amrita recipes preserved in the Bower Manuscript. MATERIALS AND METHODS The Bower Manuscript is a medical treatise recorded in the 6th century A.D. in Sanskrit on birch bark leaves, probably by Buddhist monks, and unearthed towards the end of the 19th century in Chinese Turkestan. We analysed two Amrita recipes from the Bower Manuscript, which was translated by Rudolf Hoernle into English during the early 20th century. A database search with the updated Latin binomials of the herbal ingredients was used to gather quantitative phytochemical and pharmacological information. RESULTS Together, both Amrita recipes contain around 100 herbal ingredients. Psychoactive alkaloid containing species still important in Ayurvedic, Chinese and Thai medicine and mentioned in the recipe for 'Amrita-Prâsa clarified butter' and 'Amrita Oil' are: Tinospora cordifolia (Amrita, Guduchi), three Sida spp., Mucuna pruriens, Nelumbo nucifera, Desmodium gangeticum, and Tabernaemontana divaricata. These species contain several notorious and potential psychoactive and psychedelic alkaloids, namely: tryptamines, 2-phenylethylamine, ephedrine, aporphines, ibogaine, and L-DOPA. Furthermore, protoberberine alkaloids, tetrahydro-β-carbolines, and tetrahydroisoquinolines with monoamine oxidase inhibitor (MAO-I) activity but also neurotoxic properties are reported. CONCLUSIONS We propose that Soma was a combination of a protoberberine alkaloids containing Tinospora cordifolia juice with MAO-I properties mixed together with a tryptamine rich Desmodium gangeticum extract or a blending of Tinospora cordifolia with an ephedrine and phenylethylamine-rich Sida spp. extract. Tinospora cordifolia combined with Desmodium gangeticum might provide a psychedelic experience with visual effects, while a combination of Tinospora cordifolia with Sida spp. might lead to more euphoric and amphetamine-like experiences.
Collapse
Affiliation(s)
- Marco Leonti
- Department of Biomedical Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari (CA), Italy.
| | - Laura Casu
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari (CA), Italy
| |
Collapse
|
6
|
Zang Q, Javed S, Porubsky P, Ullah F, Neuenswander B, Lushington GH, Basha FZ, Organ MG, Hanson PR. Synthesis of a unique isoindoline/tetrahydroisoquinoline-based tricyclic sultam library utilizing a Heck-aza-Michael strategy. ACS COMBINATORIAL SCIENCE 2012; 14:211-7. [PMID: 22311745 DOI: 10.1021/co200181x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthesis of a unique isoindoline- and tetrahydroisoquinoline (THIQ)-containing tricyclic sultam library, utilizing a Heck-aza-Michael (HaM) strategy is reported. Both isoindoline and THIQ rings are installed through a Heck reaction on a vinylsulfonamide, followed by one-pot deprotection and intramolecular aza-Michael reaction. Subsequent cyclization with either paraformaldehyde condensation or 1,1'-carbonyldiimidazole coupling generates a variety of tricyclic sultams. Overall, a 160-member library of these sultams, together with their isoindolines/THIQ and secondary sulfonamides precursors, were constructed using this strategy.
Collapse
Affiliation(s)
- Qin Zang
- Department
of Chemistry, University of Kansas, 1251
Wescoe Hall Drive, Lawrence,
Kansas 66045-7582, United States
| | - Salim Javed
- Department
of Chemistry, University of Kansas, 1251
Wescoe Hall Drive, Lawrence,
Kansas 66045-7582, United States
- H. E. J. Research Institute
of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Patrick Porubsky
- The University of Kansas Center for Chemical Methodologies and Library Development (KU-CMLD), 2034 Becker Drive, Del Shankel Structural Biology Center, Lawrence,
Kansas 66047-3761, United States
| | - Farman Ullah
- Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J
1P3 Canada
| | - Benjamin Neuenswander
- The University of Kansas Center for Chemical Methodologies and Library Development (KU-CMLD), 2034 Becker Drive, Del Shankel Structural Biology Center, Lawrence,
Kansas 66047-3761, United States
| | - Gerald H. Lushington
- Department
of Chemistry, University of Kansas, 1251
Wescoe Hall Drive, Lawrence,
Kansas 66045-7582, United States
- The University of Kansas Center for Chemical Methodologies and Library Development (KU-CMLD), 2034 Becker Drive, Del Shankel Structural Biology Center, Lawrence,
Kansas 66047-3761, United States
| | - Fatima Z. Basha
- H. E. J. Research Institute
of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Michael G. Organ
- Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J
1P3 Canada
| | - Paul R. Hanson
- Department
of Chemistry, University of Kansas, 1251
Wescoe Hall Drive, Lawrence,
Kansas 66045-7582, United States
- The University of Kansas Center for Chemical Methodologies and Library Development (KU-CMLD), 2034 Becker Drive, Del Shankel Structural Biology Center, Lawrence,
Kansas 66047-3761, United States
| |
Collapse
|
7
|
Feng D, Mei Y, Wang Y, Zhang B, Wang C, Xu L. Tetrandrine protects mice from concanavalin A-induced hepatitis through inhibiting NF-kappaB activation. Immunol Lett 2008; 121:127-33. [PMID: 18992279 DOI: 10.1016/j.imlet.2008.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 09/22/2008] [Accepted: 10/04/2008] [Indexed: 11/25/2022]
Abstract
Tetrandrine (TET) is the major pharmacologically active compound of Chinese herb Stephania tetrandra S Moore, which has been used traditionally for the treatment of rheumatic disorders, silicosis and hypertension. Concanavalin A (ConA)-induced hepatitis (CIH) is a T-cell-dependent hepatitis and a well-established animal model for studying the mechanisms and therapy of immune-mediated hepatotoxicity. The aim of this study was to investigate whether TET could protect mice from CIH. C57BL/6 mice were injected with ConA to induce CIH pretreated with or without TET. Liver injury was assessed biochemically and histologically. Levels of plasma cytokines and the expressions of chemokine messenger RNA (mRNA) in the liver were determined. We found that pretreatment of mice with TET markedly reduced plasma transaminase release and the severity of liver damage. We further investigated the mechanisms of the protective effects of TET. When CIH-induced mice pretreated with TET, the increases of plasma concentrations of TNF-alpha, IFN-gamma, IL-12 and IL-4 were dramatically attenuated; at the same time, IFN-inducible protein-10 and macrophage inflammatory protein-1alpha expressions in liver were decreased. Furthermore, TET inhibited NF-kappaB activity, the critical transcriptional factor of the above mentioned inflammatory cytokines, by preventing the activation of IkappaBalpha kinasealpha (IKKalpha) and then inhibiting phosphorylation of IkappaBalpha to stabilize IkappaBalpha in intrahepatic leukocytes. In conclusion, TET is able to prevent T-cell-mediated liver injury in vivo. The beneficial effect may depend on suppressing the production of various inflammatory mediators in the liver through inhibiting of NF-kappaB activation.
Collapse
Affiliation(s)
- Dechun Feng
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | |
Collapse
|
8
|
Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nat Chem Biol 2008; 4:564-73. [PMID: 18690217 DOI: 10.1038/nchembio.105] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 07/08/2008] [Indexed: 11/08/2022]
Abstract
The benzylisoquinoline alkaloids (BIAs) are a diverse class of metabolites that exhibit a broad range of pharmacological activities and are synthesized through plant biosynthetic pathways comprised of complex enzyme activities and regulatory strategies. We have engineered yeast to produce the key intermediate reticuline and downstream BIA metabolites from a commercially available substrate. An enzyme tuning strategy was implemented that identified activity differences between variants from different plants and determined optimal expression levels. By synthesizing both stereoisomer forms of reticuline and integrating enzyme activities from three plant sources and humans, we demonstrated the synthesis of metabolites in the sanguinarine/berberine and morphinan branches. We also demonstrated that a human P450 enzyme exhibits a novel activity in the conversion of (R)-reticuline to the morphinan alkaloid salutaridine. Our engineered microbial hosts offer access to a rich group of BIA molecules and associated activities that will be further expanded through synthetic chemistry and biology approaches.
Collapse
|
9
|
Moaddel R, Jozwiak K, Wainer IW. Allosteric modifiers of neuronal nicotinic acetylcholine receptors: new methods, new opportunities. Med Res Rev 2007; 27:723-53. [PMID: 17238157 DOI: 10.1002/med.20091] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Allosteric, non-competitive inhibitors (NCIs) of neuronal nicotinic acetylcholine receptors (nAChRs) have been shown to produce a wide variety of clinically relevant responses. Many of the observed effects are desired as the nAChR is the therapeutic target, while others are undesired consequences due to off-target binding at the nAChR. Thus, the determination of whether or not a lead drug candidate is an NCI should play an important role in drug discovery programs. However, the current experimental techniques used to identify NCIs are challenging, expensive, and time consuming. This review focuses on an alternative approach to the investigation of interactions between test compounds and nAChRs based upon liquid chromatographic stationary phases containing cellular fragments from cell lines expressing nAChRs. The development and validation of these phases as well as their use in drug discovery and pharmacophore modeling are discussed.
Collapse
Affiliation(s)
- Ruin Moaddel
- Gerontology Research Center, Laboratory of Clinical Investigations, National Institute on Aging/NIH, Baltimore, Maryland, USA
| | | | | |
Collapse
|
10
|
Romanelli MN, Gratteri P, Guandalini L, Martini E, Bonaccini C, Gualtieri F. Central Nicotinic Receptors: Structure, Function, Ligands, and Therapeutic Potential. ChemMedChem 2007; 2:746-67. [PMID: 17295372 DOI: 10.1002/cmdc.200600207] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The growing interest in nicotinic receptors, because of their wide expression in neuronal and non-neuronal tissues and their involvement in several important CNS pathologies, has stimulated the synthesis of a high number of ligands able to modulate their function. These membrane proteins appear to be highly heterogeneous, and still only incomplete information is available on their structure, subunit composition, and stoichiometry. This is due to the lack of selective ligands to study the role of nAChR under physiological or pathological conditions; so far, only compounds showing selectivity between alpha4beta2 and alpha7 receptors have been obtained. The nicotinic receptor ligands have been designed starting from lead compounds from natural sources such as nicotine, cytisine, or epibatidine, and, more recently, through the high-throughput screening of chemical libraries. This review focuses on the structure of the new agonists, antagonists, and allosteric ligands of nicotinic receptors, it highlights the current knowledge on the binding site models as a molecular modeling approach to design new compounds, and it discusses the nAChR modulators which have entered clinical trials.
Collapse
Affiliation(s)
- M Novella Romanelli
- Laboratory of Design, Synthesis, and Study of Biologically Active Heterocycles (HeteroBioLab), Department of Pharmaceutical Sciences, University of Florence, via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| | | | | | | | | | | |
Collapse
|
11
|
Iturriaga-Vásquez P, Pérez EG, Slater EY, Bermúdez I, Cassels BK. Aporphine metho salts as neuronal nicotinic acetylcholine receptor blockers. Bioorg Med Chem 2007; 15:3368-72. [PMID: 17391965 DOI: 10.1016/j.bmc.2007.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 02/24/2007] [Accepted: 03/08/2007] [Indexed: 11/26/2022]
Abstract
(S)-Aporphine metho salts with the 1,2,9,10 oxygenation pattern displaced radioligands from recombinant human alpha7 and alpha4beta2 neuronal nicotinic acetylcholine receptors (nAChR) at low micromolar concentrations. The affinity of the nonphenolic glaucine methiodide (4) (vs [(3)H]cytisine) was the lowest at alpha4beta2 nAChR (K(i)=10 microM), and predicentrine methiodide (2) and xanthoplanine iodide (3), with free hydroxyl groups at C-2 or C-9, respectively, had the highest affinity at these receptors (K(i) approximately 1 microM), while the affinity of the diphenolic boldine methiodide (1) was intermediate between these values. At homomeric alpha7 nAChR, xanthoplanine had the highest affinity (K(i)=10 microM) vs [(125)I]alpha-bungarotoxin while the other three compounds displaced the radioligand with K(i) values between 15 and 21 microM. At 100 microM, all four compounds inhibited the responses of these receptors to EC(50) concentrations of ACh. The effects of xanthoplanine iodide (3) were studied in more detail. Xanthoplanine fully inhibited the EC(50) ACh responses of both alpha7 and alpha4beta2 nACh receptors with estimated IC(50) values of 9+/-3 microM (alpha7) and 5+/-0.8 microM (alpha4beta2).
Collapse
|
12
|
Liu CP, Tsai WJ, Shen CC, Lin YL, Liao JF, Chen CF, Kuo YC. Inhibition of (S)-armepavine from Nelumbo nucifera on autoimmune disease of MRL/MpJ-lpr/lpr mice. Eur J Pharmacol 2006; 531:270-9. [PMID: 16413531 DOI: 10.1016/j.ejphar.2005.11.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 11/21/2005] [Accepted: 11/28/2005] [Indexed: 02/07/2023]
Abstract
T cell immune responses play important roles in the pathogenesis of systemic lupus erythematosus (SLE). (S)-Armepavine (C19H23O3N; MW313) from Nelumbo nucifera suppresses T cells proliferation. To study its potential benefit on SLE, we examined effects of (S)-armepavine on MRL/MpJ-lpr/lpr mice, which have similar disease features to human SLE. MRL/MpJ-lpr/lpr mice were treated orally with (S)-armepavine for 6 weeks and their SLE characteristics were evaluated. The results revealed that (S)-armepavine prevented lymphadenopathy and elongated life span of MRL/MpJ-lpr/lpr mice. It seemed to be mediated by inhibition of splenocytes proliferation, suppression of interleukin-2 (IL-2), interleukin-4, interleukin-10, and interferon-gamma (IFN-gamma) gene expressions, reduction of glomerular hypercellularity and immune complexes deposition, and decrease of urinary protein and anti-double stranded DNA autoantibody production. Furthermore, the data demonstrated (S)-armepavine impaired IL-2 and IFN-gamma transcripts in human peripheral blood mononuclear cells. We suggest that (S)-armepavine may be an immunomodulator for the management of autoimmune diseases like SLE.
Collapse
MESH Headings
- Alkaloids/isolation & purification
- Alkaloids/pharmacology
- Alkaloids/therapeutic use
- Animals
- Antibodies, Antinuclear/blood
- Benzylisoquinolines/isolation & purification
- Benzylisoquinolines/pharmacology
- Benzylisoquinolines/therapeutic use
- Cell Proliferation/drug effects
- Cytokines/genetics
- Dose-Response Relationship, Drug
- Female
- Gene Expression/drug effects
- Humans
- Interferon-gamma/blood
- Interferon-gamma/genetics
- Interleukin-2/blood
- Interleukin-2/genetics
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/mortality
- Lymphatic Diseases/prevention & control
- Mice
- Mice, Inbred MRL lpr
- Nelumbo/chemistry
- Phytohemagglutinins/pharmacology
- Phytotherapy
- Proteinuria/prevention & control
- Proteinuria/urine
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Seeds/chemistry
- Spleen/cytology
- Spleen/drug effects
- Spleen/metabolism
- Survival Rate
Collapse
Affiliation(s)
- Chih-Peng Liu
- Institute of Pharmacology, National Yang-Ming University, Taiwan, R.O.C
| | | | | | | | | | | | | |
Collapse
|