1
|
Bernardina NRD, de Lima RMS, Ronchi SN, Wan Der Mass EM, Souza GJ, Rodrigues LC, Bissoli NS, Brasil GA. Oxandrolone treatment in juvenile rats induced anxiety-like behavior in young adult animals. Neurosci Lett 2021; 761:136104. [PMID: 34256105 DOI: 10.1016/j.neulet.2021.136104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
AIMS Oxandrolone (OXA) is a synthetic steroid used for the treatment of clinical conditions associated with catabolic states in humans, including children. However, its behavioral effects are not well known. Our goal was to evaluate the anxiety-like behavior induced in young adult rats after the treatment of juvenile animals with OXA. METHODS Four-week-old male rats were separated into three groups: Control (CON), therapeutic-like OXA dose (TD), and excessive OXA dose (ED), in which 2.5 and 37.5 mg/kg/day of OXA were administered via gavage for four weeks for TD and ED, respectively. Behavior was evaluated through the elevated plus maze (EPM) and open field (OF) tests. Protein expression of catalase (CAT), superoxide dismutase (SOD), Tumor necrosis factor-α (TNF-α), and dopamine receptor 2 (DrD2) were analyzed in tissue samples of the hippocampus, amygdala, and prefrontal cortex by Western Blot. RESULTS OXA induced anxiety-like behaviors in both TD and ED animals; it decreased the time spent in the open arms of the EPM in both groups and reduced the time spent in the central zone of the OF in the TD group. In the hippocampus, CAT expression was higher in TD compared with both control and ED animals. No differences were found in the amygdala and prefrontal cortex. TNF-α, SOD, and DrD2 levels were not altered in any of the assessed areas. CONCLUSIONS Treatment of juvenile rats with OXA led to anxiety-like behavior in young adult animals regardless of the dose used, with minor changes in the antioxidant machinery located in the hippocampus.
Collapse
Affiliation(s)
- Nara Rubia D Bernardina
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
| | | | - Silas N Ronchi
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Edgar M Wan Der Mass
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Glauciene J Souza
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Livia C Rodrigues
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Nazaré S Bissoli
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Girlandia A Brasil
- Pharmaceutical Sciences Graduate Program, University Vila Velha, Vila Velha, ES, Brazil.
| |
Collapse
|
2
|
Smith CC, Gibbs TT, Farb DH. Pregnenolone sulfate as a modulator of synaptic plasticity. Psychopharmacology (Berl) 2014; 231:3537-56. [PMID: 24997854 PMCID: PMC4625978 DOI: 10.1007/s00213-014-3643-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/24/2014] [Indexed: 12/22/2022]
Abstract
RATIONALE The neurosteroid pregnenolone sulfate (PregS) acts as a cognitive enhancer and modulator of neurotransmission, yet aligning its pharmacological and physiological effects with reliable measurements of endogenous local concentrations and pharmacological and therapeutic targets has remained elusive for over 20 years. OBJECTIVES New basic and clinical research concerning neurosteroid modulation of the central nervous system (CNS) function has emerged over the past 5 years, including important data involving pregnenolone and various neurosteroid precursors of PregS that point to a need for a critical status update. RESULTS Highly specific actions of PregS affecting excitatory N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic transmission and the pharmacological effects of PregS on various receptors and ion channels are discussed. The discovery of a high potency (nanomolar) signal transduction pathway for PregS-induced NMDAR trafficking to the cell surface via a Ca(2+)- and G protein-coupled receptor (GPCR)-dependent mechanism and a potent (EC50 ~ 2 pM) direct enhancement of intracellular Ca(2+) levels is discussed in terms of its agonist effects on long-term potentiation (LTP) and memory. Lastly, preclinical and clinical studies assessing the promnestic effects of PregS and pregnenolone toward cognitive dysfunction in schizophrenia, and altered serum levels in epilepsy and alcohol dependence, are reviewed. CONCLUSIONS PregS is present in human and rodent brain at physiologically relevant concentrations and meets most of the criteria for an endogenous neurotransmitter/neuromodulator. PregS likely plays a significant role in modulation of glutamatergic excitatory synaptic transmission underlying learning and memory, yet the molecular target(s) for its action awaits identification.
Collapse
Affiliation(s)
- Conor C. Smith
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
| | - Terrell T. Gibbs
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
| | - David H. Farb
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
| |
Collapse
|
3
|
Simoni E, Daniele S, Bottegoni G, Pizzirani D, Trincavelli ML, Goldoni L, Tarozzo G, Reggiani A, Martini C, Piomelli D, Melchiorre C, Rosini M, Cavalli A. Combining Galantamine and Memantine in Multitargeted, New Chemical Entities Potentially Useful in Alzheimer’s Disease. J Med Chem 2012; 55:9708-21. [DOI: 10.1021/jm3009458] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Elena Simoni
- Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163
Genova, Italy
- Department
of Pharmaceutical
Sciences, Alma Mater Studiorum − Bologna University, via Belmeloro 6, 40126 Bologna, Italy
| | - Simona Daniele
- Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163
Genova, Italy
- Department of Psychiatry, Neurobiology,
Pharmacology and Biotechnology, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Giovanni Bottegoni
- Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163
Genova, Italy
| | - Daniela Pizzirani
- Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163
Genova, Italy
| | - Maria L. Trincavelli
- Department of Psychiatry, Neurobiology,
Pharmacology and Biotechnology, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Luca Goldoni
- Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163
Genova, Italy
| | - Glauco Tarozzo
- Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163
Genova, Italy
| | - Angelo Reggiani
- Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163
Genova, Italy
| | - Claudia Martini
- Department of Psychiatry, Neurobiology,
Pharmacology and Biotechnology, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Daniele Piomelli
- Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163
Genova, Italy
- Departments of Pharmacology
and Biological Chemistry, University of California, Irvine 92697-4621, United States
| | - Carlo Melchiorre
- Department
of Pharmaceutical
Sciences, Alma Mater Studiorum − Bologna University, via Belmeloro 6, 40126 Bologna, Italy
| | - Michela Rosini
- Department
of Pharmaceutical
Sciences, Alma Mater Studiorum − Bologna University, via Belmeloro 6, 40126 Bologna, Italy
| | - Andrea Cavalli
- Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego 30, 16163
Genova, Italy
- Department
of Pharmaceutical
Sciences, Alma Mater Studiorum − Bologna University, via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
4
|
Elfverson M, Johansson T, Zhou Q, Le Grevès P, Nyberg F. Chronic administration of the anabolic androgenic steroid nandrolone alters neurosteroid action at the sigma-1 receptor but not at the sigma-2 or NMDA receptors. Neuropharmacology 2011; 61:1172-81. [PMID: 21251916 DOI: 10.1016/j.neuropharm.2011.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/29/2010] [Accepted: 01/06/2011] [Indexed: 11/23/2022]
Abstract
Studies have shown that anabolic androgenic steroids (AASs) can induce profound changes to mental health. Commonly reported psychiatric side effects among AAS users include aggression, anxiety, depression, drug abuse and cognitive disabilities. In experimental animals, many of these effects have been associated with alterations in a number of neurotransmitter systems. We have observed that chronic administration of the AAS nandrolone (nandrolone decanoate) can affect excitatory amino acids as well as monoaminergic and peptidergic pathways in a way that is compatible with nandrolone-induced behavioural changes. The aim of the present work was to further explore the mechanisms underlying nandrolone-induced effects, with a particular focus on components known to be involved in aggression and cognitive function. Male rats were given daily injections of nandrolone decanoate for 14 days and the effects on neurosteroid interactions with sites on the N-methyl-D-aspartyl (NMDA) and sigma receptors were examined. These receptors were chosen because of their involvement in aggressive and cognitive behaviors and the hypothesis that nandrolone might affect the brain via interaction with neurosteroids. Radiolabelled [³H]ifenprodil was used in the binding studies because of its significant affinity for the NMDA and sigma receptors. The results indicated that [³H]ifenprodil binds to both sigma-1 and sigma-2 sites and can be displaced to a certain extent from both sites by the neurosteroids pregnenolone sulphate (PS), pregnanolone sulphate (3α5βS) and dehydroepiandrosterone sulphate (DHEAS). The remainder of the [³H]ifenprodil was displaced from the sigma-1 site by the sigma-1 receptor-selective ligand (+)-SKF 10,047. Chronic nandrolone treatment changed the sigma-1 receptor target for the neurosteroids but not for ifenprodil. The sigma-2 receptor site was unaltered by treatment with nandrolone decanoate. The results also indicated that the neurosteroid-induced allosteric modulation of the NMDA receptor subunit NR2B was not affected by nandrolone treatment. We conclude that chronic treatment with nandrolone changes the affinity of the neurosteroids PS, 3α5βS and DHEAS at the sigma-1 site but not at the sites on the sigma-2 receptor or the NMDA receptor subunit NR2B.
Collapse
Affiliation(s)
- Martin Elfverson
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, P.O. Box 591, S-751 24 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
5
|
Allosteric modulation of the NMDA receptor by neurosteroids in rat brain and the impact of long term morphine administration. Biochem Biophys Res Commun 2010; 401:504-8. [PMID: 20869946 DOI: 10.1016/j.bbrc.2010.09.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 09/17/2010] [Indexed: 11/20/2022]
Abstract
This study examined the allosteric modulation of the NMDA receptor by nanomolar concentrations of neurosteroids in rats treated long term with morphine. The neurosteroids dehydroepiandrosterone sulfate (DHEAS), pregnenolone sulfate (PS) and pregnanolone sulfate (3α5βS) are important mediators in the central nervous system. They induce rapid responses by non-classical steroidal mechanisms, e.g. via interaction with the N-methyl-D-aspartate (NMDA) receptor, and are known to modify the binding of ifenprodil to the NMDA receptor subunit NR2B. The NMDA receptor is involved in several processes, including memory, learning, synaptic plasticity and neuronal development. Morphine, a μ-opioid receptor agonist, has an important role in the clinical treatment of pain. The main drawback of morphine treatment is the associated development of dependence and tolerance. The mechanisms behind these phenomena are still to be elucidated, but several reports suggest the involvement of the NMDA receptor. The results of the present study indicate that the allosteric modulation induced by the neurosteroids DHEAS, PS and 3α5βS was similar in all tested brain regions. This suggests that the NR2B receptor subunit behaves independently of its site of expression. Moreover, the NR2B subunit was up-regulated in the frontal cortex but not in the hippocampus or hypothalamus. It is concluded that morphine does not affect the neurosteroid modulatory effect on ifenprodil binding in the rat hippocampus or hypothalamus but does significantly affect both the expression of the NR2B subunit and the 3α5βS modulatory effect on ifenprodil binding in the frontal cortex. It is suggested that the observed effect of long term morphine on the properties of NR2B in the frontal cortex may be associated with the mechanism underlying the development of opiate dependence.
Collapse
|
6
|
Sadri-Vakili G, Janis GC, Pierce RC, Gibbs TT, Farb DH. Nanomolar concentrations of pregnenolone sulfate enhance striatal dopamine overflow in vivo. J Pharmacol Exp Ther 2008; 327:840-5. [PMID: 18772319 PMCID: PMC2864155 DOI: 10.1124/jpet.108.143958] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The balance between GABA-mediated inhibitory and glutamate-mediated excitatory synaptic transmission represents a fundamental mechanism for controlling nervous system function, and modulators that can alter this balance may participate in the pathophysiology of neuropsychiatric disorders. Pregnenolone sulfate (PS) is a neuroactive steroid that can modulate the activity of ionotropic glutamate and GABA(A) receptors either positively or negatively, depending upon the particular receptor subtype, and modulates synaptic transmission in a variety of experimental systems. To evaluate the modulatory effect of PS in vivo, we infused PS into rat striatum for 20 min via a microdialysis probe while monitoring local extracellular dopamine (DA) levels. The results demonstrate that PS at low nanomolar concentrations significantly increases extracellular DA levels. The PS-induced increase in extracellular DA is antagonized by the N-methyl-d-aspartate (NMDA) receptor antagonist, d-AP5 [d-(-)-2-amino-5-phosphonopentanoic acid], but not by the sigma receptor antagonist, BD 1063 [1(-)[2-(3,4-dichlorophenyl)-ethyl]-4-methylpiperazine]. The results demonstrate that exogenous PS, at nanomolar concentrations, is able to increase DA overflow in the striatum through an NMDA receptor-mediated pathway.
Collapse
Affiliation(s)
- G Sadri-Vakili
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
7
|
Neurosteroids allosterically modulate the ion pore of the NMDA receptor consisting of NR1/NR2B but not NR1/NR2A. Biochem Biophys Res Commun 2008; 372:305-8. [DOI: 10.1016/j.bbrc.2008.05.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 05/13/2008] [Indexed: 11/22/2022]
|
8
|
Johansson T, Frändberg PA, Nyberg F, Le Grevès P. Molecular mechanisms for nanomolar concentrations of neurosteroids at NR1/NR2B receptors. J Pharmacol Exp Ther 2008; 324:759-68. [PMID: 18006693 DOI: 10.1124/jpet.107.130518] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Neurosteroids are endogenous steroids acting in the central nervous system. They participate in synaptic plasticity, memory and learning, Alzheimer's disease, and certain drug reward. Some mechanisms behind these effects are thought to be nongenomic, e.g., they modulate the function of the N-methyl-d-aspartate (NMDA) receptor complex. In this study, we used a Chinese hamster ovary cell line stably transfected with NMDA receptor constituents NR1/NR2B, to investigate the effects of nanomolar concentrations of the neurosteroids pregnenolone sulfate (PS) and pregnanolone sulfate (3alpha5betaS) on binding of the radioligand [(3)H]ifenprodil. Neither of the steroids displaced [(3)H]ifenprodil, but both induced a shift in its fit from one to two binding sites. The effects of the neurosteroids were also measured as changes in intracellular calcium ([Ca(2+)](i)) after glutamate stimulation. Although the steroids did not alter the response to glutamate, they influenced the extent of ifenprodil blockade of the receptor: PS increased and 3alpha5betaS decreased this effect. The coincubation of several NMDA receptor ligands in the assay indicated that PS and 3alpha5betaS act via different binding sites from those for glutamate, glycine, and dithiothreitol. Combining the two steroids revealed that they do not share a common binding site. In conclusion, these results substantiate previous evidence of the allosteric modulatory effect induced by PS and 3alpha5betaS on NMDA receptors at nanomolar concentrations. The neurosteroid-mediated modulation of the receptor is also reflected in an altered glutamate stimulated [Ca(2+)](i), in response to ifenprodil.
Collapse
Affiliation(s)
- Tobias Johansson
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, P.O. Box 591, S-751 24, Uppsala, Sweden.
| | | | | | | |
Collapse
|
9
|
Johansson T, Elfverson M, Birgner C, Frändberg PA, Nyberg F, Le Grevès P. Neurosteroids alter glutamate-induced changes in neurite morphology of NG108-15 cells. J Steroid Biochem Mol Biol 2007; 104:215-9. [PMID: 17512193 DOI: 10.1016/j.jsbmb.2007.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation of the NMDA receptor leads to increased intracellular Ca2+ levels ([Ca2+]i) which induces outgrowth of and morphologic changes in the neurites of the NG108-15 cell line. This effect can be blocked by antagonists for this glutamate receptor subtype (e.g. ifenprodil or AP5). We have previously shown that nanomolar concentrations of various neurosteroids modulate ifenprodil binding to the NMDA receptor. To investigate whether this interaction affects the functioning of the receptor, we studied the effect of 24 and 48 h of pregnenolone sulphate (PS) or pregnanolone sulphate (3alpha5betaS) on glutamate-stimulated NG108-15 cells. Unexpectedly, the neurosteroids themselves had an inhibitory effect on glutamate-induced changes in neurite patterns. This effect was comparable to that of ifenprodil or AP5. Moreover, the effect of combined treatment with 3alpha5betaS and ifenprodil on neurite morphology indicated a functional interaction between the substances. Interestingly, PS induced cell detachment over time, an effect that was further enhanced by ifenprodil. Cell detachment was also seen after 48 h of treatment with 3alpha5betaS; however, the effect was blocked by ifenprodil and weaker than that of PS. The interaction with the NR2B-selective antagonist ifenprodil indicates that this NMDA receptor subunit may be involved in neurosteroid-induced NG108-15 cell detachment.
Collapse
Affiliation(s)
- Tobias Johansson
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, S-751 24 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|