1
|
Sliepen SH, Korioth J, Christoph T, Tzschentke TM, Diaz‐delCastillo M, Heegaard A, Rutten K. The nociceptin/orphanin FQ receptor system as a target to alleviate cancer-induced bone pain in rats: Model validation and pharmacological evaluation. Br J Pharmacol 2021; 178:1995-2007. [PMID: 31724155 PMCID: PMC8246843 DOI: 10.1111/bph.14899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/13/2019] [Accepted: 09/27/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Cancer-induced bone pain remains inadequately controlled, and current standard of care analgesics is accompanied by several side effects. Nociceptin/orphanin FQ peptide (NOP) receptor agonists have demonstrated broad analgesic properties in rodent neuropathic and inflammatory pain models. Here, we investigate the analgesic potential of NOP receptor activation in a rodent cancer-induced bone pain model. EXPERIMENTAL APPROACH Model validation by intratibial inoculation in male Sprague Dawley rats was performed with varying MRMT-1/Luc2 cell quantities (0.5-1.5 × 106 ·ml-1 ) and a behavioural battery (>14 days post-surgery) including evoked and non-evoked readouts: paw pressure test, cold plate, von Frey, open field, and weight distribution. Anti-allodynic potential of the endogenous NOP receptor ligand nociceptin (i.t.) and NOP receptor agonist Ro65-6570 ( i.p.) was tested using von Frey filaments, followed by a combination experiment with Ro65-6570 and the NOP receptor antagonist J-113397 (i.p.). Plasma cytokine levels and NOP receptor gene expression in dorsal root ganglion (DRG, L4-L6) and bone marrow were examined. KEY RESULTS Inoculation with 1.5 × 106 ·ml-1 of MRMT-1/Luc2 cells resulted in a robust and progressive pain-related phenotype. Nociceptin and Ro65-6570 treatment inhibited cancer-induced mechanical allodynia. J-113397 selectively antagonized the effect of Ro65-6570. MRMT-1/Luc2-bearing animals demonstrated elevated plasma cytokine levels of IL-4, IL-5, IL-6 and IL-10 plus unaltered NOP-r gene expression in DRG and reduced expression in bone marrow. CONCLUSION AND IMPLICATIONS Nociceptin and Ro65-6570 selectively and dose-dependently reversed cancer-induced bone pain-like behaviour. The NOP receptor system may be a potential target for cancer-induced bone pain treatment. LINKED ARTICLES This article is part of a themed issue on The molecular pharmacology of bone and cancer-elated bone diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.9/issuetoc.
Collapse
Affiliation(s)
- Sonny H.J. Sliepen
- Grünenthal InnovationGrünenthal GmbHAachenGermany
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | | | | | | | - Marta Diaz‐delCastillo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Anne‐Marie Heegaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Kris Rutten
- Grünenthal InnovationGrünenthal GmbHAachenGermany
| |
Collapse
|
2
|
Dib P, Zhang Y, Ihnat MA, Gallucci RM, Standifer KM. TNF-Alpha as an Initiator of Allodynia and Anxiety-Like Behaviors in a Preclinical Model of PTSD and Comorbid Pain. Front Psychiatry 2021; 12:721999. [PMID: 34512420 PMCID: PMC8424009 DOI: 10.3389/fpsyt.2021.721999] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/26/2021] [Indexed: 01/22/2023] Open
Abstract
Post-Traumatic Stress Disorder (PTSD) is a debilitating mental health disorder that occurs after exposure to a traumatic event. Patients with comorbid chronic pain experience affective distress, worse quality of life, and poorer responses to treatments for pain or PTSD than those with either condition alone. FDA-approved PTSD treatments are often ineffective analgesics, requiring additional drugs to treat co-morbid symptoms. Therefore, development of new treatment strategies necessitate a better understanding of the pathophysiology of PTSD and comorbid pain. The single prolonged stress (SPS) model of PTSD induces the development of persistent mechanical allodynia and thermal hyperalgesia. Increased Nociceptin/Orphanin FQ (N/OFQ) levels in serum and CSF accompany these exaggerated nociceptive responses, as well as increased serum levels of the pro-inflammatory cytokine tumor necrosis factor (TNF-α). Therefore, the primary goal was to determine the role of TNF-α in the development of SPS-induced allodynia/hyperalgesia and elevated serum and CNS N/OFQ using two approaches: TNF-α synthesis inhibition, and blockade with anti-TNF-α antibody that acts primarily in the periphery. Administration of TNF-α synthesis blocker, thalidomide (THL), immediately after SPS prevented increased TNF-α and development of allodynia and hyperalgesia. The THL effect lasted at least 21 days, well after thalidomide treatment ended (day 5). THL also prevented SPS-induced increases in serum N/OFQ and reversed regional N/OFQ mRNA expression changes in the CNS. Serum TNF-α increases detected at 4 and 24 h post SPS were not accompanied by blood brain barrier disruption. A single injection of anti-TNF-α antibody to male and female rats during the SPS procedure prevented the development of allodynia, hyperalgesia, and elevated serum N/OFQ, and reduced SPS-induced anxiety-like behaviors in males. Anti-TNFα treatment also blocked development of SPS-induced allodynia in females, and blocked increased hypothalamic N/OFQ in males and females. This suggests that a peripheral TNF-α surge is necessary for the initiation of allodynia associated with SPS, as well as the altered central and peripheral N/OFQ that maintains nociceptive sensitivity. Therefore, early alleviation of TNF-α provides new therapeutic options for investigation as future PTSD and co-morbid pain treatments.
Collapse
Affiliation(s)
- Patrick Dib
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yong Zhang
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Michael A Ihnat
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Harold Hamm Diabetes Center, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Randle M Gallucci
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Harold Hamm Diabetes Center, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kelly M Standifer
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Harold Hamm Diabetes Center, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
3
|
Gavioli EC, de Medeiros IU, Monteiro MC, Calo G, Romão PRT. Nociceptin/orphanin FQ-NOP receptor system in inflammatory and immune-mediated diseases. VITAMINS AND HORMONES 2015; 97:241-66. [PMID: 25677775 DOI: 10.1016/bs.vh.2014.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The neuropeptide nociceptin/orphanin FQ (N/OFQ) is the endogenous ligand of the G-protein-coupled receptor NOP. Cells from the immune system express the precursor preproN/OFQ and the NOP receptor, as well as secrete N/OFQ. The activation of the N/OFQ-NOP pathway can regulate inflammatory and immune responses. Several immune activities, including leukocyte migration, cytokine and chemokine production, and lymphocytes proliferation are influenced by NOP activation. It was demonstrated that cytokines and other stimuli such as Toll-like receptor agonist (e.g., lipopolysaccharide) induce N/OFQ production by cells from innate and adaptive immune response. In this context, N/OFQ could modulate the outcome of inflammatory diseases, such as sepsis and immune-mediated pathologies by mechanisms not clearly elucidated. In fact, clinical studies revealed increased levels of N/OFQ under sepsis, arthritis, and Parkinson's disease. Preclinical and clinical studies pointed to the blockade of NOP receptor signaling as successful strategy for the treatment of inflammatory diseases. This review is focused on experimental and clinical data that suggest the participation of N/OFQ-NOP receptor activation in the modulation of the immune response, highlighting the immunomodulatory potential of NOP antagonists in the inflammatory and immunological disturbances.
Collapse
Affiliation(s)
- Elaine C Gavioli
- Department of Biophysic and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Iris Ucella de Medeiros
- Department of Biophysic and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Marta C Monteiro
- Laboratory of Clinical Microbiology and Immunology, Faculty of Pharmacy, Federal University of Pará, Belém, Brazil
| | - Girolamo Calo
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Pedro R T Romão
- Laboratory of Immunology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Rua Sarmento Leite, Porto Alegre, Brazil.
| |
Collapse
|
4
|
Scoto GM, Aricò G, Ronsisvalle S, Parenti C. Effects of intraplantar nocistatin and (±)-J 113397 injections on nociceptive behavior in a rat model of inflammation. Pharmacol Biochem Behav 2012; 100:639-44. [PMID: 22120202 DOI: 10.1016/j.pbb.2011.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/10/2011] [Accepted: 11/13/2011] [Indexed: 11/18/2022]
Abstract
Nocistatin (NST) and Nociceptin/Orphanin FQ (N/OFQ) are derived from the same precursor protein, pre-proN/OFQ, and exert opposite effects on the modulation of pain signals. However, the role of the peripheral N/OFQ and the NOP receptor, which is located at the endings of sensory nerves, in inflammatory pain was not ascertained. NST administered intrathecally (i.t.) prevented the nociceptive effects induced by i.t. N/OFQ and PGE₂. Moreover an up regulation of N/OFQ was shown in the rat in response to peripheral inflammation. Here, we investigated the effects of intraplantar (i.pl.) administration of functional N/OFQ and NOP receptor antagonists in a rat model of inflammatory pain. Our findings showed that i.pl. injection of (±)-J 113397, a selective antagonist of the NOP receptor, and NST, the functional N/OFQ antagonist, prior to carrageenan significantly reduced the paw allodynic and thermal hyperalgesic threshold induced by the inflammatory agent. The resulting antiallodynic and antihyperalgesic effects by co-administering NST and (±)-J 113397 prior to carrageenan were markedly enhanced, and the basal latencies were restored. Thus, it is likely that the peripheral N/OFQ/NOP receptor system contributes to the abnormal pain sensitivity in an inflammatory state.
Collapse
Affiliation(s)
- Giovanna M Scoto
- Department of Drug Sciences-Pharmacology and Toxicology Section, University of Catania, v.le A. Doria 6, 95125 Catania, Italy.
| | | | | | | |
Collapse
|
5
|
Gavioli EC, Romão PRT. NOP Receptor Ligands as Potential Agents for Inflammatory and Autoimmune Diseases. JOURNAL OF AMINO ACIDS 2011; 2011:836569. [PMID: 22312472 PMCID: PMC3268226 DOI: 10.4061/2011/836569] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 08/31/2011] [Accepted: 09/24/2011] [Indexed: 12/29/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ) is a seventeen-amino acid peptide that is the endogenous ligand of a G-protein-coupled receptor (NOP). Various immune cells express the precursor protein and secrete N/OFQ as well as display binding sites for this peptide. The functional capacity of NOP receptor was demonstrated in vitro and in vivo studies by the ability of N/OFQ to induce chemotaxis of immune cells, to regulate the expression of cytokines and other inflammatory mediators, and to control cellular and humoral immunity. In this context, N/OFQ could modulate the outcome of some inflammatory diseases, such as sepsis and autoimmune pathologies by mechanisms not clearly elucidated yet. In fact, human body fluid revealed increased levels of N/OFQ under sepsis, arthritis, and Parkinson's diagnose. Preclinical studies pointed to the blockade of NOP receptor signaling as successful in treating these experimental conditions. Further preclinical and clinical studies are required to investigate the potential of NOP ligands in treating inflammatory diseases.
Collapse
Affiliation(s)
- Elaine C Gavioli
- Laboratório de Farmacologia Comportamental, Programa de Pós-graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos, Departamento de Biofísica e Farmacologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | | |
Collapse
|
6
|
Gerashchenko D, Horvath TL, Xie X(S. Direct inhibition of hypocretin/orexin neurons in the lateral hypothalamus by nociceptin/orphanin FQ blocks stress-induced analgesia in rats. Neuropharmacology 2011; 60:543-9. [PMID: 21195099 PMCID: PMC3031765 DOI: 10.1016/j.neuropharm.2010.12.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 12/15/2010] [Accepted: 12/20/2010] [Indexed: 02/03/2023]
Abstract
We recently demonstrated that hypocretin/orexin (Hcrt) and nociceptin/orphanin FQ (N/OFQ) systems coordinately regulate nociception in a mouse model of stress-induced analgesia (SIA). However, the site of N/OFQ action on modulation of SIA was elusive, since N/OFQ was administered via intracerebroventricular (i.c.v.) injection acting on widely distributed N/OFQ receptors (NOP) in the brain. In the present study, we tested the hypothesis that N/OFQ modulates the SIA directly via the inhibition of the Hcrt neurons in the lateral hypothalamus. Using both fluorescent and electron microscopy, we found that N/OFQ-containing neurons are located in the lateral hypothalamus and the N/OFQ-containing fibers make direct contacts with the Hcrt neurons. Paw thermal nociceptive test revealed that the immobilization restraint of the rat increased the thermal pain threshold by 20.5 ± 7.6%. Bilateral microinjection of N/OFQ (9 μg/side) into the rat perifornical area of the lateral hypothalamus, the brain area in which the Hcrt neurons are exclusively located, abolished the SIA. Activity of Hcrt neurons in the same animals was assessed using Fos immunohistochemistry. Percentage of Fos(+)/Hcrt neurons was lower in rats injected with N/OFQ than rats injected with saline, with the difference between groups stronger in the Hcrt neurons located medially to the fornix than in Hcrt neurons located laterally to the fornix. These results suggest that N/OFQ modulation of SIA is mediated by direct inhibition of Hcrt neuronal activity in the perifornical area. The uncovered peptidergic interaction circuitry may have broad implication in coordinated modulation by Hcrt and N/OFQ on other stress adaptive responses.
Collapse
Affiliation(s)
| | - Tamas L. Horvath
- Section of Comparative Medicine, Yale University School of Medicine, CT
| | | |
Collapse
|
7
|
Abstract
Nociceptin/Orphanin FQ (N/OFQ) is the endogenous ligand for the N/OFQ receptor. N/OFQ acts directly on blood vessels to elicit vasodilation. This review will describe the peripheral cardiovascular effects of N/OFQ observed in studies conducted in vitro and in vivo, along with those designed to characterize systemic cardiovascular effects resulting from direct injection into brain tissue. Emphasis is placed on the cerebrovascular action of N/OFQ and its function considered in the setting of central nervous system (CNS) pathology. Although N/OFQ is unlikely to cross the blood-brain barrier because of its size, use of N/OFQ antagonists to alleviate the potentially deleterious action of centrally released N/OFQ may be of therapeutic importance in treatment of cerebral ischemia of diverse origin, such as stroke and traumatic brain injury. Targeting N/OFQ may also be of therapeutic importance in alleviating the hyperemia and pain associated with joint inflammation.
Collapse
Affiliation(s)
- William M Armstead
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Easten KH, Harry RA, Purcell WM, McLeod JD. Nociceptin-induced modulation of human T cell function. Peptides 2009; 30:926-34. [PMID: 19428771 DOI: 10.1016/j.peptides.2009.01.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 01/21/2009] [Accepted: 01/22/2009] [Indexed: 01/21/2023]
Abstract
There is an accumulating evidence for the immunoregulatory role of the neuropeptide, nociceptin/orphanin FQ (N/OFQ) however its role on T cell function requires elucidation. This study has demonstrated an inhibitory role for N/OFQ on SEB-activated T cell function. N/OFQ decreases T cell proliferation, which is abrogated when the costimulatory receptors CD80 and CD86 are blocked. In addition, evidence suggests that the immunoregulatory cytokines TGF-beta, IFN-gamma and nitric oxide (NO) are involved in the N/OFQ effect. N/OFQ also, through involvement of IFN and NO, induces the expression of the immunosuppressive modulator indoleamine 2,3-dioxygenase (IDO), suggesting a central role for IDO in the N/OFQ effect on T cell proliferation. The data presented in this report indicate a multi-faceted mechanism of action used by N/OFQ to modulate T cell function.
Collapse
Affiliation(s)
- Kate H Easten
- Faculty of Health and Life Sciences, Centre for Research in Biomedicine, University of the West of England, Coldharbour lane, Frenchay, Bristol, UK
| | | | | | | |
Collapse
|
9
|
Agostini S, Eutamene H, Broccardo M, Improta G, Petrella C, Theodorou V, Bueno L. Peripheral anti-nociceptive effect of nociceptin/orphanin FQ in inflammation and stress-induced colonic hyperalgesia in rats. Pain 2009; 141:292-299. [PMID: 19147291 DOI: 10.1016/j.pain.2008.12.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 11/03/2008] [Accepted: 12/01/2008] [Indexed: 12/14/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ) and its NOP receptors are present in the central nervous system and in the periphery playing important roles in the modulation of gastrointestinal functions and pain. The aim of this study was to investigate the role of central and peripheral N/OFQ-NOP receptor system in the nociceptive response to colorectal distension (CRD) in basal condition and in two models of gut hypersensitivity triggered by both inflammation and stress. Male Wistar rats were tested in basal and in post-inflammatory conditions, i.e., 5 days after IC TNBS instillation (80 mg/Kg) and received N/OFQ (2 nmol/Kg IP), UFP-101 (a selective NOP receptor antagonist, 10 nmol/Kg IP), N/OFQ+UFP-101, N/OFQ (0.5 nmol/rat ICV) or vehicle. Female rats were tested in basal and after partial restraint stress receiving the same pharmacological treatment. CRD was performed using barostat and abdominal contractions were recorded by electromyography. In basal condition, N/OFQ, ICV and IP injected, did not modify basal visceral sensitivity. Both in TNBS and stress-induced hyperalgesia, IP but not ICV injection of N/OFQ significantly decreased the number of abdominal contractions. Peripheral injection of UFP-101 antagonized N/OFQ effect. Moreover, in post-inflammatory colitis, UFP-101, injected alone, exacerbated visceral hyperalgesia to CRD compared with vehicle. These findings indicate that in rats, N/OFQ, only peripherally injected, reduces visceral hypersensitivity triggered by inflammation or stress without affecting basal sensitivity. N/OFQ visceral anti-hyperalgesic effect involves peripheral NOP receptors. In a post-inflammatory, but not in an acute stress colitis model, N/OFQergic system is endogenously activated.
Collapse
Affiliation(s)
- Simona Agostini
- INRA, EI-Purpan, UMR 1054 Neuro-Gastroenterology and Nutrition Unit, 180 Chemin de Tournefeuille - BP3, 31931 Toulouse Cedex 9, Toulouse, France Department of Human Physiology and Pharmacology, University La Sapienza, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
ZP120 causes relaxation by pre-junctional inhibition of noradrenergic neurotransmission in rat mesenteric resistance arteries. Br J Pharmacol 2008; 153:1185-94. [PMID: 18193068 DOI: 10.1038/sj.bjp.0707688] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE ZP120 (Ac-RYYRWKKKKKKK-NH(2)), is a new partial nociceptin/orphanin FQ (NOP) receptor agonist with sodium-potassium sparing aquaretic effects. The mechanisms of vasodilatation of ZP120 were examined in rat mesenteric resistance arteries. EXPERIMENTAL APPROACH Arterial segments (internal diameters 206+/-4 microm, n=224) were mounted in microvascular myographs for isometric tension recordings and electrical field stimulation (EFS). KEY RESULTS ZP120 and the endogenous NOP receptor ligand, N/OFQ, did not relax arteries contracted with noradrenaline or adenosine-triphosphate. EFS-evoked contractions were inhibited by a purinoceptor antagonist, suramin, and the alpha(1)-adrenoceptor antagonist prazosin. N/OFQ inhibited, concentration-dependently, EFS-evoked contractions with a maximal effect of 52+/-3% (n=8) at 1 microM. The maximal effect of 1 microM ZP120 was lower (27+/-5%, P<0.05, n=9) than for N/OFQ. Endothelial removal or pretreatment with capsaicin did not influence the vasodilator effects of ZP120 and N/OFQ. ZP120 and N/OFQ responses were preserved in the presence of suramin. The alpha(2)-adrenoceptor antagonist, rauwolscine, antagonized the effect of clonidine and brimonidine, but ZP120 and N/OFQ inhibition of EFS-evoked contraction was unaltered. The competitive NOP receptor antagonist, UFP-101 (10 microM), prevented the inhibitory effect of N/OFQ, but not ZP120 suggesting that N/OFQ and ZP120 have distinct modes of interaction with the NOP receptor. CONCLUSIONS AND IMPLICATIONS Our findings suggest that the vasodilator effect of ZP120 and N/OFQ in rat mesenteric resistance arteries is mediated by prejunctional inhibition of adrenergic neurotransmission. These properties, that promote diuresis and attenuate the cardiovascular consequences of increased sympathetic nerve activity, make ZP120 a promising drug candidate.
Collapse
|
11
|
Abstract
This paper is the 29th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning 30 years of research. It summarizes papers published during 2006 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurological disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, United States.
| |
Collapse
|
12
|
McDougall JJ, Yu V, Thomson J. In vivo effects of CB2 receptor-selective cannabinoids on the vasculature of normal and arthritic rat knee joints. Br J Pharmacol 2007; 153:358-66. [PMID: 17982474 DOI: 10.1038/sj.bjp.0707565] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Cannabinoids (CBs) are known to be vasoactive and to regulate tissue inflammation. The present study examined the in vivo vasomotor effects of the CB2 receptor agonists JWH015 and JWH133 in rat knee joints. The effect of acute and chronic joint inflammation on CB2 receptor-mediated responses was also tested. EXPERIMENTAL APPROACH Blood flow was assessed in rat knee joints by laser Doppler imaging both before and following topical administration of CB2 receptor agonists. Vasoactivity was measured in normal, acute kaolin/carrageenan inflamed and Freund's complete adjuvant chronically inflamed knees. KEY RESULTS In normal animals, JWH015 and JWH133 caused a concentration-dependent increase in synovial blood flow which in the case of JWH133 was blocked by the selective CB2 receptor antagonist AM630 as well as the transient receptor potential vanilloid-1 (TRPV1) antagonist SB366791. The vasodilator effect of JWH133 was significantly attenuated in both acute and chronically inflamed knees. Given alone, AM630 had no effect on joint blood flow. CONCLUSION AND IMPLICATIONS In normal joints, the cannabinomimetic JWH133 causes hyperaemia via a CB2 and TRPV1 receptor mechanism. During acute and chronic inflammation, however, this vasodilatatory response is significantly attenuated.
Collapse
Affiliation(s)
- J J McDougall
- Department of Physiology & Biophysics, University of Calgary, Calgary, Alberta, Canada.
| | | | | |
Collapse
|
13
|
Brookes ZLS, Stedman EN, Guerrini R, Lawton BK, Calo G, Lambert DG. Proinflammatory and vasodilator effects of nociceptin/orphanin FQ in the rat mesenteric microcirculation are mediated by histamine. Am J Physiol Heart Circ Physiol 2007; 293:H2977-85. [PMID: 17766480 DOI: 10.1152/ajpheart.00448.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ) is the endogenous ligand for the N/OFQ peptide receptor (NOP). N/OFQ causes hypotension and vasodilation, and we aimed to determine the role of histamine in inflammatory microvascular responses to N/OFQ. Male Wistar rats (220-300 g, n = 72) were anesthetized with thiopental (30 mg/kg bolus, 40-90 mg x kg(-1) x h(-1) iv), and the mesentery was prepared for fluorescent intravital microscopy using fluorescein isothiocyanate-conjugated BSA (FITC-BSA, 0.25 ml/100 g iv) or 1 microm fluorescently labeled microspheres. N/OFQ (0.6-60 nmol/kg iv) caused hypotension (SAP, baseline: 154 +/- 11 mmHg, 15 nmol/kg N/OFQ: 112 +/- 10 mmHg, P = 0.009), vasodilation (venules: 23.9 +/- 1.2 microm, 26.7 +/- 1.2 microm, P = 0.006), macromolecular leak (interstitial gray level FITC-BSA: 103.7 +/- 3.4, 123.5 +/- 11.8, P = 0.009), and leukocyte adhesion (2.0 +/- 0.9, 15.2 +/- 0.9/100 microm, P = 0.036). Microsphere velocity also decreased (venules: 1,230 +/- 370 microm/s, P = 0.037), but there were no significant changes in blood flow. Flow cytometry measured a concurrent increase in neutrophil expression of cd11b with N/OFQ vs. controls (Geo mean fluorescence: 4.19 +/- 0.13 vs. 2.06 +/- 0.38, P < 0.05). The NOP antagonist [Nphe(1),Arg(14),Lys(15)]N/OFQ-NH(2) (UFP-101; 60 and 150 nmol/kg iv), H(1) and H(2)antagonists pyrilamine (mepyramine, 1 mg/kg iv) and ranitidine (1 mg/kg iv), and mast cell stabilizer cromolyn (1 mg x kg(-1) x min(-1)) also abolished vasodilation and macromolecular leak to N/OFQ in vivo (P < 0.05), but did not affect hypotension. Isolated mesenteric arteries (approximately 200 microm, n = 25) preconstricted with U-46619 were also mounted on a pressure myograph (60 mmHg), and both intraluminally and extraluminally administered N/OFQ (10(-5) M) caused dilation, inhibited by pyrilamine in the extraluminal but not the intraluminal (control: -6.9 +/- 3.8%; N/OFQ: 32.6 +/- 8.4%; pyrilamine: 31.5 +/- 6.8%, n = 18, P < 0.05) experiments. We conclude that, in vivo, mesenteric microvascular dilation and macromolecular leak occur via N/OFQ-NOP-mediated release of histamine from mast cells. Therefore, N/OFQ-NOP has an important role in microvascular inflammation, and this may be targeted during disease, particularly as we have proven that UFP-101 is an effective antagonist of microvascular responses in vivo.
Collapse
Affiliation(s)
- Zoë L S Brookes
- University of Sheffield, Academic Anaesthesia Unit and Microcirculation Research Group, Royal Hallamshire Hospital, Sheffield S10 2JF, UK.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Arthritis pain affects millions of people worldwide yet we still have only a limited understanding of what makes our joints ache. This review examines the sensory innervation of diarthroidal joints and discusses the neurophysiological processes that lead to the generation of painful sensation. During inflammation, joint nerves become sensitized to mechanical stimuli through the actions of neuropeptides, eicosanoids, proteinase-activated receptors and ion channel ligands. The contribution of immunocytes to arthritis pain is also reviewed. Finally, the existence of an endogenous analgesic system in joints is considered and the reasons for its inability to control pain are postulated.
Collapse
Affiliation(s)
- Jason J McDougall
- Department of Physiology & Biophysics, University of Calgary, Hospital Drive, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|