1
|
Airo M, Frishman WIH, Aronow WS. New Therapy Update Aprocitentan: An Endothelin Receptor Antagonist for the Treatment of Drug-Resistant Systemic Hypertension. Cardiol Rev 2025; 33:114-119. [PMID: 37530539 DOI: 10.1097/crd.0000000000000591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Resistant hypertension (RH) is the state of uncontrolled blood pressure in the face of ostensibly optimal pharmacological intervention. It accounts for roughly one in six cases of hypertension, and is associated with more severe morbidity and mortality outcomes than is non-RH. The prevalence of RH implies a currently unmanaged pathology, which may involve the potent vasoconstrictor endothelin. Several endothelin receptor antagonists are currently marketed for pulmonary arterial hypertension, but none so far has been marketed for RH. Aprocitentan is currently in development, an endothelin receptor antagonist that effectively produces clinically significant and sustained decreases in systolic and diastolic blood pressure in the setting of RH.
Collapse
Affiliation(s)
- Michael Airo
- From the Medicine, New York Medical College, Valhalla, NY
| | - WIlliam H Frishman
- Department of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Wilbert S Aronow
- Department of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| |
Collapse
|
2
|
Pannucci P, Van Daele M, Cooper SL, Wragg ES, March J, Groenen M, Hill SJ, Woolard J. Role of endothelin ET A receptors in the hypertension induced by the VEGFR-2 kinase inhibitors axitinib and lenvatinib in conscious freely-moving rats. Biochem Pharmacol 2024; 228:116007. [PMID: 38145828 DOI: 10.1016/j.bcp.2023.116007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Receptor tyrosine kinase inhibitors (RTKIs) suppress tumour growth by targeting vascular endothelial growth factor receptor 2 (VEGFR-2) which is an important mediator of angiogenesis. Here, we demonstrate that two potent RTKIs, axitinib and lenvatinib, are associated with hypertensive side effects. Doppler flowmetry was used to evaluate regional haemodynamic profiles of axitinib and lenvatinib. Male Sprague Dawley rats (350-500 g) were instrumented with Doppler flow probes (renal and mesenteric arteries and descending abdominal aorta) and catheters (jugular vein and distal abdominal aorta, via the caudal artery). Rats were dosed daily with axitinib (3 or 6 mg.kg-1) or lenvatinib (1 or 3 mg.kg-1) and regional haemodynamics were recorded over a maximum of 4 days. Both RTKIs caused significant (p < 0.05) increases in mean arterial pressure (MAP), which was accompanied by significant (p < 0.05) vasoconstriction in both the mesenteric and hindquarters vascular beds. To gain insight into the involvement of endothelin-1 (ET-1) in RTKI-mediated hypertension, we also monitored heart rate (HR) and MAP in response to axitinib or lenvatinib in animals treated with the ETA receptor selective antagonist sitaxentan (5 mg.kg-1) or the mixed ETA/ETB receptor antagonist bosentan (15 mg.kg-1) over two days. Co-treatment with bosentan or sitaxentan markedly reduced the MAP effects mediated by both RTKIs (p < 0.05). Bosentan, but not sitaxentan, also attenuated ET-1 mediated increases in HR. These data suggest that selective antagonists of ETA receptors may be appropriate to alleviate the hypertensive effects of axitinib and lenvatinib.
Collapse
Affiliation(s)
- Patrizia Pannucci
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
| | - Marieke Van Daele
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
| | - Samantha L Cooper
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
| | - Edward S Wragg
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
| | - Julie March
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Marleen Groenen
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK.
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK.
| |
Collapse
|
3
|
de Paula VF, Tardelli LP, Amaral SL. Dexamethasone-Induced Arterial Stiffening Is Attenuated by Training due to a Better Balance Between Aortic Collagen and Elastin Levels. Cardiovasc Drugs Ther 2024; 38:693-703. [PMID: 36795192 DOI: 10.1007/s10557-023-07438-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
PURPOSE Although the cardioprotective benefits of exercise training are well known, the effects of training on dexamethasone (DEX)-induced arterial stiffness are still unclear. This study was aimed at investigating the mechanisms induced by training to prevent DEX-induced arterial stiffness. METHODS Wistar rats were allocated into 4 groups and submitted to combined training (aerobic and resistance exercises, on alternate days, 60% of maximal capacity, for 74 d) or were kept sedentary: sedentary control rats (SC), DEX-treated sedentary rats (DS), combined training control (CT), and DEX-treated trained rats (DT). During the last 14 d, rats were treated with DEX (50 μg/kg per body weight, per day, s.c.) or saline. RESULTS DEX increased PWV (+44% vs +5% m/s, for DS vs SC, p<0.001) and increased aortic COL 3 protein level (+75%) in DS. In addition, PWV was correlated with COL3 levels (r=0.682, p<0.0001). Aortic elastin and COL1 protein levels remained unchanged. On the other hand, the trained and treated groups showed lower PWV values (-27% m/s, p<0.001) vs DS and lower values of aortic and femoral COL3 compared with DS. CONCLUSION As DEX is widely used in several situations, the clinical relevance of this study is that the maintenance of good physical capacity throughout life can be crucial to alleviate some of its side effects, such as arterial stiffness.
Collapse
Affiliation(s)
- Vinicius F de Paula
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
- Department of Physical Education, São Paulo State University (UNESP), School of Sciences, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru, SP, 17033-360, Brazil
| | - Lidieli P Tardelli
- Department of Physical Education, São Paulo State University (UNESP), School of Sciences, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru, SP, 17033-360, Brazil
| | - Sandra L Amaral
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil.
- Department of Physical Education, São Paulo State University (UNESP), School of Sciences, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru, SP, 17033-360, Brazil.
| |
Collapse
|
4
|
Mittal AM, Nowicki KW, Mantena R, Cao C, Rochlin EK, Dembinski R, Lang MJ, Gross BA, Friedlander RM. Advances in biomarkers for vasospasm - Towards a future blood-based diagnostic test. World Neurosurg X 2024; 22:100343. [PMID: 38487683 PMCID: PMC10937316 DOI: 10.1016/j.wnsx.2024.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
Objective Cerebral vasospasm and the resultant delayed cerebral infarction is a significant source of mortality following aneurysmal SAH. Vasospasm is currently detected using invasive or expensive imaging at regular intervals in patients following SAH, thus posing a risk of complications following the procedure and financial burden on these patients. Currently, there is no blood-based test to detect vasospasm. Methods PubMed, Web of Science, and Embase databases were systematically searched to retrieve studies related to cerebral vasospasm, aneurysm rupture, and biomarkers. The study search dated from 1997 to 2022. Data from eligible studies was extracted and then summarized. Results Out of the 632 citations screened, only 217 abstracts were selected for further review. Out of those, only 59 full text articles met eligibility and another 13 were excluded. Conclusions We summarize the current literature on the mechanism of cerebral vasospasm and delayed cerebral ischemia, specifically studies relating to inflammation, and provide a rationale and commentary on a hypothetical future bloodbased test to detect vasospasm. Efforts should be focused on clinical-translational approaches to create such a test to improve treatment timing and prediction of vasospasm to reduce the incidence of delayed cerebral infarction.
Collapse
Affiliation(s)
- Aditya M. Mittal
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | | | - Rohit Mantena
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Catherine Cao
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Emma K. Rochlin
- Loyola University Stritch School of Medicine, Maywood, IL, USA
| | - Robert Dembinski
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Michael J. Lang
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Bradley A. Gross
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Robert M. Friedlander
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Allbritton-King JD, García-Cardeña G. Endothelial cell dysfunction in cardiac disease: driver or consequence? Front Cell Dev Biol 2023; 11:1278166. [PMID: 37965580 PMCID: PMC10642230 DOI: 10.3389/fcell.2023.1278166] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
The vascular endothelium is a multifunctional cellular system which directly influences blood components and cells within the vessel wall in a given tissue. Importantly, this cellular interface undergoes critical phenotypic changes in response to various biochemical and hemodynamic stimuli, driving several developmental and pathophysiological processes. Multiple studies have indicated a central role of the endothelium in the initiation, progression, and clinical outcomes of cardiac disease. In this review we synthesize the current understanding of endothelial function and dysfunction as mediators of the cardiomyocyte phenotype in the setting of distinct cardiac pathologies; outline existing in vivo and in vitro models where key features of endothelial cell dysfunction can be recapitulated; and discuss future directions for development of endothelium-targeted therapeutics for cardiac diseases with limited existing treatment options.
Collapse
Affiliation(s)
- Jules D. Allbritton-King
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Guillermo García-Cardeña
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
6
|
Ahmetaj-Shala B, Kawai R, Marei I, Nikolakopoulou Z, Shih CC, Konain B, Reed DM, Mongey R, Kirkby NS, Mitchell JA. A bioassay system of autologous human endothelial, smooth muscle cells, and leukocytes for use in drug discovery, phenotyping, and tissue engineering. FASEB J 2019; 34:1745-1754. [PMID: 31914612 PMCID: PMC6972557 DOI: 10.1096/fj.201901379rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 01/02/2023]
Abstract
Blood vessels are comprised of endothelial and smooth muscle cells. Obtaining both types of cells from vessels of living donors is not possible without invasive surgery. To address this, we have devised a strategy whereby human endothelial and smooth muscle cells derived from blood progenitors from the same donor could be cultured with autologous leukocytes to generate a same donor “vessel in a dish” bioassay. Autologous sets of blood outgrowth endothelial cells (BOECs), smooth muscle cells (BO‐SMCs), and leukocytes were obtained from four donors. Cells were treated in monoculture and cumulative coculture conditions. The endothelial specific mediator endothelin‐1 along with interleukin (IL)‐6, IL‐8, tumor necrosis factor α, and interferon gamma‐induced protein 10 were measured under control culture conditions and after stimulation with cytokines. Cocultures remained viable throughout. The profile of individual mediators released from cells was consistent with what we know of endothelial and smooth muscle cells cultured from blood vessels. For the first time, we report a proof of concept study where autologous blood outgrowth “vascular” cells and leukocytes were studied alone and in coculture. This novel bioassay has usefulness in vascular biology research, patient phenotyping, drug testing, and tissue engineering.
Collapse
Affiliation(s)
- Blerina Ahmetaj-Shala
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Ryota Kawai
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK.,Medicinal Safety Research Laboratories, Daiichi-Sankyo Co. Ltd., Tokyo, Japan
| | - Isra Marei
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK.,Qatar Foundation Research and Development Division, Doha, Qatar
| | - Zacharoula Nikolakopoulou
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK.,Centre for Haematology, Faculty of Medicine, Imperial College London, London, UK
| | - Chih-Chin Shih
- Department of Pharmacology, National Defense Medical Center, Taipei, R.O.C., Taiwan
| | - Bhatti Konain
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Daniel M Reed
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Róisín Mongey
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Nicholas S Kirkby
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Jane A Mitchell
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
7
|
Zheng X, Asico LD, Ma X, Konkalmatt PR. G protein-coupled receptor 37L1 regulates renal sodium transport and blood pressure. Am J Physiol Renal Physiol 2018; 316:F506-F516. [PMID: 30566002 DOI: 10.1152/ajprenal.00289.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
G protein-coupled receptors (GPCRs) in the kidney regulate the reabsorption of essential nutrients, ions, and water from the glomerular filtrate. Abnormalities in renal epithelial ion transport play important roles in the pathogenesis of essential hypertension. The orphan G protein-coupled receptor 37L1 (GPR37L1), also known as endothelin receptor type B-like protein (ETBR-LP2), is expressed in several regions in the brain, but its expression profile and function in peripheral tissues are poorly understood. We found that GPR37L1 mRNA expression is highest in the brain, followed by the stomach, heart, testis, and ovary, with moderate expression in the kidney, pancreas, skeletal muscle, liver, lung, and spleen. Immunofluorescence analyses revealed the expression of GPR37L1 in specific regions within some organs. In the kidney, GPR37L1 is expressed in the apical membrane of renal proximal tubule cells. In human renal proximal tubule cells, the transient expression of GPR37LI increased intracellular sodium, whereas the silencing of GPR37LI decreased intracellular sodium. Inhibition of Na+/H+ exchanger isoform 3 (NHE3) activity abrogated the GPR37L1-mediated increase in intracellular sodium. Renal-selective silencing of Gpr37l1 in mice increased urine output and sodium excretion and decreased systolic and diastolic blood pressures. The renal-selective silencing of GPR37L1 decreased the protein expression of NHE3 but not the expression of Na+-K+-ATPase or sodium-glucose cotransporter 2. Our findings show that in the kidney, GPR37L1 participates in renal proximal tubule luminal sodium transport and regulation of blood pressure by increasing the renal expression and function of NHE3 by decreasing cAMP production. The role of GPR37L1, expressed in specific cell types in organs other than the kidney, remains to be determined.
Collapse
Affiliation(s)
- Xiaoxu Zheng
- Department of Medicine, The George Washington University , Washington, District of Columbia
| | - Laureano D Asico
- Department of Medicine, The George Washington University , Washington, District of Columbia
| | - Xiaobo Ma
- Department of Medicine, The George Washington University , Washington, District of Columbia
| | - Prasad R Konkalmatt
- Department of Medicine, The George Washington University , Washington, District of Columbia
| |
Collapse
|
8
|
Huang B, Zhang W, Wei L, Chen S, Wang T, Fu R. Resveratrol down-regulates endothelin type B receptors in vascular smooth muscle cells via Sirt1/ERK1/2/NF-кB signaling pathways. Eur J Pharmacol 2018; 840:44-49. [DOI: 10.1016/j.ejphar.2018.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
|
9
|
A historical perspective on the role of sensory nerves in neurogenic inflammation. Semin Immunopathol 2018; 40:229-236. [PMID: 29616309 PMCID: PMC5960476 DOI: 10.1007/s00281-018-0673-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/06/2018] [Indexed: 01/25/2023]
Abstract
The term ‘neurogenic inflammation’ is commonly used, especially with respect to the role of sensory nerves within inflammatory disease. However, despite over a century of research, we remain unclear about the role of these nerves in the vascular biology of inflammation, as compared with their interacting role in pain processing and of their potential for therapeutic manipulation. This chapter attempts to discuss the progress in understanding, from the initial discovery of sensory nerves until the present day. This covers pioneering findings that these nerves exist, are involved in vascular events and act as important sensors of environmental changes, including injury and infection. This is followed by discovery of the contents they release such as the established vasoactive neuropeptides substance P and CGRP as well as anti-inflammatory peptides such as the opioids and somatostatin. The more recent emergence of the importance of the transient receptor potential (TRP) channels has revealed some of the mechanisms by which these nerves sense environmental stimuli. This knowledge enables a platform from which to learn of the potential role of neurogenic inflammation in disease and in turn of novel therapeutic targets.
Collapse
|
10
|
Jia H, Cheng J, Zhou Q, Peng J, Pan Y, Han H. Fibroblast growth factor 21 attenuates inflammation and oxidative stress in atherosclerotic rat via enhancing the Nrf1-ARE signaling pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:1308-1317. [PMID: 31938226 PMCID: PMC6958096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/23/2018] [Indexed: 06/10/2023]
Abstract
Inflammation and oxidative stress are associated with atherosclerotic progression. Fibroblast growth factor 21 (FGF21), a regulator of energy metabolism, has been reported to suppress the pathogenesis of atherosclerosis. However, the mechanism of anti-atherosclerotic effects of FGF21 remains unclear and needs to be further investigated. Transcription factor NF-E2-related 2 (Nrf2), a sensitive regulator of oxidative stress, is also associated with atherosclerotic progression. In this study, we investigated whether up-regulation of FGF21 affected inflammation and oxidative stress in atherosclerotic rats and whether the Nrf2-signaling pathway was involved in FGF21-mediated effects. Pathological changes were detected in arterial tissues of rats, and the expression of inflammatory and oxidative stress indicators, vascular endothelial markers, and Nrf2-signaling related protein were measured in the serum or/and arterial tissues of rats. As a result, expression of FGF21 and Nrf2-ARE signaling related proteins were markedly suppressed in arterial tissues of model rats. Thickness of endarteria and infiltrating cells obviously increased in atherosclerotic rats, whereas the increase of FGF21 expression could decrease thickness of endarteria. Moreover, the levels of ET-1, MDA, MCP-1, ICAM-1 and VCAM-1 were significantly higher in model rats than that in normal rats, whereas the levels of NO, GSH and T-AOC were significantly lower. Compared with model rats, up-regulation of FGF21 could increase the expression of Nrf2-ARE signaling related proteins and the level of anti-oxidative indicators, decrease the levels of endothelial dysfunction, and reduce inflammatory indicators. Down-regulation of FGF21 could reverse these actions. Therefore FGF21 reduces inflammation and oxidative stress in atherosclerotic rats via Nrf2-ARE signaling pathway.
Collapse
Affiliation(s)
- Haizhen Jia
- Department of Cardiology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology Wuhan, Hubei, China
| | - Jing Cheng
- Department of Cardiology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology Wuhan, Hubei, China
| | - Qi Zhou
- Department of Cardiology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology Wuhan, Hubei, China
| | - Jun Peng
- Department of Cardiology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology Wuhan, Hubei, China
| | - Yunhong Pan
- Department of Cardiology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology Wuhan, Hubei, China
| | - Hongyan Han
- Department of Cardiology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology Wuhan, Hubei, China
| |
Collapse
|
11
|
The clinical significance of endocardial endothelial dysfunction. Medicina (B Aires) 2017; 53:295-302. [DOI: 10.1016/j.medici.2017.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/07/2017] [Accepted: 08/29/2017] [Indexed: 01/02/2023] Open
|
12
|
Leurgans TM, Bloksgaard M, Irmukhamedov A, Riber LP, De Mey JGR. Relaxing Responses to Hydrogen Peroxide and Nitric Oxide in Human Pericardial Resistance Arteries Stimulated with Endothelin-1. Basic Clin Pharmacol Toxicol 2017; 122:74-81. [PMID: 28686356 DOI: 10.1111/bcpt.12843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/04/2017] [Indexed: 12/13/2022]
Abstract
In human pericardial resistance arteries, effects of the endothelium-dependent vasodilator bradykinin are mediated by NO during contraction induced by K+ or the TxA2 analogue U46619 and by H2 O2 during contraction by endothelin-1 (ET-1), respectively. We tested the hypotheses that ET-1 reduces relaxing effects of NO and increases those of H2 O2 in resistance artery smooth muscle of patients with cardiovascular disease. Arterial segments, dissected from the parietal pericardium of 39 cardiothoracic surgery patients, were studied by myography during amplitude-matched contractions induced by K+ , the TXA2 analogue U46619 or ET-1. Effects of the NO donor Na-nitroprusside (SNP) and of exogenous H2 O2 were recorded in the absence and presence of inhibitors of cyclooxygenases, NO synthases and small and intermediate conductance calcium-activated K+ channels. During contractions induced by either of the three stimuli, the potency of SNP did not differ and was not modified by the inhibitors. In vessels contracted with ET-1, the potency of H2 O2 was on average and in terms of interindividual variability considerably larger than in K+ -contracted vessels. Both differences were not statistically significant in the presence of inhibitors of mechanisms of endothelium-dependent vasodilatation. In resistance arteries from patients with cardiovascular disease, ET-1 does not selectively modify smooth muscle relaxing responses to NO or H2 O2 . Furthermore, the candidate endothelium-derived relaxing factor H2 O2 also acts as an endothelium-dependent vasodilator.
Collapse
Affiliation(s)
- Thomas M Leurgans
- Department of Cardiovascular and Renal Research, Centre for Individualized Medicine in Arterial Diseases (CIMA), Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Maria Bloksgaard
- Department of Cardiovascular and Renal Research, Centre for Individualized Medicine in Arterial Diseases (CIMA), Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Akhmadjon Irmukhamedov
- Department of Cardiac, Thoracic and Vascular Surgery, Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
| | - Lars P Riber
- Department of Cardiac, Thoracic and Vascular Surgery, Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
| | - Jo G R De Mey
- Department of Cardiovascular and Renal Research, Centre for Individualized Medicine in Arterial Diseases (CIMA), Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Cardiac, Thoracic and Vascular Surgery, Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
13
|
Chi GC, Fitzpatrick AL, Sharma M, Jenny NS, Lopez OL, DeKosky ST. Inflammatory Biomarkers Predict Domain-Specific Cognitive Decline in Older Adults. J Gerontol A Biol Sci Med Sci 2017; 72:796-803. [PMID: 27522059 PMCID: PMC5861845 DOI: 10.1093/gerona/glw155] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 07/18/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Vascular risk factors, including inflammation, may contribute to dementia development. We investigated the associations between peripheral inflammatory biomarkers and cognitive decline in five domains (memory, construction, language, psychomotor speed, and executive function). METHODS Community-dwelling older adults from the Ginkgo Evaluation of Memory Study (n = 1,159, aged 75 or older) free of dementia at baseline were included and followed for up to 7 years. Ten biomarkers were measured at baseline representing different sources of inflammation: vascular inflammation (pentraxin 3 and serum amyloid P), endothelial function (endothelin-1), metabolic function (adiponectin, resistin, and plasminogen activating inhibitor-1), oxidative stress (receptor for advanced glycation end products), and general inflammation (interleukin-6, interleukin-2, and interleukin-10). A combined z-score was created from these biomarkers to represent total inflammation across these sources. We utilized generalized estimating equations that included an interaction term between z-scores and time to assess effect of inflammation on cognitive decline, adjusting for demographics (such as age, race/ethnicity, and sex), cardiovascular risk factors, and apolipoprotein E ε4 carrier status. A Bonferroni-adjusted significance level of .01 was used. We explored associations between individual biomarkers and cognitive decline without adjustment for multiplicity. RESULTS The combined inflammation z-score was significantly associated with memory and psychomotor speed (p < .01). Pentraxin 3, serum amyloid P, endothelin-1, and interleukin-2 were associated with change in at least one cognitive domain (p < .05). CONCLUSION Our results suggest that total inflammation is associated with memory and psychomotor speed. In particular, systemic inflammation, vascular inflammation, and altered endothelial function may play roles in domain-specific cognitive decline of nondemented individuals.
Collapse
Affiliation(s)
- Gloria C Chi
- Department of Epidemiology, University of Washington School of Public Health, Seattle
| | - Annette L Fitzpatrick
- Department of Epidemiology, University of Washington School of Public Health, Seattle
- Department of Family Medicine, University of Washington School of Medicine, Seattle
- Department of Global Health, University of Washington School of Public Health, Seattle
| | - Monisha Sharma
- Department of Epidemiology, University of Washington School of Public Health, Seattle
| | - Nancy S Jenny
- Department of Pathology and Laboratory Medicine, University of Vermont School of Medicine, Burlington
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh School of Medicine, Pennsylvania
| | - Steven T DeKosky
- McKnight Brain Institute and Department of Neurology, University of Florida College of Medicine, Gainesville
| |
Collapse
|
14
|
Archer CR, Robinson EL, Drawnel FM, Roderick HL. Endothelin-1 promotes hypertrophic remodelling of cardiac myocytes by activating sustained signalling and transcription downstream of endothelin type A receptors. Cell Signal 2017; 36:240-254. [PMID: 28412414 PMCID: PMC5486433 DOI: 10.1016/j.cellsig.2017.04.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/21/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023]
Abstract
G-protein coupled receptor (GPCR) mediated activation of the MAPK signalling cascade is a key pathway in the induction of hypertrophic remodelling of the heart – a response to pathological cues including hypertension and myocardial infarction. While levels of pro-hypertrophic hormone agonists of GPCRs increase during periods of greater workload to enhance cardiac output, hypertrophy does not necessarily result. Here we investigated the relationship between the duration of exposure to the pro-hypertrophic GPCR agonist endothelin-1 (ET-1) and the induction of hypertrophic remodelling in neonatal rat ventricular myocytes (NRVM) and in the adult rat heart in vivo. Notably, a 15 min pulse of ET-1 was sufficient to induce markers of hypertrophy that were present when measured at 24 h in vivo and 48 h in vitro. The persistence of ET-1 action was insensitive to ET type A receptor (ETA receptor) antagonism with BQ123. The extended effects of ET-1 were dependent upon sustained MAPK signalling and involved persistent transcription. Inhibitors of endocytosis however conferred sensitivity upon the hypertrophic response to BQ123, suggesting that endocytosis of ETA receptors following ligand binding preserves their active state by protection against antagonist. Contrastingly, α1 adrenergic-induced hypertrophic responses required the continued presence of agonist and were sensitive to antagonist. These studies shed new light on strategies to pharmacologically intervene in the action of different pro-hypertrophic mediators. Acute ET-1 exposure elicits a long-lasting cardiac myocyte hypertrophic response. ET-1 effects depend on persistent MAPK signalling and active transcription. ET-1 elicited hypertrophy is insensitive to subsequent ETA receptor antagonism. Endocytosis inhibition potentiates ET-1-induction of hypertrophy markers. Endocytosis inhibition sensitises effects of ET-1 to ETA receptor antagonist.
Collapse
Affiliation(s)
| | - Emma L Robinson
- Laboratory of Experimental Cardiology, Dept. of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, Herestraat 49, B-3000, Leuven, Belgium
| | - Faye M Drawnel
- The Babraham Institute, Babraham, Cambridge, CB22 3AT, UK
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Dept. of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, Herestraat 49, B-3000, Leuven, Belgium.
| |
Collapse
|
15
|
Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf) 2017; 219:22-96. [PMID: 26706498 DOI: 10.1111/apha.12646] [Citation(s) in RCA: 629] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
The endothelium can evoke relaxations of the underlying vascular smooth muscle, by releasing vasodilator substances. The best-characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO) which activates soluble guanylyl cyclase in the vascular smooth muscle cells, with the production of cyclic guanosine monophosphate (cGMP) initiating relaxation. The endothelial cells also evoke hyperpolarization of the cell membrane of vascular smooth muscle (endothelium-dependent hyperpolarizations, EDH-mediated responses). As regards the latter, hydrogen peroxide (H2 O2 ) now appears to play a dominant role. Endothelium-dependent relaxations involve both pertussis toxin-sensitive Gi (e.g. responses to α2 -adrenergic agonists, serotonin, and thrombin) and pertussis toxin-insensitive Gq (e.g. adenosine diphosphate and bradykinin) coupling proteins. New stimulators (e.g. insulin, adiponectin) of the release of EDRFs have emerged. In recent years, evidence has also accumulated, confirming that the release of NO by the endothelial cell can chronically be upregulated (e.g. by oestrogens, exercise and dietary factors) and downregulated (e.g. oxidative stress, smoking, pollution and oxidized low-density lipoproteins) and that it is reduced with ageing and in the course of vascular disease (e.g. diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis toxin-sensitive pathway for NO release which favours vasospasm, thrombosis, penetration of macrophages, cellular growth and the inflammatory reaction leading to atherosclerosis. In addition to the release of NO (and EDH, in particular those due to H2 O2 ), endothelial cells also can evoke contraction of the underlying vascular smooth muscle cells by releasing endothelium-derived contracting factors. Recent evidence confirms that most endothelium-dependent acute increases in contractile force are due to the formation of vasoconstrictor prostanoids (endoperoxides and prostacyclin) which activate TP receptors of the vascular smooth muscle cells and that prostacyclin plays a key role in such responses. Endothelium-dependent contractions are exacerbated when the production of nitric oxide is impaired (e.g. by oxidative stress, ageing, spontaneous hypertension and diabetes). They contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive and diabetic patients. In addition, recent data confirm that the release of endothelin-1 can contribute to endothelial dysfunction and that the peptide appears to be an important contributor to vascular dysfunction. Finally, it has become clear that nitric oxide itself, under certain conditions (e.g. hypoxia), can cause biased activation of soluble guanylyl cyclase leading to the production of cyclic inosine monophosphate (cIMP) rather than cGMP and hence causes contraction rather than relaxation of the underlying vascular smooth muscle.
Collapse
Affiliation(s)
- P. M. Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| | - H. Shimokawa
- Department of Cardiovascular Medicine; Tohoku University; Sendai Japan
| | - M. Feletou
- Department of Cardiovascular Research; Institut de Recherches Servier; Suresnes France
| | - E. H. C. Tang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| |
Collapse
|
16
|
Miller E, Czopek A, Duthie KM, Kirkby NS, van de Putte EEF, Christen S, Kimmitt RA, Moorhouse R, Castellan RFP, Kotelevtsev YV, Kuc RE, Davenport AP, Dhaun N, Webb DJ, Hadoke PWF. Smooth Muscle Endothelin B Receptors Regulate Blood Pressure but Not Vascular Function or Neointimal Remodeling. Hypertension 2016; 69:275-285. [PMID: 28028193 PMCID: PMC5222555 DOI: 10.1161/hypertensionaha.115.07031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/02/2016] [Accepted: 11/30/2016] [Indexed: 01/06/2023]
Abstract
Supplemental Digital Content is available in the text. The role of smooth muscle endothelinB (ETB) receptors in regulating vascular function, blood pressure (BP), and neointimal remodeling has not been established. Selective knockout mice were generated to address the hypothesis that loss of smooth muscle ETB receptors would reduce BP, alter vascular contractility, and inhibit neointimal remodeling. ETB receptors were selectively deleted from smooth muscle by crossing floxed ETB mice with those expressing cre-recombinase controlled by the transgelin promoter. Functional consequences of ETB deletion were assessed using myography. BP was measured by telemetry, and neointimal lesion formation induced by femoral artery injury. Lesion size and composition (day 28) were analyzed using optical projection tomography, histology, and immunohistochemistry. Selective deletion of ETB was confirmed by genotyping, autoradiography, polymerase chain reaction, and immunohistochemistry. ETB-mediated contraction was reduced in trachea, but abolished from mesenteric veins, of knockout mice. Induction of ETB-mediated contraction in mesenteric arteries was also abolished in these mice. Femoral artery function was unaltered, and baseline BP modestly elevated in smooth muscle ETB knockout compared with controls (+4.2±0.2 mm Hg; P<0.0001), but salt-induced and ETB blockade–mediated hypertension were unaltered. Circulating endothelin-1 was not altered in knockout mice. ETB-mediated contraction was not induced in femoral arteries by incubation in culture medium or lesion formation, and lesion size was not altered in smooth muscle ETB knockout mice. In the absence of other pathology, ETB receptors in vascular smooth muscle make a small but significant contribution to ETB-dependent regulation of BP. These ETB receptors have no effect on vascular contraction or neointimal remodeling.
Collapse
Affiliation(s)
- Eileen Miller
- From the University/BHF Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (E.M., A.C., K.M.D., N.S.K., E.E.F.v.d.P., R.A.K., R.M., R.F.P.C., N.D., D.J.W., P.W.F.H.); University of Basel, Switzerland (S.C.); Centre for Functional Genomics, Skolkovo Institute of Science and Technology, Russian Federation (Y.V.K.); and Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Hospital, Cambridge, United Kingdom (R.E.K., A.P.D.)
| | - Alicja Czopek
- From the University/BHF Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (E.M., A.C., K.M.D., N.S.K., E.E.F.v.d.P., R.A.K., R.M., R.F.P.C., N.D., D.J.W., P.W.F.H.); University of Basel, Switzerland (S.C.); Centre for Functional Genomics, Skolkovo Institute of Science and Technology, Russian Federation (Y.V.K.); and Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Hospital, Cambridge, United Kingdom (R.E.K., A.P.D.)
| | - Karolina M Duthie
- From the University/BHF Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (E.M., A.C., K.M.D., N.S.K., E.E.F.v.d.P., R.A.K., R.M., R.F.P.C., N.D., D.J.W., P.W.F.H.); University of Basel, Switzerland (S.C.); Centre for Functional Genomics, Skolkovo Institute of Science and Technology, Russian Federation (Y.V.K.); and Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Hospital, Cambridge, United Kingdom (R.E.K., A.P.D.)
| | - Nicholas S Kirkby
- From the University/BHF Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (E.M., A.C., K.M.D., N.S.K., E.E.F.v.d.P., R.A.K., R.M., R.F.P.C., N.D., D.J.W., P.W.F.H.); University of Basel, Switzerland (S.C.); Centre for Functional Genomics, Skolkovo Institute of Science and Technology, Russian Federation (Y.V.K.); and Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Hospital, Cambridge, United Kingdom (R.E.K., A.P.D.)
| | - Elisabeth E Fransen van de Putte
- From the University/BHF Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (E.M., A.C., K.M.D., N.S.K., E.E.F.v.d.P., R.A.K., R.M., R.F.P.C., N.D., D.J.W., P.W.F.H.); University of Basel, Switzerland (S.C.); Centre for Functional Genomics, Skolkovo Institute of Science and Technology, Russian Federation (Y.V.K.); and Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Hospital, Cambridge, United Kingdom (R.E.K., A.P.D.)
| | - Sibylle Christen
- From the University/BHF Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (E.M., A.C., K.M.D., N.S.K., E.E.F.v.d.P., R.A.K., R.M., R.F.P.C., N.D., D.J.W., P.W.F.H.); University of Basel, Switzerland (S.C.); Centre for Functional Genomics, Skolkovo Institute of Science and Technology, Russian Federation (Y.V.K.); and Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Hospital, Cambridge, United Kingdom (R.E.K., A.P.D.)
| | - Robert A Kimmitt
- From the University/BHF Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (E.M., A.C., K.M.D., N.S.K., E.E.F.v.d.P., R.A.K., R.M., R.F.P.C., N.D., D.J.W., P.W.F.H.); University of Basel, Switzerland (S.C.); Centre for Functional Genomics, Skolkovo Institute of Science and Technology, Russian Federation (Y.V.K.); and Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Hospital, Cambridge, United Kingdom (R.E.K., A.P.D.)
| | - Rebecca Moorhouse
- From the University/BHF Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (E.M., A.C., K.M.D., N.S.K., E.E.F.v.d.P., R.A.K., R.M., R.F.P.C., N.D., D.J.W., P.W.F.H.); University of Basel, Switzerland (S.C.); Centre for Functional Genomics, Skolkovo Institute of Science and Technology, Russian Federation (Y.V.K.); and Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Hospital, Cambridge, United Kingdom (R.E.K., A.P.D.)
| | - Raphael F P Castellan
- From the University/BHF Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (E.M., A.C., K.M.D., N.S.K., E.E.F.v.d.P., R.A.K., R.M., R.F.P.C., N.D., D.J.W., P.W.F.H.); University of Basel, Switzerland (S.C.); Centre for Functional Genomics, Skolkovo Institute of Science and Technology, Russian Federation (Y.V.K.); and Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Hospital, Cambridge, United Kingdom (R.E.K., A.P.D.)
| | - Yuri V Kotelevtsev
- From the University/BHF Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (E.M., A.C., K.M.D., N.S.K., E.E.F.v.d.P., R.A.K., R.M., R.F.P.C., N.D., D.J.W., P.W.F.H.); University of Basel, Switzerland (S.C.); Centre for Functional Genomics, Skolkovo Institute of Science and Technology, Russian Federation (Y.V.K.); and Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Hospital, Cambridge, United Kingdom (R.E.K., A.P.D.)
| | - Rhoda E Kuc
- From the University/BHF Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (E.M., A.C., K.M.D., N.S.K., E.E.F.v.d.P., R.A.K., R.M., R.F.P.C., N.D., D.J.W., P.W.F.H.); University of Basel, Switzerland (S.C.); Centre for Functional Genomics, Skolkovo Institute of Science and Technology, Russian Federation (Y.V.K.); and Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Hospital, Cambridge, United Kingdom (R.E.K., A.P.D.)
| | - Anthony P Davenport
- From the University/BHF Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (E.M., A.C., K.M.D., N.S.K., E.E.F.v.d.P., R.A.K., R.M., R.F.P.C., N.D., D.J.W., P.W.F.H.); University of Basel, Switzerland (S.C.); Centre for Functional Genomics, Skolkovo Institute of Science and Technology, Russian Federation (Y.V.K.); and Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Hospital, Cambridge, United Kingdom (R.E.K., A.P.D.)
| | - Neeraj Dhaun
- From the University/BHF Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (E.M., A.C., K.M.D., N.S.K., E.E.F.v.d.P., R.A.K., R.M., R.F.P.C., N.D., D.J.W., P.W.F.H.); University of Basel, Switzerland (S.C.); Centre for Functional Genomics, Skolkovo Institute of Science and Technology, Russian Federation (Y.V.K.); and Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Hospital, Cambridge, United Kingdom (R.E.K., A.P.D.)
| | - David J Webb
- From the University/BHF Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (E.M., A.C., K.M.D., N.S.K., E.E.F.v.d.P., R.A.K., R.M., R.F.P.C., N.D., D.J.W., P.W.F.H.); University of Basel, Switzerland (S.C.); Centre for Functional Genomics, Skolkovo Institute of Science and Technology, Russian Federation (Y.V.K.); and Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Hospital, Cambridge, United Kingdom (R.E.K., A.P.D.)
| | - Patrick W F Hadoke
- From the University/BHF Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (E.M., A.C., K.M.D., N.S.K., E.E.F.v.d.P., R.A.K., R.M., R.F.P.C., N.D., D.J.W., P.W.F.H.); University of Basel, Switzerland (S.C.); Centre for Functional Genomics, Skolkovo Institute of Science and Technology, Russian Federation (Y.V.K.); and Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Hospital, Cambridge, United Kingdom (R.E.K., A.P.D.).
| |
Collapse
|
17
|
Moore N, Hamza N, Berke B, Umar A. News from Tartary: an ethnopharmacological approach to drug and therapeutic discovery. Br J Clin Pharmacol 2016; 83:33-37. [PMID: 27297624 DOI: 10.1111/bcp.13042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 12/20/2022] Open
Abstract
Ethnopharmacology aims to identify new therapeutic agents based on their traditional use. It begins by the identification of disease states, and of the traditional therapies for these, most commonly herbals. Herbals of interest are selected from ethnopharmacological surveys, and tested on experimental models of the diseases of interest. Once the activity of the traditional remedy is demonstrated, including dose-dependence, if possible comparatively to reference medications, the active ingredients can be explored, if possible using bioguided extraction. Identified molecules can then be further developed as medicinal products or pharmaceutical medicines (e.g., artemisine), or the herbal product can be developed as such (e.g. St John's wort). We provide examples of various study programmes, concerning the antiplatelet and antithrombotic effects of Armagnac extracts from Southwest France; antithrombotic and antihypertensive effects of extracts of Ocimum basilicum L; antithrombotic, antihypertensive and antihyperlipidemic effects of Cydonia oblonga; Antiproliferative and antithrombotic effects of Abnorma Savda Munziq of traditional Uyghur medicine; and the antidiabetic and hepatoprotective effects of Centaurium erythraea Rafn, Artemisia herba-alba Asso and Trigonella foenum-graecum L., all in collaboration between University of Bordeaux, France, Xinjiang Medical University in Urumqi, China and University Mentouri in Constantine, Algeria.
Collapse
Affiliation(s)
- Nicholas Moore
- Department of Pharmacology, University of Bordeaux, 33076, Bordeaux, France.,Department of Pharmacology, Xinjiang Medical University, Urumqi, 830011, China
| | - Nawel Hamza
- Département de Nutrition, INATAA, Université Mentouri, Constantine, Algerie
| | - Benedicte Berke
- Department of Pharmacology, University of Bordeaux, 33076, Bordeaux, France.,Department of Pharmacology, Xinjiang Medical University, Urumqi, 830011, China
| | - Anwar Umar
- Department of Pharmacology, University of Bordeaux, 33076, Bordeaux, France.,Department of Pharmacology, Xinjiang Medical University, Urumqi, 830011, China
| |
Collapse
|
18
|
Chang F, Flavahan S, Flavahan NA. Immature endothelial cells initiate endothelin-mediated constriction of newborn arteries. J Physiol 2016; 594:4933-44. [PMID: 27062279 DOI: 10.1113/jp272176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/29/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Endothelial expression and the release of endothelin-1 (ET-1) in levels sufficient to initiate vasoconstriction is considered to be a hallmark feature of pathological endothelial dysfunction. During the immediate postnatal period, arterial endothelial cells undergo remarkable structural and functional changes as they transition to a mature protective cell layer, which includes a marked increase in NO dilator activity. The present study demonstrates that endothelial cells lining newborn central arteries express high levels of ET-1 peptides and, in response to endothelial stimulation, rapidly release ET-1 and initiate powerful ET-1-mediated constriction. This activity is lost as the endothelium matures in the postnatal period. Heightened activity of ET-1 in the neonatal endothelium might contribute to inappropriate responses of immature arteries to stress or injury. Indeed, the immature endothelium resembles dysfunctional endothelial cells, and retention or re-emergence of this phenotype may contribute to the development of vascular disease. ABSTRACT Endothelial cells lining fetal and newborn arteries have an unusual phenotype, including reduced NO activity, prominent actin stress fibres and poorly developed cellular junctions. Experiments were performed to determine whether the immature endothelium of newborn arteries also expresses and releases endothelin-1 (ET-1) and initiates endothelium-dependent constriction. Carotid arteries were isolated from newborn (postnatal day 1; P1), postnatal day 7 (P7) and postnatal day 21 (P21) mice and assessed in a pressure myograph system. Endothelial stimulation with A23187 or thrombin caused constriction in P1 arteries, no significant change in diameter of P7 arteries, and dilatation in P21 arteries. In P1 arteries, constriction to thrombin or A23187 was inhibited by endothelial-denudation, by ET-1 receptor antagonists (BQ123 plus BQ788) or by inhibition of endothelin-converting enzyme (phosphoramidon or SM19712). ET-1 receptor antagonism did not affect responses to thrombin or A23187 in more mature arteries. Exogenous ET-1 caused similar concentration-dependent constrictions of P1, P7 and P21 arteries. Endothelial stimulation with thrombin rapidly increased the endothelial release of ET-1 from P1 but not P21 aortas. Endothelial expression of ET-1 peptides, as assessed by immunofluorescence analysis, was increased in P1 compared to P21 arteries. Therefore, newborn endothelial cells express high levels of ET-1 peptides, rapidly release ET-1 in response to endothelial stimulation, and initiate ET-1-mediated endothelium-dependent constriction. This activity is diminished as the endothelium matures in the immediate postnatal period. Heightened activity of ET-1 in neonatal endothelium probably reflects an early developmental role of the peptide, although this might contribute to inappropriate responses of immature arteries to stress or injury.
Collapse
Affiliation(s)
- Fumin Chang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Sheila Flavahan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nicholas A Flavahan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
19
|
Gao Y, Yang J, Wang S. Effects of telemetry implantation surgery on blood pressure and its underlying mechanism. Clin Exp Hypertens 2016; 38:359-64. [PMID: 27149395 DOI: 10.3109/10641963.2015.1116545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ying Gao
- Graduate College of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jian Yang
- Rehabilitation Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shu Wang
- Critical Research Room of Encephalopathy Acupunctural Therapy, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
20
|
Ratti F, Pulitanò C, Catena M, Paganelli M, Aldrighetti L. Serum levels of endothelin-1 after liver resection as an early predictor of postoperative liver failure. A prospective study. Hepatol Res 2016; 46:529-40. [PMID: 26331638 DOI: 10.1111/hepr.12585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/25/2015] [Accepted: 08/30/2015] [Indexed: 12/13/2022]
Abstract
AIM Besides the residual liver volume, damage of the microcirculation secondary to increased portal blood flow is a main determinant of postoperative liver failure (PLF). Endothelin-1 (ET-1), produced by sinusoidal endothelial cells, plays a key role in the regulation of hepatic microcirculation. The aim of this study was to determine whether ET-1 levels has any prognostic utility in predicting PLF. METHODS Patients undergoing liver resection for primary or secondary liver tumors at San Raffaele Hospital, Milan, were prospectively enrolled in the study. Serial postoperative serum ET-1 levels in patients undergoing liver resections were correlated with indices of inflammatory response, liver failure and death. RESULTS A total of 144 patients were included. ET-1 levels in patients who underwent major or extended liver resection were significantly higher than in patients who had a minor resection on postoperative day (POD) 1 (P = 0.003), POD 2 (P = 0.0001) and POD 5 (P = 0.0001). Eight patients developed PLF and ET-1 was significantly higher compared with patients without PLF on POD 2 (P = 0.002) and POD5 (P = 0.006). Serum ET-1 concentration on POD 2 was an independent predictor of PLF in multivariate analysis. CONCLUSION ET-1 is as an early index of PLF and provides a rationale for therapeutic manipulation, with many potential clinical implications to prevent PLF onset and reduce its severity.
Collapse
Affiliation(s)
- Francesca Ratti
- Hepatobiliary Surgery Division, IRCCS San Raffaele Hospital, Milan, Italy
| | - Carlo Pulitanò
- Hepatobiliary Surgery Division, IRCCS San Raffaele Hospital, Milan, Italy
| | - Marco Catena
- Hepatobiliary Surgery Division, IRCCS San Raffaele Hospital, Milan, Italy
| | - Michele Paganelli
- Hepatobiliary Surgery Division, IRCCS San Raffaele Hospital, Milan, Italy
| | - Luca Aldrighetti
- Hepatobiliary Surgery Division, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
21
|
Leurgans TM, Bloksgaard M, Brewer JR, Bagatolli LA, Fredgart MH, Rosenstand K, Hansen ML, Rasmussen LM, Irmukhamedov A, De Mey JG. Endothelin-1 shifts the mediator of bradykinin-induced relaxation from NO to H2 O2 in resistance arteries from patients with cardiovascular disease. Br J Pharmacol 2016; 173:1653-64. [PMID: 26914408 DOI: 10.1111/bph.13467] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 02/04/2016] [Accepted: 02/14/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE We tested the hypothesis that in resistance arteries from cardiovascular disease (CVD) patients, effects of an endothelium-dependent vasodilator depend on the contractile stimulus. EXPERIMENTAL APPROACH Arteries dissected from parietal pericardium of cardiothoracic surgery patients were studied by myography and imaging techniques. Segments were sub-maximally contracted by K(+) , the TxA2 analogue U46619 or endothelin-1 (ET-1). KEY RESULTS Relaxing effects of Na-nitroprusside were comparable, but those of bradykinin (BK) were bigger in the presence of ET-1 compared with K(+) or U46619. BK-induced relaxation was (i) abolished by L-NAME in K(+) -contracted arteries, (ii) partly inhibited by L-NAME in the presence of U46619 and (iii) not altered by indomethacin, L-NAME plus inhibitors of small and intermediate conductance calcium-activated K(+) channels, but attenuated by catalase, in ET-1-contracted arteries. This catalase-sensitive relaxation was unaffected by inhibitors of NADPH oxidases or allopurinol. Exogenous H2 O2 caused a larger relaxation of ET-1-induced contractions than those evoked by K(+) or U46619 in the presence of inhibitors of other endothelium-derived relaxing factors. Catalase-sensitive staining of cellular ROS with CellROX Deep Red was significantly increased in the presence of both 1 μM BK and 2 nM ET-1 but not either peptide alone. CONCLUSIONS AND IMPLICATIONS In resistance arteries from patients with CVD, exogenous ET-1 shifts the mediator of relaxing responses to the endothelium-dependent vasodilator BK from NO to H2 O2 and neither NADPH oxidases, xanthine oxidase nor NOS appear to be involved in this effect. This might have consequences for endothelial dysfunction in conditions where intra-arterial levels of ET-1 are enhanced.
Collapse
Affiliation(s)
- Thomas M Leurgans
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Maria Bloksgaard
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jonathan R Brewer
- Department of Biochemistry and Molecular Biology, MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Luis A Bagatolli
- Department of Biochemistry and Molecular Biology, MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Maise H Fredgart
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Kristoffer Rosenstand
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Maria L Hansen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Lars M Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.,Center for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
| | - Akhmadjon Irmukhamedov
- Center for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark.,Department of Cardiac, Thoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Jo Gr De Mey
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Center for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark.,Department of Cardiac, Thoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| |
Collapse
|
22
|
Culshaw GJ, MacIntyre IM, Dhaun N, Webb DJ. Endothelin in nondiabetic chronic kidney disease: preclinical and clinical studies. Semin Nephrol 2016; 35:176-87. [PMID: 25966349 DOI: 10.1016/j.semnephrol.2015.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The incidence and prevalence of chronic kidney disease (CKD) is increasing. Despite current therapies, many patients with CKD have suboptimal blood pressure, ongoing proteinuria, and develop progressive renal dysfunction. Further therapeutic options therefore are required. Over the past 20 years the endothelin (ET) system has become a prime target. Experimental models have shown that ET-1, acting primarily via the endothelin-A receptor, plays an important role in the development of proteinuria, glomerular injury, fibrosis, and inflammation. Subsequent animal and early clinical studies using ET-receptor antagonists have suggested that theses therapies may slow renal disease progression primarily through blood pressure and proteinuria reduction. This review examines the current literature regarding the ET system in nondiabetic CKD.
Collapse
Affiliation(s)
- Geoff J Culshaw
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK.
| | - Iain M MacIntyre
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Neeraj Dhaun
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - David J Webb
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| |
Collapse
|
23
|
Robles JC, Heaps CL. Adaptations of the endothelin system after exercise training in a porcine model of ischemic heart disease. Microcirculation 2015; 22:68-78. [PMID: 25220869 DOI: 10.1111/micc.12174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/09/2014] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To the test the hypothesis that exercise training would increase endothelin-mediated vasoconstriction in collateral-dependent arteries via enhanced contribution of ET(A). METHODS An ameroid constrictor was surgically placed around the proximal LCX artery to induce gradual occlusion in Yucatan miniature swine. Eight weeks postoperatively, pigs were randomized into sedentary or exercise-training (treadmill; 5 days/week; 14 weeks) groups. Subsequently, arteries (~150 μm diameter) were isolated from collateral-dependent and nonoccluded myocardial regions and studied. RESULTS Following exercise training, ET-1-mediated contraction was significantly enhanced in collateral-dependent arteries. Exercise training induced a disproportionate increase in the ET(A) contribution to the ET-1 contractile response in collateral-dependent arteries, with negligible contributions by ET(B). In collateral-dependent arteries of sedentary pigs, inhibition of ET(A) or ET(B) did not significantly alter ET-1 contractile responses in collateral-dependent arteries, suggesting compensation by the functionally active receptor. These adaptations occurred without significant changes in ET(A), ET(B), or ECE mRNA levels but with significant exercise-training-induced elevations in endothelin levels in both nonoccluded and collateral-dependent myocardial regions. CONCLUSIONS Taken together, these data reveal differential adaptive responses in collateral-dependent arteries based upon physical activity level. ET(A) and ET(B) appear to compensate for one another to maintain contraction in sedentary pigs, whereas exercise-training favors enhanced contribution of ET(A).
Collapse
Affiliation(s)
- Juan Carlos Robles
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
24
|
Przybycien-Szymanska MM, Ashley WW. Biomarker Discovery in Cerebral Vasospasm after Aneurysmal Subarachnoid Hemorrhage. J Stroke Cerebrovasc Dis 2015; 24:1453-64. [DOI: 10.1016/j.jstrokecerebrovasdis.2015.03.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/06/2015] [Accepted: 03/08/2015] [Indexed: 12/19/2022] Open
|
25
|
Paulis L, Rajkovicova R, Simko F. New developments in the pharmacological treatment of hypertension: dead-end or a glimmer at the horizon? Curr Hypertens Rep 2015; 17:557. [PMID: 25893478 PMCID: PMC4412646 DOI: 10.1007/s11906-015-0557-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Arterial hypertension is the most prevalent controllable disease world-wide. Yet, we still need to further improve blood pressure control, deal with resistant hypertension, and we hope to reduce risk "beyond blood pressure." The number of candidate molecules aspiring for these aims is constantly declining. The new possible approaches to combat high blood pressure include neprilysin/neutral endopeptidase (NEP) inhibition, particularly when combined with an angiotensin receptor blockade (such as the ARNI, LCZ696), phosphodiesterase 5 (PDE5) inhibition (KD027/Slx-2101), natriuretic agents (PL3994), or a long-lasting vasointestinal peptide (VIP) analogue (PB1046). Other options exploit the protective arm of the renin-angiotensin-aldosterone system by stimulating the angiotensin AT2 receptor (compound 21), the Mas receptor (AVE-0991), or the angiotensin converting enzyme 2. Finally, we review the possibilities how to optimize the use of the available treatment options by using drug combinations or by tailoring therapy to each patient's angiotensin peptide profile.
Collapse
Affiliation(s)
- Ludovit Paulis
- />Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovak Republic
- />Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 81371 Bratislava, Slovak Republic
| | - Romana Rajkovicova
- />Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovak Republic
| | - Fedor Simko
- />Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovak Republic
- />Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlárska 3, 83306 Bratislava, Slovak Republic
| |
Collapse
|
26
|
Hallberg M. Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors. Med Res Rev 2015; 35:464-519. [PMID: 24894913 DOI: 10.1002/med.21323] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The proteolytic processing of neuropeptides has an important regulatory function and the peptide fragments resulting from the enzymatic degradation often exert essential physiological roles. The proteolytic processing generates, not only biologically inactive fragments, but also bioactive fragments that modulate or even counteract the response of their parent peptides. Frequently, these peptide fragments interact with receptors that are not recognized by the parent peptides. This review discusses tachykinins, opioid peptides, angiotensins, bradykinins, and neuropeptide Y that are present in the central nervous system and their processing to bioactive degradation products. These well-known neuropeptide systems have been selected since they provide illustrative examples that proteolytic degradation of parent peptides can lead to bioactive metabolites with different biological activities as compared to their parent peptides. For example, substance P, dynorphin A, angiotensin I and II, bradykinin, and neuropeptide Y are all degraded to bioactive fragments with pharmacological profiles that differ considerably from those of the parent peptides. The review discusses a selection of the large number of drug-like molecules that act as agonists or antagonists at receptors of neuropeptides. It focuses in particular on the efforts to identify selective drug-like agonists and antagonists mimicking the effects of the endogenous peptide fragments formed. As exemplified in this review, many common neuropeptides are degraded to a variety of smaller fragments but many of the fragments generated have not yet been examined in detail with regard to their potential biological activities. Since these bioactive fragments contain a small number of amino acid residues, they provide an ideal starting point for the development of drug-like substances with ability to mimic the effects of the degradation products. Thus, these substances could provide a rich source of new pharmaceuticals. However, as discussed herein relatively few examples have so far been disclosed of successful attempts to create bioavailable, drug-like agonists or antagonists, starting from the structure of endogenous peptide fragments and applying procedures relying on stepwise manipulations and simplifications of the peptide structures.
Collapse
Affiliation(s)
- Mathias Hallberg
- Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, Biomedical Center, Uppsala, Sweden
| |
Collapse
|
27
|
Duthie KM, Hadoke PWF, Kirkby NS, Miller E, Ivy JR, McShane JF, Lim WG, Webb DJ. Selective endothelin A receptor antagonism with sitaxentan reduces neointimal lesion size in a mouse model of intraluminal injury. Br J Pharmacol 2015; 172:2827-37. [PMID: 25598351 DOI: 10.1111/bph.13086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/08/2014] [Accepted: 01/03/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Endothelin (ET) receptor antagonism reduces neointimal lesion formation in animal models. This investigation addressed the hypothesis that the selective ETA receptor antagonist sitaxentan would be more effective than mixed ETA / B receptor antagonism at inhibiting neointimal proliferation in a mouse model of intraluminal injury. EXPERIMENTAL APPROACH Antagonism of ETA receptors by sitaxentan (1-100 nM) was assessed in femoral arteries isolated from adult, male C57Bl6 mice using isometric wire myography. Neointimal lesion development was induced by intraluminal injury in mice receiving sitaxentan (ETA antagonist; 15 mg·kg(-1) ·day(-1) ), A192621 (ETB antagonist; 30 mg·kg(-1) ·day(-1) ), the combination of both antagonists or vehicle. Treatment began 1 week before, and continued for 28 days after, surgery. Femoral arteries were then harvested for analysis of lesion size and composition. KEY RESULTS Sitaxentan produced a selective, concentration-dependent parallel rightward shift of ET-1-mediated contraction in isolated femoral arteries. Sitaxentan reduced neointimal lesion size, whereas ETB and combined ETA / B receptor antagonism did not. Macrophage and α-smooth muscle actin content were unaltered by ET receptor antagonism but sitaxentan reduced the amount of collagen in lesions. CONCLUSIONS AND IMPLICATIONS These results suggest that ETA receptor antagonism would be more effective than combined ETA /ETB receptor antagonism at reducing neointimal lesion formation.
Collapse
Affiliation(s)
- Karolina M Duthie
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Patrick W F Hadoke
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Nicholas S Kirkby
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Eileen Miller
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Jessica R Ivy
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - John F McShane
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Win Gel Lim
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - David J Webb
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
28
|
Sonawane KD, Barage SH. Structural analysis of membrane-bound hECE-1 dimer using molecular modeling techniques: insights into conformational changes and Aβ1–42 peptide binding. Amino Acids 2014; 47:543-59. [DOI: 10.1007/s00726-014-1887-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022]
|
29
|
Kholdani CA, Fares WH, Trow TK. Macitentan for the treatment of pulmonary arterial hypertension. Vasc Health Risk Manag 2014; 10:665-73. [PMID: 25473292 PMCID: PMC4251661 DOI: 10.2147/vhrm.s33904] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Macitentan is the most recently approved dual endothelin-receptor antagonist (ERA) for the treatment of symptomatic pulmonary arterial hypertension. Compared to other available ERAs, it demonstrates superior receptor-binding properties, with consequently improved tissue penetration, and a longer duration of action allowing for once-daily dosing. It has a favorable adverse-effect profile, with notably no demonstrable increase in the risk of hepatotoxicity or peripheral edema, but like other ERAs, it is potentially limited by significant anemia. Phase I data have demonstrated a favorable drug-drug interaction profile and no need for dose adjustment with hepatic and renal impairment. In the pivotal SERAPHIN study, treatment of symptomatic pulmonary arterial hypertension patients with macitentan led to statistically significant improvements in functional class, exercise tolerance, and hemodynamic parameters, in addition to a reduction in morbidity in an event-driven long-term trial.
Collapse
Affiliation(s)
- Cyrus A Kholdani
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Wassim H Fares
- Yale Pulmonary Vascular Disease Program, Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Terence K Trow
- Yale Pulmonary Vascular Disease Program, Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
30
|
Maguire JJ, Davenport AP. Endothelin@25 - new agonists, antagonists, inhibitors and emerging research frontiers: IUPHAR Review 12. Br J Pharmacol 2014; 171:5555-72. [PMID: 25131455 PMCID: PMC4290702 DOI: 10.1111/bph.12874] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 12/16/2022] Open
Abstract
Since the discovery of endothelin (ET)-1 in 1988, the main components of the signalling pathway have become established, comprising three structurally similar endogenous 21-amino acid peptides, ET-1, ET-2 and ET-3, that activate two GPCRs, ETA and ETB . Our aim in this review is to highlight the recent progress in ET research. The ET-like domain peptide, corresponding to prepro-ET-193-166 , has been proposed to be co-synthesized and released with ET-1, to modulate the actions of the peptide. ET-1 remains the most potent vasoconstrictor in the human cardiovascular system with a particularly long-lasting action. To date, the major therapeutic strategy to block the unwanted actions of ET in disease, principally in pulmonary arterial hypertension, has been to use antagonists that are selective for the ETA receptor (ambrisentan) or that block both receptor subtypes (bosentan). Macitentan represents the next generation of antagonists, being more potent than bosentan, with longer receptor occupancy and it is converted to an active metabolite; properties contributing to greater pharmacodynamic and pharmacokinetic efficacy. A second strategy is now being more widely tested in clinical trials and uses combined inhibitors of ET-converting enzyme and neutral endopeptidase such as SLV306 (daglutril). A third strategy based on activating the ETB receptor, has led to the renaissance of the modified peptide agonist IRL1620 as a clinical candidate in delivering anti-tumour drugs and as a pharmacological tool to investigate experimental pathophysiological conditions. Finally, we discuss biased signalling, epigenetic regulation and targeting with monoclonal antibodies as prospective new areas for ET research.
Collapse
Affiliation(s)
- J J Maguire
- Clinical Pharmacology Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | | |
Collapse
|
31
|
Kim FY, Barnes EA, Ying L, Chen C, Lee L, Alvira CM, Cornfield DN. Pulmonary artery smooth muscle cell endothelin-1 expression modulates the pulmonary vascular response to chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 2014; 308:L368-77. [PMID: 25399435 DOI: 10.1152/ajplung.00253.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Endothelin-1 (ET-1) increases pulmonary vascular tone through direct effects on pulmonary artery smooth muscle cells (PASMC) via membrane-bound ET-1 receptors. Circulating ET-1 contributes to vascular remodeling by promoting SMC proliferation and migration and inhibiting SMC apoptosis. Although endothelial cells (EC) are the primary source of ET-1, whether ET-1 produced by SMC modulates pulmonary vascular tone is unknown. Using transgenic mice created by crossbreeding SM22α-Cre mice with ET-1(flox/flox) mice to selectively delete ET-1 in SMC, we tested the hypothesis that PASMC ET-1 gene expression modulates the pulmonary vascular response to hypoxia. ET-1 gene deletion and selective activity of SM22α promoter-driven Cre recombinase were confirmed. Functional assays were performed under normoxic (21% O2) or hypoxic (5% O2) conditions using murine PASMC obtained from ET-1(+/+) and ET-1(-/-) mic and in human PASMC (hPASMC) after silencing of ET-1 using siRNA. Under baseline conditions, there was no difference in right ventricular systolic pressure (RVSP) between SM22α-ET-1(-/-) and SM22α-ET-1(+/+) (control) littermates. After exposure to hypoxia (10% O2, 21-24 days), RVSP was and vascular remodeling were less in SM22α-ET-1(-/-) mice compared with control littermates (P < 0.01). Loss of ET-1 decreased PASMC proliferation and migration and increased apoptosis under normoxic and hypoxic conditions. Exposure to selective ET-1 receptor antagonists had no effect on either the hypoxia-induced hPASMC proliferative or migratory response. SMC-specific ET-1 deletion attenuates hypoxia-induced increases in pulmonary vascular tone and structural remodeling. The observation that loss of ET-1 inhibited SMC proliferation, survival, and migration represents evidence that ET-1 derived from SMC plays a previously undescribed role in modulating the response of the pulmonary circulation to hypoxia. Thus PASMC ET-1 may modulate vascular tone independently of ET-1 produced by EC.
Collapse
Affiliation(s)
- Francis Y Kim
- Center for Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University Medical School, Stanford, California
| | - Elizabeth A Barnes
- Center for Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University Medical School, Stanford, California
| | - Lihua Ying
- Center for Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University Medical School, Stanford, California
| | - Chihhsin Chen
- Center for Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University Medical School, Stanford, California
| | - Lori Lee
- Center for Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University Medical School, Stanford, California
| | - Cristina M Alvira
- Center for Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University Medical School, Stanford, California
| | - David N Cornfield
- Center for Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University Medical School, Stanford, California
| |
Collapse
|
32
|
Compeer MG, Janssen GMJ, De Mey JGR. Endothelin-1 and endothelin-2 initiate and maintain contractile responses by different mechanisms in rat mesenteric and cerebral arteries. Br J Pharmacol 2014; 170:1199-209. [PMID: 23941276 DOI: 10.1111/bph.12332] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/29/2013] [Accepted: 08/01/2013] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Endothelin (ET)-1 and ET-2 cause potent long-lasting vasoconstrictions by tight binding to smooth muscle ETA receptors. We tested the hypotheses that different mechanisms mediate initiation and maintenance of arterial contractile responses to ET-1 and ET-2 and that this differs among vascular beds. EXPERIMENTAL APPROACH Segments of rat mesenteric resistance artery (MRA) and basilar artery (BA) were studied in wire myographs with and without functional antagonists. KEY RESULTS Sensitivity and maximum of MRA contractile responses to ET-1 were not, or only moderately, reduced by stimulation of soluble GC, AC or K(+) -channels and by an inhibitor of receptor-operated ion channels. However, each of these reduced maintenance of ET-1 effects and relaxed ET-1-induced contractions in MRA. A calcium channel antagonist did not alter sensitivity, maximum and maintenance of ET-1 effects, but relaxed ET-1-induced contractions in MRA. A PLC inhibitor prevented contractile responses to ET-1 and ET-2 in MRA and BA, and relaxed ET-1- and ET-2-induced responses in MRA and ET-1 effects in BA. A Rho-kinase inhibitor did not modify sensitivity, maximum and maintenance of responses to both peptides in both arteries but relaxed ET-2, but not ET-1, effects in MRA and ET-1 effects in BA. CONCLUSIONS AND IMPLICATIONS PLC played a key role in arterial contractile responses to ETs, but ET-1 and ET-2 initiated and maintained vasoconstriction through different mechanisms, and these differed between MRA and BA. Selective functional antagonism may be considered for agonist- and vascular bed selective pharmacotherapy of ET-related diseases.
Collapse
Affiliation(s)
- M G Compeer
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | | | | |
Collapse
|
33
|
Park JES, Lyon AR, Shao D, Hector LR, Xu H, O'Gara P, Pinhu L, Chambers RC, Wort SJ, Griffiths MJD. Pulmonary venous hypertension and mechanical strain stimulate monocyte chemoattractant protein-1 release and structural remodelling of the lung in human and rodent chronic heart failure models. Thorax 2014; 69:1120-7. [DOI: 10.1136/thoraxjnl-2013-204190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
34
|
Photophysical characterisation and studies of the effect of palladium(II) 5,10,15,20-tetrakis-(4-sulfonatophenyl)-porphyrin on isometric contraction of isolated human mesenteric artery: Good news for photodynamic therapy. Photodiagnosis Photodyn Ther 2014; 11:391-9. [DOI: 10.1016/j.pdpdt.2014.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 01/16/2023]
|
35
|
Roubille F, Morena M, Leray-Moragues H, Canaud B, Cristol JP, Klouche K. Pharmacologic Therapies for Chronic and Acute Decompensated Heart Failure: Specific Insights on Cardiorenal Syndromes. Blood Purif 2014; 37 Suppl 2:20-33. [DOI: 10.1159/000361061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Mehra MR, Park MH, Landzberg MJ, Lala A, Waxman AB. Right heart failure: toward a common language. Pulm Circ 2014; 3:963-7. [PMID: 25006413 DOI: 10.1086/674750] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 11/04/2013] [Indexed: 11/04/2022] Open
Abstract
In this guideline, the International Right Heart Foundation Working Group moves a step forward to develop a common language to describe the development and defects that exemplify the common syndrome of right heart failure. We first propose fundamental definitions of the distinctive components of the right heart circulation and provide consensus on a universal definition of right heart failure. These definitions will form the foundation for describing a uniform nomenclature for right heart circulatory failure with a view to foster collaborative research initiatives and conjoint education in an effort to provide insight into mechanisms of disease unique to the right heart.
Collapse
Affiliation(s)
- Mandeep R Mehra
- Brigham and Women's Hospital Heart and Vascular Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Myung H Park
- Department of Medicine (Cardiology), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Michael J Landzberg
- Brigham and Women's Hospital Heart and Vascular Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Anuradha Lala
- Brigham and Women's Hospital Heart and Vascular Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Aaron B Waxman
- Brigham and Women's Hospital Heart and Vascular Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Schreuder THA, van Lotringen JH, Hopman MTE, Thijssen DHJ. Impact of endothelin blockade on acute exercise-induced changes in blood flow and endothelial function in type 2 diabetes mellitus. Exp Physiol 2014; 99:1253-64. [DOI: 10.1113/expphysiol.2013.077297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tim H. A. Schreuder
- Department of Physiology; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - Jaap H. van Lotringen
- Department of Physiology; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - Maria T. E. Hopman
- Department of Physiology; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - Dick H. J. Thijssen
- Department of Physiology; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
- Research Institute for Sports and Exercise Sciences; Liverpool John Moores University; Liverpool UK
| |
Collapse
|
38
|
Chen F, Wu JL, Fu GS, Mou Y, Hu SJ. Chronic treatment with qiliqiangxin ameliorates aortic endothelial cell dysfunction in diabetic rats. J Cardiovasc Pharmacol Ther 2014; 20:230-40. [PMID: 24906540 DOI: 10.1177/1074248414537705] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Qiliqiangxin (QL), a traditional Chinese medicine, has been shown to be beneficial for chronic heart failure. However, whether QL can also improve endothelial cell function in diabetic rats remains unknown. Here, we investigated the effect of QL treatment on endothelial dysfunction by comparing the effect of QL to that of benazepril (Ben) in diabetic Sprague-Dawley rats for 8 weeks. Cardiac function was evaluated by echocardiography and catheterization. Assays for acetylcholine-induced, endothelium-dependent relaxation (EDR), sodium nitroprusside-induced endothelium-independent relaxation, serum nitric oxide (NO), and nitric oxide synthase (NOS) as well as histological analyses were performed to assess endothelial function. Diabetic rats showed significantly inhibited cardiac function and EDR, decreased expression of serum NO and phosphorylation at Ser(1177) on endothelial NOS (eNOS), and impaired endothelial integrity after 8 weeks. Chronic treatment for 8 weeks with either QL or Ben prevented the inhibition of cardiac function and EDR and the decrease in serum NO and eNOS phosphorylation caused by diabetes. Moreover, either QL or Ben suppressed inducible NOS (iNOS) protein levels as well as endothelial necrosis compared with the diabetic rats. Additionally, QL prevented the increase in angiotensin-converting enzyme 1 and angiotensin II receptor type 1 in diabetes. Thus, chronic administration of QL improved serum NO production, EDR, and endothelial integrity in diabetic rat aortas, possibly through balancing eNOS and iNOS activity and decreasing renin-angiotensin system expression.
Collapse
Affiliation(s)
- Fei Chen
- Institution of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jia-Le Wu
- Department of Cardiology, Xinhua Hospital, Hangzhou, People's Republic of China
| | - Guo-Sheng Fu
- Institution of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yun Mou
- Department of Ultrasound, The Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Shen-Jiang Hu
- Institution of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
39
|
Nasser SA, El-Mas MM. Endothelin ETA receptor antagonism in cardiovascular disease. Eur J Pharmacol 2014; 737:210-3. [PMID: 24952955 DOI: 10.1016/j.ejphar.2014.05.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 12/27/2022]
Abstract
Since the discovery of the endothelin system in 1988, it has been implicated in numerous physiological and pathological phenomena. In the cardiovascular system, endothelin-1 (ET-1) acts through intracellular pathways of two endothelin receptors (ETA and ETB) located mainly on smooth muscle and endothelial cells to regulate vascular tone and provoke mitogenic and proinflammatory reactions. The endothelin ETA receptor is believed to play a pivotal role in the pathogenesis of several cardiovascular disease including systemic hypertension, pulmonary arterial hypertension (PAH), dilated cardiomyopathy, and diabetic microvascular dysfunction. Growing evidence from recent experimental and clinical studies indicates that the blockade of endothelin receptors, particularly the ETA subtype, grasps promise in the treatment of major cardiovascular pathologies. The simultaneous blockade of endothelin ETB receptors might not be advantageous, leading possibly to vasoconstriction and salt and water retentions. This review summarizes the role of ET-1 in cardiovascular modulation and the therapeutic potential of endothelin receptor antagonism.
Collapse
Affiliation(s)
- Suzanne A Nasser
- Department of Pharmacology, Faculty of Pharmacy, Beirut Arab University, Lebanon
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt.
| |
Collapse
|
40
|
Recent insights in the paracrine modulation of cardiomyocyte contractility by cardiac endothelial cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:923805. [PMID: 24745027 PMCID: PMC3972907 DOI: 10.1155/2014/923805] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 01/04/2023]
Abstract
The cardiac endothelium is formed by a continuous monolayer of cells that line the cavity of the heart (endocardial endothelial cells (EECs)) and the luminal surface of the myocardial blood vessels (intramyocardial capillary endothelial cells (IMCEs)). EECs and IMCEs can exercise substantial control over the contractility of cardiomyocytes by releasing various factors such as nitric oxide (NO) via a constitutive endothelial NO-synthase (eNOS), endothelin-1, prostaglandins, angiotensin II, peptide growth factors, and neuregulin-1. The purpose of the present paper is actually to shortly review recent new information concerning cardiomyocytes as effectors of endothelium paracrine signaling, focusing particularly on contractile function. The modes of action and the regulatory paracrine role of the main mediators delivered by cardiac endothelial cells upon cardiac contractility identified in cardiomyocytes are complex and not fully described. Thus, careful evaluation of new therapeutic approaches is required targeting important physiological signaling pathways, some of which have been until recently considered as deleterious, like reactive oxygen species. Future works in the field of cardiac endothelial cells and cardiac function will help to better understand the implication of these mediators in cardiac physiopathology.
Collapse
|
41
|
Heiden S, Vignon-Zellweger N, Masuda S, Yagi K, Nakayama K, Yanagisawa M, Emoto N. Vascular endothelium derived endothelin-1 is required for normal heart function after chronic pressure overload in mice. PLoS One 2014; 9:e88730. [PMID: 24523936 PMCID: PMC3921186 DOI: 10.1371/journal.pone.0088730] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/10/2014] [Indexed: 01/08/2023] Open
Abstract
Background Endothelin-1 participates in the pathophysiology of heart failure. The reasons for the lack of beneficial effect of endothelin antagonists in heart failure patients remain however speculative. The anti-apoptotic properties of ET-1 on cardiomyocytes could be a reasonable explanation. We therefore hypothesized that blocking the pro-apoptotic TNF-α pathway using pentoxifylline could prevent the deleterious effect of the lack of ET-1 in a model for heart failure. Methods We performed transaortic constriction (TAC) in vascular endothelial cells specific ET-1 deficient (VEETKO) and wild type (WT) mice (n = 5–9) and treated them with pentoxifylline for twelve weeks. Results TAC induced a cardiac hypertrophy in VEETKO and WT mice but a reduction of fractional shortening could be detected by echocardiography in VEETKO mice only. Cardiomyocyte diameter was significantly increased by TAC in VEETKO mice only. Pentoxifylline treatment prevented cardiac hypertrophy and reduction of fractional shortening in VEETKO mice but decreased fractional shortening in WT mice. Collagen deposition and number of apoptotic cells remained stable between the groups as did TNF-α, caspase-3 and caspase-8 messenger RNA expression levels. TAC surgery enhanced ANP, BNP and bcl2 expression. Pentoxifylline treatment reduced expression levels of BNP, bcl2 and bax. Conclusions Lack of endothelial ET-1 worsened the impact of TAC-induced pressure overload on cardiac function, indicating the crucial role of ET-1 for normal cardiac function under stress. Moreover, we put in light a TNF-α-independent beneficial effect of pentoxifylline in the VEETKO mice suggesting a therapeutic potential for pentoxifylline in a subpopulation of heart failure patients at higher risk.
Collapse
Affiliation(s)
- Susi Heiden
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe, Japan
| | | | - Shigeru Masuda
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keiko Yagi
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe, Japan
| | - Kazuhiko Nakayama
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe, Japan
| | - Masashi Yanagisawa
- University of Texas Southwestern Medical Center, Howard Hughes Medical Institute, Dallas, United States of America
| | - Noriaki Emoto
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- * E-mail:
| |
Collapse
|
42
|
Mehra MR, Park MH, Landzberg MJ, Lala A, Waxman AB. Right heart failure: toward a common language. J Heart Lung Transplant 2013; 33:123-6. [PMID: 24268184 DOI: 10.1016/j.healun.2013.10.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 10/13/2013] [Indexed: 11/26/2022] Open
Abstract
In this perspective, the International Right Heart Foundation Working Group moves a step forward to develop a common language to describe the development and defects that exemplify the common syndrome of right heart failure. We first propose fundamental definitions of the distinctive components of the right heart circulation and provide consensus on a universal definition of right heart failure. These definitions will form the foundation for describing a uniform nomenclature for right heart circulatory failure with a view to foster collaborative research initiatives and conjoint education in an effort to provide insight into echanisms of disease unique to the right heart.
Collapse
Affiliation(s)
- Mandeep R Mehra
- Heart and Vascular Center, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Myung H Park
- Department of Medicine (Cardiology), University of Maryland School of Medicine, Baltimore, Maryland
| | - Michael J Landzberg
- Heart and Vascular Center, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anuradha Lala
- Heart and Vascular Center, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Aaron B Waxman
- Heart and Vascular Center, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
43
|
Sidharta PN, van Giersbergen PLM, Dingemanse J. Safety, tolerability, pharmacokinetics, and pharmacodynamics of macitentan, an endothelin receptor antagonist, in an ascending multiple-dose study in healthy subjects. J Clin Pharmacol 2013; 53:1131-8. [PMID: 23900878 DOI: 10.1002/jcph.152] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 07/15/2013] [Indexed: 01/16/2023]
Abstract
This multiple-ascending-dose study investigated safety, tolerability, pharmacokinetics, and pharmacodynamics, of macitentan, a new endothelin receptor antagonist (ERA) with sustained receptor binding and enhanced tissue penetration properties compared to other ERAs. Healthy male subjects (n = 32) received once daily oral doses of macitentan (1 - 30 mg) or placebo for 10 days. Administration of macitentan was safe and well tolerated. Macitentan had no effect on bile salts, suggesting an improved liver safety profile. The multiple-dose pharmacokinetics of macitentan were dose-proportional and were characterized by a median tmax and apparent elimination half-life varying from 6.0 to 8.5 and 14.3 to 18.5 hours, respectively, for the different doses and minimal accumulation. ACT-132577, a metabolite with lower potency than macitentan, had a half-life of about 48 hours and accumulated approximately 8.5-fold. Compared to placebo, administration of macitentan caused a dose-dependent increase in plasma ET-1 with maximum effects attained at 10 mg. A small dose-dependent increase in the 6β-hydroxycortisol/cortisol urinary excretion ratio was observed, although there were no statistically significant differences between treatments including placebo. Effects of macitentan on cytochrome P450 enzyme 3A4 should be further evaluated in dedicated studies. The present results support investigation of macitentan in the management of pulmonary arterial hypertension and ET-1-dependent pathologies.
Collapse
Affiliation(s)
- Patricia N Sidharta
- Department of Clinical Pharmacology, Actelion Pharmaceuticals Ltd., Allschwil, Switzerland
| | | | | |
Collapse
|
44
|
House AA. Cardiorenal syndrome: new developments in the understanding and pharmacologic management. Clin J Am Soc Nephrol 2013; 8:1808-15. [PMID: 23929925 DOI: 10.2215/cjn.02920313] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cardiorenal syndromes (CRSs) with bidirectional heart-kidney signaling are increasingly being recognized for their association with increased morbidity and mortality. In acute CRS, recognition of the importance of worsening kidney function complicating management of acute decompensated heart failure has led to the examination of this specific outcome in the context of acute heart failure clinical trials. In particular, the role of fluid overload and venous congestion has focused interest in the most effective use of diuretic therapy to relieve symptoms of heart failure while at the same time preserving kidney function. Additionally, many novel vasoactive therapies have been studied in recent years with the hopes of augmenting cardiac function, improving symptoms and patient outcomes, while maintaining or improving kidney function. Similarly, recent advances in our understanding of the pathophysiology of chronic CRS have led to reanalysis of kidney outcomes in pivotal trials in chronic congestive heart failure, and newer trials are including changes in kidney function as well as kidney injury biomarkers as prospectively monitored and adjudicated outcomes. This paper provides an overview of some new developments in the pharmacologic management of acute and chronic CRS, examines several reports that illustrate a key management principle for each subtype, and discusses opportunities for future research.
Collapse
Affiliation(s)
- Andrew A House
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
45
|
Bellapart J, Jones L, Bandeshe H, Boots R. Plasma Endothelin-1 as Screening Marker for Cerebral Vasospasm After Subarachnoid Hemorrhage. Neurocrit Care 2013; 20:77-83. [DOI: 10.1007/s12028-013-9887-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Drawnel FM, Archer CR, Roderick HL. The role of the paracrine/autocrine mediator endothelin-1 in regulation of cardiac contractility and growth. Br J Pharmacol 2013; 168:296-317. [PMID: 22946456 DOI: 10.1111/j.1476-5381.2012.02195.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 08/23/2012] [Accepted: 08/28/2012] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Endothelin-1 (ET-1) is a critical autocrine and paracrine regulator of cardiac physiology and pathology. Produced locally within the myocardium in response to diverse mechanical and neurohormonal stimuli, ET-1 acutely modulates cardiac contractility. During pathological cardiovascular conditions such as ischaemia, left ventricular hypertrophy and heart failure, myocyte expression and activity of the entire ET-1 system is enhanced, allowing the peptide to both initiate and maintain maladaptive cellular responses. Both the acute and chronic effects of ET-1 are dependent on the activation of intracellular signalling pathways, regulated by the inositol-trisphosphate and diacylglycerol produced upon activation of the ET(A) receptor. Subsequent stimulation of protein kinases C and D, calmodulin-dependent kinase II, calcineurin and MAPKs modifies the systolic calcium transient, myofibril function and the activity of transcription factors that coordinate cellular remodelling. The precise nature of the cellular response to ET-1 is governed by the timing, localization and context of such signals, allowing the peptide to regulate both cardiomyocyte physiology and instigate disease. LINKED ARTICLES This article is part of a themed section on Endothelin. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.168.issue-1.
Collapse
Affiliation(s)
- Faye M Drawnel
- Babraham Research Campus, Babraham Institute, Cambridge, UK
| | | | | |
Collapse
|
47
|
Association of endothelin-1 expression and cartilaginous endplate degeneration in humans. PLoS One 2013; 8:e60062. [PMID: 23565184 PMCID: PMC3614940 DOI: 10.1371/journal.pone.0060062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 02/21/2013] [Indexed: 01/27/2023] Open
Abstract
Background Inflammatory cytokines are involved in intervertebral disc (IVD) degeneration. Endothelin-1 (ET-1), a 21-amino-acid cytokine implicated with cartilage degradation, is secreted by vascular endothelial cells and also by many other cell types. The expression of ET-1 in human IVD cartilage endplate (CEP) and its role in disc degeneration have not been explored. Methods and Findings The expression of ET-1 in degenerated CEP was analyzed by immunohistochemical staining and Western blotting; ET-1 was demonstrated in cartilaginous endplate cells (CECs) by immunofluorescent staining. The ET-1 mRNA expression and protein production by CECs stimulated by tumor necrosis factor alpha (TNF-α), a pro-inflammatory cytokine, were determined by real-time PCR analysis and Western blotting, respectively. The matrix metalloprotease-1 (MMP-1), MMP-13 and tissue inhibitor of metalloproteases-1 (TIMP-1) levels in the supernatant of cultured CECs treated with ET-1 were determined using enzyme-linked immunosorbent assays. Nitric oxide (NO) release and nitric oxide synthase (NOS) activity were measured using a spectrophotometric assay. The apoptosis of CECs by ET-1 was measured by an Annexin V-FITC detection assay. The production of ET-1 in degenerated cartilage endplate was significantly higher than normal CEP. The results showed that ET-1 was expressed by CECs and modulated by TNF-α in a dose-dependent manner. ET-1 increased production of MMP-1 and MMP-13, decreased TIMP-1 production, and induced NO and NOS release by cultured CECs. The direct stimulation of CECs by ET-1 did not promote cell apoptosis. Conclusion The study results suggest that ET-1 played a pivotal role in human CEP degeneration, and may be a new target for development of therapies for this condition.
Collapse
|
48
|
Yu L, Li M, She T, Shi C, Meng W, Wang B, Cheng M. Endothelin-1 stimulates the expression of L-type Ca2+ channels in neonatal rat cardiomyocytes via the extracellular signal-regulated kinase 1/2 pathway. J Membr Biol 2013; 246:343-53. [PMID: 23546014 DOI: 10.1007/s00232-013-9538-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 03/16/2013] [Indexed: 01/07/2023]
Abstract
The cardiac L-type Ca(2+) channel current (I(Ca,L)) plays an important role in controlling both cardiac excitability and excitation-contraction coupling and is involved in the electrical remodeling during postnatal heart development and cardiac hypertrophy. However, the possible role of endothelin-1 (ET-1) in the electrical remodeling of postnatal and diseased hearts remains unclear. Therefore, the present study was designed to investigate the transcriptional regulation of I(Ca,L) mediated by ET-1 in neonatal rat ventricular myocytes using the whole-cell patch-clamp technique, quantitative RT-PCR and Western blotting. Furthermore, we determined whether the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway is involved. ET-1 increased I(Ca,L) density without altering its voltage dependence of activation and inactivation. In line with the absence of functional changes, ET-1 increased L-type Ca(2+) channel pore-forming α1C-subunit mRNA and protein levels without affecting the mRNA expression of auxiliary β- and α2/δ-subunits. Furthermore, an actinomycin D chase experiment revealed that ET-1 did not alter α1C-subunit mRNA stability. These effects of ET-1 were inhibited by the ETA receptor antagonist BQ-123 but not the ETB receptor antagonist BQ-788. Moreover, the effects of ET-1 on I(Ca,L) and α1C-subunit expression were abolished by the ERK1/2 inhibitor (PD98059) but not by the p38 MAPK inhibitor (SB203580) or the c-Jun N-terminal kinase inhibitor (SP600125). These findings indicate that ET-1 increased the transcription of L-type Ca(2+) channel in cardiomyocytes via activation of ERK1/2 through the ETA receptor, which may contribute to the electrical remodeling of heart during postnatal development and cardiac hypertrophy.
Collapse
Affiliation(s)
- Liangzhu Yu
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Peoples Republic of China.
| | | | | | | | | | | | | |
Collapse
|
49
|
Fedorowski A, Burri P, Struck J, Juul-Möller S, Melander O. Novel cardiovascular biomarkers in unexplained syncopal attacks: the SYSTEMA cohort. J Intern Med 2013; 273:359-67. [PMID: 23510366 DOI: 10.1111/joim.12043] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The aim of the study was to investigate the resting levels of novel cardiovascular biomarkers in common types of noncardiac syncope. DESIGN AND SETTING An observational study was conducted including 255 patients (mean age 60 years, range 15-93; 45% men) with unexplained syncopal attacks. Subjects underwent an expanded head-up tilt test including carotid sinus massage, and nitroglycerin provocation if indicated. Using logistic regression, we explored the associations between specific diagnoses of syncope and resting levels of circulating biomarkers: C-terminal pro-arginine vasopressin (CT-proAVP), C-terminal endothelin-1 precursor fragment (CT-proET-1), midregional fragments of pro-atrial natriuretic peptide (MR-proANP) and pro-adrenomedullin (MR-proADM). RESULTS A total of 142 (56%) patients were diagnosed with vasovagal syncope (VVS), 85 (33%) with orthostatic hypotension (OH) and 47 (18%) with carotid sinus hypersensitivity (CSH); in addition, 74 (29%) patients had more than one diagnosis. Thirty-five patients (14%) demonstrated a cardioinhibitory reflex. The probability of VVS was highest in the first quartile of MR-proANP [Q1 vs. Q4: odds ratio (OR) 5.57, 95% confidence interval (CI) 1.86-16.74; P < 0.001] and CT-proET-1 (OR 7.17, 95% CI 2.43-21.13; P < 0.001). By contrast, the probability of OH was highest in the fourth quartile of CT-proET-1 (Q4 vs. Q1: OR 8.66, 95% CI 2.49-30.17; P < 0.001). Furthermore, CSH was most frequently observed in the first quartile of MR-proANP (Q1 vs. Q4: OR 6.57, 95% CI 1.62-26.62; P = 0.008) among those over 60 years of age, whereas the cardioinhibitory reflex was strongly associated with low CT-proET-1 levels (Q1 vs. Q4: OR 69.7, 95% CI 6.97-696.6; P < 0.001). Moreover, in patients with VVS, a high concentration of CT-proET-1 was predictive of OH (OR per 1 SD 2.4, 95% CI 1.15-5.02; P = 0.02), whereas low CT-proET-1 suggested involvement of the cardioinhibitory reflex (OR per 1SD 0.42, 95% CI 0.25-0.70; P = 0.001). CONCLUSIONS The levels of MR-proANP and CT-proET-1 are markedly changed in common forms of syncope, suggesting the involvement of novel neurohormonal mechanisms in syncopal attacks.
Collapse
Affiliation(s)
- A Fedorowski
- Department of Clinical Sciences, Lund University, Clinical Research Center, Malmö, Sweden.
| | | | | | | | | |
Collapse
|
50
|
Discovery of inhibitors of insulin-regulated aminopeptidase as cognitive enhancers. Int J Hypertens 2012; 2012:789671. [PMID: 23304452 PMCID: PMC3529497 DOI: 10.1155/2012/789671] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 10/19/2012] [Indexed: 12/20/2022] Open
Abstract
The hexapeptide angiotensin IV (Ang IV) is a metabolite of angiotensin II (Ang II) and plays a central role in the brain. It was reported more than two decades ago that intracerebroventricular injection of Ang IV improved memory and learning in the rat. Several hypotheses have been put forward to explain the positive effects of Ang IV and related analogues on cognition. It has been proposed that the insulin-regulated aminopeptidase (IRAP) is the main target of Ang IV. This paper discusses progress in the discovery of inhibitors of IRAP as potential enhancers of cognitive functions. Very potent inhibitors of the protease have been synthesised, but pharmacokinetic issues (including problems associated with crossing the blood-brain barrier) remain to be solved. The paper also briefly presents an overview of the status in the discovery of inhibitors of ACE and renin, and of AT1R antagonists and AT2R agonists, in order to enable other discovery processes within the RAS system to be compared. The paper focuses on the relationship between binding affinities/inhibition capacity and the structures of the ligands that interact with the target proteins.
Collapse
|