1
|
Hinze CA, Fuge J, Grote-Koska D, Brand K, Slevogt H, Cornberg M, Simon S, Joean O, Welte T, Rademacher J. Factors influencing voriconazole plasma level in intensive care patients. JAC Antimicrob Resist 2024; 6:dlae045. [PMID: 38500519 PMCID: PMC10946233 DOI: 10.1093/jacamr/dlae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Background In clinical routine, voriconazole plasma trough levels (Cmin) out of target range are often observed with little knowledge about predisposing influences. Objectives To determine the distribution and influencing factors on voriconazole blood levels of patients treated on intensive- or intermediate care units (ICU/IMC). Patients and methods Data were collected retrospectively from patients with at least one voriconazole trough plasma level on ICU/IMC (n = 153) to determine the proportion of sub-, supra- or therapeutic plasma levels. Ordinal logistic regression analysis was used to assess factors hindering patients to reach voriconazole target range. Results Of 153 patients, only 71 (46%) reached the target range at the first therapeutic drug monitoring, whereas 66 (43%) patients experienced too-low and 16 (10%) too-high plasma levels. Ordinal logistic regression analysis identified the use of extra corporeal membrane oxygenation (ECMO), low international normalized ratio (INR) and aspartate-aminotransferase (AST) serum levels as predictors for too-low plasma levels. Conclusion Our data highlight an association of ECMO, INR and AST levels with voriconazole plasma levels, which should be considered in the care of critically ill patients to optimize antifungal therapy with voriconazole.
Collapse
Affiliation(s)
| | - Jan Fuge
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Denis Grote-Koska
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Korbinian Brand
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Hortense Slevogt
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Respiratory Infection Dynamics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Centre for Individualized Infection Medicine, Hannover, Germany
- German Center for Infection Research (DZIF), partner-site Hannover-Braunschweig, Hannover, Germany
| | - Susanne Simon
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
| | - Oana Joean
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Jessica Rademacher
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
2
|
Patel JN, Robinson M, Morris SA, Jandrisevits E, Lopes KE, Hamilton A, Steuerwald N, Druhan LJ, Avalos B, Copelan E, Ghosh N, Grunwald MR. Pharmacogenetic and clinical predictors of voriconazole concentration in hematopoietic stem cell transplant recipients receiving CYP2C19-guided dosing. THE PHARMACOGENOMICS JOURNAL 2023; 23:201-209. [PMID: 37925536 DOI: 10.1038/s41397-023-00320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
CYP2C19-guided voriconazole dosing reduces pharmacokinetic variability, but many patients remain subtherapeutic. The aim of this study was to evaluate the effect of candidate genes and a novel CYP2C haplotype on voriconazole trough concentrations in patients receiving CYP2C19-guided dosing. This is a retrospective candidate gene study in allogeneic hematopoietic cell transplant (HCT) patients receiving CYP2C19-guided voriconazole dosing. Patients were genotyped for ABCB1, ABCG2, CYP2C9, CYP3A4, CYP3A5, and the CYP2C haplotype. Of 185 patients, 36% were subtherapeutic (of which 79% were normal or intermediate metabolizers). In all patients, CYP2C19 (p < 0.001), age (p = 0.018), and letermovir use (p = 0.001) were associated with voriconazole concentrations. In the subset receiving 200 mg daily (non-RM/UMs), CYP2C19 (p = 0.004) and ABCG2 (p = 0.015) were associated with voriconazole concentrations; CYP2C19 (p = 0.028) and letermovir use (p = 0.001) were associated with subtherapeutic status. CYP2C19 phenotype and letermovir use were significantly associated with subtherapeutic voriconazole concentrations and may be used to improve voriconazole precision dosing, while further research is needed to clarify the role of ABCG2 in voriconazole dosing.
Collapse
Affiliation(s)
- Jai N Patel
- Department of Cancer Pharmacology and Pharmacogenomics, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA.
| | - Myra Robinson
- Department of Biostatistics, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Sarah A Morris
- Department of Cancer Pharmacology and Pharmacogenomics, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Elizabeth Jandrisevits
- Department of Cancer Pharmacology and Pharmacogenomics, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Karine Eboli Lopes
- Department of Cancer Pharmacology and Pharmacogenomics, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Alicia Hamilton
- Molecular Biology and Genomics Core Laboratory, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Nury Steuerwald
- Molecular Biology and Genomics Core Laboratory, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Lawrence J Druhan
- Hematology/Oncology Translational Research Laboratory, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Belinda Avalos
- Department of Hematologic Malignancies and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Edward Copelan
- Department of Hematologic Malignancies and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Nilanjan Ghosh
- Department of Hematologic Malignancies and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Michael R Grunwald
- Department of Hematologic Malignancies and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| |
Collapse
|
3
|
Kably B, Launay M, Derobertmasure A, Lefeuvre S, Dannaoui E, Billaud EM. Antifungal Drugs TDM: Trends and Update. Ther Drug Monit 2022; 44:166-197. [PMID: 34923544 DOI: 10.1097/ftd.0000000000000952] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE The increasing burden of invasive fungal infections results in growing challenges to antifungal (AF) therapeutic drug monitoring (TDM). This review aims to provide an overview of recent advances in AF TDM. METHODS We conducted a PubMed search for articles during 2016-2020 using "TDM" or "pharmacokinetics" or "drug-drug-interaction" with "antifungal," consolidated for each AF. Selection was limited to English language articles with human data on drug exposure. RESULTS More than 1000 articles matched the search terms. We selected 566 publications. The latest findings tend to confirm previous observations in real-life clinical settings. The pharmacokinetic variability related to special populations is not specific but must be considered. AF benefit-to-risk ratio, drug-drug interaction (DDI) profiles, and minimal inhibitory concentrations for pathogens must be known to manage at-risk situations and patients. Itraconazole has replaced ketoconazole in healthy volunteers DDI studies. Physiologically based pharmacokinetic modeling is widely used to assess metabolic azole DDI. AF prophylactic use was studied more for Aspergillus spp. and Mucorales in oncohematology and solid organ transplantation than for Candida (already studied). Emergence of central nervous system infection and severe infections in immunocompetent individuals both merit special attention. TDM is more challenging for azoles than amphotericin B and echinocandins. Fewer TDM requirements exist for fluconazole and isavuconazole (ISZ); however, ISZ is frequently used in clinical situations in which TDM is recommended. Voriconazole remains the most challenging of the AF, with toxicity limiting high-dose treatments. Moreover, alternative treatments (posaconazole tablets, ISZ) are now available. CONCLUSIONS TDM seems to be crucial for curative and/or long-term maintenance treatment in highly variable patients. TDM poses fewer cost issues than the drugs themselves or subsequent treatment issues. The integration of clinical pharmacology into multidisciplinary management is now increasingly seen as a part of patient care.
Collapse
Affiliation(s)
- Benjamin Kably
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
- Faculté de Médecine, Université de Paris, Paris, France
| | - Manon Launay
- Laboratoire de Pharmacologie-Toxicologie-Gaz du sang, Hôpital Nord-CHU Saint Etienne, Saint-Etienne
| | - Audrey Derobertmasure
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
| | - Sandrine Lefeuvre
- Laboratoire de Toxicologie et Pharmacocinétique, CHU de Poitiers, Poitiers; and
| | - Eric Dannaoui
- Faculté de Médecine, Université de Paris, Paris, France
- Unité de Parasitologie-Mycologie, Laboratoire de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Eliane M Billaud
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
- Faculté de Médecine, Université de Paris, Paris, France
| |
Collapse
|
4
|
Voriconazole-Induced Hepatotoxicity Concise up-to-date review. JOURNAL OF BASIC AND CLINICAL HEALTH SCIENCES 2022. [DOI: 10.30621/jbachs.1051669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Review of Pharmacologic Considerations in the Use of Azole Antifungals in Lung Transplant Recipients. J Fungi (Basel) 2021; 7:jof7020076. [PMID: 33499209 PMCID: PMC7911495 DOI: 10.3390/jof7020076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Mold-active azole antifungals are commonly prescribed for the prevention of invasive fungal infections in lung transplant recipients. Each agent exhibits a unique pharmacologic profile, an understanding of which is crucial for therapy selection and optimization. This article reviews pharmacologic considerations for three frequently-used azole antifungals in lung transplant recipients: voriconazole, posaconazole, and isavuconazole. Focus is drawn to analysis of drug-interactions, adverse drug reactions, pharmacokinetic considerations, and the role of therapeutic drug monitoring with special emphasis on data from the post-lung transplant population.
Collapse
|
6
|
Wong SN, Chan SWS, Peng X, Xuan B, Lee HW, Tong HHY, Chow SF. Effects of the Glass-Forming Ability and Annealing Conditions on Cocrystallization Behaviors via Rapid Solvent Removal: A Case Study of Voriconazole. Pharmaceutics 2020; 12:E1209. [PMID: 33327381 PMCID: PMC7764899 DOI: 10.3390/pharmaceutics12121209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 01/16/2023] Open
Abstract
The kinetic entrapment of molecules in an amorphous phase is a common obstacle to cocrystal screening using rapid solvent removal, especially for drugs with a moderate or high glass-forming ability (GFA). The aim of this study was to elucidate the effects of the coformer's GFA and annealing conditions on the nature of amorphous phase transformation to the cocrystal counterpart. Attempts were made to cocrystallize voriconazole (VRC) with four structural analogues, namely fumaric acid (FUM), tartaric acid (TAR), malic acid (MAL), and maleic acid (MAE). The overall GFA of VRC binary systems increased with decreasing glass transition temperatures (Tgs) of these diacids, which appeared as a critical parameter for predicting the cocrystallization propensity such that a high-Tg coformer is more desirable. A new 1:1 VRC-TAR cocrystal was successfully produced via a supercooled-mediated re-cocrystallization process, and characterized by PXRD, DSC, and FTIR. The cocrystal purity against the annealing temperature displayed a bell-shaped curve, with a threshold at 40 °C. The isothermal phase purity improved with annealing and adhered to the Kolmogorov-Johnson-Mehl-Avrami kinetics. The superior dissolution behavior of the VRC-TAR cocrystal could minimize VRC precipitation upon gastric emptying. This study offers a simple but useful guide for efficient cocrystal screening based on the Tg of structurally similar coformers, annealing temperature, and time.
Collapse
Affiliation(s)
- Si Nga Wong
- Li Ka Shing Faculty of Medicine, Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong, China; (S.N.W.); (S.W.S.C.); (B.X.); (H.W.L.)
| | - Susan Wing Sze Chan
- Li Ka Shing Faculty of Medicine, Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong, China; (S.N.W.); (S.W.S.C.); (B.X.); (H.W.L.)
| | - Xuexin Peng
- School of Pharmacy, University College London, London WC1N 1AX, UK;
| | - Bianfei Xuan
- Li Ka Shing Faculty of Medicine, Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong, China; (S.N.W.); (S.W.S.C.); (B.X.); (H.W.L.)
| | - Hok Wai Lee
- Li Ka Shing Faculty of Medicine, Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong, China; (S.N.W.); (S.W.S.C.); (B.X.); (H.W.L.)
| | - Henry H. Y. Tong
- School of Health Sciences and Sports, Macao Polytechnic Institute, Macao, China;
| | - Shing Fung Chow
- Li Ka Shing Faculty of Medicine, Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong, China; (S.N.W.); (S.W.S.C.); (B.X.); (H.W.L.)
| |
Collapse
|
7
|
Abstract
BACKGROUND Serum concentrations of voriconazole are difficult to predict, especially in pediatric patients, because of its complex pharmacokinetic characteristics. This study aimed to identify the factors associated with the concentration of voriconazole in pediatric patients. METHODS This cohort study was based on retrospective data collection and involved the administration of voriconazole to pediatric patients younger than 18 years, between January 2010 and August 2017. Electronic medical records of the patients were reviewed to collect demographic characteristics, voriconazole treatment regimen, and factors that could potentially influence voriconazole trough concentrations. A voriconazole trough serum concentration of less than 1.0 mcg/mL or greater than 5.5 mcg/mL was defined as outside the therapeutic range and was set as the outcome of this study. RESULTS Among the 114 patients enrolled, 61 patients were included in the analysis. Oral administration of a maintenance dose of voriconazole and C-reactive protein (CRP) level were significantly and independently associated with a low initial trough concentration of voriconazole (<1.0 mcg/mL). Alanine aminotransferase levels were a significant factor associated with a high initial trough concentration of voriconazole (>5.5 mcg/mL) after adjusting for sex, age, weight, and serum creatinine (odds ratio 5.42; 95% confidence interval 1.34-21.97). CONCLUSIONS Considering the variability of voriconazole concentrations in pediatric patients, monitoring certain parameters and considering the route of administration could help determine the therapeutic range of voriconazole and subsequently avoid unwanted effects.
Collapse
|
8
|
Clinical Factors Affecting the Dose Conversion Ratio from Intravenous to Oral Tacrolimus Formulation among Pediatric Hematopoietic Stem Cell Transplantation Recipients. Ther Drug Monit 2020; 42:803-810. [PMID: 32732549 DOI: 10.1097/ftd.0000000000000793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Tacrolimus is converted from intravenous to oral formulation for the prophylaxis of graft-versus-host disease when patients can tolerate oral intake and graft-versus-host disease is under control. Oral tacrolimus formulation presents poor bioavailability with intraindividual and interindividual variations; however, some factors affecting its blood concentration among pediatric hematopoietic stem cell transplantation (HCT) recipients are still unclear. This study aimed to identify the clinical factors affecting tacrolimus blood concentrations after switching its formulation. METHODS Changes in the blood concentration/dose ratio (C/D) of tacrolimus in pediatric HCT recipients were analyzed after the switching of tacrolimus from intravenous to oral formulation. Clinical records of 57 pediatric patients who underwent allogenic HCT from January 2006 to April 2019 in our institute were retrospectively reviewed. The C/D of tacrolimus before discontinuation of intravenous infusion (C/Div) was compared with the tacrolimus trough level within 10 days after the initiation of oral administration (C/Dpo). Multiple linear regression analysis was performed to identify factors affecting (C/Dpo)/(C/Div). RESULTS The constant coefficient of (C/Dpo)/(C/Div) was 0.1692 [95% confidence interval (CI), 0.137-0.2011]. The concomitant use of voriconazole or itraconazole and female sex were significant variables with a beta coefficient of 0.0974 (95% CI, 0.062-0.133) and -0.0373 (95% CI, -0.072 to -0.002), respectively. CONCLUSIONS After switching of tacrolimus formulation, pediatric HCT recipients might need oral tacrolimus dose that is 5-6 and 3.5-4.5 times the intravenous dose to maintain tacrolimus blood concentrations and area under the concentration-time curve, respectively. With the concomitant use of voriconazole or itraconazole, an oral tacrolimus dose of 4-5 times the intravenous dose seemed appropriate to maintain blood tacrolimus concentration.
Collapse
|
9
|
Andes D. Has the Optimal Therapy for Invasive Candidiasis Now Been Defined? Clin Infect Dis 2020; 68:1990-1992. [PMID: 30289475 DOI: 10.1093/cid/ciy830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/28/2018] [Indexed: 01/05/2023] Open
Affiliation(s)
- David Andes
- Department of Medicine and Microbiology and Immunology, University of Wisconsin, Madison
| |
Collapse
|
10
|
Zeng G, Wang L, Shi L, Li H, Zhu M, Luo J, Zhang Z. Variability of voriconazole concentrations in patients with hematopoietic stem cell transplantation and hematological malignancies: influence of loading dose, procalcitonin, and pregnane X receptor polymorphisms. Eur J Clin Pharmacol 2020; 76:515-523. [PMID: 31932875 DOI: 10.1007/s00228-020-02831-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022]
Abstract
AIMS Voriconazole (VCZ) displays highly variable pharmacokinetics affecting treatment efficacy and safety. We aimed to identify the factors affecting VCZ steady-state trough concentration (Cssmin) to provide evidence for optimizing VCZ treatment regimens. METHODS A total of 510 Cssmin of 172 patients with hematopoietic stem cell transplantation and hematologic malignancies and their clinical characteristics and genotypes of FMO, POR, and PXR were included in this study. RESULTS In univariate analysis, the standard loading dose of VCZ significantly increased the Cssmin of VCZ (P < 0.001). The Cssmin of VCZ was significantly correlated with patients' total bilirubin (TB) (P < 0.001) and procalcitonin (PCT) (P < 0.001). FMO3 rs2266780 (P = 0.025), POR rs10954732 (P = 0.015), PXR rs2461817 (P = 0.010), PXR rs7643645 (P = 0.003), PXR rs3732359 (P = 0.014), PXR rs3814057 (P = 0.005), and PXR rs6785049 (P = 0.013) have a significant effect on Cssmin of VCZ. Loading dose, TB, PCT level, and PXRrs3814057 polymorphism were independent influencing factors of VCZ Cssmin in the analysis of multivariate linear regression. And loading dose, PCT, and PXR rs3814057 had significant effects on the probability of the therapeutic window of VCZ. CONCLUSION The high variability of VCZ Cssmin may be partially explained by loading dose, liver function, inflammation, and PXR polymorphisms. This study suggests the VCZ standard loading dose regimen significantly increased Cssmin and probability of the therapeutic window providing treatment benefits. Patients in the high PCT group may be more likely to exceed 5.5 μg/mL, thus suffering from VCZ toxicity.
Collapse
Affiliation(s)
- Guangting Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Linlin Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lihong Shi
- Sichuan cancer hospital & institute, Chengdu, Sichuan, China
| | - Huilan Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miaomiao Zhu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan Mental Health Centre; Wuhan Hospital for Psychotherapy, Wuhan, Hubei, China
| | - Jia Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zanling Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
11
|
Patel JN, Hamadeh IS, Robinson M, Shahid Z, Symanowski J, Steuerwald N, Hamilton A, Reese ES, Plesca DC, Arnall J, Taylor M, Trivedi J, Grunwald MR, Gerber J, Ghosh N, Avalos B, Copelan E. Evaluation of CYP2C19 Genotype-Guided Voriconazole Prophylaxis After Allogeneic Hematopoietic Cell Transplant. Clin Pharmacol Ther 2019; 107:571-579. [PMID: 31549386 DOI: 10.1002/cpt.1642] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/22/2019] [Indexed: 01/09/2023]
Abstract
There is a high risk of voriconazole failure in those with subtherapeutic drug concentrations, which is more common in CYP2C19 (cytochrome P450 2C19) rapid/ultrarapid metabolizers (RMs/UMs). We evaluated CYP2C19 genotype-guided voriconazole dosing on drug concentrations and clinical outcomes in adult allogeneic hematopoietic cell transplant recipients. Poor (PMs), intermediate (IMs), and normal metabolizers (NMs) received voriconazole 200 mg twice daily; RMs/UMs received 300 mg twice daily. Steady-state trough concentrations were obtained after 5 days, targeting 1.0-5.5 mg/L. Of 89 evaluable patients, 29% had subtherapeutic concentrations compared with 50% in historical controls (P < 0.001). Zero, 26%, 50%, and 16% of PMs, IMs, NMs, and RMs/UMs were subtherapeutic. Voriconazole success rate was 78% compared with 54% in historical controls (P < 0.001). No patients experienced an invasive fungal infection (IFI). Genotype-guided dosing resulted in $4,700 estimated per patient savings as compared with simulated controls. CYP2C19 genotype-guided voriconazole dosing reduced subtherapeutic drug concentrations and effectively prevented IFIs.
Collapse
Affiliation(s)
- Jai N Patel
- Department of Cancer Pharmacology, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Issam S Hamadeh
- Department of Cancer Pharmacology, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Myra Robinson
- Department of Biostatistics, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Zainab Shahid
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - James Symanowski
- Department of Biostatistics, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Nury Steuerwald
- Molecular Biology Core Laboratory, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Alicia Hamilton
- Molecular Biology Core Laboratory, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Emily S Reese
- Translational Research, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Dragos C Plesca
- Department of Pharmacy, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Justin Arnall
- Department of Pharmacy, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Margaret Taylor
- Department of Pharmacy, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Jigar Trivedi
- Department of Pharmacy, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Michael R Grunwald
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Jonathan Gerber
- Division of Hematology/Oncology, Department of Medicine, UMass Memorial Health Care, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Nilanjan Ghosh
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Belinda Avalos
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Edward Copelan
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| |
Collapse
|
12
|
Zeng G, Shi L, Li H, Wang L, Zhu M, Luo J, Zhang Z. Effect of cyclosporine a and polymorphisms in CYP2C19 and ABCC2 on the concentration of voriconazole in patients undergoing allogeneic hematopoietic stem cell transplantation. Xenobiotica 2019; 50:614-619. [PMID: 31573401 DOI: 10.1080/00498254.2019.1672907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Guangting Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lihong Shi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Huilan Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Linlin Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Miaomiao Zhu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan Mental Health Centre, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Jia Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zanling Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Validation of a Reversed-Phase Ultra-High-Performance Liquid Chromatographic Method With Photodiode Array Detection for the Determination of Voriconazole in Human Serum and Its Application to Therapeutic Drug Monitoring. Ther Drug Monit 2018; 40:276-283. [PMID: 29432386 DOI: 10.1097/ftd.0000000000000491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Voriconazole is a broad-spectrum triazole antifungal agent. It is widely used in the treatment of invasive fungal infections in immunocompromised patients. Because the pharmacokinetics of voriconazole demonstrates considerable variability, monitoring its serum levels plays an important role in optimizing therapies against many clinically relevant fungal pathogens. The aim of this study was to validate a simple and rapid U-HPLC-PDA method with minimal sample preparation for routine therapeutic drug monitoring (TDM) of voriconazole. METHODS After protein precipitation with the internal standard solution (posaconazole 5.0 mg/L in acetonitrile), chromatographic separation was performed in 4 minutes using water and acetonitrile as mobile phases and an Acquity UPLC BEH HSS C18 column (2.1 × 100 mm, 1.7 µm). The temperature was set at 45°C and the flow rate was 0.4 mL/min. Photodiode array detection at 256 nm was used as detection system. The method was validated according international guidelines for linearity, accuracy, precision, selectivity, lower limit of quantitation, carry over, and stability under different conditions. RESULTS All performance parameters were within acceptance criteria, demonstrating that the validated method is fit for purpose. After assay validation, 115 serum samples collected from 41 patients were analyzed to report the experience of the laboratory in TDM of voriconazole. Results showed a large variability in voriconazole trough levels, suggesting that this drug should be frequently measured in patients under treatment to enhance therapies efficacy and improve safety. CONCLUSIONS In this study, a reproducible U-HPLC-PDA assay with a short analysis time, requiring only a small amount of serum, good accuracy and reproducibility was validated, which is suitable for routine TDM of voriconazole in serum.
Collapse
|
14
|
Therapeutic Drug Monitoring of Voriconazole in Children from a Tertiary Care Center in China. Antimicrob Agents Chemother 2018; 62:AAC.00955-18. [PMID: 30150475 DOI: 10.1128/aac.00955-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022] Open
Abstract
Voriconazole is a broad-spectrum triazole antifungal and the first-line treatment for invasive aspergillosis (IA). The aim of this research was to study the dose adjustments of voriconazole as well as the affecting factors influencing voriconazole trough concentrations in Asian children to optimize its daily administration. Clinical data were analyzed of inpatients 2 to 14 years old who were subjected to voriconazole trough concentration monitoring from 1 June 2015 to 1 December 2017. A total of 138 voriconazole trough concentrations from 42 pediatric patients were included. Voriconazole trough concentrations at steady state ranged from 0.02 to 9.35 mg/liter, with high inter- and intraindividual variability. Only 50.0% of children achieved the target range (1.0 to 5.5 mg/liter) at initial dosing, while 35.7% of children were subtherapeutic, and 14.3% of children were supratherapeutic at initial dosing. There was no correlation between initial trough concentrations and initial dosing. A total of 28.6% of children (12/42) received an adjusted dose according to trough concentrations. Children <6, 6 to 12, and >12 years old required a median oral maintenance dose to achieve the target range of 11.1, 7.2, and 5.3 mg/kg twice daily, respectively (P = 0.043). The average doses required to achieved the target range were 7.7 mg/kg and 5.6 mg/kg, respectively, and were lower than the recommended dosage (P = 0.033 and 0.003, respectively). Affecting factors such as administration routes and coadministration with proton pump inhibitors (PPIs) explained 55.3% of the variability in voriconazole exposure. Therapeutic drug monitoring (TDM) of voriconazole could help to individualize antifungal therapy for children and provide guidelines for TDM and dosing optimization in Asian children.
Collapse
|
15
|
Lass-Flörl C. Treatment of Infections Due to Aspergillus terreus Species Complex. J Fungi (Basel) 2018; 4:jof4030083. [PMID: 29987241 PMCID: PMC6162764 DOI: 10.3390/jof4030083] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023] Open
Abstract
The Aspergillus terreus species complex is found in a wide variety of habitats, and the spectrum of diseases caused covers allergic bronchopulmonary aspergillosis, Aspergillus bronchitis and/or tracheobronchitis, and invasive and disseminated aspergillosis. Invasive infections are a significant cause of morbidity and mortality mainly in patients with hematological malignancy. The section Terrei covers a total of 16 accepted species of which most are amphotericin B resistant. Triazoles are the preferred agents for treatment and prevention of invasive aspergillosis. Poor prognosis in patients with invasive A. terreus infections seems to be independent of anti-Aspergillus azole-based treatment.
Collapse
Affiliation(s)
- Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria.
| |
Collapse
|
16
|
Isavuconazole Concentration in Real-World Practice: Consistency with Results from Clinical Trials. Antimicrob Agents Chemother 2018; 62:AAC.00585-18. [PMID: 29735569 DOI: 10.1128/aac.00585-18] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 05/02/2018] [Indexed: 01/26/2023] Open
Abstract
Clinical use of voriconazole, posaconazole, and itraconazole revealed the need for therapeutic drug monitoring (TDM) of plasma concentrations of these antifungal agents. This need for TDM was not evident from clinical trials. In order to establish whether this requirement also applies to isavuconazole, we examined the plasma concentrations of 283 samples from patients receiving isavuconazole in clinical practice and compared the values with those from clinical trials. The concentration distributions from real-world use and clinical trials were nearly identical (>1 μg/ml in 90% of patients). These findings suggest that routine TDM may not be necessary for isavuconazole in most instances.
Collapse
|
17
|
Turki AT, Rashidi-Alavijeh J, Dürig J, Gerken G, Rath PM, Witzke O. Successful treatment of cerebral aspergillosis: case report of a patient with T-cell large granular lymphocytic leukemia (T-LGL). BMC Infect Dis 2017; 17:797. [PMID: 29281994 PMCID: PMC5745601 DOI: 10.1186/s12879-017-2877-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/03/2017] [Indexed: 11/25/2022] Open
Abstract
Background Invasive aspergillosis involving patients with neutropenia or severe immunosuppression, such as patients with hematologic malignancies is associated with high mortality. Patients with T-cell large granular lymphocytic leukemia (T-LGL) on the other hand are considered to be less vulnerable for severe opportunistic fungal infection as their course of disease is chronic and marked by less violent cytopenia then in e.g. Aplastic Anemia. Only neutropenia is regarded as independent risk factor for severe opportunistic infection in T-LGL patients. Case presentation We report a case of a 53 year old patient with T-LGL, Immune-Thrombocytopenia (ITP) and combined antibody deficiency, who presented with fever and reduced general condition. The patient revealed a complicated infection involving the lungs and later the brain, with the presentation of vomiting and seizures. Broad microbiological testing of blood-, lung- and cerebrospinal fluid samples was inconclusive. In the absence of mycological proof, Aspergillus infection was confirmed by pathological examination of a brain specimen and finally successfully treated with liposomal amphotericin B and voriconazole, adopting a long-term treatment scheme. Conclusions Beyond typical problems in the clinical practice involving fungal infections and hematologic malignancies, this case of invasive aspergillosis in a patient with T-LGL illustrates caveats in diagnosis, therapy and follow-up. Our data support careful ambulatory monitoring for patients with T-LGL, even in the absence of neutropenia. Especially those patients with combined hematologic malignancies and immune defects are at risk. Long-term treatment adhesion for 12 months with sufficient drug levels was necessary for sustained clearance from infection.
Collapse
Affiliation(s)
- Amin T Turki
- Department of Bone Marrow Transplantation, West-German Cancer Center, University Hospital Essen, Essen, Germany.
| | | | - Jan Dürig
- Department of Hematology, West-German Cancer Center, University Hospital Essen, Essen, Germany
| | - Guido Gerken
- Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
| | - Peter-Michael Rath
- Institute of Medical Microbiology, University Hospital Essen, Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, University Hospital Essen, Essen, Germany
| |
Collapse
|
18
|
Mellinghoff SC, Panse J, Alakel N, Behre G, Buchheidt D, Christopeit M, Hasenkamp J, Kiehl M, Koldehoff M, Krause SW, Lehners N, von Lilienfeld-Toal M, Löhnert AY, Maschmeyer G, Teschner D, Ullmann AJ, Penack O, Ruhnke M, Mayer K, Ostermann H, Wolf HH, Cornely OA. Primary prophylaxis of invasive fungal infections in patients with haematological malignancies: 2017 update of the recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society for Haematology and Medical Oncology (DGHO). Ann Hematol 2017; 97:197-207. [PMID: 29218389 PMCID: PMC5754425 DOI: 10.1007/s00277-017-3196-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022]
Abstract
Immunocompromised patients are at high risk of invasive fungal infections (IFI), in particular those with haematological malignancies undergoing remission-induction chemotherapy for acute myeloid leukaemia (AML) or myelodysplastic syndrome (MDS) and recipients of allogeneic haematopoietic stem cell transplants (HSCT). Despite the development of new treatment options in the past decades, IFI remains a concern due to substantial morbidity and mortality in these patient populations. In addition, the increasing use of new immune modulating drugs in cancer therapy has opened an entirely new spectrum of at risk periods. Since the last edition of antifungal prophylaxis recommendations of the German Society for Haematology and Medical Oncology in 2014, seven clinical trials regarding antifungal prophylaxis in patients with haematological malignancies have been published, comprising 1227 patients. This update assesses the impact of this additional evidence and effective revisions. Our key recommendations are the following: prophylaxis should be performed with posaconazole delayed release tablets during remission induction chemotherapy for AML and MDS (AI). Posaconazole iv can be used when the oral route is contraindicated or not feasible. Intravenous liposomal amphotericin B did not significantly decrease IFI rates in acute lymphoblastic leukaemia (ALL) patients during induction chemotherapy, and there is poor evidence to recommend it for prophylaxis in these patients (CI). Despite substantial risk of IFI, we cannot provide a stronger recommendation for these patients. There is poor evidence regarding voriconazole prophylaxis in patients with neutropenia (CII). Therapeutic drug monitoring TDM should be performed within 2 to 5 days of initiating voriconazole prophylaxis and should be repeated in case of suspicious adverse events or of dose changes of interacting drugs (BIItu). General TDM during posaconazole prophylaxis is not recommended (CIItu), but may be helpful in cases of clinical failure such as breakthrough IFI for verification of compliance or absorption.
Collapse
Affiliation(s)
- Sibylle C Mellinghoff
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany. .,Department I of Internal Medicine, German Centre for Infection Research (DZIF), University Hospital of Cologne, University of Cologne, Cologne, Germany.
| | - Jens Panse
- Department of Oncology, Haematology, Haemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| | - Nael Alakel
- Department I of Internal Medicine, Haematology and Oncology, University Hospital Dresden, Dresden, Germany
| | - Gerhard Behre
- Division of Haematology and Oncology, Leipzig University Hospital, Leipzig, Germany
| | - Dieter Buchheidt
- Department of Internal Medicine-Haematology and Oncology, Mannheim University Hospital, Heidelberg University, Mannheim, Germany
| | - Maximilian Christopeit
- Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Justin Hasenkamp
- Clinic for Haematology and Medical Oncology with Department for Stem Cell Transplantation, University Medicine Göttingen, Göttingen, Germany
| | - Michael Kiehl
- Department I for Internal Medicine, Klinikum Frankfurt (Oder), Frankfurt (Oder), Germany
| | - Michael Koldehoff
- Department of Bone Marrow Transplantation, West German Cancer Centre, University Hospital of Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Stefan W Krause
- Department V for Internal Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Nicola Lehners
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Annika Y Löhnert
- Department I of Internal Medicine, German Centre for Infection Research (DZIF), University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Georg Maschmeyer
- Department of Haematology, Oncology and Palliative Care, Klinikum Ernst von Bergmann, Potsdam, Germany
| | - Daniel Teschner
- Department of Haematology, Medical Oncology, and Pneumology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andrew J Ullmann
- Department II of Internal Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Olaf Penack
- Department for Haematology, Oncology and Tumour immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Ruhnke
- Department of Haematology and Oncology, Paracelsus-Kliniken Osnabrück, Osnabrück, Germany
| | - Karin Mayer
- Department III of Internal Medicine, University Hospital Bonn, Bonn, Germany
| | - Helmut Ostermann
- Department of Haematology and Oncology, University of Munich, Munich, Germany
| | - Hans-H Wolf
- Department IV of Internal Medicine, University Hospital Halle, Halle, Germany
| | - Oliver A Cornely
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Department I of Internal Medicine, German Centre for Infection Research (DZIF), University Hospital of Cologne, University of Cologne, Cologne, Germany.,Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
| |
Collapse
|
19
|
Abstract
BACKGROUND Routine therapeutic drug monitoring of voriconazole seems to be beneficial. This study investigated the therapeutic drug monitoring practices in intensive care to derive possible recommendations for improvement. METHODS A retrospective chart review was performed for patients aged ≥18 years who started treatment with voriconazole, which lasted for at least 3 days while being admitted to an intensive care unit to assess possible differences between the patients with and without voriconazole trough concentrations measured. RESULTS In 64 (76%) of the 84 patients, voriconazole trough concentrations were measured. The groups differed significantly with respect to the duration of voriconazole treatment and intensive care unit admission. Time of sampling was very early and therefore inappropriate for 49% of the first measured voriconazole trough concentrations and in 48% of the subsequent measured concentrations. Of the 349 trough concentrations measured, 129 (37%) were outside the therapeutic window. In 11% of these cases, no recommendation was provided without identifiable reason. In addition, 27% of recommended dose adjustments were not implemented, probably because the advice was not suited for the specific clinical situation. CONCLUSIONS The performance of voriconazole therapeutic drug monitoring can still be improved although voriconazole concentrations were monitored in most patients. A multidisciplinary approach-for instance by means of antifungal stewardship-will probably be able to overcome problems encountered such as timing of sampling, incompleteness of data in clinical context, and lack of implementation of recommendations.
Collapse
|
20
|
Groll AH, Townsend R, Desai A, Azie N, Jones M, Engelhardt M, Schmitt-Hoffman AH, Brüggemann RJM. Drug-drug interactions between triazole antifungal agents used to treat invasive aspergillosis and immunosuppressants metabolized by cytochrome P450 3A4. Transpl Infect Dis 2017; 19. [PMID: 28722255 DOI: 10.1111/tid.12751] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 01/03/2023]
Abstract
Patients undergoing treatment with immunosuppressant drugs following solid organ or hematopoietic stem cell transplantation are at particular risk for development of serious infections such as invasive aspergillosis. Four triazole antifungal drugs, voriconazole, posaconazole, itraconazole, and isavuconazole, are approved to treat invasive aspergillosis either as first- or second-line therapy. All of these agents are inhibitors of cytochrome P450 3A4, which plays a key role in metabolizing immunosuppressant drugs such as cyclosporine, tacrolimus, and sirolimus. Thus, co-administration of a triazole antifungal drug with these immunosuppressant drugs can potentially increase plasma concentrations of the immunosuppressant drugs, thereby resulting in toxicity, or upon discontinuation, inadvertently decrease the respective concentrations with increased risk of rejection or graft-versus-host disease. In this article, we review the evidence for the extent of inhibition of cytochrome P450 3A4 by each of these triazole antifungal drugs and assess their effects on cyclosporine, tacrolimus, and sirolimus. We also consider other factors affecting interactions of these two classes of drugs. Finally, we examine recommendations and strategies to evaluate and address those potential drug-drug interactions in these patients.
Collapse
Affiliation(s)
- Andreas H Groll
- Department of Pediatric Hematology/Oncology, University Children's Hospital Münster, Münster, Germany
| | - Robert Townsend
- Astellas Pharma Global Development, Inc., Northbrook, IL, USA
| | - Amit Desai
- Astellas Pharma Global Development, Inc., Northbrook, IL, USA
| | - Nkechi Azie
- Astellas Pharma Global Development, Inc., Northbrook, IL, USA
| | - Mark Jones
- Basilea Pharmaceutica International Ltd, Basel, Switzerland
| | | | | | - Roger J M Brüggemann
- Department of Pharmacy, Radboud University Nijmegen Medical Centre, and Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Hamdy RF, Zaoutis TE, Seo SK. Antifungal stewardship considerations for adults and pediatrics. Virulence 2017; 8:658-672. [PMID: 27588344 PMCID: PMC5626349 DOI: 10.1080/21505594.2016.1226721] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/05/2016] [Accepted: 08/11/2016] [Indexed: 10/21/2022] Open
Abstract
Antifungal stewardship refers to coordinated interventions to monitor and direct the appropriate use of antifungal agents in order to achieve the best clinical outcomes and minimize selective pressure and adverse events. Antifungal utilization has steadily risen over time in concert with the increase in number of immunocompromised adults and children at risk for invasive fungal infections (IFI). Challenges in diagnosing IFI often lead to delays in treatment and poorer outcomes. There are also emerging data linking prior antifungal exposure and suboptimal dosing to the emergence of antifungal resistance, particularly for Candida. Antimicrobial stewardship programs can take a multi-pronged bundle approach to ensure suitable prescribing of antifungals via post-prescription review and feedback and/or prior authorization. Institutional guidelines can also be developed to guide diagnostic testing in at-risk populations; appropriate choice, dose, and duration of antifungal agent; therapeutic drug monitoring; and opportunities for de-escalation and intravenous-to-oral conversion.
Collapse
Affiliation(s)
- Rana F. Hamdy
- Division of Infectious Diseases, Children's National Health System, Washington, DC, USA
| | - Theoklis E. Zaoutis
- Division of Infectious Diseases, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Susan K. Seo
- Department of Medicine, Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
22
|
Update on Therapeutic Drug Monitoring of Antifungals for the Prophylaxis and Treatment of Invasive Fungal Infections. CURRENT FUNGAL INFECTION REPORTS 2017. [DOI: 10.1007/s12281-017-0287-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Intérêt du suivi thérapeutique pharmacologique dans le cadre des infections pulmonaires. Rev Mal Respir 2017; 34:693-705. [DOI: 10.1016/j.rmr.2016.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 08/30/2016] [Indexed: 12/31/2022]
|
24
|
Ebrahimpour S, Namazi S, Mohammadi M, Nikbakht M, Hadjibabaie M, Masoumi HT, Ghavamzadeh A. Impact of CYP2C19 Polymorphisms on Serum Concentration of Voriconazole in Iranian Hematological Patients. J Res Pharm Pract 2017; 6:151-157. [PMID: 29026840 PMCID: PMC5632935 DOI: 10.4103/jrpp.jrpp_17_31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE This study aimed to determine the portion of Iranian patients who attain therapeutic serum concentrations of voriconazole (VRCZ) following administration of fixed doses. In addition, the effect of CYP2C19 polymorphism on serum levels of VRCZ was also investigated. METHODS Forty-eight adult patients of Iranian origin with hematologic malignancies, who received VRCZ for treatment of invasive aspergillosis, were recruited into the study. Blood samples were drawn at day 4 of treatment to measure trough drug concentrations and determine genotyping of CYP2C19 polymorphisms of each patient. High-performance liquid chromatography method was used for measuring VRCZ serum level and CYP2C19 polymorphisms were conducted by Sanger sequencing. Demographic and clinical characteristics of patients alongside with CYP2C19 polymorphisms were assessed to determine the effective factor/s on VRCZ serum concentration. FINDINGS Seventy-three percent of patients achieved therapeutic serum concentrations of VRCZ with administration of usual fixed doses in clinical practice. There was no correlation between weight-adjusted dose and serum concentrations of VRCZ. Mean serum levels were significantly different neither in genders nor in routes of administrations. Extensive and ultrarapid metabolizers (URMs) comprised 48.7% and 21.6% study population, respectively. CYP2C19 polymorphism dramatically influenced the trough levels of VRCZ, so that all patients with subtherapeutic levels expressed URM phenotype. CONCLUSION With respect to high incidence of URM phenotype in Iranian population, and observed association of this phenotype with sub-therapeutic levels in our study, performing therapeutic drug monitoring is strongly recommended for all patients.
Collapse
Affiliation(s)
- Sholeh Ebrahimpour
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Soha Namazi
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohammadi
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Nikbakht
- Hematology-Oncology and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Molouk Hadjibabaie
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Rational Use of Drugs, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ardeshir Ghavamzadeh
- Hematology-Oncology and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Different effects of lansoprazole and rabeprazole on the plasma voriconazole trough levels in allogeneic hematopoietic cell transplant recipients. Ann Hematol 2016; 95:1845-51. [PMID: 27535751 DOI: 10.1007/s00277-016-2782-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/02/2016] [Indexed: 11/27/2022]
Abstract
Voriconazole (VRC) is widely used as prophylaxis and in the treatment of invasive fungal disease (IFD) after allogeneic hematopoietic cell transplantation (HCT). We retrospectively examined the results of VRC therapeutic drug monitoring (TDM) in allogeneic HCT recipients. A total of 474 samples were obtained from 59 adult patients who received VRC during the first 100 days following HCT between 2009 and 2014 in our institute. Seventeen patients received VRC for prophylaxis of IFD, and 42 received VRC for the empirical or preemptive therapy for IFD. A total of 299 samples (63 %) were obtained during the administration of the intravenous form of VRC. The median VRC daily dose based on the actual body weight was 6.68 mg/kg/day (range, 1.92-10.41 mg/kg/day). The median VRC trough level was 0.99 mg/l (range, <0.09-5.45 mg/l). The multivariate analysis using a logistic regression model demonstrated significantly higher VRC trough levels (≥1.0 mg/l) in males (P < 0.001), empirical or preemptive therapy (P = 0.002), VRC daily dose based on the actual body weight ≥7 mg/kg/day (P < 0.001), and concomitant use of lansoprazole as compared to rabeprazole (P < 0.001). The concomitant use of calcineurin inhibitors and corticosteroids had no effects on VRC trough levels in multivariate analysis. These data suggest that lansoprazole and rabeprazole have different effects on the plasma VRC trough levels in the allogeneic HCT recipients.
Collapse
|
26
|
Chen L, Wang T, Wang Y, Yang Q, Xie J, Li Y, Lei J, Wang X, Xing J, Dong Y, Dong H. Optimization of voriconazole dosage regimen to improve the efficacy in patients with invasive fungal disease by pharmacokinetic/pharmacodynamic analysis. Fundam Clin Pharmacol 2016; 30:459-65. [PMID: 27341147 DOI: 10.1111/fcp.12212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/23/2016] [Accepted: 06/23/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Lu Chen
- Department of Pharmacy; The First Affiliated Hospital of Xi'an Jiaotong University; Xi'an 710061 China
| | - Taotao Wang
- Department of Pharmacy; The First Affiliated Hospital of Xi'an Jiaotong University; Xi'an 710061 China
| | - Yan Wang
- Department of Pharmacy; The First Affiliated Hospital of Xi'an Jiaotong University; Xi'an 710061 China
| | - Qianting Yang
- Department of Pharmacy; The First Affiliated Hospital of Xi'an Jiaotong University; Xi'an 710061 China
| | - Jiao Xie
- Department of Pharmacy; The First Affiliated Hospital of Xi'an Jiaotong University; Xi'an 710061 China
| | - Ying Li
- Department of Pharmacy; The First Affiliated Hospital of Xi'an Jiaotong University; Xi'an 710061 China
| | - Jin'e Lei
- Department of Laboratory; The First Affiliated Hospital of Xi'an Jiaotong University; Xi'an 710061 China
| | - Xue Wang
- Central Intensive Care Unit; The First Affiliated Hospital of Xi'an Jiaotong University; Xi'an 710061 China
| | - Jianfeng Xing
- School of Pharmacy; Xi'an Jiaotong University; Xi'an 710061 China
| | - Yalin Dong
- Department of Pharmacy; The First Affiliated Hospital of Xi'an Jiaotong University; Xi'an 710061 China
| | - Haiyan Dong
- Department of Pharmacy; The First Affiliated Hospital of Xi'an Jiaotong University; Xi'an 710061 China
| |
Collapse
|
27
|
Tverdek FP, Kofteridis D, Kontoyiannis DP. Antifungal agents and liver toxicity: a complex interaction. Expert Rev Anti Infect Ther 2016; 14:765-76. [PMID: 27275514 DOI: 10.1080/14787210.2016.1199272] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The number of antifungal agents has sharply increased in recent decades. Antifungals differ in their spectrum of activity, pharmacokinetic/pharmacodynamic properties, dosing, safety-profiles and costs. Risk of developing antifungal associated hepatotoxicity is multifactorial and is influenced by pre-existing liver disease, chemical properties of the drug, patient demographics, comorbidities, drug-drug interactions, environmental and genetic factors. Antifungal related liver injury typically manifests as elevations in serum aminotransferase levels, although the clinical significance of these biochemical alterations is not always clear. Incidence rates of hepatotoxicity induced by antifungal therapy range widely, occurring most frequently in patients treated with azole antifungals for documented fungal infections. AREAS COVERED This review provides an update regarding the hepatotoxicity profiles of the modern systemic antifungals used in treatment of invasive fungal infections. Expert commentary: Understanding the likelihood and pattern of hepatotoxicity for all suspected drugs can aid the clinician in early detection of liver injury allowing for intervention and potential mitigation of liver damage. Therapeutic drug monitoring is emerging as a potential tool to assess risk for hepatotoxicity.
Collapse
Affiliation(s)
- Frank P Tverdek
- a Department of Pharmacy Clinical Programs , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Diamantis Kofteridis
- b Infectious Disease Unit, Department of Internal Medicine , University Hospital of Heraklion , Crete , Greece
| | - Dimitrios P Kontoyiannis
- c Departments of Infectious Diseases , Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
28
|
|
29
|
Chuwongwattana S, Jantararoungtong T, Chitasombat MN, Puangpetch A, Prommas S, Dilokpattanamongkol P, Watcharananan SP, Sukasem C. A prospective observational study of CYP2C19 polymorphisms and voriconazole plasma level in adult Thai patients with invasive aspergillosis. Drug Metab Pharmacokinet 2016; 31:117-22. [PMID: 26861072 DOI: 10.1016/j.dmpk.2015.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/10/2015] [Accepted: 12/27/2015] [Indexed: 01/22/2023]
Abstract
The aim of this study was to investigate the association of genetic variants of CYP2C19 (CYP2C19*2, CYP2C19*3 and CYP2C19*17 alleles) and voriconazole trough plasma concentrations in Thai patients with invasive fungal infection. A total of 285 samples from patients with invasive fungal infection and treated with voriconazole were prospectively enrolled. At steady state, trough voriconazole concentrations were measured using tandem mass spectrophotometry and high performance liquid chromatography. The genetic variants in the CYP2C19 gene were genotyped for CYP2C19*2 (G681A), CYP2C19*3 (G636A) and CYP2C19*17 (C-806T) on plasma voriconazole level. Voriconazole Ctrough levels were positively associated with CYP2C19*3. The median Ctrough level for patients with the 636GA genotype (2.109, IQR 1.054-4.166 μg/ml) was statistically significantly higher than those with the 636GG genotype (1.596, IQR 0.755-2.980 μg/ml), P = 0.046. The patients with a poor metabolizer (PM; CYP2C19*2/*2, *2/*3) had voriconazole Ctrough level of 1.900 (IQR, 1.130-3.673 μg/ml). This was statistically significantly higher than that seen with the extensive metabolizer phenotype (1.470; IQR, 0.632-2.720 μg/ml), P = 0.039. An association between CYP2C19 variant alleles and high voriconazole plasma level was identified. Therefore, determining the CYP2C19 genotype before initiation of voriconazole treatment may be useful in optimizing the dosing regimen in Thai patients with invasive fungal infections.
Collapse
Affiliation(s)
- Sumonrat Chuwongwattana
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Thawinee Jantararoungtong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Maria N Chitasombat
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Apichaya Puangpetch
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Santirat Prommas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | | | - Siriorn P Watcharananan
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.
| |
Collapse
|
30
|
Therapeutic Drug Monitoring of Voriconazole in the Management of Invasive Fungal Infections: A Critical Review. Clin Pharmacokinet 2015; 54:1223-35. [DOI: 10.1007/s40262-015-0297-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
31
|
Abidi MZ, D'Souza A, Kuppalli K, Ledeboer N, Hari P. CYP2C19*17 genetic polymorphism--an uncommon cause of voriconazole treatment failure. Diagn Microbiol Infect Dis 2015; 83:46-8. [PMID: 25986028 DOI: 10.1016/j.diagmicrobio.2015.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/25/2015] [Accepted: 05/01/2015] [Indexed: 11/28/2022]
Abstract
We describe an immunosuppressed, 48-year-old male, allogeneic hematopoietic stem cell transplant recipient with severe graft-versus-host disease who developed invasive pulmonary Aspergillus fumigatus infection 6 months after transplant. His lack of response to voriconazole and undetectable serum trough levels of the drug led us to establish that he had the uncommon cytochrome P450, CYP2C19*17 allele, which leads to a rapid metabolism of voriconazole but not of the other azole antifungals. We discuss the particular challenges encountered in this case.
Collapse
Affiliation(s)
- Maheen Z Abidi
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Anita D'Souza
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Krutika Kuppalli
- Division of Infectious Diseases, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA; Division of Infectious Diseases, Department of Medicine, Edward Hines, Jr. Veterans Administration Hospital, Hines, IL, USA
| | - Nathan Ledeboer
- Divison of Microbiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Parmeswaran Hari
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
32
|
Brüggemann RJM, Aarnoutse RE. Fundament and Prerequisites for the Application of an Antifungal TDM Service. CURRENT FUNGAL INFECTION REPORTS 2015; 9:122-129. [PMID: 26029319 PMCID: PMC4441949 DOI: 10.1007/s12281-015-0224-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Therapeutic drug monitoring (TDM) involves the measurement of plasma or serum drug concentration to adapt dosages to achieve predefined target concentrations that are associated with optimal clinical response while minimizing the chance of encountering toxicity. Many papers in the field of antifungal drugs have focused on the evidence that supports the use of TDM thereby emphasizing the breakpoints or target concentrations in general literature. This review focuses on the process of TDM to inform health care workers on the fundaments and prerequisites that safeguard the good application of TDM. Knowledge on the complete process of TDM including pharmacokinetics (and relevant covariates), pharmacodynamic aspects, trials that are necessary to provide us with evidence, translation of knowledge to other populations and pathogens, and implications for the pre-analytical, analytical, and post-analytical phases (the process of TDM) are discussed in relevant detail. For each individual step, recommendations are made for the readers. We believe this will be a valuable resource and to be of added value to the many papers that focus on relations between exposure and efficacy or toxicity. It will help to achieve greater benefit of TDM.
Collapse
Affiliation(s)
- Roger J M Brüggemann
- Department of Pharmacy, Radboud University Medical Center, 864, PO BOX 9101, 6500 HB Nijmegen, The Netherlands ; Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud University Medical Center, 864, PO BOX 9101, 6500 HB Nijmegen, The Netherlands ; Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| |
Collapse
|
33
|
Moriyama B, Kadri S, Henning SA, Danner RL, Walsh TJ, Penzak SR. Therapeutic Drug Monitoring and Genotypic Screening in the Clinical Use of Voriconazole. CURRENT FUNGAL INFECTION REPORTS 2015; 9:74-87. [PMID: 26918067 DOI: 10.1007/s12281-015-0219-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Voriconazole is an antifungal triazole that is the first line agent for treatment of invasive aspergillosis. It is metabolized by CYP2C19, CYP2C9, and CYP3A4 and demonstrates wide interpatient variability in serum concentrations. Polymorphisms in CYP2C19 contribute to variability in voriconazole pharmacokinetics. Here, evidence is examined for the use of voriconazole therapeutic drug monitoring (TDM) and the role of CYP2C19 genotyping in voriconazole dosing. The majority of studies exploring the impact of voriconazole TDM on efficacy and safety have found TDM to be beneficial. However, most of these studies are observational, with only one being a randomized controlled trial. High-volume multicenter randomized controlled trials of TDM are currently not available to support definitive guidelines. There is a significant relationship in healthy volunteers between CYP2C19 genotype and voriconazole pharmacokinetics, but this association is markedly less visible in actual patients. While CYP2C19 genotype data may explain variability of voriconazole serum levels, they alone are not sufficient to guide initial dosing. The timeliness of availability of CYP2C19 genotype data in treatment of individual patients also remains challenging. Additional studies are needed before implementation of CYP2C19 genotyping for voriconazole dosing into routine clinical care.
Collapse
Affiliation(s)
- Brad Moriyama
- NIH Clinical Center, Pharmacy Department, Bethesda, MD
| | - Sameer Kadri
- NIH Clinical Center, Critical Care Medicine Department, Bethesda, MD
| | | | - Robert L Danner
- NIH Clinical Center, Critical Care Medicine Department, Bethesda, MD
| | - Thomas J Walsh
- Transplantation-Oncology Infectious Diseases Program, Department of Medicine, Pediatrics, and Microbiology and Infectious Diseases, Weill Cornell Medical Center of Cornell University, New York, NY
| | - Scott R Penzak
- Department of Pharmacotherapy University of North Texas System College of Pharmacy, Fort Worth, TX
| |
Collapse
|
34
|
Karthaus M, Lehrnbecher T, Lipp HP, Kluge S, Buchheidt D. Therapeutic drug monitoring in the treatment of invasive aspergillosis with voriconazole in cancer patients--an evidence-based approach. Ann Hematol 2015; 94:547-56. [PMID: 25697592 DOI: 10.1007/s00277-015-2333-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/24/2015] [Indexed: 11/28/2022]
Abstract
Invasive aspergillosis (IA) is a life-threatening complication in hematological cancer patients. Voriconazole (VCZ) is the established first-line treatment of IA. VCZ has a nonlinear pharmacokinetic profile and exhibits considerable variability of drug exposure. Therefore, therapeutic drug monitoring (TDM) of VCZ may help to improve treatment results in IA patients, but evidence-based data on the clinical use of TDM in patients treated with VCZ for IA are scarce. Evidence-based guidance is needed to support decisions on the use of TDM in routine VCZ therapy of IA. Our present analysis assessed published studies for evidence-based criteria for TDM of VCZ to improve efficacy and safety of IA therapy in cancer patients. Literature searches of MEDLINE and Cochrane database were performed. We identified 27 clinical studies reporting on the use of plasma level monitoring and/or TDM for VCZ. For each study, strength of recommendation and quality of evidence were categorized according to predefined criteria. A number of studies were published on plasma level monitoring (PLM) and TDM in VCZ therapy of IA. Across studies, VCZ levels >5-5.5 mg/L were found to be associated with toxicity, while reaching minimum levels of >1-2 mg/L appeared to improve efficacy. Timing, frequency, and intervention thresholds and dosage increments of VCZ for adjustment of plasma levels remain to be established. Currently, there is still no conclusive evidence for recommendations in routine clinical practice. More data from prospective randomized studies with TDM are desirable to provide a solid evidence basis for these approaches.
Collapse
Affiliation(s)
- Meinolf Karthaus
- Medical Clinic IV, Hematology and Oncology, Neuperlach Hospital, Munich, Germany,
| | | | | | | | | |
Collapse
|
35
|
Variability of voriconazole plasma concentrations after allogeneic hematopoietic stem cell transplantation: impact of cytochrome p450 polymorphisms and comedications on initial and subsequent trough levels. Antimicrob Agents Chemother 2015; 59:2305-14. [PMID: 25645831 DOI: 10.1128/aac.04838-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Voriconazole (VRC) plasma trough concentrations (Cmin) are highly variable, and this could affect treatment efficacy and safety in patients undergoing allogeneic hematopoietic stem cell transplantation (AHSCT). We aimed to describe the intra- and interindividual variation of VRC Cmin throughout the course of VRC therapy and to identify the determinants of this variation. Clinical data, medications, and VRC Cmin (n = 308) of 33 AHSCT patients were retrospectively collected. Cytochrome P450 (CYP450) genotypes of CYP2C19, CYP3A4, and CYP3A5 patients were retrospectively determined before allografting, and a combined genetic score was calculated for each patient. The higher the genetic score, the faster the metabolism of the patient. The VRC Cmin inter- and intraindividual coefficients of variation were 84% and 68%, respectively. The VRC dose (D) was correlated to VRC Cmin (r = 0.412, P < 0.0001) only for oral administration. The administration route and the genetic score significantly affected the initial VRC Cmin. Considering oral therapy, patients with a genetic score of <2 had higher initial VRC Cmin/D than patients with a genetic score of >2 (P = 0.009). Subsequent VRC Cmin remained influenced by the genetic score (P = 0.004) but were also affected by pump proton inhibitor comedication (P < 0.0001). The high variability of VRC Cmin in AHSCT patients is partially explained by the route of administration, treatment with pump proton inhibitors, and the combined genetic score. This study suggests the interest in combined genetic score determination to individualize a priori the VRC dose and underlines the need for longitudinal therapeutic drug monitoring to adapt subsequent doses to maintain the VRC Cmin within the therapeutic range.
Collapse
|
36
|
Therapeutic drug monitoring for triazoles: A needs assessment review and recommendations from a Canadian perspective. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2015; 25:327-43. [PMID: 25587296 PMCID: PMC4277162 DOI: 10.1155/2014/340586] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Invasive fungal infections cause significant morbidity and mortality in patients with concomitant underlying immunosuppressive diseases. The recent addition of new triazoles to the antifungal armamentarium has allowed for extended-spectrum activity and flexibility of administration. Over the years, clinical use has raised concerns about the degree of drug exposure following standard approved drug dosing, questioning the need for therapeutic drug monitoring (TDM). Accordingly, the present guidelines focus on TDM of triazole antifungal agents. A review of the rationale for triazole TDM, the targeted patient populations and available laboratory methods, as well as practical recommendations based on current evidence from an extended literature review are provided in the present document.
Collapse
|
37
|
Serum voriconazole level variability in patients with hematological malignancies receiving voriconazole therapy. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2014; 25:271-6. [PMID: 25371690 PMCID: PMC4211351 DOI: 10.1155/2014/214813] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Voriconazole is an important antifungal agent used to treat invasive fungal infections; however, its administration can be difficult because of the narrow range between the level required for therapeutic efficacy and the level at which there is risk for hepatic and neurological toxicity. The purpose of this study was to elucidate the relationships among oral dosage, voriconazole levels and liver enzyme levels among leukemia patients. INTRODUCTION: Voriconazole plasma concentrations have been correlated with oral dosing in healthy subjects, but have been poorly characterized in ill patients with hematological malignancies receiving intensive chemotherapy. METHODS: The relationship between orally administered voriconazole, plasma concentrations and liver toxicity was examined in a cohort of 69 primarily acute leukemia patients undergoing intensive chemotherapy. RESULTS: Oral administration of voriconazole was associated with significant interpatient variability, with voriconazole steady-state concentrations ranging from 0 μg/mL to 16.6 μg/mL. Approximately 20% of patients achieved steady-state concentrations <1 μg/mL. When adjusted for weight, patients receiving higher voriconazole doses tended toward higher plasma concentrations; however, there was no significant relationship between the plasma concentration and genotype, age, sex or use of concomitant proton pump inhibitors. Voriconazole concentrations were correlated with higher serum alkaline phosphatase levels at day 6 to 8, and with higher bilirubin and aspartate aminotransferase levels at day 14 to 16, but not with other liver enzyme levels. CONCLUSION: In ill patients with acute leukemia and related disorders undergoing treatment with oral voriconazole, there is a poor correlation between the voriconazole dose and plasma concentrations, and many patients achieve levels that are considered to be subtherapeutic. The findings support the routine use of therapeutic drug monitoring in these patients.
Collapse
|
38
|
Vanstraelen K, Wauters J, Vercammen I, de Loor H, Maertens J, Lagrou K, Annaert P, Spriet I. Impact of hypoalbuminemia on voriconazole pharmacokinetics in critically ill adult patients. Antimicrob Agents Chemother 2014; 58:6782-9. [PMID: 25182655 PMCID: PMC4249353 DOI: 10.1128/aac.03641-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/23/2014] [Indexed: 01/30/2023] Open
Abstract
Setting the adequate dose for voriconazole is challenging due to its variable pharmacokinetics. We investigated the impact of hypoalbuminemia (<35 g/liter) on voriconazole pharmacokinetics in adult intensive care unit (ICU) patients treated with voriconazole (20 samples in 13 patients) as well as in plasma samples from ICU patients that had been spiked with voriconazole at concentrations of 1.5 mg/liter, 2.9 mg/liter, and 9.0 mg/liter (66 samples from 22 patients). Plasma albumin concentrations ranged from 13.8 to 38.7 g/liter. Total voriconazole concentrations in adult ICU patients treated with voriconazole ranged from 0.5 to 8.7 mg/liter. Unbound and bound voriconazole concentrations were separated using high-throughput equilibrium dialysis followed by liquid chromatography-tandem mass spectrometry (LC-MSMS). Multivariate analysis revealed a positive relationship between voriconazole plasma protein binding and plasma albumin concentrations (P < 0.001), indicating higher unbound voriconazole concentrations with decreasing albumin concentrations. The correlation is more pronounced in the presence of elevated bilirubin concentrations (P = 0.05). We therefore propose to adjust the measured total voriconazole concentrations in patients with abnormal plasma albumin and total serum bilirubin plasma concentrations who show adverse events potentially related to voriconazole via a formula that we developed. Assuming 50% protein binding on average and an upper limit of 5.5 mg/liter for total voriconazole concentrations, the upper limit for unbound voriconazole concentrations is 2.75 mg/liter. Alterations in voriconazole unbound concentrations caused by hypoalbuminemia and/or elevated bilirubin plasma concentrations cannot be countered immediately, due to the adult saturated hepatic metabolism. Consequently, increased unbound voriconazole concentrations can possibly cause adverse events, even when total voriconazole concentrations are within the reference range.
Collapse
Affiliation(s)
- Kim Vanstraelen
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, University Hospitals Leuven, Leuven, Belgium
| | - Joost Wauters
- Clinical Department of General Internal Medicine, Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Ine Vercammen
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, University Hospitals Leuven, Leuven, Belgium
| | - Henriette de Loor
- Department of Microbiology and Immunology, Laboratory of Nephrology and Renal Transplantation, University Hospitals Leuven/KU Leuven, Leuven, Belgium
| | - Johan Maertens
- Clinical Department of Haematology, Acute Leukaemia and Stem Cell Transplantation Unit, University Hospitals Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Clinical Department of Laboratory Medicine, Department of Microbiology and Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Pieter Annaert
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Isabel Spriet
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
39
|
Inflammation is associated with voriconazole trough concentrations. Antimicrob Agents Chemother 2014; 58:7098-101. [PMID: 25223994 DOI: 10.1128/aac.03820-14] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Voriconazole concentrations display a large variability, which cannot completely be explained by known factors. Inflammation may be a contributing factor, as inflammatory stimuli can change the activities and expression levels of cytochrome P450 isoenzymes. We explored the correlation between inflammation, reflected by C-reactive protein (CRP) concentrations, and voriconazole trough concentrations. A retrospective chart review of patients with at least one steady-state voriconazole trough concentration and a CRP concentration measured on the same day was performed. A total of 128 patients were included. A significantly (P < 0.001) higher voriconazole trough concentration was observed in patients with severe inflammation (6.2 mg/liter; interquartile range [IQR], 3.4 to 8.7 mg/liter; n = 20) than in patients with moderate inflammation (3.4 mg/liter; IQR, 1.6 to 5.4 mg/liter; n = 60) and in patients with no to mild inflammation (1.6 mg/liter; IQR, 0.8 to 3.0 mg/liter; n = 48). The patients in all three groups received similar voriconazole doses based on mg/kg body weight (P = 0.368). Linear regression analyses, both unadjusted and adjusted for covariates of gender, age, dose, route of administration, liver enzymes, and interacting coadministered medications, showed a significant association between voriconazole and CRP concentration (P < 0.001). For every 1-mg/liter increase in the CRP concentration, the voriconazole trough concentration increased by 0.015 mg/liter (unadjusted 95% confidence interval [CI], 0.011 to 0.020 mg/liter; adjusted 95% CI, 0.011 to 0.019 mg/liter). Inflammation, reflected by the C-reactive protein concentration, is associated with voriconazole trough concentrations. Further research is necessary to assess if taking the inflammatory status of a patient into account is helpful in therapeutic drug monitoring of voriconazole to maintain concentrations in the therapeutic window, thereby possibly preventing suboptimal treatment or adverse events.
Collapse
|
40
|
Pastor FJ, Guarro J. Treatment of Aspergillus terreus infections: a clinical problem not yet resolved. Int J Antimicrob Agents 2014; 44:281-9. [PMID: 25190543 DOI: 10.1016/j.ijantimicag.2014.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 07/03/2014] [Accepted: 07/10/2014] [Indexed: 10/24/2022]
Abstract
Despite the use of recommended therapies, invasive infections by Aspergillus terreus show a poor response. For years, investigative studies on the failure of therapy of fungal infections have focused on in vitro susceptibility data. However, it is well known that low minimum inhibitory concentrations (MICs) are not always predictive of response to therapy despite a correct dosage schedule. Many experimental and clinical studies have tried to establish a relationship between MICs and outcome in serious fungal infections but have come to contradictory and even surprising conclusions. The success or failure of treatment is determined by many factors, including the in vitro susceptibility of the causative fungal isolate, the pharmacokinetics/pharmacodynamics of the drug used for treatment, pharmacokinetic variability in the population, and the underlying disease that patients suffer. To try to understand this poor response to treatment, available data on the in vitro susceptibility of A. terreus, the experimental and clinical response to amphotericin B, triazoles and echinocandins, and the pharmacokinetics/pharmacodynamics of these antifungals have been reviewed. Of special interest are the fungistatic activites of these drugs against A. terreus and the high interpatient variability of serum drug levels observed in therapy based on triazoles, which make monitoring of infected patients necessary.
Collapse
Affiliation(s)
- F Javier Pastor
- Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain
| | - Josep Guarro
- Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain.
| |
Collapse
|
41
|
Vanstraelen K, Wauters J, De Loor H, Vercammen I, Annaert P, Lagrou K, Spriet I. Protein-Binding Characteristics of Voriconazole Determined by High-Throughput Equilibrium Dialysis. J Pharm Sci 2014; 103:2565-70. [DOI: 10.1002/jps.24064] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 01/08/2023]
|
42
|
Obeng AO, Egelund EF, Alsultan A, Peloquin CA, Johnson JA. CYP2C19 polymorphisms and therapeutic drug monitoring of voriconazole: are we ready for clinical implementation of pharmacogenomics? Pharmacotherapy 2014; 34:703-18. [PMID: 24510446 PMCID: PMC4082739 DOI: 10.1002/phar.1400] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Since its approval by the U.S. Food and Drug Administration in 2002, voriconazole has become a key component in the successful treatment of many invasive fungal infections including the most common, aspergillosis and candidiasis. Despite voriconazole's widespread use, optimizing its treatment in an individual can be challenging due to significant interpatient variability in plasma concentrations of the drug. Variability is due to nonlinear pharmacokinetics and the influence of patient characteristics such as age, sex, weight, liver disease, and genetic polymorphisms in the cytochrome P450 2C19 gene (CYP2C19) encoding for the CYP2C19 enzyme, the primary enzyme responsible for metabolism of voriconazole. CYP2C19 polymorphisms account for the largest portion of variability in voriconazole exposure, posing significant difficulty to clinicians in targeting therapeutic concentrations. In this review, we discuss the role of CYP2C19 polymorphisms and their influence on voriconazole's pharmacokinetics, adverse effects, and clinical efficacy. Given the association between CYP2C19 genotype and voriconazole concentrations, as well as the association between voriconazole concentrations and clinical outcomes, particularly efficacy, it seems reasonable to suggest a potential role for CYP2C19 genotype to guide initial voriconazole dose selection followed by therapeutic drug monitoring to increase the probability of achieving efficacy while avoiding toxicity.
Collapse
Affiliation(s)
- Aniwaa Owusu Obeng
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pharmacy, The Mount Sinai Hospital, New York, New York, USA
| | - Eric F. Egelund
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Abdullah Alsultan
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Charles A. Peloquin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Julie A. Johnson
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA
- Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
43
|
Abstract
Invasive fungal infections have increase worldwide and represent a threat for immunocompromised patients including HIV-infected, recipients of solid organ and stem cell transplants, and patients receiving immunosuppressive therapies. High mortality rates and difficulties in early diagnosis characterize pulmonary fungal infections. Invasive pulmonary aspergillosis has been reviewed focussing on therapeutic management. Although new compounds have become available in the past years (i.e., amphotericin B lipid formulations, last-generation azoles, and echinocandines), new diagnostic tools and careful therapeutic management are mandatory to assure an early appropriate targeted treatment that represents the key factor for a successful conservative approach in respiratory fungal infections.
Collapse
|
44
|
Zonios D, Yamazaki H, Murayama N, Natarajan V, Palmore T, Childs R, Skinner J, Bennett JE. Voriconazole metabolism, toxicity, and the effect of cytochrome P450 2C19 genotype. J Infect Dis 2014; 209:1941-8. [PMID: 24403552 PMCID: PMC4038142 DOI: 10.1093/infdis/jiu017] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/06/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Prospective evaluation of the antifungal drug, voriconazole, is needed to determine whether drug toxicity correlates with CYP2C19 genotype or serum concentrations of voriconazole or its metabolites. METHODS We conducted a prospective study of 95 patients to determine voriconazole toxicity and its relationship to genotype and serum levels of voriconazole and its two metabolites. Efficacy was not evaluated because, in most cases, the drug was given for empirical or prophylactic therapy. RESULTS Hallucinations occurred in 16 patients (16.8%), visual changes in 17 (17.9%), photosensitivity in 10 (10.5%), and hepatotoxicity in 6 (6.3%). There was no correlation between photosensitivity or hepatotoxicity and levels of voriconazole or metabolites. Patients with hallucinations had higher average voriconazole levels (4.5 vs 2.5 μg/mL) but with extensive overlap. The recommended oral dose of 200 mg did not provide consistently detectable serum voriconazole levels in adults. CYP2C19 and CYP2C9 genotypes had a minor influence over levels, though the 4 patients homozygous for the 2C19*2 genotype had higher average levels for voriconazole (4.3 vs 2.5 μg/mL) and lower N-oxide levels (1.6 vs 2.5 μg/mL). CONCLUSIONS CYP2C19 and 2C9 genotypes were not major determinants of voriconazole metabolism. No toxic serum level of voriconazole or its metabolites could be identified.
Collapse
Affiliation(s)
- Dimitrios Zonios
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, Maryland
| | | | - Norie Murayama
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Ven Natarajan
- SAIC-Frederick Inc, National Cancer Institute at Frederick, Maryland
| | - Tara Palmore
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, Maryland
| | - Richard Childs
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Jeff Skinner
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, Maryland
| | - John E. Bennett
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, Maryland
| |
Collapse
|
45
|
Wang T, Chen S, Sun J, Cai J, Cheng X, Dong H, Wang X, Xing J, Dong W, Yao H, Dong Y. Identification of factors influencing the pharmacokinetics of voriconazole and the optimization of dosage regimens based on Monte Carlo simulation in patients with invasive fungal infections. J Antimicrob Chemother 2014; 69:463-470. [DOI: 10.1093/jac/dkt369] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
|
46
|
Cecil JA, Wenzel RP. Voriconazole: a broad-spectrum triazole for the treatment of invasive fungal infections. Expert Rev Hematol 2014; 2:237-54. [DOI: 10.1586/ehm.09.13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Seyedmousavi S, Mouton JW, Verweij PE, Brüggemann RJM. Therapeutic drug monitoring of voriconazole and posaconazole for invasive aspergillosis. Expert Rev Anti Infect Ther 2014; 11:931-41. [DOI: 10.1586/14787210.2013.826989] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Al-Badriyeh D, Heng SC, Neoh CF, Slavin M, Stewart K, Kong DCM. Pharmacoeconomics of voriconazole in the management of invasive fungal infections. Expert Rev Pharmacoecon Outcomes Res 2014; 10:623-36. [DOI: 10.1586/erp.10.69] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Ashbee HR, Barnes RA, Johnson EM, Richardson MD, Gorton R, Hope WW. Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology. J Antimicrob Chemother 2013; 69:1162-76. [PMID: 24379304 DOI: 10.1093/jac/dkt508] [Citation(s) in RCA: 515] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The burden of human disease related to medically important fungal pathogens is substantial. An improved understanding of antifungal pharmacology and antifungal pharmacokinetics-pharmacodynamics has resulted in therapeutic drug monitoring (TDM) becoming a valuable adjunct to the routine administration of some antifungal agents. TDM may increase the probability of a successful outcome, prevent drug-related toxicity and potentially prevent the emergence of antifungal drug resistance. Much of the evidence that supports TDM is circumstantial. This document reviews the available literature and provides a series of recommendations for TDM of antifungal agents.
Collapse
Affiliation(s)
- H Ruth Ashbee
- Mycology Reference Centre, Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
| | | | | | | | | | | |
Collapse
|
50
|
Mikulska M, Novelli A, Aversa F, Cesaro S, de Rosa FG, Girmenia C, Micozzi A, Sanguinetti M, Viscoli C. Voriconazole in clinical practice. J Chemother 2013; 24:311-27. [DOI: 10.1179/1973947812y.0000000051] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|