1
|
Boyer J, Hoenigl M, Kriegl L. Therapeutic drug monitoring of antifungal therapies: do we really need it and what are the best practices? Expert Rev Clin Pharmacol 2024; 17:309-321. [PMID: 38379525 DOI: 10.1080/17512433.2024.2317293] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Despite advancements, invasive fungal infections (IFI) still carry high mortality rates, often exceeding 30%. The challenges in diagnosis, coupled with limited effective antifungal options, make managing IFIs complex. Antifungal drugs are essential for IFI management, but their efficacy can be diminished by drug-drug interactions and pharmacokinetic variability. Therapeutic Drug Monitoring (TDM), especially in the context of triazole use, has emerged as a valuable strategy to optimize antifungal therapy. AREAS COVERED This review provides current evidence regarding the potential benefits of TDM in IFI management. It discusses how TDM can enhance treatment response, safety, and address altered pharmacokinetics in specific patient populations. EXPERT OPINION TDM plays a crucial role in achieving optimal therapeutic outcomes in IFI management, particularly for certain antifungal agents. Preclinical studies consistently show a link between therapeutic drug levels and antifungal efficacy. However, clinical research in mycology faces challenges due to patient heterogeneity and the diversity of fungal infections. TDM's potential advantages in guiding Echinocandin therapy for critically ill patients warrant further investigation. Additionally, for drugs like Posaconazole, assessing whether serum levels or alternative markers like saliva offer the best measure of efficacy is an intriguing question.
Collapse
Affiliation(s)
- Johannes Boyer
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
- Translational Mycology Working Group, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria
| | - Lisa Kriegl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
2
|
Flanagan S, Walker H, Ong V, Sandison T. Absence of Clinically Meaningful Drug-Drug Interactions with Rezafungin: Outcome of Investigations. Microbiol Spectr 2023; 11:e0133923. [PMID: 37154682 PMCID: PMC10269561 DOI: 10.1128/spectrum.01339-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Rezafungin is a novel once-weekly echinocandin for intravenous injection currently in development for the treatment of Candida infections and the prevention of Candida, Aspergillus, and Pneumocystis infections in allogeneic blood and marrow transplant recipients. While in vitro data indicated that rezafungin exposure was unlikely to be affected by commonly prescribed medicines, interactions resulting in the altered systemic exposure of some drugs coadministered with rezafungin could not be excluded. Two phase 1 open label crossover studies, conducted in healthy subjects, examined drug interactions between rezafungin and multiple drug probe cytochrome P450 (CYP) substrates and/or transporter proteins, immunosuppressants, and cancer therapies. Statistical analysis compared the outcomes for drugs coadministered with rezafungin to those for the drugs administered alone. The geometric mean ratio was reported, and a default 90% confidence interval (CI) no-effect equivalence range of 80 to 125% was used for the maximal plasma concentration (Cmax), the area under the curve from time zero to the final sampling time point (AUC0-t), and the AUC from time zero to infinity (AUC0-∞). Most probes and concomitant drugs were within the equivalence range. For tacrolimus, ibrutinib, mycophenolic acid, and venetoclax, the AUC or Cmax was reduced (10 to 19%), with lower bounds of the 90% CI values falling outside the no-effect range. The rosuvastatin AUC and Cmax and the repaglinide AUC0-∞ were increased (12 to 16%), with the 90% CI being marginally above the upper bound. Overall, the in vitro and in vivo data demonstrated a low drug interaction potential with rezafungin via CYP substrate/transporter pathways and commonly prescribed comedications, suggesting that coadministration was unlikely to result in clinically significant effects. Treatment-emergent adverse events were typically mild, and rezafungin was generally well tolerated. IMPORTANCE Antifungal agents used to treat life-threatening infections are often associated with severe drug-drug interactions (DDIs) that may limit their usefulness. Rezafungin, a newly approved once-weekly echinocandin, has been shown to be free of DDIs based on extensive nonclinical and clinical testing described in this study.
Collapse
Affiliation(s)
| | | | - Voon Ong
- Cidara Therapeutics, Inc., San Diego, California, USA
| | | |
Collapse
|
3
|
Population Pharmacokinetic Model and Optimal Sampling Strategies for Micafungin in Critically Ill Patients Diagnosed with Invasive Candidiasis. Antimicrob Agents Chemother 2022; 66:e0111322. [PMID: 36377940 PMCID: PMC9765295 DOI: 10.1128/aac.01113-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Candida bloodstream infections are associated with high attributable mortality, where early initiation of adequate antifungal therapy is important to increase survival in critically ill patients. The exposure variability of micafungin, a first-line agent used for the treatment of invasive candidiasis, in critically ill patients is significant, potentially resulting in underexposure in a substantial portion of these patients. The objective of this study was to develop a population pharmacokinetic model including appropriate sampling strategies for assessing micafungin drug exposure in critically ill patients to support adequate area under the concentration-time curve (AUC) determination. A two-compartment pharmacokinetic model was developed using data from intensive care unit (ICU) patients (n = 19), with the following parameters: total body clearance (CL), volume of distribution of the central compartment (V1), inter-compartmental clearance (CL12), and volume of distribution of the peripheral compartment (V2). The final model was evaluated with bootstrap analysis and the goodness-of-fit plots for the population and individual predicted micafungin plasma concentrations. Optimal sampling strategies (with sampling every hour, 24 h per day) were developed with 1- and 2-point sampling schemes. Final model parameters (±SD) were: CL = 1.03 (0.37) (L/h/1.85 m2), V1 = 0.17 (0.07) (L/kg LBMc), CL12 = 1.80 (4.07) (L/h/1.85 m2), and V2 = 0.12 (0.06) (L/kg LBMc). Sampling strategies with acceptable accuracy and precision were developed to determine the micafungin AUC. The developed model with optimal sampling procedures provides the opportunity to achieve quick optimization of the micafungin exposure from a single blood sample using Bayesian software and may be helpful in guiding early dose decision-making.
Collapse
|
4
|
Grant VC, Nguyen K, Rodriguez S, Zhou AY, Abdul-Mutakabbir JC, Tan KK. Characterizing Safety and Clinical Outcomes Associated with High-Dose Micafungin Utilization in Patients with Proven Invasive Candidiasis. Trop Med Infect Dis 2022; 7:tropicalmed7020023. [PMID: 35202218 PMCID: PMC8878997 DOI: 10.3390/tropicalmed7020023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/05/2023] Open
Abstract
Micafungin is the empiric antifungal agent of choice for the treatment of invasive candidiasis (IC). Pathophysiologic changes that occur in obese and/or critically ill patients can alter micafungin serum concentrations and the probability of target attainment. Although high doses of micafungin have been shown to be safe, clinical outcomes have not been widely evaluated. We conducted a single-center, retrospective observational study evaluating safety and clinical outcomes among adult patients treated with ≥200 mg of micafungin for ≥3 days for proven IC from 1 September 2013 through 1 September 2021. Twenty-three unique encounters for 21 patients were evaluated. The median BMI and APACHE II scores were 37.1 (IQR 28.8–48.9) and 24 (IQR 17.7–31), respectively. The median average daily dose of micafungin was 300 mg (IQR 275–400). Patients were treated with high-dose (HD) micafungin for the entirety of their echinocandin course in 15 encounters (65.2%). Transaminases remained stable, while a trend towards increased alkaline phosphatase was observed. A total of four deaths occurred (17.4%). Patients that died were predominantly young, Hispanic males who were obese and/or critically ill. Future studies are needed to determine the necessity and appropriate placement of HD micafungin in obese and/or critically ill patients.
Collapse
Affiliation(s)
- Victoria C. Grant
- Department of Pharmacy Practice, Loma Linda University Medical Center, Loma Linda, CA 92354, USA; (V.C.G.); (A.Y.Z.)
- Department of Pharmacy Practice, Loma Linda University School of Pharmacy, Loma Linda, CA 92354, USA; (K.N.); (S.R.); (J.C.A.-M.)
| | - Kenneth Nguyen
- Department of Pharmacy Practice, Loma Linda University School of Pharmacy, Loma Linda, CA 92354, USA; (K.N.); (S.R.); (J.C.A.-M.)
| | - Sasha Rodriguez
- Department of Pharmacy Practice, Loma Linda University School of Pharmacy, Loma Linda, CA 92354, USA; (K.N.); (S.R.); (J.C.A.-M.)
| | - Anna Y. Zhou
- Department of Pharmacy Practice, Loma Linda University Medical Center, Loma Linda, CA 92354, USA; (V.C.G.); (A.Y.Z.)
- Department of Pharmacy Practice, Loma Linda University School of Pharmacy, Loma Linda, CA 92354, USA; (K.N.); (S.R.); (J.C.A.-M.)
| | - Jacinda C. Abdul-Mutakabbir
- Department of Pharmacy Practice, Loma Linda University School of Pharmacy, Loma Linda, CA 92354, USA; (K.N.); (S.R.); (J.C.A.-M.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Karen K. Tan
- Department of Pharmacy Practice, Loma Linda University Medical Center, Loma Linda, CA 92354, USA; (V.C.G.); (A.Y.Z.)
- Department of Pharmacy Practice, Loma Linda University School of Pharmacy, Loma Linda, CA 92354, USA; (K.N.); (S.R.); (J.C.A.-M.)
- Correspondence:
| |
Collapse
|
5
|
Kim HY, Baldelli S, Märtson AG, Stocker S, Alffenaar JW, Cattaneo D, Marriott DJE. Therapeutic Drug Monitoring of the Echinocandin Antifungal Agents: Is There a Role in Clinical Practice? A Position Statement of the Anti-Infective Drugs Committee of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2022; 44:198-214. [PMID: 34654030 DOI: 10.1097/ftd.0000000000000931] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Reduced exposure to echinocandins has been reported in specific patient populations, such as critically ill patients; however, fixed dosing strategies are still used. The present review examines the accumulated evidence supporting echinocandin therapeutic drug monitoring (TDM) and summarizes available assays and sampling strategies. METHODS A literature search was conducted using PubMed in December 2020, with search terms such as echinocandins, anidulafungin, caspofungin, micafungin, or rezafungin with pharmacology, pharmacokinetics (PKs), pharmacodynamics (PDs), drug-drug interactions, TDM, resistance, drug susceptibility testing, toxicity, adverse drug reactions, bioanalysis, chromatography, and mass spectrometry. Data on PD/PD (PK/PD) outcome markers, drug resistance, PK variability, drug-drug interactions, assays, and TDM sampling strategies were summarized. RESULTS Echinocandins demonstrate drug exposure-efficacy relationships, and maximum concentration/minimal inhibitory concentration ratio (Cmax/MIC) and area under the concentration-time curve/MIC ratio (AUC/MIC) are proposed PK/PD markers for clinical response. The relationship between drug exposure and toxicity remains poorly clarified. TDM could be valuable in patients at risk of low drug exposure, such as those with critical illness and/or obesity. TDM of echinocandins may also be useful in patients with moderate liver impairment, drug-drug interactions, hypoalbuminemia, and those undergoing extracorporeal membrane oxygenation, as these conditions are associated with altered exposure to caspofungin and/or micafungin. Assays are available to measure anidulafungin, micafungin, and caspofungin concentrations. A limited-sampling strategy for anidulafungin has been reported. CONCLUSIONS Echinocandin TDM should be considered in patients at known risk of suboptimal drug exposure. However, for implementing TDM, clinical validation of PK/PD targets is needed.
Collapse
Affiliation(s)
- Hannah Yejin Kim
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| | - Sara Baldelli
- Unit of Clinical Pharmacology, Fatebenefratelli Sacco University Hospital, Milan, Italy
| | - Anne-Grete Märtson
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sophie Stocker
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Kensington, NSW Australia; and
| | - Jan-Willem Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, Fatebenefratelli Sacco University Hospital, Milan, Italy
- Gestione Ambulatoriale Politerapie (GAP) Outpatient Clinic, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy
| | - Deborah J E Marriott
- St Vincent's Clinical School, University of New South Wales, Kensington, NSW Australia; and
- Department of Microbiology and Infectious Diseases, St. Vincent's Hospital, Darlinghurst, NSW, Australia
| |
Collapse
|
6
|
Andes D. Regulatory Level of Evidence and Practicality in Antifungal Use Decisions for Less Common Fungal Diseases. Clin Infect Dis 2021; 73:2341-2343. [PMID: 34459896 DOI: 10.1093/cid/ciab015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Affiliation(s)
- David Andes
- Departments of Medicine and Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Siopi M, Perlin DS, Arendrup MC, Pournaras S, Meletiadis J. Comparative Pharmacodynamics of Echinocandins against Aspergillus fumigatus Using an In Vitro Pharmacokinetic/Pharmacodynamic Model That Correlates with Clinical Response to Caspofungin Therapy: Is There a Place for Dose Optimization? Antimicrob Agents Chemother 2021; 65:e01618-20. [PMID: 33495222 PMCID: PMC8097425 DOI: 10.1128/aac.01618-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 01/17/2021] [Indexed: 01/22/2023] Open
Abstract
Echinocandins have been used as primary therapy of invasive aspergillosis (IA), with suboptimal results at standard dosing. Here, we explored the efficacy of dose escalation in a validated in vitro pharmacokinetic/pharmacodynamic (PK/PD) model. Six echinocandin wild-type (WT) and three non-WT A. fumigatus isolates were tested in an in vitro PK/PD model simulating anidulafungin, caspofungin, and micafungin exposures with a free drug maximum concentration (fCmax) of 0.01 to 16 mg/liter and a half-life (t1/2) of 8 to 22 h. The relationship between the area under the dosing interval time-free drug concentration curve (fAUC0-24)/minimum effective concentration (MEC) and % aberrant mycelium formation was analyzed. PK/PD indices associated with 50 to 99.99% maximal activity (EI50 to EI99.99) were correlated with the clinical outcome of a 50-mg/day standard dose of caspofungin. The probability of target attainment (PTA) was calculated for different dosing regimens of each echinocandin via Monte Carlo analysis. A sigmoidal PK/PD relationship was found for WT isolates with EI99 values of 766, 8.8, and 115 fAUC0-24/CLSI MEC for anidulafungin, caspofungin, and micafungin, respectively. No aberrant mycelia were observed for non-WT isolates, irrespective of their MEC and drug exposure. The EI99, EI99.9, and EI99.99 values corresponded to 2-, 3-, and 4-log10 formation of aberrant mycelia and correlated with survival, favorable, and complete response rates to caspofungin primary therapy in patients with IA. A very low PTA (<13%) was found for the standard doses of all echinocandins, whereas a PTA of ≥90% was found with 100 and 150 mg/day of caspofungin and 1,400 mg/day micafungin against WT isolates. For anidulafungin, the PTA for 1,500 mg/day was 10%. Among the three echinocandins, only caspofungin at 2 or 3 times the licensed dosing was associated with a high PTA. Caspofungin dose escalation might deserve clinical validation.
Collapse
Affiliation(s)
- Maria Siopi
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Maiken C Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Spyros Pournaras
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
8
|
Assessment of micafungin loading dosage regimens against Candida spp. in ICU patients by Monte Carlo simulations. Eur J Clin Pharmacol 2020; 76:695-702. [PMID: 32047965 DOI: 10.1007/s00228-020-02840-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/28/2020] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To assess the efficacy of loading dose on micafungin by simulating different dosage regimens. METHODS A published study of micafungin in ICU patients was employed to simulate nine different dosage regimens which were sorted out three groups in terms of three maintenance doses. Using pharmacokinetic parameters and pharmacodynamic data, 5000-subject Monte Carlo simulations were conducted to simulate concentration-time profiles of micafungin, calculate probabilities of target attainment (PTAs), and cumulative fractions of response (CFRs) in terms of AUC/MIC targets. PTAs were calculated using AUC/MIC cut-offs: 285 (Candida parapsilosis), 3000 (all Candida spp.), and 5000 (non-parapsilosis Candida spp.). PTA or CFR > 90% was considered optimal for a dosage regimen. RESULTS The concentration-time profiles of micafungin-simulated dosage regimens were obtained. PTA values were over 90% while applying the loading dose in each group of regimens: for Candida albicans and Candida glabrata (AUC/MIC = 5000), all regimens with loading dose provided PTAs of ≥ 90% for MIC ≤ 0.008 mg/L. The PTAs (AUC/MIC = 3000) were over 90% for MIC ≤ 0.008 mg/L in any regimen. However, for MIC inferior to 0.016 mg/L, only loading dosage regimens provided PTAs exceeding 90%. For C. parapsilosis (AUC/MIC = 285), the maximum MIC of achieving a PTA ≥ 90% was 0.25 mg/L both in the regimens of B (150 mg maintenance dose) and C (200 mg maintenance dose) with loading dose. In addition, CFR of any regimen with loading dose was ≥ 90% against C. albicans and C. glabrata. None of the dosage regimens achieved an expected CFR against C. parapsilosis. CONCLUSIONS The dosage regimen of micafungin which had a loading dose of 1.5 times was more suitable for ICU patients infected by Candida spp.
Collapse
|
9
|
|
10
|
Stevens VM, Mueller SW, Reynolds PM, MacLaren R, Kiser TH. Extrapolating Antifungal Animal Data to Humans - Is it reliable? CURRENT FUNGAL INFECTION REPORTS 2020; 14:50-62. [PMID: 32201545 PMCID: PMC7083583 DOI: 10.1007/s12281-020-00370-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW This article aimed to review animal models of antifungals and identifies human literature to assess if the extrapolation of results is reliable. RECENT FINDINGS Animal studies have helped identify AUC/MIC targets for new drugs and formulations such as isavuconazole and delayed release posaconazole that have translated to successful outcomes in humans. Models have also been influential in the identification of possible combination therapies for the treatment of aspergillosis, such as voriconazole and echinocandins. However, challenges are endured with animal models when it comes to replicating the pharmacokinetics of humans which has been exemplified with the newest itraconazole formulation. Additionally, animal models have displayed a survival benefit with the use of iron chelators and amphotericin for mucormycosis which was not demonstrated in humans. SUMMARY Animal models have been a staple in the development and optimization of antifungal agents. They afford the ability to investigate uncommon diseases, such as invasive fungal infections, that would otherwise take years and many resources to complete. Although there are many benefits of animal models there are also shortcomings. This is why the reliability of extrapolating data from animal models to humans is often scrutinized.
Collapse
Affiliation(s)
- Victoria M Stevens
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, 12850 East Montview Boulevard, Mail Stop C238, Aurora, CO 80045, USA
| | - Scott W Mueller
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, 12850 East Montview Boulevard, Mail Stop C238, Aurora, CO 80045, USA
| | - Paul M Reynolds
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, 12850 East Montview Boulevard, Mail Stop C238, Aurora, CO 80045, USA
| | - Robert MacLaren
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, 12850 East Montview Boulevard, Mail Stop C238, Aurora, CO 80045, USA
| | - Tyree H Kiser
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, 12850 East Montview Boulevard, Mail Stop C238, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Rothe A, Claßen A, Carney J, Hallek M, Mellinghoff SC, Scheid C, Holtick U, von Bergwelt-Baildon M. Bridging antifungal prophylaxis with 50 mg or 100 mg micafungin in allogeneic stem cell transplantation: A retrospective analysis. Eur J Haematol 2020; 104:291-298. [PMID: 31856310 DOI: 10.1111/ejh.13372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Fluconazole or posaconazole is a standard of care in antifungal prophylaxis for patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT). However, many patients need to interrupt standard prophylaxis due to intolerability, drug-drug interactions, or toxicity. Micafungin has come to prominence for these patients. However, the optimal biological dose of micafungin stays unclear. METHODS We retrospectively evaluated the efficacy of micafungin as antifungal prophylaxis in HSCT patients. Micafungin was applied as bridging in patients who were not eligible to receive oral posaconazole. Micafungin was either given at a dose of 100 mg or 50 mg SID. RESULTS A total of 173 patients received micafungin prophylaxis, 62 in the 100 mg and 111 in the 50 mg dose group. The incidence of probable or proven breakthrough IFDs during the observation period was one in the 100 mg and one in the 50 mg group. Fungal-free survival after 100 days was 98% and 99% (P = .842), and overall survival after 365 days was 60% and 63% (P = .8) respectively. In both groups, micafungin was well tolerated with no grade 3 or 4 toxicities. CONCLUSION In this retrospective analysis, which was not powered to detect non-inferiority, micafungin is effective and complements posaconazole as fungal prophylaxis in HSCT.
Collapse
Affiliation(s)
- Achim Rothe
- OTC (Oncological Therapy Center), Cologne, Germany.,Department 1 of Internal Medicine, University of Cologne, Cologne, Germany
| | - Annika Claßen
- Department 1 of Internal Medicine, University of Cologne, Cologne, Germany
| | - Jonathan Carney
- Medical Department II, University Hospital of Frankfurt, Frankfurt, Germany.,Department of Internal Medicine, Infectious Diseases, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Michael Hallek
- Department 1 of Internal Medicine, University of Cologne, Cologne, Germany
| | - Sibylle C Mellinghoff
- Department 1 of Internal Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Christoph Scheid
- Department 1 of Internal Medicine, University of Cologne, Cologne, Germany
| | - Udo Holtick
- Department 1 of Internal Medicine, University of Cologne, Cologne, Germany
| | - Michael von Bergwelt-Baildon
- Department 1 of Internal Medicine, University of Cologne, Cologne, Germany.,Department III of Internal Medicine, Hematology and Oncology, University Hospital Munich, Ludwig-Maximilians University (LMU), Munich, Germany
| |
Collapse
|
12
|
Yasu T, Konuma T, Oiwa-Monna M, Mizusawa M, Isobe M, Kato S, Takahashi S, Tojo A. Efficacy and safety of micafungin in unrelated cord blood transplant recipients. Ann Hematol 2019; 98:2593-2600. [PMID: 31494737 DOI: 10.1007/s00277-019-03790-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/29/2019] [Indexed: 10/26/2022]
Abstract
Micafungin (MCFG) is an echinocandin antifungal drug used for prophylaxis and treatment of fungal infections after allogeneic hematopoietic cell transplantation (HCT). However, its efficacy and safety in patients undergoing cord blood transplantation (CBT) has not been clarified. We retrospectively analyzed the efficacy and safety of MCFG in 92 adult patients undergoing CBT in our institute. Of the entire cohort, 83 patients (90%) received MCFG for empirical or preemptive therapy. Documented breakthrough fungal infection occurred in 2 patients during MCFG treatment. Among the 49 patients who received MCFG as empirical therapy for febrile neutropenia, 41 (84%) patients had resolution of fever during neutropenia. Elevation of serum levels of hepatobiliary parameters during MCFG treatment was commonly observed, but grade 3 or higher elevation was rare. We also compared the efficacy and safety of 2 different initial daily doses of MCFG (150 mg vs. 300 mg). There were no significant differences of efficacy and safety between the two groups. These data suggest that MCFG was effective and safe for adult patients undergoing CBT. The optimal daily dose of MCFG treatment is a matter of future investigation for adult patients undergoing CBT.
Collapse
Affiliation(s)
- Takeo Yasu
- Department of Pharmacy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takaaki Konuma
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| | - Maki Oiwa-Monna
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Mai Mizusawa
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Masamichi Isobe
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Seiko Kato
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Satoshi Takahashi
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Arinobu Tojo
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| |
Collapse
|
13
|
Lehrnbecher T, Bochennek K, Klingebiel T, Gastine S, Hempel G, Groll AH. Extended Dosing Regimens for Fungal Prophylaxis. Clin Microbiol Rev 2019; 32:e00010-19. [PMID: 31092507 PMCID: PMC6589864 DOI: 10.1128/cmr.00010-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Invasive fungal diseases carry high morbidity and mortality in patients undergoing chemotherapy for hematological malignancies or allogeneic hematopoietic stem cell transplantation. In order to prevent these life-threatening infections, antifungal chemoprophylaxis plays an important role in daily clinical practice. Broad-spectrum antifungal triazoles are widely used but exhibit disadvantages such as relevant drug-drug interactions. Therefore, amphotericin B products or echinocandins can be an alternative in selected patient populations. As these compounds are available as intravenous formulations only, there is growing interest in extended dosing regimens. Although not approved for these agents, this strategy is a rational option, as these compounds have properties suitable for this strategy, including dose-proportional pharmacokinetics, prolonged elimination half-life, and a large therapeutic window. As the use of extended dosing regimens in antifungal prophylaxis is expanding in clinical practice, we reviewed the pharmacokinetic and pharmacodynamic rationale for this strategy, animal model data, dose escalation studies, and clinical trials supporting this concept.
Collapse
Affiliation(s)
- Thomas Lehrnbecher
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Konrad Bochennek
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Thomas Klingebiel
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Silke Gastine
- Institute of Pharmaceutical and Medical Chemistry, Department of Clinical Pharmacy, University Münster, Münster, Germany
| | - Georg Hempel
- Institute of Pharmaceutical and Medical Chemistry, Department of Clinical Pharmacy, University Münster, Münster, Germany
| | - Andreas H Groll
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, University Children's Hospital Münster, Münster, Germany
| |
Collapse
|
14
|
Abstract
Micafungin is a selective inhibitor of the synthesis of fungal 1,3-β-d-glucan, an essential component of the fungal cell wall. It is available as a powder for infusion only and is registered for the treatment of invasive and esophageal candidiasis in addition to prophylaxis of Candida infections in both adults and children. Average exposure after a single intravenous 100 mg dose in healthy adults is 133 mg h/L. Both exposure and maximum plasma concentration show linear dose proportional pharmacokinetics (PK) over a 0.15–8 mg/kg dose range. In healthy adults, the clearance (CL) is 10.4 mL/h/kg and volume of distribution is 0.2 L/kg; both are independent of the dose. Micafungin is metabolized by arylsulfatase, catechol-O-methyltransferase, and several cytochrome P450 (CYP) isoenzymes (3A4, 1A2, 2B6 and 2C), but no dose adjustments are necessary in patients with (severe) hepatic dysfunction. Exposure to micafungin is lower in hematology patients, and is even further lowered in critically ill patients (including burn patients) compared with healthy volunteers, which might have consequences for treatment efficacy. In children, an increased CL has been reported: 40–80 mL/h/kg in premature neonates and 20 mL/h/kg in children >4 months of age. Therefore, relatively higher doses of 4–10 mg/kg in premature neonates and 2–4 mg/kg in children with invasive candidiasis are used. However, these higher CLs may also be explained by the eightfold higher free fraction of unbound micafungin in premature neonates, meaning that an augmented dose might not be required.
Collapse
|
15
|
Multani A, Subramanian AK, Liu AY. Successful eradication of chronic symptomatic Candida krusei urinary tract infection with increased dose micafungin in a liver and kidney transplant recipient: Case report and review of the literature. Transpl Infect Dis 2019; 21:e13118. [PMID: 31111613 DOI: 10.1111/tid.13118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/26/2019] [Accepted: 05/12/2019] [Indexed: 12/11/2022]
Abstract
Treatment of symptomatic candiduria is notoriously challenging because of the limited repository of antifungals that achieve adequate urinary concentrations. Fluconazole, amphotericin B-based products, and flucytosine are established treatment options for most Candida species. Candida krusei exhibits intrinsic resistance to fluconazole and decreased susceptibility to amphotericin B and flucytosine. In transplant patients, both amphotericin B-based products and flucytosine are less desirable because of their toxicities. Other triazole antifungals are unappealing because they do not achieve adequate urinary concentrations, have multiple toxicities, and interact with transplant-related immunosuppressive medications. Echinocandins are well-tolerated but have been traditionally deferred in the treatment of symptomatic funguria because of their poor urinary concentrations but there is a small but emerging body of literature supporting their use. Here, we present a case of successful eradication of chronic symptomatic C krusei urinary tract infection with micafungin 150 milligrams daily in a liver and kidney transplant recipient, and we review the literature on treatment of symptomatic candiduria.
Collapse
Affiliation(s)
- Ashrit Multani
- Division of Infectious Diseases & Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Aruna K Subramanian
- Division of Infectious Diseases & Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Anne Y Liu
- Division of Infectious Diseases & Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
16
|
Wasmann RE, Smit C, ter Heine R, Koele SE, van Dongen EPH, Wiezer RMJ, Burger DM, Knibbe CAJ, Brüggemann RJM. Pharmacokinetics and probability of target attainment for micafungin in normal-weight and morbidly obese adults. J Antimicrob Chemother 2019; 74:978-985. [DOI: 10.1093/jac/dky554] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/31/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Roeland E Wasmann
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | - Cornelis Smit
- Department of Clinical Pharmacy, St. Antonius Hospital, Nieuwegein, The Netherlands
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Rob ter Heine
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Simon E Koele
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eric P H van Dongen
- Department of Anesthesiology, Intensive Care and Pain Management, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - René M J Wiezer
- Department of Surgery, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - David M Burger
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Catherijne A J Knibbe
- Department of Clinical Pharmacy, St. Antonius Hospital, Nieuwegein, The Netherlands
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Roger J M Brüggemann
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Muilwijk EW, Maertens JA, van der Velden WJFM, ter Heine R, Colbers A, Burger DM, Andes D, Theunissen K, Blijlevens NMA, Brüggemann RJM. Pharmacokinetics of extended dose intervals of micafungin in haematology patients: optimizing antifungal prophylaxis. J Antimicrob Chemother 2018; 73:3095-3101. [DOI: 10.1093/jac/dky324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/15/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- E W Muilwijk
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Pharmacy, Nijmegen, The Netherlands
- Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | - J A Maertens
- Department of Haematology, UZ Leuven, Leuven, Belgium
| | - W J F M van der Velden
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Haematology, Nijmegen, The Netherlands
| | - R ter Heine
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Pharmacy, Nijmegen, The Netherlands
| | - A Colbers
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Pharmacy, Nijmegen, The Netherlands
| | - D M Burger
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Pharmacy, Nijmegen, The Netherlands
| | - D Andes
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - K Theunissen
- Department of Haematology, Jessa Hospital, Hasselt, Belgium
| | - N M A Blijlevens
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Haematology, Nijmegen, The Netherlands
| | - R J M Brüggemann
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Pharmacy, Nijmegen, The Netherlands
- Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Maseda E, Grau S, Luque S, Castillo-Mafla MP, Suárez-de-la-Rica A, Montero-Feijoo A, Salgado P, Gimenez MJ, García-Bernedo CA, Gilsanz F, Roberts JA. Population pharmacokinetics/pharmacodynamics of micafungin against Candida species in obese, critically ill, and morbidly obese critically ill patients. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:94. [PMID: 29655372 PMCID: PMC5899833 DOI: 10.1186/s13054-018-2019-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/26/2018] [Indexed: 01/05/2023]
Abstract
Background Dosing in obese critically ill patients is challenging due to pathophysiological changes derived from obesity and/or critical illness, and it remains fully unexplored. This study estimated the micafungin probability of reaching adequate 24-h area under the curve (AUC0–24h)/minimum inhibitory concentration (MIC) values against Candida spp. for an obese/nonobese, critically ill/noncritically ill, large population. Methods Blood samples for pharmacokinetic analyses were collected from 10 critically ill nonobese patients, 10 noncritically ill obese patients, and 11 critically ill morbidly obese patients under empirical/directed micafungin treatment. Patients received once daily 100–150 mg micafungin at the discretion of the treating physician following the prescribing information and hospital guidelines. Total micafungin concentrations were determined by high-performance liquid chromatography (HPLC). Monte-Carlo simulations were performed and the probability of target attainment (PTA) was calculated using the AUC0–24/MIC cut-offs 285 (C. parapsilosis), 3000 (all Candida spp.), and 5000 (nonparapsilosis Candida spp.). Intravenous once-daily 100-mg, 150-mg, and 200-mg doses were simulated at different body weights (45, 80, 115, 150, and 185 kg) and age (30, 50, 70 and 90 years old). PTAs ≥ 90% were considered optimal. Fractional target attainment (FTA) was calculated using published MIC distributions. A dosing regimen was considered successful if the FTA was ≥ 90%. Results Overall, 100 mg of micafungin was once-daily administered for nonobese and obese patients with body mass index (BMI) ≤ 45 kg/m2 and 150 mg for morbidly obese patients with BMI > 45 kg/m2 (except two noncritically ill obese patients with BMI ~ 35 kg/m2 receiving 150 mg, and one critically ill patient with BMI > 45 kg/m2 receiving 100 mg). Micafungin concentrations in plasma were best described using a two-compartment model. Weight and age (but not severity score) were significant covariates and improved the model. FTAs > 90% were obtained against C. albicans with the 200 mg/24 h dose for all body weights (up to 185 kg), and with the 150 mg/24 h for body weights < 115 kg, and against C. glabrata with the 200 mg/24 h dose for body weights < 115 kg. Conclusion The lack of adequacy for the 100 mg/24 h dose suggested the need to increase the dose to 150 mg/24 h for C. albicans infections. Further pharmacokinetic/pharmacodynamic studies should address optimization of micafungin dosing for nonalbicans Candida infections.
Collapse
Affiliation(s)
- Emilio Maseda
- Department of Anesthesia and Surgical Intensive Care, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046, Madrid, Spain. .,Universidad Autónoma de Madrid, Madrid, Spain.
| | - Santiago Grau
- Pharmacy Department, Hospital del Mar, Barcelona, Spain.,Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Sonia Luque
- Pharmacy Department, Hospital del Mar, Barcelona, Spain.,Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Maria-Pilar Castillo-Mafla
- Department of Anesthesia and Surgical Intensive Care, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Alejandro Suárez-de-la-Rica
- Department of Anesthesia and Surgical Intensive Care, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Ana Montero-Feijoo
- Department of Anesthesia and Surgical Intensive Care, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Patricia Salgado
- Department of Anesthesia and Surgical Intensive Care, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046, Madrid, Spain
| | | | | | - Fernando Gilsanz
- Department of Anesthesia and Surgical Intensive Care, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046, Madrid, Spain.,Universidad Autónoma de Madrid, Madrid, Spain
| | - Jason A Roberts
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK.,Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia.,Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Pharmacy Department, Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
19
|
Bader JC, Bhavnani SM, Andes DR, Ambrose PG. We can do better: a fresh look at echinocandin dosing. J Antimicrob Chemother 2018; 73:i44-i50. [DOI: 10.1093/jac/dkx448] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
20
|
Epstein DJ, Seo SK, Brown JM, Papanicolaou GA. Echinocandin prophylaxis in patients undergoing haematopoietic cell transplantation and other treatments for haematological malignancies. J Antimicrob Chemother 2018; 73:i60-i72. [PMID: 29304213 PMCID: PMC7189969 DOI: 10.1093/jac/dkx450] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Antifungal prophylaxis is the standard of care for patients undergoing intensive chemotherapy for haematological malignancy or haematopoietic cell transplantation (HCT). Prophylaxis with azoles reduces invasive fungal infections and may reduce mortality. However, breakthrough infections still occur, and the use of azoles is sometimes complicated by pharmacokinetic variability, drug interactions, adverse events and other issues. Echinocandins are highly active against Candida species, including some organisms resistant to azoles, and have some clinical activity against Aspergillus species as well. Although currently approved echinocandins require daily intravenous administration, the drugs have a favourable safety profile and more predictable pharmacokinetics than mould-active azoles. Clinical data support the efficacy and safety of echinocandins for antifungal prophylaxis in haematology and HCT patients, though data are less robust than for azoles. Notably, sparse evidence exists supporting the use of echinocandins as antifungal prophylaxis for patients with significant graft-versus-host disease (GvHD) after HCT. Two drugs that target (1,3)-β-d-glucan are in development, including an oral glucan synthase inhibitor and an echinocandin with unique pharmacokinetics permitting subcutaneous and weekly administration. Echinocandins are a reasonable alternative to azoles and other agents for antifungal prophylaxis in patients undergoing intensive chemotherapy for haematological malignancy or those receiving HCT, excluding those with significant GvHD.
Collapse
Affiliation(s)
- David J Epstein
- Division of Infectious Diseases, Stanford University, Palo Alto, CA, USA
| | - Susan K Seo
- Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Janice M Brown
- Division of Infectious Diseases, Stanford University, Palo Alto, CA, USA
| | - Genovefa A Papanicolaou
- Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
21
|
Kim R, Koh Y, Shin DY, Choe PG, Kim NJ, Yoon SS, Oh MD, Park WB, Kim I. The limited role of serum galactomannan assay in screening for invasive pulmonary aspergillosis in allogeneic stem cell transplantation recipients on micafungin prophylaxis: a retrospective study. Blood Res 2017; 52:300-306. [PMID: 29333407 PMCID: PMC5762741 DOI: 10.5045/br.2017.52.4.300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/14/2017] [Accepted: 10/25/2017] [Indexed: 01/06/2023] Open
Abstract
Background We evaluated the outcomes of serum galactomannan (GM) assay for the screening of invasive pulmonary aspergillosis (IPA) in allogeneic hematopoietic stem cell transplantation (alloHSCT) recipients while on primary antifungal prophylaxis (PAP). Methods This study included patients with hematologic disorders who underwent alloHSCT from January 2013 to November 2015. Patients received routine PAP with fluconazole before 2014 and micafungin after 2014; serum GM tests were performed and retrospectively analyzed. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of serum GM tests for detection of probable/proven IPA were evaluated. The serial change of serum GM levels was illustrated on a time series plot. Results A total of 136 alloHSCT recipients at Seoul National University Hospital were included in the study. Fluconazole was administered in 72 patients for PAP, while micafungin was administered in the remaining 64 patients. The overall sensitivity, specificity, and NPV of serum GM assays were 95.8% (95% confidence interval [CI] 78.9–99.9%), 93.8% (95% CI 91.7–95.5%), and 99.8% (95% CI 99.1–100.0%), respectively. However, the PPV of GM tests was relatively low at 35.4% (95% CI 23.9–48.2%). The serial change in serum GM levels differed according to the antifungal agents used. With effective PAP using micafungin, serial serum GM levels showed zero order kinetics during the neutropenic period. Conclusion Although the serum GM assay is a sensitive and specific test for detecting IPA in alloHSCT recipients, its role for routine surveillance in an era of effective PAP with micafungin is limited.
Collapse
Affiliation(s)
- Ryul Kim
- Department of Internal Medicine, Seoul National University, College of Medicine, Seoul, Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University, College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University, College of Medicine, Seoul, Korea
| | - Dong-Yeop Shin
- Department of Internal Medicine, Seoul National University, College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University, College of Medicine, Seoul, Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University, College of Medicine, Seoul, Korea
| | - Nam Joong Kim
- Department of Internal Medicine, Seoul National University, College of Medicine, Seoul, Korea
| | - Sung-Soo Yoon
- Department of Internal Medicine, Seoul National University, College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University, College of Medicine, Seoul, Korea
| | - Myoung-Don Oh
- Department of Internal Medicine, Seoul National University, College of Medicine, Seoul, Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University, College of Medicine, Seoul, Korea
| | - Inho Kim
- Department of Internal Medicine, Seoul National University, College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University, College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Pharmacokinetic Properties of Micafungin in Critically Ill Patients Diagnosed with Invasive Candidiasis. Antimicrob Agents Chemother 2017; 61:AAC.01398-17. [PMID: 28971861 DOI: 10.1128/aac.01398-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/21/2017] [Indexed: 11/20/2022] Open
Abstract
The estimated attributable mortality rate for invasive candidiasis (IC) in the intensive care unit (ICU) setting varies from 30 to 40%. Physiological changes in critically ill patients may affect the distribution and elimination of micafungin, and therefore, dosing adjustments might be mandatory. The objective of this study was to determine the pharmacokinetic parameters of micafungin in critically ill patients and assess the probability of target attainment. Micafungin plasma concentrations were measured to estimate the pharmacokinetic properties of micafungin. MIC values for Candida isolates were determined to assess the probability of target attainment for patients. Data from 19 patients with suspected or proven invasive candidiasis were available for analysis. The median area under the concentration-time curve from 0 to 24 h at steady state (AUC0-24) was 89.6 mg · h/liter (interquartile range [IQR], 75.4 to 113.6 mg · h/liter); this was significantly lower than the median micafungin AUC0-24 values of 152.0 mg · h/liter (IQR, 136.0 to 162.0 mg · h/liter) and 134.0 mg · h/liter (IQR, 118.0 to 148.6 mg · h/liter) in healthy volunteers (P = <0.0001 and P = <0.001, respectively). All Candida isolates were susceptible to micafungin, with a median MIC of 0.016 mg/liter (IQR, 0.012 to 0.023 mg/liter). The median AUC0-24/MIC ratio was 5,684 (IQR, 4,325 to 7,578), and 3 of the 17 evaluable patients (17.6%) diagnosed with proven invasive candidiasis did not meet the AUC/MIC ratio target of 5,000. Micafungin exposure was lower in critically ill patients than in healthy volunteers. The variability in micafungin exposure in this ICU population could be explained by the patients' body weight. Our findings suggest that healthier patients (sequential organ failure assessment [SOFA] score of <10) weighing more than 100 kg and receiving 100 mg micafungin daily are at risk for inappropriate micafungin exposure and potentially inadequate antifungal treatment. (This study has been registered at ClinicalTrials.gov under identifier NCT01716988.).
Collapse
|
23
|
Neofytos D, Huang YT, Cheng K, Cohen N, Perales MA, Barker J, Giralt S, Jakubowski A, Papanicolaou G. Safety and Efficacy of Intermittent Intravenous Administration of High-Dose Micafungin. Clin Infect Dis 2016; 61 Suppl 6:S652-61. [PMID: 26567284 DOI: 10.1093/cid/civ818] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The use of mold-active azoles for antifungal prophylaxis after allogeneic stem cell transplantation (SCT) is hindered by adverse events and drug-drug interactions. Higher doses of echinocandins administered intermittently may be an alternative in this setting. METHODS This was a single-center, observational 5-year study to characterize the safety and efficacy of intermittent administration of high-dose intravenous micafungin (≥5 doses of ≥300 mg micafungin 2-3 times weekly) in patients with acute leukemia and allogeneic SCT recipients. RESULTS A total of 104 patients (84 allogeneic SCT recipients and 20 patients with leukemia) received intermittent high-dose intravenous micafungin, 83 (79.8%) as prophylaxis. Large variability in the micafungin dosing regimen was observed; 78 (75%) patients received >75% of their course as 300 mg micafungin 3 times weekly. Liver function tests decreased from baseline to end of treatment (EOT; P < .001). Patients with normal baseline liver function (n = 55 [52%]) maintained similar enzyme levels throughout the study. For patients with abnormal baseline liver function (n = 49 [47%]), liver function tests significantly improved from baseline to EOT (P ≤ .005). Duration and/or micafungin dosing algorithms were not associated with liver toxicity at EOT. There were no significant changes in renal function, and infusion-related reactions or deaths were not observed. Five of 83 (6.0%) patients in the prophylaxis group developed a breakthrough fungal infection. CONCLUSIONS In this largest cohort of patients to date, intermittent administration of high-dose micafungin was well tolerated, without any associated liver or renal function abnormalities, and may be considered an alternative antifungal prophylactic strategy. Prospective studies are needed to further validate these findings.
Collapse
Affiliation(s)
| | | | | | | | - Miguel-Angel Perales
- Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center Department of Medicine, Weill Medical College of Cornell University, New York, New York
| | - Juliet Barker
- Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center Department of Medicine, Weill Medical College of Cornell University, New York, New York
| | - Sergio Giralt
- Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center Department of Medicine, Weill Medical College of Cornell University, New York, New York
| | - Ann Jakubowski
- Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center Department of Medicine, Weill Medical College of Cornell University, New York, New York
| | - Genovefa Papanicolaou
- Infectious Diseases Service Department of Medicine, Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
24
|
Gumbo T. Single or 2-Dose Micafungin Regimen for Treatment of Invasive Candidiasis: Therapia Sterilisans Magna! Clin Infect Dis 2016; 61 Suppl 6:S635-42. [PMID: 26567282 DOI: 10.1093/cid/civ715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The time the earth takes to rotate its axis (the day) has dictated how often pharmaceutical compounds are dosed. The scientific link between the 2 events is materia medica arcana. As an example, in the treatment of invasive candidiasis, antifungal therapy with intravenous micafungin is dosed daily. A literature review revealed population pharmacokinetic analyses, in vivo pharmacokinetics/pharmacodynamics studies, and maximum-tolerated-dose studies of micafungin that examined optimal micafungin dosing strategies. The half-life of micafungin in patient blood was 14 hours in several studies, but was even longer in different organs, so that the concentration will persist above minimum inhibitory concentrations of Candida species for several days. Studies in mice and rabbits with persistent neutropenia and disseminated candidiasis, otherwise fatal, demonstrated that a single large dose of micafungin could clear disseminated candidiasis, even though the micafungin half-life in such animals is shorter than in humans. Human pharmacokinetics/pharmacodynamics studies confirmed this link between micafungin efficacy and the ratio of the area under the concentration-time curve, and the optimal exposures initially identified in neutropenic animals. Maximum tolerated dose studies have demonstrated safety of 900 mg administered daily for several weeks, whereas case reports demonstrate efficacy and safety of single 1400-mg doses. Thus, a single dose of micafungin, or 2 such doses within a few days of each other, is not only logical, but might even lead to faster clearance of Candida.
Collapse
Affiliation(s)
- Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| |
Collapse
|
25
|
Walsh TJ, Azie N, Andes DR. Development of New Strategies for Echinocandins: Progress in Translational Research. Clin Infect Dis 2016; 61 Suppl 6:S601-3. [PMID: 26567276 DOI: 10.1093/cid/civ676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Echinocandins are N-acyl-substituted cyclic hexapeptides with potent in vitro and in vivo activity against Candida species that are used for primary treatment and prevention of candidemia and invasive candidiasis. Recent progress in the translational research of echinocandins has led to new approaches for treatment of central venous catheter Candida biofilms. Other studies have laid the experimental and clinical foundation for use of extended dosing intervals for administration of echinocandins in treatment and prevention of candidemia and invasive candidiasis.
Collapse
Affiliation(s)
- Thomas J Walsh
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine Department of Pediatrics Department of Microbiology and Immunology, Weill Cornell Medical Center of Cornell University, New York, New York
| | - Nkechi Azie
- Astellas Pharma Global Development, Northbrook, Illinois
| | - David R Andes
- University of Wisconsin School of Medicine and Public Health, Madison
| |
Collapse
|
26
|
|
27
|
Efficacy of Extended-Interval Dosing of Micafungin Evaluated Using a Pharmacokinetic/Pharmacodynamic Study with Humanized Doses in Mice. Antimicrob Agents Chemother 2015; 60:674-7. [PMID: 26552968 DOI: 10.1128/aac.02124-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/01/2015] [Indexed: 11/20/2022] Open
Abstract
The pharmacokinetic/pharmacodynamic (PK/PD) characteristics of the echinocandins favor infrequent administration of large doses. The in vivo investigation reported here tested the utility of a range of humanized dose levels of micafungin using a variety of prolonged dosing intervals for the prevention and therapy of established disseminated candidiasis. Humanized doses of 600 mg administered every 6 days prevented fungal growth in prophylaxis. Humanized doses of 300 to 1,000 mg administered every 6 days demonstrated efficacy for established infections.
Collapse
|
28
|
Lempers VJ, Schouten JA, Hunfeld NG, Colbers A, van Leeuwen HJ, Burger DM, Verweij PE, Pickkers P, Brüggemann RJ. Altered Micafungin Pharmacokinetics in Intensive Care Unit Patients. Antimicrob Agents Chemother 2015; 59:4403-9. [PMID: 25963988 PMCID: PMC4505244 DOI: 10.1128/aac.00623-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/06/2015] [Indexed: 11/20/2022] Open
Abstract
Micafungin is considered an important agent for the treatment of invasive fungal infections in the intensive care unit (ICU). Little is known on the pharmacokinetics of micafungin. We investigated micafungin pharmacokinetics (PK) in ICU patients and set out to explore the parameters that influence micafungin plasma concentrations. ICU patients receiving 100 mg of intravenous micafungin once daily for suspected or proven fungal infection or as prophylaxis were eligible. Daily trough concentrations and PK curves (days 3 and 7) were collected. Pharmacokinetic analysis was performed using a standard two-stage approach. Twenty patients from the ICUs of four hospitals were evaluated. On day 3 (n = 20), the median (interquartile range [IQR]) area under the concentration-time curve from 0 to 24 h (AUC0-24) was 78.6 (65.3 to 94.1) mg · h/liter, the maximum concentration of drug in serum (Cmax) was 7.2 (5.4 to 9.2) mg/liter, the concentration 24 h after dosing (C24) was 1.55 (1.4 to 3.1) mg/liter, the volume of distribution (V) was 25.6 (21.3 to 29.1) liters, the clearance (CL) was 1.3 (1.1 to 1.5) liters/h, and the elimination half-life (t1/2) was 13.7 (12.2 to 15.5) h. The pharmacokinetic parameters on day 7 (n = 12) were not significantly different from those on day 3. Daily trough concentrations (day 3 to the end of therapy) showed moderate interindividual (57.9%) and limited intraindividual variability (12.9%). No covariates of the influence on micafungin exposure were identified. Micafungin was considered safe and well tolerated. We performed the first PK study with very intensive sampling on multiple occasions in ICU patients, which aided in resolving micafungin PK. Strikingly, micafungin exposure in our cohort of ICU patients was lower than that in healthy volunteers but not significantly different from that of other reference populations. The clinical consequence of these findings must be investigated in a pharmacokinetic-pharmacodynamic (PK-PD) study incorporating outcome in a larger cohort. (This study is registered at ClinicalTrials.gov under registration no. NCT01783379.).
Collapse
Affiliation(s)
- Vincent J Lempers
- Radboud University Medical Center, Department of Pharmacy, Nijmegen, The Netherlands Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Jeroen A Schouten
- Canisius Wilhelmina Hospital, Department of Intensive Care, Nijmegen, The Netherlands
| | - Nicole G Hunfeld
- Erasmus Medical Center, Department of Intensive Care, Rotterdam, The Netherlands
| | - Angela Colbers
- Radboud University Medical Center, Department of Pharmacy, Nijmegen, The Netherlands Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Henk J van Leeuwen
- Rijnstate Hospital, Department of Intensive Care, Arnhem, The Netherlands
| | - David M Burger
- Radboud University Medical Center, Department of Pharmacy, Nijmegen, The Netherlands Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Paul E Verweij
- Radboud Institute for Health Sciences, Nijmegen, The Netherlands Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands
| | - Peter Pickkers
- Radboud University Medical Center, Department of Intensive Care, Nijmegen, The Netherlands
| | - Roger J Brüggemann
- Radboud University Medical Center, Department of Pharmacy, Nijmegen, The Netherlands Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| |
Collapse
|
29
|
Pasipanodya JP, Hall RG, Gumbo T. In silico
-derived bedside formula for individualized micafungin dosing for obese patients in the age of deterministic chaos. Clin Pharmacol Ther 2014; 97:292-7. [DOI: 10.1002/cpt.38] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/16/2014] [Indexed: 12/31/2022]
Affiliation(s)
- JP Pasipanodya
- Office of Global Health, UT Southwestern Medical Center; Dallas Texas USA
- Baylor Research Institute; Dallas Texas USA
| | - RG Hall
- Texas Tech University Health Sciences Center; Dallas Texas USA
| | - T Gumbo
- Office of Global Health, UT Southwestern Medical Center; Dallas Texas USA
- Baylor Research Institute; Dallas Texas USA
- Department of Medicine; University of Cape Town, Observatory; Cape Town South Africa
- Department of Medicine; UT Southwestern Medical Center; Dallas Texas USA
| |
Collapse
|
30
|
Heimann SM, Vehreschild MJGT, Meintker L, Heinz W, Schroeder T, von Bergwelt-Baildon M, Cornely OA, Vehreschild JJ. Different doses of micafungin for prophylaxis of invasive fungal diseases in hemato-oncological high-risk patients: a web-based non-interventional trial in four large university hospitals in Germany. Transpl Infect Dis 2014; 16:968-74. [PMID: 25371351 DOI: 10.1111/tid.12305] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/04/2014] [Accepted: 08/07/2014] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Treatment indications of new antifungals in clinical practice often deviate from the strict criteria used in controlled clinical trials. Under routine clinical conditions, beneficial and adverse effects, not previously described in clinical trials may be observed. The aim of this study was to describe customary prescription and treatment strategies of micafungin (MCFG). METHODS A registry was set up on www.ClinicalSurveys.net and physicians were invited to provide retrospective information on cases they had treated with MCFG. Documentation comprised demographic information, underlying disease, effectiveness, safety, and tolerability of MCFG. RESULTS A total of 125 episodes of patients hospitalized between September 2009 and February 2012 were documented, of which 7 had to be excluded because of incomplete documentation. The most common risk factors of patients were hematological malignancy (n = 116, 98.3%) and antibiotic treatment >3 days (n = 115, 97.5%). MCFG was administered as prophylaxis in 106 (89.9%) patients. Median duration of MCFG application as prophylaxis was 21 days (range: 3-78); 53 of the patients (50%) received a dose of 50 mg, while the other 53 (50%) received 100 mg/day. For the different doses, prophylactic outcome was rated as success in 42 (79.2%) vs. 52 (98.1%; P = 0.004) patients. Fifty-five patients (51.9%) were treated with posaconazole before initiation of MCFG. Four patients (7.5%) developed a proven invasive fungal disease (IFD) while being treated with 50 mg MCFG, compared to no patient treated with 100 mg (P = 0.118). At the end of MCFG prophylaxis, 24 (22.6%) patients were switched to fluconazole and 64 (60.3%) patients to posaconazole. CONCLUSION Our study shows clinical effectiveness of MCFG prophylaxis with low rates of breakthrough fungal infections. In most cases, MCFG was part of a multi-modal antifungal prophylactic strategy. Investigators reported fewer proven IFDs in patients receiving therapeutic doses of MCFG as prophylaxis.
Collapse
Affiliation(s)
- S M Heimann
- First Department of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Yamazaki S, Nakamura F, Yoshimi A, Ichikawa M, Nannya Y, Kurokawa M. Safety of high-dose micafungin for patients with hematological diseases. Leuk Lymphoma 2014; 55:2572-6. [PMID: 24460099 DOI: 10.3109/10428194.2014.885514] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study was conducted as a retrospective, observational, exploratory cohort study with the aim of elucidating the safety profile of micafungin at doses exceeding 150 mg daily. We identified adult patients with hematological diseases who had received micafungin therapy for ≥ 7 consecutive days. Twenty-six patients administered micafungin at 300 mg daily (high-dose group) were compared with 58 patients administered micafungin at 150 mg daily (standard-dose group). The most frequent adverse events (AEs) were hepatotoxicity, hypertension and diarrhea. AEs were recorded in 42 (72%) and 19 (73%) patients in the standard-dose and high-dose groups, respectively (p = 1.00). Hepatobiliary AEs were noted in 28 (48%) and 15 (58%) patients, respectively (p = 0.48). Serious AEs and resultant treatment discontinuation were infrequent. Our results suggest that micafungin was safe and well tolerated at 300 mg daily.
Collapse
Affiliation(s)
- Sho Yamazaki
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | | | | | | | | | | |
Collapse
|
32
|
Kovács R, Gesztelyi R, Berényi R, Domán M, Kardos G, Juhász B, Majoros L. Killing rates exerted by caspofungin in 50 % serum and its correlation with in vivo efficacy in a neutropenic murine model against Candida krusei and Candida inconspicua. J Med Microbiol 2013; 63:186-194. [PMID: 24184471 DOI: 10.1099/jmm.0.066381-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Killing rates (K) of 1-32 µg ml(-1) caspofungin were determined in RPMI-1640 and in 50 % serum using time-kill methodology against three Candida krusei (MICs of all three isolates 0.25 µg ml(-1) in RPMI-1640 and 2 µg ml(-1) in serum) and three Candida inconspicua clinical isolates (MIC ranges 0.06-0.12 µg ml(-1) in RPMI-1640 and 0.25-0.5 µg ml(-1) in serum), against C. krusei ATCC 6258 and against one C. krusei isolate that was resistant to echinocandins (MIC 8 µg ml(-1) in RPMI-1640 and 32 µg ml(-1) in serum). In RPMI-1640, the highest mean K values were observed at 4 (-1.05 h(-1)) and 16 (-0.27 h(-1)) μg ml(-1) caspofungin for C. krusei and C. inconspicua clinical isolates, respectively. In 50 % serum, mean K value ranges at 1-32 and 4-32 µg ml(-1) concentrations for C. inconspicua and C. krusei were -1.12 to -1.44 and -0.42 to -0.57 h(-1), respectively. While K values against C. krusei in RPMI-1640 and 50 % serum were comparable, serum significantly increased the killing rate against C. inconspicua (P<0.0003 for all tested concentrations). In a neutropenic murine model, daily caspofungin at 1, 2, 3, 5 and 15 mg kg(-1) significantly decreased the fungal tissue burden of C. inconspicua in the kidneys (P<0.05-0.001). Against C. krusei, doses of 3, 5 and 15 mg kg(-1) caspofungin were effective (P<0.05-0.01). All effective doses were comparably efficacious for both species. Only the highest 15 mg kg(-1) caspofungin dose was effective even against the echinocandin-resistant C. krusei isolate. In 50 % serum, killing was concentration independent at effective concentrations (≥4 and ≥1 µg ml(-1) for C. krusei and C. inconspicua, respectively), suggesting that the efficacy of dose escalation is questionable. These in vitro results were also supported by the murine model.
Collapse
Affiliation(s)
- Renátó Kovács
- Department of Medical Microbiology, Medical and Health Science Center, University of Debrecen, Hungary
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacodynamics, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Réka Berényi
- Department of Medical Microbiology, Medical and Health Science Center, University of Debrecen, Hungary
| | - Marianna Domán
- Department of Medical Microbiology, Medical and Health Science Center, University of Debrecen, Hungary
| | - Gábor Kardos
- Department of Medical Microbiology, Medical and Health Science Center, University of Debrecen, Hungary
| | - Béla Juhász
- Department of Pharmacology and Pharmacodynamics, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - László Majoros
- Department of Medical Microbiology, Medical and Health Science Center, University of Debrecen, Hungary
| |
Collapse
|
33
|
Clinical pharmacodynamic index identification for micafungin in esophageal candidiasis: dosing strategy optimization. Antimicrob Agents Chemother 2013; 57:5714-6. [PMID: 23959319 DOI: 10.1128/aac.01057-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Echinocandins exhibit concentration-dependent effects on Candida species, and preclinical studies support the administration of large, infrequent doses. The current report examines the pharmacokinetics/pharmacodynamics of two multicenter, randomized trials of micafungin dosing regimens that differed in both dose level and dosing interval. Analysis demonstrates the clinical relevance of the dose level and area under the concentration-time curve (AUC). Better, although not statistically significant (P = 0.056), outcomes were seen with higher maximum concentrations of drug in serum (Cmax) and large, infrequent doses. The results support further clinical investigation of novel micafungin dosing regimens with large doses but less than daily administration. (These studies have been registered at ClinicalTrials.gov under registration no. NCT00666185 and NCT00665639.).
Collapse
|
34
|
|
35
|
|
36
|
Pharmacokinetics and pharmacodynamics of anidulafungin for experimental Candida endophthalmitis: insights into the utility of echinocandins for treatment of a potentially sight-threatening infection. Antimicrob Agents Chemother 2012; 57:281-8. [PMID: 23114778 DOI: 10.1128/aac.01387-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida chorioretinitis and endophthalmitis are relatively common manifestations of disseminated candidiasis. Anidulafungin is increasingly used for the treatment of disseminated candidiasis, but its efficacy for Candida endophthalmitis is not known. A nonneutropenic model of hematogenous Candida endophthalmitis was used. Anidulafungin at 5, 10, and 20 mg/kg was initiated at 48 h postinoculation. The fungal densities in the kidney and vitreous humor were determined. Anidulafungin concentrations in the plasma and vitreous humor were measured using high-performance liquid chromatography (HPLC). A pharmacokinetic-pharmacodynamic model was used to link anidulafungin concentrations with the observed antifungal effect. The area under the concentration-time curve (AUC) associated with stasis was determined in the both the kidney and the vitreous humor. The results were bridged to humans to identify likely dosages that are associated with significant antifungal activity within the eye. Inoculation of Candida albicans resulted in logarithmic growth in both the vitreous humor and the kidney. The pharmacokinetics of anidulafungin were linear. There was dose-dependent penetration of the anidulafungin into the vitreous humor. The exposure-response relationships in the kidney and vitreous were completely discordant. AUCs of 270 and 100 were required for stasis in the eye and kidney, respectively. The currently licensed regimen results in an AUC for an average patient that is associated with stasis in the kidney but minimal antifungal activity in the eye. We conclude that anidulafungin penetrates the eye in a dose-dependent manner and that dosages higher than those currently licensed are required to achieve significant antifungal activity in the eye.
Collapse
|
37
|
Girmenia C, Iori AP. Safety and interactions of new antifungals in stem cell transplant recipients. Expert Opin Drug Saf 2012; 11:803-18. [DOI: 10.1517/14740338.2012.712111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Beyda ND, Lewis RE, Garey KW. Echinocandin Resistance in Candida Species: Mechanisms of Reduced Susceptibility and Therapeutic Approaches. Ann Pharmacother 2012; 46:1086-96. [DOI: 10.1345/aph.1r020] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE: To summarize published data regarding mechanisms of reduced echinocandin susceptibility in Candida spp., the impact of echinocandin resistance on the fitness and virulence of Candida isolates, and current and future treatment approaches. DATA SOURCES: A search of MEDLINE databases (1966-September 2011) was conducted. STUDY SELECTION AND DATA EXTRACTION: Databases were searched using the terms echinocandin, resistance, and Candida. Citations from publications were reviewed for additional references. DATA SYNTHESIS: Echinocandins have in vitro activity against most Candida spp. and are first-line agents in the treatment of candidemia. However, case reports describing echinocandin treatment failure due to resistant isolates have been published. Reduced echinocandin susceptibility has been shown to occur via 3 main mechanisms: (1) adaptive stress responses, which result in elevated cell wall chitin content and paradoxical growth in vitro at supra minimum inhibitory concentrations (MICs); (2) acquired FKS mutations, which confer reduced glucan synthase sensitivity, elevated MICs, and are associated with clinical failure; and (3) intrinsic FKS mutations, which are naturally occurring mutations in C. parapsilosis and C. guilliermondii, which confer elevated MIC levels but a lower level of reduced glucan synthase sensitivity compared with acquired FKS mutations. Some FKS mutants have been shown to have significantly reduced fitness and virulence versus wild type isolates and may contribute to the low incidence of echinocandin resistance reported in large surveillance studies. Treatment strategies evaluated for FKS mutants include echinocandin dose escalation and combination with agents such as calcineurin inhibitors, HSP90 inhibitors, and chitin synthase inhibitors. CONCLUSIONS: While the incidence of echinocandin resistance in Candida spp. is low, it can present a significant therapeutic challenge, especially in multidrug-resistant Candida isolates. Dose escalation is unlikely to be effective in treating FKS mutant isolates, and significant adverse effects limit the clinical use of agents evaluated as combination therapy. Patients with infections failing to respond to echinocandin therapy should undergo susceptibility testing and be treated with an alternative antifungal agent if possible.
Collapse
Affiliation(s)
- Nicholas D Beyda
- Nicholas D Beyda PharmD, Infectious Diseases Fellow, Department of Clinical Sciences and Administration, College of Pharmacy, University of Houston, Houston, TX
| | - Russell E Lewis
- Russell E Lewis PharmD, Professor, Department of Clinical Sciences and Administration, College of Pharmacy, University of Houston
| | - Kevin W Garey
- Kevin W Garey PharmD MS, Associate Professor and Chair, Department of Clinical Sciences and Administration, College of Pharmacy, University of Houston
| |
Collapse
|
39
|
Földi R, Szilágyi J, Kardos G, Berényi R, Kovács R, Majoros L. Effect of 50% human serum on the killing activity of micafungin against eight Candida species using time-kill methodology. Diagn Microbiol Infect Dis 2012; 73:338-42. [PMID: 22726529 DOI: 10.1016/j.diagmicrobio.2012.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 05/08/2012] [Accepted: 05/09/2012] [Indexed: 10/28/2022]
Abstract
Micafungin activity was determined against 24 wild-type clinical isolates and 5 American Type Culture Collection strains belonging to 8 Candida species in RPMI-1640 with and without 50% serum using broth microdilution and time-kill methodology. MIC values increased from 4- to 128-folds in 50% serum for all Candida species. Micafungin was not fungicidal against C. albicans, C. tropicalis, and against 2 of 3 C. metapsilosis at ≥0.25, 1, and 1 μg/mL, respectively, after 48 h with 50% serum, showing good fungistatic activity. Fungicidal activity at ≥2, 4, and 32 μg/mL was noticed against C. glabrata, C. inconspicua, and C. krusei isolates, respectively. Micafungin at 8-32 μg/mL showed fungistatic activity against C. parapsilosis and C. orthopsilosis. Serum decreased the in vitro activity of micafungin. With serum binding of echinocandins taken into account, safely fungistatic or fungicidal concentrations seem to require elevated doses against some Candida species, including C. parapsilosis, C. orthopsilosis, and C. krusei.
Collapse
Affiliation(s)
- Richárd Földi
- Department of Medical Microbiology, Medical and Health Science Center, University of Debrecen, 4032 Debrecen, Hungary
| | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Hope WW, Howard SJ, Felton TW. Clinical utility of micafungin: pharmacokinetics, dosing, use in special populations and drug interactions. Mycoses 2012. [DOI: 10.1111/j.1439-0507.2011.02114.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Pitman SK, Drew RH, Perfect JR. Addressing current medical needs in invasive fungal infection prevention and treatment with new antifungal agents, strategies and formulations. Expert Opin Emerg Drugs 2011; 16:559-586. [DOI: 10.1517/14728214.2011.607811] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Zomp A, Bookstaver PB, Ahmed Y, Turner JE, King C. Micafungin therapy in a critically ill, morbidly obese patient. J Antimicrob Chemother 2011; 66:2678-80. [DOI: 10.1093/jac/dkr323] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
44
|
Caspofungin dose escalation for invasive candidiasis due to resistant Candida albicans. Antimicrob Agents Chemother 2011; 55:3254-60. [PMID: 21502632 DOI: 10.1128/aac.01750-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous in vivo studies have reported caspofungin dose escalation to be effective against Candida glabrata with reduced susceptibility. We hypothesized that higher doses of caspofungin would be effective against invasive candidiasis caused by the more virulent species Candida albicans, including isolates resistant to this echinocandin. Immunocompetent mice were inoculated with one of three C. albicans isolates, including one susceptible and two resistant isolates with different FKS1 hot spot 1 point mutations. Mice received daily caspofungin treatment for 7 days and were then followed off therapy for 2 weeks to assess survival. Kidney tissue and blood were collected, and fungal burden and serum (1 → 3)-β-D-glucan were measured. Significant differences in virulence were observed among the three C. albicans isolates, which translated into differences in responses to caspofungin. The most virulent of the resistant isolates studied (isolate 43001; Fks1p F641S) did not respond to caspofungin doses of up to 10 mg/kg of body weight, as there were no differences in survival (survival range, 0 to 12% with treatment), tissue burden, or (1 → 3)-β-D-glucan concentration compared to those for untreated controls. Higher doses of caspofungin did improve survival against the second resistant isolate (53264; Fks1p S645P) that demonstrated reduced virulence (5 and 10 mg/kg; 80% survival). In contrast, caspofungin doses as low as 1 mg/kg improved survival (85 to 95%) and reduced tissue burden and (1 → 3)-β-D-glucan concentration against the susceptible isolate (ATCC 90028). These data suggest that caspofungin dose escalation for invasive candidiasis may not be consistently effective against resistant C. albicans isolates, and this may be associated with the virulence of the strain.
Collapse
|
45
|
Disseminated Candidiasis caused by Candida albicans with amino acid substitutions in Fks1 at position Ser645 cannot be successfully treated with micafungin. Antimicrob Agents Chemother 2011; 55:3075-83. [PMID: 21502627 DOI: 10.1128/aac.01686-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The clinical utility of the echinocandins is potentially compromised by the emergence of drug resistance. We investigated whether Candida albicans with amino acid substitutions at position Ser645 in Fks1 can be treated with either a conventional or an elevated dosage of micafungin. We studied Candida albicans (wild-type SC5314; MIC, 0.06 mg/liter) and four fks1 mutants (one FKS1/fks1 heterozygote mutant [MIC, 0.5 mg/liter] and three fks1/fks1 homozygous mutants [MICs for all, 2 mg/liter]) with a variety of amino acid substitutions at Ser645. The pharmacokinetic and pharmacodynamic relationships were characterized in a persistently neutropenic murine model of disseminated candidiasis. A mathematical model was fitted to all pharmacokinetic and pharmacodynamic data. This mathematical model was then used to "humanize" the murine pharmacokinetics, and the predicted antifungal effect was determined. The estimated maximal rate of growth and ultimate fungal densities in the kidney for each of the strains were similar. The administration of micafungin at 1 mg/kg of body weight to the wild type resulted in moderate antifungal activity, whereas the administration of 5 and 20 mg/kg resulted in rapid fungicidal activity. In contrast, the FKS1/fks heterozygote was killed only with 20 mg/kg, and the homozygous fks1 mutants failed to respond to any dosage. The bridging study revealed that human dosages of 100 and 400 mg/day were active only against the wild type, with no activity against either the heterozygote or the homozygote mutants. Ser645 Fks1 Candida albicans mutants cannot be treated with either conventional or elevated dosages of micafungin and should be deemed resistant.
Collapse
|
46
|
Evaluation of the safety and efficacy of micafungin in Japanese patients with deep mycosis: a post-marketing survey report. J Infect Chemother 2011; 17:622-32. [PMID: 21437682 DOI: 10.1007/s10156-011-0219-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 01/11/2011] [Indexed: 10/18/2022]
Abstract
The safety and efficacy of micafungin were evaluated in a Japanese post-marketing survey involving 1,142 patients with deep mycosis caused by Candida or Aspergillus. The overall clinical response was 83.0%, and the respective responses for patients with candidiasis or aspergillosis were 86.3 and 70.8%. With regard to drug reactions, 562 adverse reactions were observed in 28.5% of patients. Among the 83 serious adverse drug reactions reported by 53 patients, a causal relationship with micafungin was assessed as definite or probable for 6 reactions in 5 patients. Age and baseline hepatic and renal function status did not affect the incidence of adverse reactions, although incidence increased significantly in proportion to the severity of mycosis and daily dose (p < 0.01). In multiple logistic regression analysis, neither baseline hepatic impairment nor increased daily dose of micafungin affected the incidence of hepatobiliary disorders, however, the severity of mycosis was found to correlate significantly with hepatobiliary disorders (p = 0.031). Taken together, our post-marketing findings show that micafungin is effective against deep mycosis caused by Candida or Aspergillus in patients across a range of backgrounds.
Collapse
|
47
|
Abstract
Invasive fungal infections in immunocompromised children are common and often fatal. The first antifungal agents such as amphotericin B and fluconazole offered effective treatment, but their use was often limited by toxicity and resistance. Numerous new antifungal agents have since been developed and appear to be as effective. Most dosing and safety trials have been done in adults, and extrapolation of this data to children has proven inadequate. We reviewed the literature regarding the pharmacokinetics/pharmacodynamics (PK/PD) and safety of antifungal agents with an emphasis on the newer azoles and echinocandins. From a small but growing number of PK/PD trials, better dosing guidelines have been developed.
Collapse
Affiliation(s)
- Kevin Watt
- Department of Pediatrics, Duke University, Durham, NC, USA
| | | | | |
Collapse
|
48
|
Kohno S, Izumikawa K, Kakeya H, Miyazaki Y, Ogawa K, Amitani R, Niki Y, Kurashima A. Clinical efficacy and safety of micafungin in Japanese patients with chronic pulmonary aspergillosis: a prospective observational study. Med Mycol 2011; 49:688-93. [PMID: 21355713 DOI: 10.3109/13693786.2011.561369] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aspergillosis has been the prevailing deep-seated mycosis in Japan since the 1990s. Although micafungin (MCFG) has been approved in Japan for the management of patients with such infections caused by Candida and Aspergillus species, there are relatively few reports on its use in patients with chronic pulmonary aspergillosis (CPA). Therefore, we conducted a prospective observational study to evaluate the efficacy and safety of the use of MCFG in Japanese patients with CPA. The efficacy of the antifungal was assessed on the basis of improvements in clinical symptoms and radiological findings. In addition, adverse events, including abnormal laboratory findings were determined. The overall clinical efficacy rate was 68.4% (26/38 patients), which is comparable to the results obtained in clinical trials for marketing approval conducted in Japan. Although adverse drug reactions were observed in six patients (15.8%), they were not serious. The most common of these reactions was abnormal liver functions. No relationship between the incidence of adverse drug reactions and age of the patients, MCFG dose, or duration of treatment was observed. Consequently, MCFG has favorable efficacy and safety profiles in Japanese CPA patients with various backgrounds.
Collapse
Affiliation(s)
- Shigeru Kohno
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Cornely OA, Pappas PG, Young JAH, Maddison P, Ullmann AJ. Accumulated safety data of micafungin in therapy and prophylaxis in fungal diseases. Expert Opin Drug Saf 2011; 10:171-83. [DOI: 10.1517/14740338.2011.557062] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Ascher S, Smith PB, Benjamin DK. Safety of micafungin in infants: insights into optimal dosing. Expert Opin Drug Saf 2011; 10:281-6. [PMID: 21226655 DOI: 10.1517/14740338.2011.545345] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Invasive Candida infections are a leading cause of mortality and morbidity in neonatal intensive care units (NICUs). Micafungin is a promising therapeutic option for treatment of invasive fungal infections in infants given its safety profile in older children and adults. Understanding micafungin safety in infants is particularly important because antifungals are most often used in premature infants with multiple underlying medical conditions in a critical care setting. AREAS COVERED This article reviews the literature evaluating the safety profile of micafungin in infants and offers recommendations for optimal dosing for treatment of invasive candidiasis in the NICU setting. The review has been performed using a Medline search in September 2010 for related articles from 1990 to the present with the Mesh related terms 'micafungin' and 'safety' in combination with the free words 'antifungal', 'candidiasis', 'drug toxicity', 'infant, premature' and 'infant, newborn'. EXPERT OPINION Despite the limitations of the existing literature, we believe micafungin dosing of 10 mg/kg/day for all term and preterm infants is a viable treatment option in the NICU setting for management of invasive candidiasis. Although the number of infants for whom safety data are reported is small, higher doses of micafungin appear safe and well tolerated in this population.
Collapse
Affiliation(s)
- Simon Ascher
- Duke University, Department of Pediatrics, 2400 Pratt St., Durham, NC 27715, USA.
| | | | | |
Collapse
|