1
|
Cummins NW, Badley AD. Making sense of how HIV kills infected CD4 T cells: implications for HIV cure. MOLECULAR AND CELLULAR THERAPIES 2014; 2:20. [PMID: 26056587 PMCID: PMC4452072 DOI: 10.1186/2052-8426-2-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 06/16/2014] [Indexed: 02/07/2023]
Abstract
Defining how HIV does, and does not, kill the host CD4 T cell that it infects is of paramount importance in an era when research is approaching a cure for infection. Three mutually exclusive pathways can lead to the death of HIV-infected cells during the HIV life cycle, before, coincident and after HIV integration and consequently may affect viral replication. We discuss the molecular mechanism underlying these pathways, the evidence supporting their roles in vivo, and contemplate how understanding these pathways might inform novel approaches to promote viral cure of HIV.
Collapse
Affiliation(s)
- Nathan W Cummins
- Division of Infectious Diseases, Mayo Clinic, 200 - 1st Street SW, Rochester, MN 55905 USA
| | - Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic, 200 - 1st Street SW, Rochester, MN 55905 USA
| |
Collapse
|
2
|
Cummins NW, Badley AD. Making sense of how HIV kills infected CD4 T cells: implications for HIV cure. MOLECULAR AND CELLULAR THERAPIES 2014; 2:20. [PMID: 26056587 PMCID: PMC4452072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 06/16/2014] [Indexed: 11/21/2023]
Abstract
Defining how HIV does, and does not, kill the host CD4 T cell that it infects is of paramount importance in an era when research is approaching a cure for infection. Three mutually exclusive pathways can lead to the death of HIV-infected cells during the HIV life cycle, before, coincident and after HIV integration and consequently may affect viral replication. We discuss the molecular mechanism underlying these pathways, the evidence supporting their roles in vivo, and contemplate how understanding these pathways might inform novel approaches to promote viral cure of HIV.
Collapse
Affiliation(s)
- Nathan W Cummins
- Division of Infectious Diseases, Mayo Clinic, 200 - 1st Street SW, Rochester, MN 55905 USA
| | - Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic, 200 - 1st Street SW, Rochester, MN 55905 USA
| |
Collapse
|
3
|
Parris GE. Mechanism and history of evolution of symbiotic HIV strains into lethal pandemic strains: the key event may have been a 1927 trial of pamaquine in Leopoldville (Kinshasa), Congo. Med Hypotheses 2007; 69:838-48. [PMID: 17368749 DOI: 10.1016/j.mehy.2007.01.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 01/24/2007] [Indexed: 02/04/2023]
Abstract
In previous papers, I have rejected both the zoonosis and the serial transfer hypotheses of the origin and evolution of the current lethal pandemic strains of HIV. The hypothesis that fits the critical observations is that all the human and nonhuman primate species in central Africa (an area of hyper-endemic malaria) have shared (through inter-species transfers) a "primate T-cell retrovirus" (PTRV), which has adapted to each host species. This retrovirus is believed to assist primate T-cells attack the liver stage of the malaria infection. Each geographic region has a dominant primate host and a characteristic virus. Starting in 1955 and continuing into the late 1970s, chloroquine was provided by the WHO and used for prophylaxis against malaria. Chloroquine has a number of biochemical activities but two of the most important are blocking transcription of cellular genes and proviruses activated by NF-kappaB and blocking the glycosylation of surface proteins on viruses and cells. Concurrent with the development of resistance of the malaria parasite to chloroquine, HIV strains were quickly selected, which have enhanced transcription rates (by inclusion of multiple kappaB binding sites in their long terminal repeats by recombination) and enhanced infectivity (fusogenicity) (most likely by mutations in multiple viral genes that regulate glycosylation of Env). There also may have been mutations that enhanced activation of NF-kappaB in the host cell. These changes in the retrovirus genome were not manifest in effects of the HIV strains as long as the hosts were under the influence of chloroquine. But, when the virus infects people who are not protected by chloroquine, the virus multiplies more rapidly and is more communicable. Fortunately, most of these strains (i.e., HIV-2 groups, and HIV-1 O and HIV-1 N) self-regulate (i.e., infected cells kill infected cells) well enough that viral loads remain subdued and bystander cells of the immune system are not excessively attrited. In the case of HIV-1 group M, however, there is more going on. Following the work of Korber et al. on the phylogenetics of HIV-1 groups M, I reach the conclusion that the major subgroups giving rise to the worldwide pandemic, were founded in a 1927 clinical trial of pamaquine (plasmoquine) in Leopoldville (Kinshasa). This drug is much more toxic that chloroquine and appears to have strongly selected for resistance to apoptosis in infected cells, which allows these subgroups to attrite bystander cells leading to AIDS.
Collapse
|
4
|
Sabri F, Titanji K, De Milito A, Chiodi F. Astrocyte activation and apoptosis: their roles in the neuropathology of HIV infection. Brain Pathol 2006; 13:84-94. [PMID: 12580548 PMCID: PMC8095843 DOI: 10.1111/j.1750-3639.2003.tb00009.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Astrogliosis is a common neuropathological finding in the brains of HIV infected individuals; both activation and apoptosis of astrocytes are seen. This review aims to discuss the Fas pathway in the context of proliferation and apoptosis of astrocytes during HIV infection, and as a result of astrogliosis, the dysregulation of astrocyte-neuron networks. The presence of molecules reflecting astrocyte activation, which are derived from the solubilization of receptor/ligand from the surface of proliferating astrocytes, in the cerebrospinal fluid may be used to evaluate the degree of brain cell activation during HAART therapy. A better understanding of the molecular pathway(s) leading to increase activation and apoptosis of astrocytes, in parallel with studies conducted to unravel the molecules involved in T-cell apoptosis during HIV infection, may lead to the development of new therapeutic strategies for controlling HIV replication and tissue damage.
Collapse
Affiliation(s)
- Farideh Sabri
- Microbiology and Tumor Biology Center, Karolinska Institute, Nobels väg 16, S‐17177 Stockholm, Sweden
| | - Kehmia Titanji
- Microbiology and Tumor Biology Center, Karolinska Institute, Nobels väg 16, S‐17177 Stockholm, Sweden
| | - Angelo De Milito
- Microbiology and Tumor Biology Center, Karolinska Institute, Nobels väg 16, S‐17177 Stockholm, Sweden
| | - Francesca Chiodi
- Microbiology and Tumor Biology Center, Karolinska Institute, Nobels väg 16, S‐17177 Stockholm, Sweden
| |
Collapse
|
5
|
Stanziale SF, Petrowsky H, Adusumilli PS, Ben-Porat L, Gonen M, Fong Y. Infection with oncolytic herpes simplex virus-1 induces apoptosis in neighboring human cancer cells: a potential target to increase anticancer activity. Clin Cancer Res 2004; 10:3225-32. [PMID: 15131064 DOI: 10.1158/1078-0432.ccr-1083-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The antitumor efficacy of a herpes simplex virus (HSV)-1 oncolytic virus depends on the cytotoxic effect of the virus, but also on viral replication and spread within the tumor. Apoptosis is considered a defense mechanism of infected cells that minimizes the spread of viral progeny by limiting cellular production of virus. We sought to determine whether oncolytic HSV-1 infection induces apoptosis in neighboring, uninfected cells and whether manipulation of apoptosis can increase viral replication and cytotoxicity. EXPERIMENTAL DESIGN NV1066 is an oncolytic HSV-1 mutant that contains the marker gene for enhanced green fluorescent protein. OCUM human gastric cancer cells were infected with NV1066 in vitro and inspected for apoptosis by Hoechst and terminal deoxynucleotidyltransferase-mediated nick end labeling staining and for infection by expression of green fluorescence. RESULTS A significant increase in apoptosis was seen in cells infected by NV1066. More interestingly, a significant percentage (10%) of uninfected cells also proceeded to apoptosis. After NV1066 infection, cells were also treated with N-acetylcysteine (NAC), an inhibitor of apoptosis. By day 4 after infection, 2.7x more NV1066 was produced in cells exposed to NAC than in those not exposed to NV1066 (P = 0.04). NAC also increased tumor kill when administered with virus. CONCLUSIONS These data suggest that NV1066 induces apoptosis in uninfected cocultured cells, potentially hindering propagation of viral progeny and concomitant tumor kill. Inhibition of apoptosis may improve the efficacy of oncolytic HSV-1 therapy.
Collapse
Affiliation(s)
- Stephen F Stanziale
- Department of Surgery, Hepatobiliary Division, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
6
|
Luciani F, Matarrese P, Giammarioli AM, Lugini L, Lozupone F, Federici C, Iessi E, Malorni W, Fais S. CD95/phosphorylated ezrin association underlies HIV-1 GP120/IL-2-induced susceptibility to CD95(APO-1/Fas)-mediated apoptosis of human resting CD4+T lymphocytes. Cell Death Differ 2004; 11:574-82. [PMID: 14739941 DOI: 10.1038/sj.cdd.4401374] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
CD95(APO-1/Fas)-mediated apoptosis of bystander uninfected T cells exerts a major role in the HIV-1-mediated CD4+ T-cell depletion. HIV-1 gp120 has a key role in the induction of sensitivity of human lymphocytes to CD95-mediated apoptosis through its interaction with the CD4 receptor. Recently, we have shown the importance of CD95/ezrin/actin association in CD95-mediated apoptosis. In this study, we explored the hypothesis that the gp120-mediated CD4 engagement could be involved in the induction of susceptibility of primary human T lymphocytes to CD95-mediated apoptosis through ezrin phosphorylation and ezrin-to-CD95 association. Here, we show that gp120/IL-2 combined stimuli, as well as the direct CD4 triggering, on human primary CD4(+)T lymphocytes induced an early and stable ezrin activation through phosphorylation, consistent with the induction of ezrin/CD95 association and susceptibility to CD95-mediated apoptosis. Our results provide a new mechanism through which HIV-1-gp120 may predispose resting CD4(+)T cell to bystander CD95-mediated apoptosis and support the key role of ezrin/CD95 linkage in regulating susceptibility to CD95-mediated apoptosis.
Collapse
Affiliation(s)
- F Luciani
- Laboratories of Immunology, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Pincus SH, Fang H, Wilkinson RA, Olson WC, Marcotte TK. A modified SCID mouse model of HIV infection with utility for testing anti-HIV therapies. AIDS Res Hum Retroviruses 2003; 19:901-8. [PMID: 14585222 DOI: 10.1089/088922203322493076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Using human tumor cells we have developed a mouse model of active HIV infection that may be used for testing antiviral agents, although it does not reflect the pathogenesis of human infection. Irradiated SCID/NOD mice are injected with a tumor of human CD4+ lymphoma cells susceptible to infection and at a separate site, tumor cells persistently infected with either primary or T cell line-adapted strains of HIV. The spread of infection from the infected to the susceptible tumor is monitored as plasma p24 and the presence of HIV-infected cells in the spleen. We have used this model to examine the relative efficacy of neutralizing anti-HIV antibodies to halt the spread of infection. We have found that the tetrameric CD4-antibody fusion protein, CD4-IgG2, is highly effective compared to an anti-V3 loop antibody. This animal model, while not replicating the human disease, allows for the simultaneous testing of efficacy, toxicity, and pharmacokinetics of potential new antiviral therapies. The model can easily be powered to enable comparisons between different therapeutic agents and dosing regimens.
Collapse
Affiliation(s)
- Seth H Pincus
- Department of Microbiology, Montana State University, Bozeman, MT 59717, USA.
| | | | | | | | | |
Collapse
|
8
|
Fais S. Importance of the state of activation and/or differentiation of CD4+ T cells in AIDS pathogenesis. Trends Immunol 2002; 23:128-9. [PMID: 11864837 DOI: 10.1016/s1471-4906(01)02171-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Roggero R, Robert-Hebmann V, Harrington S, Roland J, Vergne L, Jaleco S, Devaux C, Biard-Piechaczyk M. Binding of human immunodeficiency virus type 1 gp120 to CXCR4 induces mitochondrial transmembrane depolarization and cytochrome c-mediated apoptosis independently of Fas signaling. J Virol 2001; 75:7637-50. [PMID: 11462036 PMCID: PMC114999 DOI: 10.1128/jvi.75.16.7637-7650.2001] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Apoptosis of CD4(+) T lymphocytes, induced by contact between human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (gp120) and its receptors, could contribute to the cell depletion observed in HIV-infected individuals. CXCR4 appears to play an important role in gp120-induced cell death, but the mechanisms involved in this apoptotic process remain poorly understood. To get insight into the signal transduction pathways connecting CXCR4 to apoptosis following gp120 binding, we used different cell lines expressing wild-type CXCR4 and a truncated form of CD4 that binds gp120 but lacks the ability to transduce signals. The present study demonstrates that (i) the interaction of cell-associated gp120 with CXCR4-expressing target cells triggers a rapid dissipation of the mitochondrial transmembrane potential resulting in the cytosolic release of cytochrome c from the mitochondria to cytosol, concurrent with activation of caspase-9 and -3; (ii) this apoptotic process is independent of Fas signaling; and (iii) cooperation with a CD4 signal is not required. In addition, following coculture with cells expressing gp120, a Fas-independent apoptosis involving mitochondria and caspase activation is also observed in primary umbilical cord blood CD4(+) T lymphocytes expressing high levels of CXCR4. Thus, this gp120-mediated apoptotic pathway may contribute to CD4(+) T-cell depletion in AIDS.
Collapse
Affiliation(s)
- R Roggero
- Laboratoire Infections Rétrovirales et Signalisation Cellulaire CNRS EP 2104, Institut de Biologie, 34060 Montpellier Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Fais S, Lapenta C, Santini SM, Spada M, Parlato S, Logozzi M, Rizza P, Belardelli F. Human immunodeficiency virus type 1 strains R5 and X4 induce different pathogenic effects in hu-PBL-SCID mice, depending on the state of activation/differentiation of human target cells at the time of primary infection. J Virol 1999; 73:6453-9. [PMID: 10400739 PMCID: PMC112726 DOI: 10.1128/jvi.73.8.6453-6459.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a previous study, we had found that the extent of T-cell dysfunctions induced by a T-tropic strain of human immunodeficiency virus type 1 (HIV-1) in SCID mice reconstituted with human peripheral blood lymphocytes (hu-PBLs) (hu-PBL-SCID mice) was related to the in vivo state of activation of the human lymphocytes. In this article, we compared the effect of infection of hu-PBL-SCID mice with either T-tropic (X4) or M-tropic (R5) strains of HIV-1 by performing virus inoculation at either 2 h or 2 weeks after the hu-PBL transfer, when the human T cells exhibited a marked activation state or a predominant memory phenotype, respectively. A comparable level of infection was found when hu-PBL-SCID mice were challenged with either the SF162 R5 or the IIIB X4 strain of HIV at 2 h postreconstitution, while at 2 weeks, the R5 virus infection resulted in a higher level of HIV replication than the X4 virus. The R5 strain induced a marked human CD4(+) T-cell depletion along with a drop in levels of human immunoglobulin M in serum and release of soluble factors at both infection times, while the X4 virus induced severe immune dysfunctions only at 2 h. Of interest, injection of hu-PBLs into SCID mice resulted in a marked up-regulation of CCR5 on human CD4(+) T cells. The percentage of CXCR4(+) cells did not change after transplantation, even though a significant decrease in antigen expression was observed. Comparative experiments with two molecular clones of HIV-1 (X4 SF2 and R5 SF162) and two envelope recombinant viruses generated from these viruses showed that R5 viruses (SF162 and the chimeric env-SF162-SF2) caused an extensive depletion of human CD4(+) T cells in SCID mice at both 2 h and 2 weeks after reconstitution, while the X4 viruses (SF2 and the chimeric env-SF2-SF162) induced CD4 T-cell depletion only when infection was performed at the 2-h reconstitution time. These results emphasize the importance of the state of activation/differentiation of human CD4(+) T cells and gp120-coreceptor interactions at the time of primary infection in determining HIV-1 pathogenicity in the hu-PBL-SCID mouse model.
Collapse
Affiliation(s)
- S Fais
- Laboratory of Immunology, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|