1
|
Majumdar S, Chowdhury DR, Chakraborty BC, Chowdhury A, Datta S, Banerjee S. MiR-451a attenuates hepatic steatosis and hepatitis C virus replication by targeting glycerol kinase. J Transl Med 2025; 23:322. [PMID: 40083012 PMCID: PMC11907786 DOI: 10.1186/s12967-025-06286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/21/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Lipotoxicity is one of the causes for the progression of fatty liver in chronic hepatitis (CH) towards end-stage liver diseases. The role of miRNAs in the signalling pathways of lipid metabolism has been studied, but their direct targets in this pathway have not been identified yet. Here, we have characterized a downregulated miRNA in CH namely miR-451a, which has a direct impact on the lipid metabolism pathway. METHODS Liver tissue samples and blood were collected from CHC/CHB patients and normal individuals. Huh7 and SNU449 cell lines were used for in vitro assays. Expressions of miRNA/mRNAs and proteins were confirmed by qRT-PCR and immuno-blot analysis. Oil Red O staining, Colorimetric, and Fluorometric assay kit were used to quantify triglyceride (TG) and cholesterol from tissue and serum, respectively. Target prediction and pathway analysis were performed using Targetscan, miRWalk, and DAVID respectively. 3'UTR-Luciferase assay and Co-immuno-precipitation were conducted to determine direct interaction between miRNA-mRNA and protein-protein, respectively. Unpaired two-tailed Student's t-test and Mann-Whitney test were employed as required using GraphPad prism. P < 0.05 was considered as significant. RESULTS The miRNA, miR-451a was selected as one of the downregulated miRNAs in progressive liver disease stages of CHC and CHB. Target identification and pathway analysis of this miRNA revealed that lipid metabolism pathway gene, glycerol kinase (GK), could be the target of this miRNA. Subsequent 3'UTR Luciferase assay and immuno-blot analysis confirmed the binding of miR-451a to GK. Though both hepatitis viruses, HCV and HBV, could alter the lipid metabolism pathways, intracellular TG and cholesterol content were observed to be significantly higher upon HCV infection only. It also suppressed the expression of miR-451a, resulting in overshooting of GK expression. GK interacted positively with the transcription factor SREBP1, which led to overexpression of Fatty acid synthase, Acetyl- CoA Carboxylase, and Stearoyl-CoA desaturase. As a result, intracellular fatty acids, TG, and cholesterol synthesis and accumulation heightened but trafficking dropped, resulting in hypo-cholesterolemia in blood. While, restoration of miR-451a impeded lipid accumulation, reduced steatohepatitis and suppressed HCV replication as well. CONCLUSION These findings suggest that the alteration in the hepatic lipid profile upon HCV/HBV infection is attributed to the downregulation of miR-451a, which has the potential to restrict the expression of GK and SREBP1 in the TG biosynthesis pathway, implying that supplementation of miR-451a may be a potential therapeutic strategy for impeding CHC.
Collapse
Affiliation(s)
- Swagata Majumdar
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India
| | - Deeya Roy Chowdhury
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India
| | - Bidhan Chandra Chakraborty
- Multi-disciplinary Research Unit, Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India
| | - Abhijit Chowdhury
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India
| | - Simanti Datta
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India
- Multi-disciplinary Research Unit, Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India
| | - Soma Banerjee
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India.
| |
Collapse
|
2
|
Elgretli W, Shengir M, Sasson S, Ramanakumar AV, Cinque F, Ballestreros LER, Deschenes M, Wong P, Chen T, Kronfli N, Saeed S, Keeshan A, Tandon S, Cooper C, Sebastiani G. Association of MASLD Phenotypes With Liver Fibrosis in Hepatitis C: The Role of Cardiometabolic Risk Factors. J Viral Hepat 2025; 32:e70004. [PMID: 39868661 PMCID: PMC11771651 DOI: 10.1111/jvh.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/28/2025]
Abstract
Steatotic liver disease is prevalent among people with hepatitis C virus (HCV). The new definition of metabolic dysfunction-associated steatotic liver disease (MASLD) emphasises the metabolic drivers of steatosis and recognises its frequent coexistence with other chronic liver diseases, including HCV. We aimed to evaluate the association of coexisting MASLD and HCV with liver fibrosis. Individuals with HCV who underwent transient elastography (TE) with associated controlled attenuation parameter (CAP) were included from two clinical centres. MASLD and significant liver fibrosis were defined as the presence of steatosis (CAP ≥ 275 dB/m) with at least one cardiometabolic risk factor, and liver stiffness measurement (LSM) ≥ 7.1 kPa measured by TE, respectively. Associated cofactors of significant liver fibrosis were determined using stepwise regression and cross-validation by LASSO models to select confounders. Among 590 participants, 31% were diagnosed with MASLD. The prevalence of significant liver fibrosis was the highest among people with MASLD (58%) followed by HCV-related steatosis (45%) and the non-steatosis group (39%). After adjusting for potential confounders, MASLD was associated with significant liver fibrosis (adjusted odds ratio [aOR] 2.29, 95% confidence interval [CI] 1.07-4.87). Furthermore, specific MASLD phenotypes including diabetes, hypertension and overweight were associated with significant liver fibrosis, with aORs of 4.76 (95% CI 2.16-10.49), 3.44 (95% CI 1.77-6.68) and 2.54 (95% CI 1.27-5.07), respectively. In conclusion, MASLD is associated with liver fibrosis in people with HCV, specifically the diabetes, overweight and hypertensive phenotypes. Beyond pursuing a virological cure, healthcare providers should prioritise managing metabolic conditions, particularly diabetes, hypertension and obesity.
Collapse
Affiliation(s)
- Wesal Elgretli
- Division of Experimental MedicineMcGill UniversityMontrealQuebecCanada
| | - Mohamed Shengir
- Division of Experimental MedicineMcGill UniversityMontrealQuebecCanada
| | - Solomon Sasson
- Department of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | | | - Felice Cinque
- Department of PathophysiologyTransplantation University of MilanMilanItaly
- Chronic Viral Illness Service, Division of Infectious Diseases, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
| | - Luz Esther Ramos Ballestreros
- Chronic Viral Illness Service, Division of Infectious Diseases, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
| | - Marc Deschenes
- Division of Gastroenterology and Hepatology, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
| | - Phil Wong
- Division of Gastroenterology and Hepatology, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
| | - Tianyan Chen
- Division of Gastroenterology and Hepatology, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
| | - Nadine Kronfli
- Chronic Viral Illness Service, Division of Infectious Diseases, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
- Centre for Outcomes Research and EvaluationResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Sahar Saeed
- Public Health SciencesQueen's UniversityKingstonOntarioCanada
| | - Alexa Keeshan
- Division of Infectious Diseases, Department of MedicineOttawa Hospital Research Institute, The Ottawa HospitalOttawaOntarioCanada
| | - Saniya Tandon
- Division of Infectious Diseases, Department of MedicineOttawa Hospital Research Institute, The Ottawa HospitalOttawaOntarioCanada
| | - Curtis Cooper
- Division of Infectious Diseases, Department of MedicineOttawa Hospital Research Institute, The Ottawa HospitalOttawaOntarioCanada
| | - Giada Sebastiani
- Division of Experimental MedicineMcGill UniversityMontrealQuebecCanada
- Chronic Viral Illness Service, Division of Infectious Diseases, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
- Division of Gastroenterology and Hepatology, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
| |
Collapse
|
3
|
Ezhilarasan D, Karthikeyan S, Najimi M, Vijayalakshmi P, Bhavani G, Jansi Rani M. Preclinical liver toxicity models: Advantages, limitations and recommendations. Toxicology 2025; 511:154020. [PMID: 39637935 DOI: 10.1016/j.tox.2024.154020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Experimental animal models are crucial for elucidating the pathophysiology of liver injuries and for assessing new hepatoprotective agents. Drugs and chemicals such as acetaminophen, isoniazid, valproic acid, ethanol, carbon tetrachloride (CCl4), dimethylnitrosamine (DMN), and thioacetamide (TAA) are metabolized by the CYP2E1 enzyme, producing hepatotoxic metabolites that lead to both acute and chronic liver injuries. In experimental settings, acetaminophen (centrilobular necrosis), carbamazepine (centrilobular necrosis and inflammation), sodium valproate (necrosis, hydropic degeneration and mild inflammation), methotrexate (sinusoidal congestion and inflammation), and TAA (centrilobular necrosis and inflammation) are commonly used to induce various types of acute liver injuries. Repeated and intermittent low-dose administration of CCl4, TAA, and DMN activates quiescent hepatic stellate cells, transdifferentiating them into myofibroblasts, which results in abnormal extracellular matrix production and fibrosis induction, more rapidly with DMN and CCL4 than TAA (DMN > CCl4 > TAA). Regarding toxicity and mortality, CCl4 is more toxic than DMN and TAA (CCl4 > DMN > TAA). Models used to induce metabolic dysfunction-associated liver disease (MAFLD) vary, but MAFLD's multifactorial nature driven by factors like obesity, fatty liver, dyslipidaemia, type II diabetes, hypertension, and cardiovascular disease makes it challenging to replicate human metabolic dysfunction-associated steatohepatitis accurately. From an experimental point of view, the degree and pattern of liver injury are influenced by various factors, including the type of hepatotoxic agent, exposure duration, route of exposure, dosage, frequency of administration, and the animal model utilized. Therefore, there is a pressing need for standardized protocols and regulatory guidelines to streamline the selection of animal models in preclinical studies.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
| | - Sivanesan Karthikeyan
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Paramasivan Vijayalakshmi
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India; Department of Pharmacology, Asan Memorial Dental College and Hospital, Chengalpattu, Tamil Nadu, India
| | - Ganapathy Bhavani
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India; Department of Pharmacology, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Muthukrishnan Jansi Rani
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| |
Collapse
|
4
|
Yamagata K, Takasuga S, Tatematsu M, Fuchimukai A, Yamada T, Mizuno M, Morii M, Ebihara T. FoxD1 expression identifies a distinct subset of hepatic stellate cells involved in liver fibrosis. Biochem Biophys Res Commun 2024; 734:150632. [PMID: 39226736 DOI: 10.1016/j.bbrc.2024.150632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
Hepatic stellate cells (HSCs) are pericytes of the liver responsible for liver fibrosis and cirrhosis, which are the end stages of chronic liver diseases. TGF-β activates HSCs, leading to the differentiation of myofibroblasts in the process of liver fibrosis. While the heterogeneity of HSCs is appreciated in the fibrotic liver, it remains elusive which HSC subsets mainly contribute to fibrosis. Here, we show that the expression of the pericyte marker FoxD1 specifically marks a subset of HSCs in FoxD1-fate tracer mice. HSCs fate-mapped by FoxD1 were preferentially localized in the portal and peripheral areas of both the homeostatic and fibrotic liver induced by carbon tetrachloride. Furthermore, the deletion of Cbfβ, which is necessary for TGF-β signaling, in FoxD1-expressing cells ameliorated liver fibrosis. Thus, we identified an HSC subset that preferentially responds to liver injuries.
Collapse
Affiliation(s)
- Kenki Yamagata
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, 0108543, Japan; Department of Pediatric Surgery, Akita University Graduate School of Medicine, Akita, 0108543, Japan
| | - Shunsuke Takasuga
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, 0108543, Japan
| | - Megumi Tatematsu
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, 0108543, Japan
| | - Akane Fuchimukai
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, 0108543, Japan
| | - Toshiki Yamada
- Department of Otorhinolaryngology, Head and Neck Surgery, Akita University Graduate School of Medicine, Akita, 0108543, Japan
| | - Masaru Mizuno
- Department of Pediatric Surgery, Akita University Graduate School of Medicine, Akita, 0108543, Japan
| | - Mayako Morii
- Department of Pediatric Surgery, Akita University Graduate School of Medicine, Akita, 0108543, Japan.
| | - Takashi Ebihara
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, 0108543, Japan; Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, Akita, 0108543, Japan.
| |
Collapse
|
5
|
Tsukanov VV, Savchenko AA, Cherepnin MA, Vasyutin AV, Kasparov EV, Belenyuk VD, Tonkikh JL, Borisov AG. Subpopulation composition of blood T-helpers in hepatitis C patients with genotype 1 or 3. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2024:168-176. [DOI: 10.21518/ms2023-447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Introduction. Despite advances in treatment, the problem of chronic viral hepatitis C (CVHC) remains very relevant for Russia. There is a debate about which of the most common genotypes in our country: 1 or 3, has a more aggressive course of CVHC. Patients with CVHC exhibit dysfunction of T-cell immunity, many aspects of which remain unclear.Aim. To research the subpopulation composition of blood T-helpers in patients with genotypes 1 and 3 of chronic viral hepatitis C (CVHC) depending on the severity of clinical and morphological manifestations.Materials and methods. Clinical, laboratory examination and determination of liver fibrosis by elastometry using the METAVIR scale were performed in 297 patients with CVHC genotype 1, 231 patients with CVHC genotype 3, and 20 healthy individuals in the control group. The study of the subpopulation composition of T-helpers in the blood by flow cytometry (Navios, Beckman Coulter, USA) with the determination of markers CD3, CD4, CD45R0 and CD62L was carried out in 74 patients with CVHC genotype 1, 70 patients with CVHC genotype 3 and 20 people in the control group.Results. Naive T-helpers (CD3+CD4+CD45RO-CD62L+), T-helpers of central (CD3+CD4+CD45R0+CD62L+) and effector memory (CD3+CD4+CD45R0+CD62L–) in the blood decreased with an increase in the severity of fibrosis and inflammation activity in the liver in both examined groups. In patients with CVHC genotype 3, the content of TEMRA T-helpers (CD3+CD4+CD45R0-CD62L-) in the blood under these conditions sharply decreased (Kruskal – Wallis test, respectively, p = 0.04 and p = 0.02). In patients with CVHC genotype 1, no such patterns were registered (Kruskal – Wallis test, respectively, p = 0.8 and p = 0.87).Conclusion. A direct correlation was determined between the deterioration of the indicators of the blood T-helpers subpopulation composition with an increase in the severity of fibrosis and inflammation activity in the liver in patients with chronic hepatitis C, which had some differences in patients with genotypes 1 and 3.
Collapse
Affiliation(s)
- V. V. Tsukanov
- Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science, Scientific Research Institute of Medical Problems of the North
| | - A. A. Savchenko
- Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science, Scientific Research Institute of Medical Problems of the North
| | - M. A. Cherepnin
- Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science, Scientific Research Institute of Medical Problems of the North
| | - A. V. Vasyutin
- Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science, Scientific Research Institute of Medical Problems of the North
| | - E. V. Kasparov
- Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science, Scientific Research Institute of Medical Problems of the North
| | - V. D. Belenyuk
- Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science, Scientific Research Institute of Medical Problems of the North
| | - Ju. L. Tonkikh
- Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science, Scientific Research Institute of Medical Problems of the North
| | - A. G. Borisov
- Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science, Scientific Research Institute of Medical Problems of the North
| |
Collapse
|
6
|
Manzoor S, Khalid M, Idrees M. P2X4 receptors mediate induction of antioxidants, fibrogenic cytokines and ECM transcripts; in presence of replicating HCV in in vitro setting: An insight into role of P2X4 in fibrosis. PLoS One 2022; 17:e0259727. [PMID: 35594248 PMCID: PMC9122194 DOI: 10.1371/journal.pone.0259727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
Background & aims
Major HCV infections lead to chronic hepatitis, which results in progressive liver disease including fibrosis, cirrhosis and eventually hepatocellular carcinoma (HCC). P2X4 and P2X7 are most widely distributed receptors on hepatocytes.
Methods
Full length P2X4 (1.7kb) (Rattus norvegicus) was sub cloned in mammalian expression vector pcDNA3.1+. Two stable cell lines 293T/P2X4 (experimental) and 293T/ NV or null vector (control) were established. Both cell lines were inoculated with high viral titers human HCV sera and control human sera. Successfully infected cells harvested on day 5 and day 9 of post infection were used for further studies.
Results
The results revealed a significant increase in gene expression of P2X4 on day 5 and day 9 Post -infection in cells infected with HCV sera compared with cells inoculated with control sera. Quantitative real time PCR analysis revealed that HO-1 was significantly upregulated in presence of P2X4 in HCV infected cells (P2X4/HCV) when compared with control NV/HCV cells. A significant decrease was observed in expression of Cu/ZnSOD in presence of P2X4 in HCV infected cells compared to control NV/HCV cells. However, expression of both antioxidants was observed unaltered in cells harvested on day 9 post infection. Gene expression of angiotensin II significantly increased in HCV infected cells in presence of P2X4 on day 5 and day 9 of post infection when compared with control NV/HCV cells. A significant increase in gene expression of TNF-α and TGF-β was observed in HCV infected cells in presence of P2X4 on day 9 post infection in comparison with control (NV/HCV cells). However, gene expression of adipokine leptin was not affected in both experimental (P2X4/HCV) and control (NV/HCV) groups on day 5 and day 9 of post infection. Extracellular matrix proteins, laminin and elastin genes expression also significantly increased in presence of P2X4 (HCV/P2X4) on day 9 of post-infection compared to control group NV/HCV cells.
Conclusion
In conclusion, these findings constitute the evidence that P2X4 receptors in the presence of HCV play a significant role in the regulation of key antioxidant enzymes (HO-1, Cu/ZnSOD), in the induction of proinflammatory. cytokine (TNF-α), profibrotic cytokine (TGF-β) vasoactive cytokine (angiotensin II). P2X4 also increases the expression of extracellular matrix proteins (laminin and elastin) in the presence of HCV.
Collapse
Affiliation(s)
- Sobia Manzoor
- Center of Excellence in Molecular Biology (CEMB), University of Punjab, Lahore, Pakistan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
- * E-mail: ,
| | - Madiha Khalid
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Idrees
- Center of Excellence in Molecular Biology (CEMB), University of Punjab, Lahore, Pakistan
| |
Collapse
|
7
|
Osna NA, Eguchi A, Feldstein AE, Tsukamoto H, Dagur RS, Ganesan M, New-Aaron M, Arumugam MK, Chava S, Ribeiro M, Szabo G, Mueller S, Wang S, Chen C, Weinman SA, Kharbanda KK. Cell-to-Cell Communications in Alcohol-Associated Liver Disease. Front Physiol 2022; 13:831004. [PMID: 35264978 PMCID: PMC8899290 DOI: 10.3389/fphys.2022.831004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
This review covers some important new aspects of the alcohol-induced communications between liver parenchymal and non-parenchymal cells leading to liver injury development. The information exchange between various cell types may promote end-stage liver disease progression and involves multiple mechanisms, such as direct cell-to-cell interactions, extracellular vesicles (EVs) or chemokines, cytokines, and growth factors contained in extracellular fluids/cell culture supernatants. Here, we highlighted the role of EVs derived from alcohol-exposed hepatocytes (HCs) in activation of non-parenchymal cells, liver macrophages (LM), and hepatic stellate cells (HSC). The review also concentrates on EV-mediated crosstalk between liver parenchymal and non-parenchymal cells in the settings of HIV- and alcohol co-exposure. In addition, we overviewed the literature on the crosstalk between cell death pathways and inflammasome activation in alcohol-activated HCs and macrophages. Furthermore, we covered highly clinically relevant studies on the role of non-inflammatory factors, sinusoidal pressure (SP), and hepatic arterialization in alcohol-induced hepatic fibrogenesis. We strongly believe that the review will disclose major mechanisms of cell-to-cell communications pertained to alcohol-induced liver injury progression and will identify therapeutically important targets, which can be used for alcohol-associated liver disease (ALD) prevention.
Collapse
Affiliation(s)
- Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Akiko Eguchi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Ariel E. Feldstein
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
- Greater Los Angeles VA HealthCare System, Los Angeles, CA, United States
| | - Raghubendra S. Dagur
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Moses New-Aaron
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Environmental Health, Occupational Health, and Toxicology, College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States
| | - Madan Kumar Arumugam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Srinivas Chava
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Marcelle Ribeiro
- Harvard Medical School and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Gyongyi Szabo
- Harvard Medical School and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Sebastian Mueller
- Salem Medical Center and Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Shijin Wang
- Salem Medical Center and Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Cheng Chen
- Salem Medical Center and Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Steven A. Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
8
|
Han B, Wang X, Wu P, Jiang H, Yang Q, Li S, Li J, Zhang Z. Pulmonary inflammatory and fibrogenic response induced by graphitized multi-walled carbon nanotube involved in cGAS-STING signaling pathway. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125984. [PMID: 34020360 DOI: 10.1016/j.jhazmat.2021.125984] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Graphitized multi-walled carbon nanotubes (GMWCNTs) are a new type of nanomaterial. Recently, their production and application in biological medicine have grown rapidly. However, GMWCNTs may cause adverse health effects, including the common occupational disease of pulmonary fibrosis. Pulmonary fibrosis is a serious progressive disease that often leads to lung failure, high mortality, and disability, and there is no effective therapy currently available. Therefore, identifying new biomarkers of the disease is important to better understand the disease mechanisms and explore new therapeutic strategies. In this study, 40 μg of GMWCNTs was used to treat mice in vivo by pharyngeal aspiration, and different genes were screened by transcriptome sequencing. Activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) signal pathway had an important effect on the development of pulmonary inflammation and fibrosis. GMWCNTs were then administered to the mice with a STING inhibitor (C-176). Inhibition of STING effectively decreased pulmonary inflammation and fibrosis in mice induced by GMWCNTs. Collectively, activation of the cGAS-STING signaling pathway is involved in GMWCNT-induced pulmonary inflammation and fibrosis in mice.
Collapse
Affiliation(s)
- Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China.
| |
Collapse
|
9
|
Chen F, Sheng L, Xu C, Li J, Ali I, Li H, Cai Y. Ufbp1, a Key Player of Ufm1 Conjugation System, Protects Against Ketosis-Induced Liver Injury via Suppressing Smad3 Activation. Front Cell Dev Biol 2021; 9:676789. [PMID: 34307359 PMCID: PMC8297976 DOI: 10.3389/fcell.2021.676789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/02/2021] [Indexed: 01/06/2023] Open
Abstract
The dairy cattle suffer from severe liver dysfunction during the pathogenesis of ketosis. The Ufm1 conjugation system is crucial for liver development and homeostasis. Ufm1 binding protein (Ufbp1) is a putative Ufm1 target and an integral component, but its role in ketosis-induced liver injury is unclear so far. The purpose of this study is to explore the key role of Ufbp1 in liver fibrosis caused by ketosis in vivo and in vitro. Liver tissues were collected from ketotic cows and Ufbp1 conditional knockout (CKO) mice in vivo. However, Ufbp1–/– mouse embryonic fibroblast cells and Hela cells were used for in vitro validation. Subsequently, various assays were performed to reveal the underlying molecular mechanisms of the Ufbp1 protective effect. In this study, hepatic fibrosis, endoplasmic reticulum (ER) stress, and apoptosis were reported in the liver of ketotic cows, fibrotic markers (alpha-smooth muscle actin, Collagen1) and ER stress markers (glucose-regulated protein 78, CEBP homologous protein) were upregulated remarkably, and the apoptosis-related genes (Bcl2, Bax) were in line with expectations. Interestingly, Ufbp1 expression was almost disappeared, and Smad2/Smad3 protein was largely phosphorylated in the liver of ketotic cows, but Ufbp1 deletion caused Smad3 phosphorylation apparently, rather than Smad2, and elevated ER stress was observed in the CKO mice model. At the cellular level, Ufbp1 deficiency led to serious fibrotic and ER stress response, Smad3 was activated by phosphorylation significantly and then was translocated into the nucleus, whereas p-Smad2 was largely unaffected in embryonic fibroblast cells. Ufbp1 overexpression obviously suppressed Smad3 phosphorylation in Hela cells. Ufbp1 was found to be in full combination with Smad3 using endogenous immunoprecipitation. Taken together, our findings suggest that downregulation or ablation of Ufbp1 leads to Smad3 activation, elevated ER stress, and hepatocyte apoptosis, which in turn causes liver fibrosis. Ufbp1 plays a protective role in ketosis-induced liver injury.
Collapse
Affiliation(s)
- Fanghui Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Le Sheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chenjie Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jun Li
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Ilyas Ali
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Mangoud NOM, Ali SA, El Kassas M, Soror SH. Chitinase 3-like-1, Tolloid-like protein 1, and intergenic gene polymorphisms are predictors for hepatocellular carcinoma development after hepatitis C virus eradication by direct-acting antivirals. IUBMB Life 2021; 73:474-482. [PMID: 33347699 DOI: 10.1002/iub.2444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 02/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer death in Egypt. There is still a risk for HCC development even after eradicating hepatitis C virus (HCV) by direct-acting antivirals (DAAs). Chitinase-3-like-protein-1 (CHI3L1), a biomarker for predicting many diseases, plays an essential role in inflammation, angiogenesis, and antiapoptosis. Tolloid-like protein 1 (TLL1) may be involved in hepatic fibrogenesis and carcinogenesis. This study aimed to determine the role and combined effect of CHI3L1 (rs880633), TLL1 (rs1503298), and an intergenic (rs597533) polymorphisms on the risk of developing HCC in Egyptian patients after achieving sustained virological response (SVR) by DAAs. Blood samples were collected from 68 HCC patients, 77 non-HCC subjects, and 80 healthy controls. The DNA was extracted and analyzed for rs880633, rs1503298, and rs597533 using Genotyping TaqMan™ assay. The result of the present study showed a significant difference in genotypes and alleles frequencies in both (rs880633) and (rs597533) in HCC group as compared to healthy control and also as compared to the non-HCC group. However, regarding to (rs1503298) genotypes and alleles between the HCC and non-HCC groups, there were no significant differences. Combined polymorphism in more than one gene simultaneously showed a higher risk to HCC after SVR than an individual locus. Both allelic and genotypic variations of the CHI3L1 gene (rs880633) and an intergenic (rs597533) seemed to be significant predictors confirming a great risk for HCC susceptibility in Egyptian patients achieved SVR. Patients with a polymorphism in more than one gene showed an increased risk to HCC after SVR rather than individual locus.
Collapse
Affiliation(s)
- Nadia O M Mangoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Helwan, Egypt
| | - Sahar A Ali
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Helwan, Egypt
| | - Mohamed El Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Helwan, Egypt
| | - Sameh H Soror
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Helwan, Egypt
| |
Collapse
|
11
|
Wei T, Zhang XF, Bagante F, Ratti F, Marques HP, Soubrane O, Lam V, Poultsides GA, Popescu I, Alexandrescu S, Martel G, Workneh A, Guglielmi A, Hugh T, Aldrighetti L, Pawlik TM. Long-term outcomes after curative resection of HCV-positive versus non-hepatitis related hepatocellular carcinoma: an international multi-institutional analysis. HPB (Oxford) 2020; 22:1549-1556. [PMID: 31987739 DOI: 10.1016/j.hpb.2020.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/01/2020] [Accepted: 01/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND To define the chronological changes of long-term survival among patients with non-hepatitis-related hepatocellular carcinoma (Non-Hep-HCC) versus hepatitis C-related HCC (HCV-HCC) over the last two decades. METHODS Patients who underwent curative-intent resection for HCC between 2000 and 2017 were identified from an international multi-institutional database. Overall (OS) and recurrence-free survival (RFS) were analyzed and compared among Non-Hep-HCC versus HCV-HCC patients. Propensity score matching (PSM) was utilized to mitigate residual bias. RESULTS Among 617 patients, 196 (31.8%) patients had HCV-HCC, whereas 421 (68.2%) patients had Non-Hep-HCC. While patients with HCV-HCC had an improvement in OS over time (5-year OS, 2000-2009 55% vs. 2010-2017 67%, p = 0.034), OS among patients with Non-Hep-HCC remain unchanged (5-year OS, 2000-2009 53% vs. 2010-2017 52%, p = 0.905). In the matched cohort, patients with HCV-HCC had a worse OS versus patients with Non-Hep-HCC during 2000 and 2009 (5-year OS, 12% vs. 63%, p = 0.029), but significantly better OS from 2010 to 2017 than patients with Non-Hep-HCC (5-year OS, 86% vs. 73%, p = 0.035). The recurrence timing, patterns and re-treatments were comparable among Non-Hep-HCC and HCV-HCC patients. CONCLUSION While OS of patients with HCV-HCC improved over time, the long-term survival of patients with Non-Hep-HCC patients remained unchanged and was more unfavorable.
Collapse
Affiliation(s)
- Tao Wei
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu-Feng Zhang
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner, Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Fabio Bagante
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner, Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA; Department of Surgery, University of Verona, Verona, Italy
| | | | - Hugo P Marques
- Department of Surgery, Curry Cabral Hospital, Lisbon, Portugal
| | - Olivier Soubrane
- Department of Hepatobiliopancreatic Surgery, APHP, Beaujon Hospital, Clichy, France
| | - Vincent Lam
- Department of Surgery, Westmead Hospital, Sydney, Australia
| | | | - Irinel Popescu
- Department of Surgery, Fundeni Clinical Institute, Bucharest, Romania
| | | | | | - Aklile Workneh
- Department of Surgery, University of Ottawa, Ottawa, Canada
| | | | - Tom Hugh
- Department of Surgery, The University of Sydney, School of Medicine, Sydney, Australia
| | | | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner, Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
12
|
Han B, Lv Z, Zhang X, Lv Y, Li S, Wu P, Yang Q, Li J, Qu B, Zhang Z. Deltamethrin induces liver fibrosis in quails via activation of the TGF-β1/Smad signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113870. [PMID: 31918140 DOI: 10.1016/j.envpol.2019.113870] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Deltamethrin (DLM) is an important member of the pyrethroid pesticide family, and its widespread use has led to serious environmental and health problems. Exposure to DLM causes pathological changes in the liver of animals and humans and can lead to liver fibrosis. However, the mechanism of DLM-induced liver fibrosis remains unclear. Therefore, to address its potential molecular mechanisms, we used both in vivo and in vitro methods. Quails were treated in vivo by intragastric administration of different concentrations of DLM (0, 15, 30, or 45 mg kg-1), and the chicken liver cancer cell line LMH was treated in vitro with various doses of DLM (0, 50, 200, or 800 μg mL-1). We found that DLM treatment in vivo induced liver fibrosis in a dose-dependent manner through the promotion of oxidative stress, activation of transforming growth factor-β1 (TGF-β1) and phosphorylation of Smad2/3. Treatment of LMH cells with different concentrations of DLM similarly induced oxidative stress and also decreased cell viability. Collectively, our study demonstrates that DLM-induced liver fibrosis in quails occurs via activation of the TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, China
| | - Xiaoya Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yueying Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bing Qu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, China.
| |
Collapse
|
13
|
Origin and role of hepatic myofibroblasts in hepatocellular carcinoma. Oncotarget 2020; 11:1186-1201. [PMID: 32284794 PMCID: PMC7138168 DOI: 10.18632/oncotarget.27532] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and is the second leading cause of cancer-related death worldwide. Fibrosis and cirrhosis are important risk factors for the development of HCC. Hepatic myofibroblasts are the cells responsible for extracellular matrix deposition, which is the hallmark of liver fibrosis. It is believed that myofibroblasts are predominantly derived from hepatic stellate cells (HSCs), also known as Ito cells. Nevertheless, depending on the nature of insult to the liver, it is thought that myofibroblasts may also originate from a variety of other cell types such as the portal fibroblasts (PFs), fibrocytes, hepatocytes, hepatic progenitor cells (HPCs), and mesothelial cells. Liver myofibroblasts are believed to transform into cancer-associated fibroblasts (CAFs) while HCC is developing. There is substantial evidence suggesting that activated HSCs (aHSCs)/cancer-associated fibroblasts (CAFs) may play an important role in HCC initiation and progression. In this paper, we aim to review current literature on cellular origins of myofibroblasts with a focus on hepatitis B virus (HBV)- and hepatitis C virus (HCV)-induced hepatic fibrosis. We also address the role of aHSCs/CAFs in HCC progression through the regulation of immune cells as well as mechanisms of evolvement of drug resistance.
Collapse
|
14
|
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and is the second leading cause of cancer-related death worldwide. Fibrosis and cirrhosis are important risk factors for the development of HCC. Hepatic myofibroblasts are the cells responsible for extracellular matrix deposition, which is the hallmark of liver fibrosis. It is believed that myofibroblasts are predominantly derived from hepatic stellate cells (HSCs), also known as Ito cells. Nevertheless, depending on the nature of insult to the liver, it is thought that myofibroblasts may also originate from a variety of other cell types such as the portal fibroblasts (PFs), fibrocytes, hepatocytes, hepatic progenitor cells (HPCs), and mesothelial cells. Liver myofibroblasts are believed to transform into cancer-associated fibroblasts (CAFs) while HCC is developing. There is substantial evidence suggesting that activated HSCs (aHSCs)/cancer-associated fibroblasts (CAFs) may play an important role in HCC initiation and progression. In this paper, we aim to review current literature on cellular origins of myofibroblasts with a focus on hepatitis B virus (HBV)- and hepatitis C virus (HCV)-induced hepatic fibrosis. We also address the role of aHSCs/CAFs in HCC progression through the regulation of immune cells as well as mechanisms of evolvement of drug resistance.
Collapse
|
15
|
Shiha G, Mousa N. Noninvasive Biomarkers for Liver Fibrosis. LIVER DISEASES 2020:427-441. [DOI: 10.1007/978-3-030-24432-3_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
|
16
|
Kroh A, Walter J, Schüler H, Nolting J, Eickhoff R, Heise D, Neumann UP, Cramer T, Ulmer TF, Fragoulis A. A Newly Established Murine Cell Line as a Model for Hepatocellular Cancer in Non-Alcoholic Steatohepatitis. Int J Mol Sci 2019; 20:ijms20225658. [PMID: 31726709 PMCID: PMC6888677 DOI: 10.3390/ijms20225658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) has become a major risk factor for hepatocellular cancer (HCC) due to the worldwide increasing prevalence of obesity. However, the pathophysiology of NASH and its progression to HCC is incompletely understood. Thus, the aim of this study was to generate a model specific NASH-derived HCC cell line. A murine NASH-HCC model was conducted and the obtained cancer cells (N-HCC25) were investigated towards chromosomal aberrations, the expression of cell type-specific markers, dependency on nutrients, and functional importance of mTOR. N-HCC25 exhibited several chromosomal aberrations as compared to healthy hepatocytes. Hepatocytic (HNF4), EMT (Twist, Snail), and cancer stem cell markers (CD44, EpCAM, CK19, Sox9) were simultaneously expressed in these cells. Proliferation highly depended on the supply of glucose and FBS, but not glutamine. Treatment with a second generation mTOR inhibitor (KU-0063794) resulted in a strong decrease of cell growth in a dose-dependent manner. In contrast, a first generation mTOR inhibitor (Everolimus) only slightly reduced cell proliferation. Cell cycle analyses revealed that the observed growth reduction was most likely due to G1/G0 cell cycle arrest. These results indicate that N-HCC25 is a highly proliferative HCC cell line from a NASH background, which might serve as a suitable in vitro model for future investigations of NASH-derived HCC.
Collapse
Affiliation(s)
- Andreas Kroh
- Department of General, Visceral and Transplantation Surgery, Uniklinik RWTH Aachen, 52074 Aachen, Germany; (J.W.); (J.N.); (R.E.); (D.H.); (U.P.N.); (T.C.); (T.F.U.); (A.F.)
- Correspondence: ; Tel.: +49-241-80-89-501
| | - Jeanette Walter
- Department of General, Visceral and Transplantation Surgery, Uniklinik RWTH Aachen, 52074 Aachen, Germany; (J.W.); (J.N.); (R.E.); (D.H.); (U.P.N.); (T.C.); (T.F.U.); (A.F.)
| | - Herdit Schüler
- Institute of Human Genetics, Uniklinik RWTH Aachen, 52074 Aachen, Germany;
| | - Jochen Nolting
- Department of General, Visceral and Transplantation Surgery, Uniklinik RWTH Aachen, 52074 Aachen, Germany; (J.W.); (J.N.); (R.E.); (D.H.); (U.P.N.); (T.C.); (T.F.U.); (A.F.)
| | - Roman Eickhoff
- Department of General, Visceral and Transplantation Surgery, Uniklinik RWTH Aachen, 52074 Aachen, Germany; (J.W.); (J.N.); (R.E.); (D.H.); (U.P.N.); (T.C.); (T.F.U.); (A.F.)
| | - Daniel Heise
- Department of General, Visceral and Transplantation Surgery, Uniklinik RWTH Aachen, 52074 Aachen, Germany; (J.W.); (J.N.); (R.E.); (D.H.); (U.P.N.); (T.C.); (T.F.U.); (A.F.)
| | - Ulf Peter Neumann
- Department of General, Visceral and Transplantation Surgery, Uniklinik RWTH Aachen, 52074 Aachen, Germany; (J.W.); (J.N.); (R.E.); (D.H.); (U.P.N.); (T.C.); (T.F.U.); (A.F.)
- Department of Surgery, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
- ESCAM—European Surgery Center Aachen Maastricht, 52074 Aachen, Germany
- ESCAM—European Surgery Center Aachen Maastricht, 6200 MD Maastricht, The Netherlands
| | - Thorsten Cramer
- Department of General, Visceral and Transplantation Surgery, Uniklinik RWTH Aachen, 52074 Aachen, Germany; (J.W.); (J.N.); (R.E.); (D.H.); (U.P.N.); (T.C.); (T.F.U.); (A.F.)
- Department of Surgery, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
- ESCAM—European Surgery Center Aachen Maastricht, 52074 Aachen, Germany
- ESCAM—European Surgery Center Aachen Maastricht, 6200 MD Maastricht, The Netherlands
| | - Tom Florian Ulmer
- Department of General, Visceral and Transplantation Surgery, Uniklinik RWTH Aachen, 52074 Aachen, Germany; (J.W.); (J.N.); (R.E.); (D.H.); (U.P.N.); (T.C.); (T.F.U.); (A.F.)
- Department of Surgery, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - Athanassios Fragoulis
- Department of General, Visceral and Transplantation Surgery, Uniklinik RWTH Aachen, 52074 Aachen, Germany; (J.W.); (J.N.); (R.E.); (D.H.); (U.P.N.); (T.C.); (T.F.U.); (A.F.)
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, 52074 Aachen, Germany
| |
Collapse
|
17
|
Guo P, Liu S, Sun X, Xu L. Association of TGF-ß1 polymorphisms and chronic hepatitis C infection: a Meta-analysis. BMC Infect Dis 2019; 19:758. [PMID: 31470810 PMCID: PMC6716859 DOI: 10.1186/s12879-019-4390-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
Background Although several researches have reported the connection between the transforming growth factor-beta 1 (TGF-β1) gene polymorphisms and chronic hepatitis C virus (HCV) infection, the conclusions of these studies were not always consistent. Here, this paper proposed a meta-analysis to evaluate whether the TGF-ß1 gene polymorphisms, −509C/T (rs1800469), codon 10 T/C (rs1982073) and codon 25G/C (rs1800471), were associated with chronic HCV infection. Methods The summary odds ratios (ORs) of chronic HCV infected patients and controls with all SNPs were obtained by adaptive fixed or random effect model. A series of statistical tools were employed to guarantee the accuracy of related pooling ORs, including the Hardy-Weinberg equilibrium (HWE) test, sensitivity analysis and publication bias test. Results This paper analyzed 18 case-control studies in 17 articles which totally contains 2718 chronic HCV infection cases corresponding to 1964 controls. The results of the meta-analysis indicated that the −509C/T polymorphism effected an increased risk of chronic HCV infection in all gene models. More specifically by ethnicity stratification, the Egyptians shared the similar association with the above overall study. Moreover, the meta-fusion of healthy control studies showed that − 509 T allele carriers (TT + TA) had nearly 2.00 and 3.36 fold higher risk of chronic HCV infection in the total and Egyptian populations, respectively (OR = 2.004, 95% CI = 1.138–3.528, P = 0.016; OR = 3.363, 95% CI = 1.477–7.655, P = 0.004, respectively). However, our meta-analysis did not find any significant association between the codon 10 T/C or codon 25G/C polymorphisms and chronic HCV infection. Conclusions Our results suggested that the TGF-ß1–509C/T polymorphism may effect an increased risk of chronic HCV infection, especially in Egyptian population. Electronic supplementary material The online version of this article (10.1186/s12879-019-4390-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pengfei Guo
- College of Computational Science, Zhongkai University of Agriculture and Engineering, Guangzhou, 510200, China.,Intelligent Agriculture Engineering Research Center of Guangdong Higher Education Institutes, Zhongkai University of Agriculture and Engineering, Guangzhou, 510200, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510200, China
| | - Shuangyin Liu
- College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510200, China. .,Intelligent Agriculture Engineering Research Center of Guangdong Higher Education Institutes, Zhongkai University of Agriculture and Engineering, Guangzhou, 510200, China. .,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510200, China.
| | - Xiangru Sun
- Institute of Reproductive Medicine, Affiliated Hexian Memorial Hospital, Southern Medical University, Guangzhou, 511400, China
| | - Longqin Xu
- College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510200, China.,Intelligent Agriculture Engineering Research Center of Guangdong Higher Education Institutes, Zhongkai University of Agriculture and Engineering, Guangzhou, 510200, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510200, China
| |
Collapse
|
18
|
Fibrogenic Gene Expression in Hepatic Stellate Cells Induced by HCV and HIV Replication in a Three Cell Co-Culture Model System. Sci Rep 2019; 9:568. [PMID: 30679661 PMCID: PMC6345841 DOI: 10.1038/s41598-018-37071-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023] Open
Abstract
Retrospective studies indicate that co-infection of hepatitis C virus (HCV) and human immunodeficiency virus (HIV) accelerates hepatic fibrosis progression. We have developed a co-culture system (MLH) comprising primary macrophages, hepatic stellate cells (HSC, LX-2), and hepatocytes (Huh-7), permissive for active replication of HCV and HIV, and assessed the effect of these viral infections on the phenotypic changes and fibrogenic gene expression in LX-2 cells. We detected distinct morphological changes in LX-2 cells within 24 hr post-infection with HCV, HIV or HCV/HIV in MLH co-cultures, with migration enhancement phenotypes. Human fibrosis microarrays conducted using LX-2 cell RNA derived from MLH co-culture conditions, with or without HCV and HIV infection, revealed novel insights regarding the roles of these viral infections on fibrogenic gene expression in LX-2 cells. We found that HIV mono-infection in MLH co-culture had no impact on fibrogenic gene expression in LX-2 cells. HCV infection of MLH co-culture resulted in upregulation (>1.9x) of five fibrogenic genes including CCL2, IL1A, IL1B, IL13RA2 and MMP1. These genes were upregulated by HCV/HIV co-infection but in a greater magnitude. Conclusion: Our results indicate that HIV-infected macrophages accelerate hepatic fibrosis during HCV/HIV co-infection by amplifying the expression of HCV-dependent fibrogenic genes in HSC.
Collapse
|
19
|
Insights into hepatic and renal FXR/DDAH-1/eNOS pathway and its role in the potential benefit of rosuvastatin and silymarin in hepatic nephropathy. Exp Mol Pathol 2018; 105:293-310. [DOI: 10.1016/j.yexmp.2018.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/05/2018] [Accepted: 10/06/2018] [Indexed: 12/23/2022]
|
20
|
Ray S, Maulik U, Mukhopadhyay A. A review of computational approaches for analysis of hepatitis C virus-mediated liver diseases. Brief Funct Genomics 2018; 17:428-440. [PMID: 29194530 DOI: 10.1093/bfgp/elx040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Chronic infection of hepatitis C virus (HCV) leads to severe life-threatening liver diseases such as cirrhosis of liver, fibrosis and hepatocellular carcinoma (HCC). Severity of the disease infects >180 million people worldwide. In recent years, many computational approaches have been proposed to study and analyze the progression of liver fibrosis, HCC and other liver diseases developed from chronic HCV infection. In this article, we review the literature published in this area of study. Here we categorize all the approaches into two basic groups: analyzing gene expression and studying protein-protein interaction network among HCV-infected human proteins. We also review functional and pathway-enrichment analysis of HCV-interacted human proteins, which gives a clear understanding of functional perturbations leading to hepatocarcinogenesis. Topological analysis of HCV-human protein interaction network and HCV-HCC association network reveals important information of hepatocarcinogenesis progression in liver tissue. We compare the results of topological analysis performed in different studies. Moreover we observe that the HCV-interacted human proteins, which are also responsible for HCC progression, have relatively higher degree and betweenness centrality than that of the other HCV-interacted proteins.
Collapse
Affiliation(s)
- Sumanta Ray
- Department of Computer Science and Engineering, Aliah University, Kolkata, India
| | - Ujjwal Maulik
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
| | - Anirban Mukhopadhyay
- Department of Computer Science and Engineering, University of Kalyani, Kalyani, India
| |
Collapse
|
21
|
Huang CF, Yeh ML, Huang CI, Lin ZY, Chen SC, Huang JF, Dai CY, Chuang WL, Chen JJ, Yu ML. Tolloid-like 1 genetic variants determine fibrosis regression in chronic hepatitis C patients with curative antivirals. Sci Rep 2018; 8:15058. [PMID: 30305682 PMCID: PMC6180045 DOI: 10.1038/s41598-018-33448-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) eradication by antivirals promote fibrosis modification. Whether host genetics determined fibrosis regression in chronic hepatitis C (CHC) patients with sustained virological response (SVR) is to be determined. One hundred and fifty-six SVR patients with paired liver biopsy before and after antivirals were enrolled. Host genetic factors including single nucleotide polymorphism rs17047200 of tolloid-like 1(TLL-1) were analyzed for their association with fibrosis modification. The proportions of improved, unchanged and worsening fibrotic stags were 39.1% (n = 61), 39.1% (n = 61), and 21.8% (n = 34), respectively. The rate of annual fibrotic improvement was 0.16 ± 0.79. There was a significant trend of increased fibrotic improvement rate in patients from F01 to F4 (P < 0.001). However, the rate of improvement seemed more limited in cirrhotic patients among those with advanced liver disease. Patients with fibrotic improvement had a significantly higher proportion of TLL-1 rs17047200 AA genotype compared to those without (92.5% vs. 79.3%, p = 0.039). Logistic regression analysis revealed that the TLL-1 rs17047200 AA genotype was the only independent factor associated with fibrosis improvement (odds ratio/95% confidence intervals: 3.2/1.01-10.12, p = 0.047). Compared with TLL-1 rs17047200 non-AA carriers, a significantly higher proportion of fibrosis improvement in AA genotype carriers was observed among patients with F0-2 (33.3% vs. 0%, p = 0.005) but not with F34 (70% vs. 80%, p = 1). We concluded that TLL-1 genetic variants determined fibrotic improvement in CHC with curative antivirals, particularly in patients with mild liver disease.
Collapse
Affiliation(s)
- Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Occupational Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lun Yeh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-I Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zu-Yau Lin
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shinn-Cherng Chen
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yen Dai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Preventive Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jyh-Jou Chen
- Division of Gastroenterology and Hepatology, Chi-Mei Medical Center, Liouying, Taiwan.
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
- College of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan.
| |
Collapse
|
22
|
Saleem S, Ali A, Khubaib B, Akram M, Fatima Z, Idrees M. Genetic diversity of Hepatitis C Virus in Pakistan using Next Generation Sequencing. J Clin Virol 2018; 108:26-31. [PMID: 30219747 DOI: 10.1016/j.jcv.2018.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/14/2018] [Accepted: 09/07/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND In Pakistan, HCV disease is considered a major public health issue with about 10-17 million people suffering with this infection and rate is increasing every day without any hindrance. The currently available Pyrosequencing approach used to analyze complex viral genomes as it can determine minor variants. It is crucial to understand viral evolution and quasispecies diversity in complex viral strains. OBJECTIVES To assess genetic diversity in patients with HCV using Next Generation Sequencing (NGS) and compare nucleotide diversity of genotype 3a with respect to other genotypes. STUDY DESIGN Intra-host viral diversity of HCV was determined using NGS from 13 chronically HCV infected individuals. NGS of three different regions (E2 (HVR1), NS3 and NS5B) of HCV-3a allowed for a comprehensive analysis of the viral population. RESULT Phylogenetic analysis of different HCV genes revealed great variability within the Pakistani population. The average nucleotide diversity for HVR1, NS3 and NS5B was 0.029, 0.011 and 0.010 respectively. CONCLUSION Our findings clearly indicate that patient-2 greater quasispecies heterogeneity than other patients of same genotype-3a using phylogenetic and one step network analyses. Initially phylogenetic analysis of these three genes showed that genotype 3a samples have greater genetic diversity. However, no significant difference was determined when nucleotide variability of genotype 3a compared with other genotypes (1a, 1b, 2a & 4a).
Collapse
Affiliation(s)
- Sana Saleem
- Division of Molecular Virology and Molecular Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan.
| | - Amjad Ali
- Molecular Virology laboratory, Centre for Applied Molecular Biology (CAMB) University of the Punjab, Lahore 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan.
| | - Bushra Khubaib
- Division of Molecular Virology and Molecular Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan; Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan.
| | - Madiha Akram
- Division of Molecular Virology and Molecular Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan; Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan.
| | - Zareen Fatima
- Division of Molecular Virology and Molecular Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan; Bioinformatics & Biotechnology, International Islamic University, Sector H-10, New Campus, Islamabad, Pakistan.
| | - Muhammad Idrees
- Division of Molecular Virology and Molecular Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan; Vice Chancellor Hazara University Mansehra, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
23
|
Cordero-Espinoza L, Huch M. The balancing act of the liver: tissue regeneration versus fibrosis. J Clin Invest 2018; 128:85-96. [PMID: 29293095 PMCID: PMC5749503 DOI: 10.1172/jci93562] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epithelial cell loss alters a tissue's optimal function and awakens evolutionarily adapted healing mechanisms to reestablish homeostasis. Although adult mammalian organs have a limited regeneration potential, the liver stands out as one remarkable exception. Following injury, the liver mounts a dynamic multicellular response wherein stromal cells are activated in situ and/or recruited from the bloodstream, the extracellular matrix (ECM) is remodeled, and epithelial cells expand to replenish their lost numbers. Chronic damage makes this response persistent instead of transient, tipping the system into an abnormal steady state known as fibrosis, in which ECM accumulates excessively and tissue function degenerates. Here we explore the cellular and molecular switches that balance hepatic regeneration and fibrosis, with a focus on uncovering avenues of disease modeling and therapeutic intervention.
Collapse
|
24
|
Castro R, de Amorim I, Pereira R, Silva S, Pinheiro L, Pinto A, Azevedo E, Demicheli C, Caliari M, Mosser D, Michalick M, Frezard FJ, Tafuri WL. Hepatic fibropoiesis in dogs naturally infected with Leishmania (Leishmania) infantum treated with liposome-encapsulated meglumine antimoniate and allopurinol. Vet Parasitol 2018; 250:22-29. [DOI: 10.1016/j.vetpar.2017.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 01/07/2023]
|
25
|
Cheng JC, Tseng CP, Liao MH, Peng CY, Yu JS, Chuang PH, Huang JT, Chen JJW. Activation of hepatic stellate cells by the ubiquitin C-terminal hydrolase 1 protein secreted from hepatitis C virus-infected hepatocytes. Sci Rep 2017; 7:4448. [PMID: 28667290 PMCID: PMC5493679 DOI: 10.1038/s41598-017-04259-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/11/2017] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) infection of hepatocytes promotes liver fibrosis by activation of hepatic stellate cells (HSCs) and excessive deposition of extracellular matrix in liver tissue. Whether or not host factors released from the HCV-infected hepatocytes play role in HSCs activation is unclear. In this study, HSCs were activated by the conditioned medium derived from HCV replicon cells. Secretomic profiling of HCV replicon cells and the parental Huh7 cells revealed ubiquitin carboxy-terminal hydrolase L1 (UCHL1) as a novel secreted protein from HCV-infected hepatocytes. UCHL1 expression in hepatocytes was induced by HCV infection. UCHL1 was expressed in the liver and found in the plasma of patients with chronic hepatitis C. Molecular analysis by use of the anti-UCHL1 neutralization antibody and purified UCHL1 protein showed that secreted UCHL1 protein was bound to the cell surface of HSCs and activated JNK signaling leading to overexpression of alpha-smooth muscle actin and the activation of HSCs. These results provide further for understanding the underlying mechanism in HCV-mediated hepatic fibrogenesis.
Collapse
Affiliation(s)
- Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, 40402, Taiwan.
| | - Ching-Ping Tseng
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, 33302, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, 33302, Taiwan.,Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, 33302, Taiwan
| | - Mei-Huei Liao
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, 40402, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, 40402, Taiwan
| | - Cheng-Yuan Peng
- Department of Internal Medicine, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, 33302, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Linkou, 33302, Taiwan
| | - Po-Heng Chuang
- Department of Internal Medicine, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Jing-Tang Huang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, 40402, Taiwan
| | - Jeremy J W Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, 40402, Taiwan
| |
Collapse
|
26
|
Haqshenas G, Wu J, Simpson KJ, Daly RJ, Netter HJ, Baumert TF, Doerig C. Signalome-wide assessment of host cell response to hepatitis C virus. Nat Commun 2017; 8:15158. [PMID: 28480889 PMCID: PMC5424167 DOI: 10.1038/ncomms15158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 03/06/2017] [Indexed: 02/07/2023] Open
Abstract
Host cell signalling during infection with intracellular pathogens remains poorly understood. Here we report on the use of antibody microarray technology to detect variations in the expression levels and phosphorylation status of host cell signalling proteins during hepatitis C virus (HCV) replication. Following transfection with HCV RNA, the JNK and NF-κB pathways are suppressed, while the JAK/STAT5 pathway is activated; furthermore, components of the apoptosis and cell cycle control machineries are affected in the expression and/or phosphorylation status. RNAi-based hit validation identifies components of the JAK/STAT, NF-κB, MAPK and calcium-induced pathways as modulators of HCV replication. Selective chemical inhibition of one of the identified targets, the JNK activator kinase MAP4K2, does impair HCV replication. Thus this study provides a comprehensive picture of host cell pathway mobilization by HCV and uncovers potential therapeutic targets. The strategy of identifying targets for anti-infective intervention within the host cell signalome can be applied to any intracellular pathogen. Development of antiviral strategies depends on an understanding of virus–host interactions. Here, using HCV, Haqshenas et al. show that antibody microarray combined with a targeted siRNA screen can be a powerful tool to identify cellular signalling pathways that are important for virus replication.
Collapse
Affiliation(s)
- Gholamreza Haqshenas
- Infection &Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton Victoria 3800, Australia
| | - Jianmin Wu
- Kinghorn Cancer Centre &Cancer Division, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia.,Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Centre for Cancer Bioinformatics, Peking University Cancer Hospital &Institute, Beijing 100142, China
| | - Kaylene J Simpson
- Victorian Centre for Functional Genomics, The Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria 3002, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Roger J Daly
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton Victoria 3800, Australia
| | - Hans J Netter
- Infection &Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton Victoria 3800, Australia.,Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute, Melbourne Health, Victoria 3000, Australia
| | - Thomas F Baumert
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67091 Strasbourg, France.,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
| | - Christian Doerig
- Infection &Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton Victoria 3800, Australia
| |
Collapse
|
27
|
Matsuura K, Sawai H, Ikeo K, Ogawa S, Iio E, Isogawa M, Shimada N, Komori A, Toyoda H, Kumada T, Namisaki T, Yoshiji H, Sakamoto N, Nakagawa M, Asahina Y, Kurosaki M, Izumi N, Enomoto N, Kusakabe A, Kajiwara E, Itoh Y, Ide T, Tamori A, Matsubara M, Kawada N, Shirabe K, Tomita E, Honda M, Kaneko S, Nishina S, Suetsugu A, Hiasa Y, Watanabe H, Genda T, Sakaida I, Nishiguchi S, Takaguchi K, Tanaka E, Sugihara J, Shimada M, Kondo Y, Kawai Y, Kojima K, Nagasaki M, Tokunaga K, Tanaka Y. Genome-Wide Association Study Identifies TLL1 Variant Associated With Development of Hepatocellular Carcinoma After Eradication of Hepatitis C Virus Infection. Gastroenterology 2017; 152:1383-1394. [PMID: 28163062 DOI: 10.1053/j.gastro.2017.01.041] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS There is still a risk for hepatocellular carcinoma (HCC) development after eradication of hepatitis C virus (HCV) infection with antiviral agents. We investigated genetic factors associated with the development of HCC in patients with a sustained virologic response (SVR) to treatment for chronic HCV infection. METHODS We obtained genomic DNA from 457 patients in Japan with a SVR to interferon-based treatment for chronic HCV infection from 2007 through 2015. We conducted a genome-wide association study (GWAS), followed by a replication analysis of 79 candidate single nucleotide polymorphisms (SNPs) in an independent set of 486 patients in Japan. The study end point was HCC diagnosis or confirmation of lack of HCC (at follow-up examinations until December 2014 in the GWAS cohort, and until January 2016 in the replication cohort). We collected clinical and laboratory data from all patients. We analyzed expression levels of candidate gene variants in human hepatic stellate cells, rats with steatohepatitis caused by a choline-deficient L-amino acid-defined diet, and a mouse model of liver injury caused by administration of carbon tetrachloride. We also analyzed expression levels in liver tissues of patients with chronic HCV infection with different stages of fibrosis or tumors vs patients without HCV infection (controls). RESULTS We found a strong association between the SNP rs17047200, located within the intron of the tolloid like 1 gene (TLL1) on chromosome 4, and development of HCC; there was a genome-wide level of significance when the results of the GWAS and replication study were combined (odds ratio, 2.37; P = 2.66 × 10-8). Multivariate analysis showed rs17047200 AT/TT to be an independent risk factor for HCC (hazard ratio, 1.78; P = .008), along with male sex, older age, lower level of albumin, advanced stage of hepatic fibrosis, presence of diabetes, and higher post-treatment level of α-fetoprotein. Combining the rs17047200 genotype with other factors, we developed prediction models for HCC development in patients with mild or advanced hepatic fibrosis. Levels of TLL1 messenger RNA (mRNA) in human hepatic stellate cells increased with activation. Levels of Tll1 mRNA increased in liver tissues of rodents with hepatic fibrogenesis compared with controls. Levels of TLL1 mRNA increased in liver tissues of patients with progression of fibrosis. Gene expression levels of TLL1 short variants, including isoform 2, were higher in patients with rs17047200 AT/TT. CONCLUSIONS In a GWAS, we identified the association between the SNP rs17047200, within the intron of TLL1, and development of HCC in patients who achieved an SVR to treatment for chronic HCV infection. We found levels of Tll1/TLL1 mRNA to be increased in rodent models of liver injury and liver tissues of patients with fibrosis, compared with controls. We propose that this SNP might affect splicing of TLL1 mRNA, yielding short variants with high catalytic activity that accelerates hepatic fibrogenesis and carcinogenesis. Further studies are needed to determine how rs17047200 affects TLL1 mRNA levels, splicing, and translation, as well as the prevalence of this variant among other patients with HCC. Tests for the TLL1 SNP might be used to identify patients at risk for HCC after an SVR to treatment of HCV infection.
Collapse
Affiliation(s)
- Kentaro Matsuura
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiromi Sawai
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuho Ikeo
- Center for Information Biology, National Institute of Genetics, Mishima, Japan
| | - Shintaro Ogawa
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Etsuko Iio
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masanori Isogawa
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Noritomo Shimada
- Division of Gastroenterology and Hepatology, Otakanomori Hospital, Kashiwa, Japan
| | - Atsumasa Komori
- Clinical Research Center, National Nagasaki Medical Center, Omura, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Takashi Kumada
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Tadashi Namisaki
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Japan
| | - Hitoshi Yoshiji
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Japan
| | - Naoya Sakamoto
- Department of Internal Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mina Nakagawa
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan; Center for Interprofessional Education, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiro Asahina
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Liver Disease Control, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masayuki Kurosaki
- Division of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan
| | - Namiki Izumi
- Division of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan
| | - Nobuyuki Enomoto
- First Department of Internal Medicine, University of Yamanashi, Chuo, Japan
| | - Atsunori Kusakabe
- Division of Gastroenterology, Japanese Red Cross Nagoya Daini Hospital, Nagoya, Japan
| | - Eiji Kajiwara
- Department of Hepatology, Steel Memorial Yahata Hospital, Kitakyushu, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tatsuya Ide
- Division of Gastroenterology, Department of Medicine, Kurume University, Kurume, Japan
| | - Akihiro Tamori
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Misako Matsubara
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Ken Shirabe
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiichi Tomita
- Department of Gastroenterology, Gifu Municipal Hospital, Gifu, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Sohji Nishina
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| | - Atsushi Suetsugu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Hisayoshi Watanabe
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Takuya Genda
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Isao Sakaida
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shuhei Nishiguchi
- Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Koichi Takaguchi
- Department of Hepatology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Eiji Tanaka
- Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Junichi Sugihara
- Department of Gastroenterology, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Mitsuo Shimada
- Department of Surgery, The University of Tokushima, Tokushima, Japan
| | - Yasuteru Kondo
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yosuke Kawai
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kaname Kojima
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masao Nagasaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| |
Collapse
|
28
|
Omata M, Kanda T, Wei L, Yu ML, Chuang WL, Ibrahim A, Lesmana CRA, Sollano J, Kumar M, Jindal A, Sharma BC, Hamid SS, Dokmeci AK, Al-Mahtab M, McCaughan GW, Wasim J, Crawford DHG, Kao JH, Yokosuka O, Lau GKK, Sarin SK. APASL consensus statements and recommendations for hepatitis C prevention, epidemiology, and laboratory testing. Hepatol Int 2016; 10:681-701. [PMID: 27229718 PMCID: PMC5003900 DOI: 10.1007/s12072-016-9736-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/20/2016] [Indexed: 02/06/2023]
Abstract
The Asian Pacific Association for the Study of the Liver (APASL) convened an international working party on "APASL consensus statements and recommendations for management of hepatitis C" in March 2015 to revise the "APASL consensus statements and management algorithms for hepatitis C virus infection" (Hepatol Int 6:409-435, 2012). The working party consisted of expert hepatologists from the Asian-Pacific region gathered at the Istanbul Congress Center, Istanbul, Turkey on 13 March 2015. New data were presented, discussed, and debated during the course of drafting a revision. Participants of the consensus meeting assessed the quality of the cited studies. The finalized recommendations for hepatitis C prevention, epidemiology, and laboratory testing are presented in this review.
Collapse
Affiliation(s)
- Masao Omata
- Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, Kofu-shi, Yamanashi, 400-8506, Japan.
- The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Tatsuo Kanda
- Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Lai Wei
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China
| | - Ming-Lung Yu
- Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Wang-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Alaaeldin Ibrahim
- GI/Liver Division, Department of Internal Medicine, University of Benha, Banha, Egypt
| | | | - Jose Sollano
- University Santo Tomas Hospital, Manila, Philippines
| | - Manoj Kumar
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Ankur Jindal
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | | | - Saeed S Hamid
- Department of Medicine, Aga Khan University and Hospital, Stadium Road, Karachi, 74800, Pakistan
| | - A Kadir Dokmeci
- Department of Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
| | - Mamun Al-Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, 1000, Bangladesh
| | - Geofferey W McCaughan
- Royal Prince Alfred Hospital, Centenary Institute, University of Sydney, Sydney, Australia
| | - Jafri Wasim
- Department of Medicine, Aga Khan University and Hospital, Stadium Road, Karachi, 74800, Pakistan
| | - Darrell H G Crawford
- University of Queensland, School of Medicine, Woolloongabba, QLD, 4102, Australia
| | - Jia-Horng Kao
- National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - Osamu Yokosuka
- Graduate School of Medicine, Chiba University, Chiba, Japan
| | - George K K Lau
- The Institute of Translational Hepatology, Beijing 302 Hospital, Beijing, China
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
29
|
Matsuura K, De Giorgi V, Schechterly C, Wang RY, Farci P, Tanaka Y, Alter HJ. Circulating let-7 levels in plasma and extracellular vesicles correlate with hepatic fibrosis progression in chronic hepatitis C. Hepatology 2016; 64:732-745. [PMID: 27227815 PMCID: PMC4992455 DOI: 10.1002/hep.28660] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/13/2016] [Indexed: 12/17/2022]
Abstract
UNLABELLED The goal of this study was to determine whether an association exists between circulating microRNA (miRNA) levels and disease progression in chronic hepatitis C (CHC), whether plasma or extracellular vesicles (EVs) were optimal for miRNA measurement and their correlation with hepatic miRNA expression, and the mechanistic plausibility of this association. We studied 130 CHC patients prospectively followed over several decades. A comprehensive miRNA profile in plasma using microarray with 2578 probe sets showed 323 miRNAs differentially expressed between healthy individuals and CHC patients, but only six that distinguished patients with mild versus severe chronic hepatitis. Eventually, let-7a/7c/7d-5p and miR-122-5p were identified as candidate predictors of disease progression. Cross-sectional analyses at the time of initial liver biopsy showed that reduced levels of let-7a/7c/7d-5p (let-7s) in plasma were correlated with advanced histological hepatic fibrosis stage and other fibrotic markers, whereas miR-122-5p levels in plasma were positively correlated with inflammatory activity, but not fibrosis. Measuring let-7s levels in EVs was not superior to intact plasma for discriminating significant hepatic fibrosis. Longitudinal analyses in 60 patients with paired liver biopsies showed that let-7s levels in plasma markedly declined over time in parallel with fibrosis progression. However, circulating let-7s levels did not parallel those in the liver. CONCLUSION Of all miRNAs screened, the let-7 family showed the best correlation with hepatic fibrosis in CHC. A single determination of let-7s levels in plasma did not have superior predictive value for significant hepatic fibrosis compared with that of fibrosis-4 index, but the rate of let-7s decline in paired longitudinal samples correlated well with fibrosis progression. Pathway analysis suggested that low levels of let-7 may influence hepatic fibrogenesis through activation of transforming growth factor β signaling in hepatic stellate cells. (Hepatology 2016;64:732-745).
Collapse
Affiliation(s)
- Kentaro Matsuura
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Valeria De Giorgi
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Cathy Schechterly
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Richard Y. Wang
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Harvey J. Alter
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| |
Collapse
|
30
|
Liu Y, Yang P, Chen N, Lin S, Liu M. Effects of recombinant human adenovirus-p53 on the regression of hepatic fibrosis. Int J Mol Med 2016; 38:1093-100. [PMID: 27572658 PMCID: PMC5029955 DOI: 10.3892/ijmm.2016.2716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/10/2016] [Indexed: 01/28/2023] Open
Abstract
Hepatic fibrosis is a scarring process that may progress to hepatic cirrhosis and even hepatic carcinoma if left untreated. Hepatic stellate cells (HSCs) play essential roles in the development of hepatic fibrosis. The tumor suppressor protein p53 is a transcription factor that is involved in cell proliferation, cell cycle regulation, apoptosis and DNA repair. Recombinant human adenovirus-p53 (Ad-p53) has been demonstrated to act as a promising antitumor gene therapy in various types of cancer. However, there is limited infomration regarding the therapeutic effect of Ad-p53 on the regression of hepatic fibrosis. In order to examine the underlying molecular mechanism responsible for the effects of Ad-p53 on HSCs, a rat model of hepatic fibrosis was established and HSC-T6 cells were cultured under different conditions. The expression of p53, transforming growth factor (TGF-β1) and α-smooth muscle actin (α-SMA), which is a marker of activated HSCs, was detected by immunohistochemical assays and RT-qPCR. In vitro, five different concentrations (1×106, 5×106, 1×107, 2×107 and 5×107 PFU/ml) of Ad-p53 were selected for use in the MTT assay to analyze the proliferation of HSCs at 0, 24, 48 and 72 h. Flow cytometric analysis was applied to determine the effect of three different concentrations of Ad-p53 (5×106, 1×107 and 2×107 PFU/ml) on the cell cycle and the apoptosis of HSC-T6 cells at 24 and 48 h. The results of immunohistochemical studies and RT-qPCR showed that Ad-p53 upregulated the expression of p53, and downregulated the expression of TGF-β1 and α-SMA. The MTT assay revealed that when treated with various doses of Ad-p53, the proliferation of HSCs was inhibited within a certain range of concentrations and time periods. Analysis of flow cytometric data showed that Ad-p53 arrested the cell cycle in G1 phase and significantly induced apoptosis. Taken together, these findings suggest that Ad-p53 promotes apoptosis and inhibits the proliferation of HSCs in a time- and dose-dependent manner by modulating the expression of p53, TGF-β1 and α-SMA.
Collapse
Affiliation(s)
- Yehong Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Puye Yang
- Department of Infectious Diseases, Xi'an North Hospital of Xi'an Medical University, Xi'an, Shaanxi 710043, P.R. China
| | - Na Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shumei Lin
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Min Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
31
|
Kubo N, Araki K, Kuwano H, Shirabe K. Cancer-associated fibroblasts in hepatocellular carcinoma. World J Gastroenterol 2016; 22:6841-6850. [PMID: 27570421 PMCID: PMC4974583 DOI: 10.3748/wjg.v22.i30.6841] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/09/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
The hepatic stellate cells in the liver are stimulated sustainably by chronic injury of the hepatocytes, activating myofibroblasts, which produce abundant collagen. Myofibroblasts are the major source of extracellular proteins during fibrogenesis, and may directly, or secreted products, contribute to carcinogenesis and tumor progression. Cancer-associated fibroblasts (CAFs) are one of the components of the tumor microenvironment that promote the proliferation and invasion of cancer cells by secreting various growth factors and cytokines. CAFs crosstalk with cancer cells stimulates tumor progression by creating a favorable microenvironment for progression, invasion, and metastasis through the epithelial-mesenchymal transition. Basic studies on CAFs have advanced, and the role of CAFs in tumors has been elucidated. In particular, for hepatocellular carcinoma, carcinogenesis from cirrhosis is a known fact, and participation of CAFs in carcinogenesis is supported. In this review, we discuss the current literature on the role of CAFs and CAF-related signaling in carcinogenesis, crosstalk with cancer cells, immunosuppressive effects, angiogenesis, therapeutic targets, and resistance to chemotherapy. The role of CAFs is important in cancer initiation and progression. CAFtargeted therapy may be effective for suppression not only of fibrosis but also cancer progression.
Collapse
|
32
|
Granato M, Zompetta C, Vescarelli E, Rizzello C, Cardi A, Valia S, Antonelli G, Marchese C, Torrisi MR, Faggioni A, Cirone M. HCV derived from sera of HCV-infected patients induces pro-fibrotic effects in human primary fibroblasts by activating GLI2. Sci Rep 2016; 6:30649. [PMID: 27476557 PMCID: PMC4967919 DOI: 10.1038/srep30649] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/08/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a leading cause of liver fibrosis, especially in developing countries. The process is characterized by the excess accumulation of ECM that may lead, over time, to hepatic cirrhosis, liver failure and also to hepatocarcinoma. The direct role of HCV in promoting fibroblasts trans-differentiation into myofibroblasts, the major fibrogenic cells, has not been fully clarified. In this study, we found that HCV derived from HCV-infected patients infected and directly induced the trans-differentiation of human primary fibroblasts into myofibroblasts, promoting fibrogenesis. This effect correlated with the activation of GLI2, one of the targets of Hedgehog signaling pathway previously reported to be involved in myofibroblast generation. Moreover, GLI2 activation by HCV correlated with a reduction of autophagy in fibroblasts, that may further promoted fibrosis. GLI2 inhibition by Gant 61 counteracted the pro-fibrotic effects and autophagy inhibition mediated by HCV, suggesting that targeting HH/GLI2 pathway might represent a promising strategy to reduce the HCV-induced fibrosis.
Collapse
Affiliation(s)
- M Granato
- Dept. of Experimental medicine, Sapienza University of Rome, Italy
| | - C Zompetta
- Dept. of Molecular medicine, Sapienza University of Rome, Italy
| | - E Vescarelli
- Dept. of Experimental medicine, Sapienza University of Rome, Italy
| | - C Rizzello
- Dept. of Experimental medicine, Sapienza University of Rome, Italy
| | - A Cardi
- Dept. of Experimental medicine, Sapienza University of Rome, Italy
| | - S Valia
- Dept. of Molecular medicine, Sapienza University of Rome, Italy
| | - G Antonelli
- Dept. of Molecular medicine, Sapienza University of Rome, Italy
| | - C Marchese
- Dept. of Experimental medicine, Sapienza University of Rome, Italy
| | - M R Torrisi
- Istituto Pasteur-Fondazione Cenci Bolognetti; Dept. Clinical and Molecular Medicine, Sapienza University of Rome, Italy.,Azienda Ospedaliera Sant' Andrea, Rome, Italy
| | - A Faggioni
- Dept. of Experimental medicine, Sapienza University of Rome, Italy
| | - M Cirone
- Dept. of Experimental medicine, Sapienza University of Rome, Italy
| |
Collapse
|
33
|
Diagnostic value of optimised real-time sonoelastography in the assessment of liver fibrosis in chronic hepatitis B and C. GASTROENTEROLOGY REVIEW 2016; 12:28-33. [PMID: 28337233 PMCID: PMC5360655 DOI: 10.5114/pg.2016.61475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 09/21/2015] [Indexed: 12/19/2022]
Abstract
Aim To optimise the method of real-time elastography (RTE) in the assessment of liver fibrosis using an in-house prepared method for elastogram analysis, as well as a semiquantitative analysis based on newly introduced parameters. Material and methods Sonoelastography was performed in 94 patients with various degrees of liver fibrosis and also in 25 healthy volunteers. As a reference method for diagnostic efficacy of sonoelastography-based parameters used for the assessment of fibrosis degree in patients with chronic B and C hepatitis, a liver biopsy was used. Patient’s elastograms were analysed using in-house prepared software, Pixel Count, calculating two semiquantitative parameters: mean stiffness fraction (MSF%) and intrinsic stiffness ratio (ISR). Results Statistically significant differences between distributions of the above presented parameters for different degrees of liver fibrosis were revealed. Indices of diagnostic efficacy for detection of significant liver fibrosis (F ≥ 2) using MSF% amounted to: sensitivity – 76%, specificity – 87% and ISR: 81% and 87%, respectively. Sensitivity of both parameters in detection of cirrhosis (F = 4) was equal to 88% and specificity amounted to: for MSF% – 84% and ISR – 86%. Interobserver reproducibility determined for both of the above parameters was high, intraclass correlation coefficients (ICC) were 0.91 for MSF% and 0.93 for ISR. Conclusions Real-time elastography applied in this study, using in-house prepared Pixel Count software, provided good reproducibility and diagnostic efficacy, especially specificity, in the assessment of liver fibrosis degree.
Collapse
|
34
|
Hepatitis C virus infection stimulates transforming growth factor-β1 expression through up-regulating miR-192. J Microbiol 2016; 54:520-6. [PMID: 27350618 DOI: 10.1007/s12275-016-6240-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 12/22/2022]
Abstract
The objective of this study was to determine the molecular mechanisms underlying chronic liver injury and fibrosis caused by hepatitis C virus (HCV). This study revealed that miR-192 expreßsion was induced by HCV infection without affecting viral replication. However, viral-induced miR-192 up-regulated transforming growth factor-ß1 (TGF-ß1) expreßsion in liver cells at transcriptional level. TGF-ß1 stimulation by HCV-induced miR-192 was caused through ZEB1 down-regulation and TGF-ß1 increased miR-192 level via positive feedback pathway. Increase in miR-192 expreßsion by HCV infection was due to HCV core protein released and/or expressed by viral infection. TGF-ß1 promoter activity was also increased by HCV core protein in liver cells. Taken together, HCV infection resulted in increased TGF-ß1 transcription in hepatocytes through ZEB1 down-regulation by HCV core-mediated miR-192 stimulation. Importantly, miR-192 inhibition with anti-miR-192 rescued ZEB1 expression down-regulated by HCV infection, thus reducing the level of TGF-ß1 expression increased by HCV infection in hepatocytes. These results suggest a novel mechanism of HCV-mediated liver fibrogenesis with miR-192 being a potential molecular target to ameliorate viral pathogenesis.
Collapse
|
35
|
Madeira IMVM, Pereira DMO, Sousa AA, Vilela CA, Amorim IFG, Caliari MV, Souza CC, Tafuri WL. Immunohistochemical study of hepatic fibropoiesis associated with canine visceral leishmaniasis. Int J Exp Pathol 2016; 97:139-49. [PMID: 27242326 DOI: 10.1111/iep.12179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 02/13/2016] [Indexed: 12/26/2022] Open
Abstract
Hepatic fibropoiesis has been confirmed in canine visceral leishmaniasis. In fibrotic disease, hepatic stellate cells (HSC) play an important role in fibropoiesis, undergoing activation by TGF-β to acquire characteristics of myofibroblasts. These cells show extensive capacity for proliferation, motility, contractility, collagen synthesis and extracellular matrix component synthesis. The aim of this work was to identify markers of HSC activation in 10 symptomatic and 10 asymptomatic dogs naturally infected with Leishmania (Leishmania) infantum. Eight uninfected dogs were used as controls. Alpha-actin (α-SMA), vimentin and cytokeratin were investigated by immunohistochemistry as HSC markers. The cytokine TGF-β in tissue was also evaluated by immunohistochemistry. All infected dogs showed higher numbers of reticular fibres than controls. Fibropoiesis found in infected dogs was always associated with the presence of parasites and chronic granulomatous hepatitis. Positive correlation was found among fibropoiesis, parasite tissue load and expression of α-SMA. There was no correlation between fibropoiesis, vimentin and cytokeratin markers. The expression of cytokine TGF-β was higher in infected dogs than in controls, but not significantly different between symptomatic and asymptomatic dogs. These results confirm previous work describing the intense hepatic fibropoiesis in dogs naturally infected with Leishmania infantum, but now associated them with overexpression of TGF-β, where α-SMA may be a superior marker for activated HSC cells in CVL.
Collapse
Affiliation(s)
- Igor M V M Madeira
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Debora M O Pereira
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Aline A Sousa
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Cesar A Vilela
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Izabela F G Amorim
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Marcelo V Caliari
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Carolina C Souza
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Wagner L Tafuri
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| |
Collapse
|
36
|
Husic-Selimovic A, Sofic A, Huskic J, Bulja D. Effect of Antiviral Therapy on Serum Activity of Angiotensin Converting Enzyme in Patients with Chronic Hepatitis C. Med Arch 2016; 70:92-6. [PMID: 27147779 PMCID: PMC4851539 DOI: 10.5455/medarh.2016.70.92-96] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/15/2016] [Indexed: 12/15/2022] Open
Abstract
Introduction: Renin-angiotenzin system (RAS) is frequently activated in patients with chronic liver disease. Angiotenzin - II (AT-II), produced by angiotenzin converting enzyme (ACE), has many physiological effects, including an important role in liver fibrogenesis. Combined antiviral therapy with PEG-IFN and ribavirin besides its antiviral effect also leads to a reduction in liver parenchyma fibrosis. Aim of the study: Determining the value of ACE in serum of patients with chronic hepatitis C before and after combined antiviral therapy, as well as the value of ACE activities in sera of the control group. Materials and methods: We studied 50 patients treated at Gastroenterohepatology Department, in the time-period of four years. Value of ACE in serum was determined by Olympus AU 400 device, with application of kit “Infinity TN ACE Liquid Stable Reagent”. HCV RNA levels in sera were measured by real time PCR. HCV RNA test was performed with modular analysis of AMPLICOR and COBAS AMPLICOR HCV MONITOR test v2.0, which has proved infection and was used for quantification of the viruses and monitoring of the patients’ response to therapy. Liver histology was evaluated in accordance with the level of necroinflammation activity and stage of fibrosis. Results: Serum activities of ACE in chronic hepatitis C patients is statistically higher than the values in the control group (p=0.02). Antiviral therapy in chronic hepatitis C patients statistically decreases serum activities of ACE (p= 0.02) and indirectly affects fibrogenesis of the liver parenchyma. Correlation between ACE and ALT activity after the therapy was proved (0.3934). Conclusion: Our findings suggest that the activity of ACE in serum is a good indirect parameter of the liver damage, and could be used as an indirect prognostic factor of the level of liver parenchyma damage. Serum activity of ACE can be used as a parameter for non-invasive assessment of intensity of liver damage.
Collapse
Affiliation(s)
- Azra Husic-Selimovic
- Institute of Gastroenterohepatology, University Clinical Center Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Amela Sofic
- Clinic of Radiology, University Clinical Center Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Jasminko Huskic
- Institute for Physiology, Medical Faculty Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Deniz Bulja
- Clinic of Radiology, University Clinical Center Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
37
|
Saha B, Kodys K, Szabo G. Hepatitis C Virus-Induced Monocyte Differentiation Into Polarized M2 Macrophages Promotes Stellate Cell Activation via TGF-β. Cell Mol Gastroenterol Hepatol 2016; 2:302-316.e8. [PMID: 28090562 PMCID: PMC5042356 DOI: 10.1016/j.jcmgh.2015.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/22/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Monocyte and macrophage (MΦ) activation contributes to the pathogenesis of chronic hepatitis C virus (HCV) infection. Disease pathogenesis is regulated by both liver-resident MΦs and monocytes recruited as precursors of MΦs into the damaged liver. Monocytes differentiate into M1 (classic/proinflammatory) or M2 (alternative/anti-inflammatory) polarized MΦs in response to tissue microenvironment. We hypothesized that HCV-infected hepatoma cells (infected with Japanese fulminant hepatitis-1 [Huh7.5/JFH-1]) induce monocyte differentiation into polarized MΦs. METHODS Healthy human monocytes were co-cultured with Huh7.5/JFH-1 cells or cell-free virus for 7 days and analyzed for MΦ markers and cytokine levels. A similar analysis was performed on circulating monocytes and liver MΦs from HCV-infected patients and controls. RESULTS Huh7.5/JFH-1 cells induced monocytes to differentiate into MΦs with increased expression of CD14 and CD68. HCV-MΦs showed M2 surface markers (CD206, CD163, and Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN)) and produced both proinflammatory and anti-inflammatory cytokines. HCV-induced early interleukin 1β production promoted transforming growth factor (TGF)β production and MΦ polarization to an M2 phenotype. TGF-β secreted by M2-MΦ led to hepatic stellate cell activation indicated by increased expression of collagen, tissue inhibitor of metalloproteinase 1, and α-smooth muscle actin. In vivo, we observed a significant increase in M2 marker (CD206) expression on circulating monocytes and in the liver of chronic HCV-infected patients. Furthermore, we observed the presence of a unique collagen-expressing CD14+CD206+ monocyte population in HCV patients that correlated with liver fibrosis. CONCLUSIONS We show an important role for HCV in induction of monocyte differentiation into MΦs with a mixed M1/M2 cytokine profile and M2 surface phenotype that promote stellate cell activation via TGF-β. We also identified circulating monocytes expressing M2 marker and collagen in chronic HCV infection that can be explored as a biomarker.
Collapse
Key Words
- APC, antigen-presenting cell
- Biomarkers
- CD206
- COL, collagen
- Collagen
- FITC, fluorescein isothiocyanate
- Fibrocytes
- HCV, hepatitis C virus
- HSC, hepatic stellate cell
- Huh7.5/JFH-1, Huh7.5 cells infected with JFH-1 (HCV)
- IL, interleukin
- IL1RA, IL1-receptor antagonist
- JFH-1, Japanese fulminant hepatitis-1
- MFI, mean fluorescence intensity
- MΦ, macrophage
- NEAA, nonessential amino acid
- PBMC, peripheral blood mononuclear cell
- PE, Phycoerythrin
- TGF, transforming growth factor
- TIMP, tissue inhibitor of metalloproteinase
- TNF, tumor necrosis factor
- mRNA, messenger RNA
- α-SMA, α-smooth muscle actin
Collapse
Affiliation(s)
| | | | - Gyongyi Szabo
- Correspondence Address correspondence to: Gyongyi Szabo, MD, PhD, Department of Medicine, University of Massachusetts Medical School, LRB-208, 364 Plantation Street, Worcester, Massachusetts 01605. fax: (508) 856-4770.Department of MedicineUniversity of Massachusetts Medical SchoolLRB-208364 Plantation StreetWorcesterMassachusetts 01605
| |
Collapse
|
38
|
Sheiko MA, Rosen HR. Hepatic Fibrosis in Hepatitis C. HEPATITIS C VIRUS II 2016:79-108. [DOI: 10.1007/978-4-431-56101-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
39
|
Li HG, Liu FF, Zhu HQ, Zhou X, Lu J, Chang H, Hu JH. Common Variants of the Prostaglandin-Endoperoxide Synthase 2 Gene and Hepatocellular Carcinoma Susceptibility. Medicine (Baltimore) 2015; 94:e1116. [PMID: 26334888 PMCID: PMC4616504 DOI: 10.1097/md.0000000000001116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous disease with substantial genetic constitution. Previous work has evaluated the effect of prostaglandin-endoperoxide synthase 2 (PTGS2) variants (-765G/C, -1195A/G, and +8473T/C) on the development of HCC, but the conclusions are inconsistent. We conducted a meta-analysis in this work. Data from 7 case-control studies were combined to assess the association between PTGS2 variants and HCC. The risk of HCC (OR and 95% CI) was estimated using either the fixed- or the random-effects model according to the Q test. No significant association was identified for -765G/C and +8473T/C. However, we identified a significantly decreased risk in relation to the GG genotype of -1195A/G (OR = 0.70, 95% CI = 0.50-0.98 for GG versus AA). We also observed a similar decrease (OR = 0.47, 95% CI = 0.23-0.95 for GG versus AA) in Caucasian samples. Variant -1195A/G in the promoter PTGS2 may protect against the malignant progression of HCC. This significant association suggests that -1195A/G could be used as a biomarker of HCC.
Collapse
Affiliation(s)
- Hong-Guang Li
- From the Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China (HGL, FFL, XZ, JL, HC); and Department of Gastroenterology Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, 250021, China (JHH)
| | | | | | | | | | | | | |
Collapse
|
40
|
Florimond A, Chouteau P, Bruscella P, Le Seyec J, Mérour E, Ahnou N, Mallat A, Lotersztajn S, Pawlotsky JM. Human hepatic stellate cells are not permissive for hepatitis C virus entry and replication. Gut 2015; 64:957-65. [PMID: 25063678 DOI: 10.1136/gutjnl-2013-305634] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 07/01/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Chronic HCV infection is associated with the development of hepatic fibrosis. The direct role of HCV in the fibrogenic process is unknown. Specifically, whether HCV is able to infect hepatic stellate cells (HSCs) is debated. OBJECTIVE To assess whether human HSCs are susceptible to HCV infection. DESIGN We combined a set of original HCV models, including the infectious genotype 2a JFH1 model (HCVcc), retroviral pseudoparticles expressing the folded HCV genotype 1b envelope glycoproteins (HCVpp) and a subgenomic genotype 1b HCV replicon, and two relevant cellular models, primary human HSCs from different patients and the LX-2 cell line, to assess whether HCV can infect/replicate in HSCs. RESULTS In contrast with the hepatocyte cell line Huh-7, neither infectious HCVcc nor HCVpp infected primary human HSCs or LX-2 cells. The cellular expression of host cellular factors required for HCV entry was high in Huh-7 cells but low in HSCs and LX-2 cells, with the exception of CD81. Finally, replication of a genotype 2a full-length RNA genome and a genotype 1b subgenomic replicon was impaired in primary human HSCs and LX-2 cells, which expressed low levels of cellular factors known to play a key role in the HCV life-cycle, suggesting that human HSCs are not permissive for HCV replication. CONCLUSIONS Human HSCs are refractory to HCV infection. Both HCV entry and replication are deficient in these cells, regardless of the HCV genotype and origin of the cells. Thus, HCV infection of HSCs does not play a role in liver fibrosis. These results do not rule out a direct role of HCV infection of hepatocytes in the fibrogenic process.
Collapse
Affiliation(s)
- Alexandre Florimond
- Team 'Pathophysiology and Therapy of Chronic Viral Hepatitis', Inserm U955, Créteil, France Université Paris-Est, Créteil, France
| | - Philippe Chouteau
- Team 'Pathophysiology and Therapy of Chronic Viral Hepatitis', Inserm U955, Créteil, France Université Paris-Est, Créteil, France
| | - Patrice Bruscella
- Team 'Pathophysiology and Therapy of Chronic Viral Hepatitis', Inserm U955, Créteil, France Université Paris-Est, Créteil, France
| | - Jacques Le Seyec
- Inserm U1085, Institut de Recherche Santé Environnement & Travail (IRSET), Rennes, France Université de Rennes 1, Rennes, France Fédération de Recherche BIOSIT de Rennes, UMS 3480-US18, Rennes, France
| | - Emilie Mérour
- Team 'Pathophysiology and Therapy of Chronic Viral Hepatitis', Inserm U955, Créteil, France Université Paris-Est, Créteil, France
| | - Nazim Ahnou
- Team 'Pathophysiology and Therapy of Chronic Viral Hepatitis', Inserm U955, Créteil, France Université Paris-Est, Créteil, France
| | - Ariane Mallat
- Team 'Pathophysiology and Therapy of Chronic Viral Hepatitis', Inserm U955, Créteil, France Université Paris-Est, Créteil, France Department of Hepatology and Gastroenterology, Hôpital Henri Mondor, Créteil, France
| | - Sophie Lotersztajn
- Centre de Recherche sur l'Inflammation, Inserm UMR 1149-Université Paris Diderot, Paris, France
| | - Jean-Michel Pawlotsky
- Team 'Pathophysiology and Therapy of Chronic Viral Hepatitis', Inserm U955, Créteil, France Université Paris-Est, Créteil, France National Reference Center for Viral Hepatitis B, C, and Delta, Department of Virology, Hôpital Henri Mondor, Créteil, France
| |
Collapse
|
41
|
Bansal R, Frelin L, Brenndörfer ED, Storm G, Prakash J, Sällberg M. Hepatitis C Virus Nonstructural 3/4A Protein Dampens Inflammation and Contributes to Slow Fibrosis Progression during Chronic Fibrosis In Vivo. PLoS One 2015; 10:e0128466. [PMID: 26030283 PMCID: PMC4450868 DOI: 10.1371/journal.pone.0128466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/27/2015] [Indexed: 01/07/2023] Open
Abstract
HCV infection typically induces liver injury and inflammation, which appears to be responsible for the associated fibrogenesis. To date, the mechanism underlying the different rates of disease progression remains unclear. The aim of the study is to understand the possible role of the HCV non-structural (NS) 3/4A protein in the fibrosis progression. We used NS3/4A-expressing transgenic mice (NS3/4A-Tg) to accomplish the goals of the study. Different stages of liver fibrosis were induced in wild-type and NS3/4A-Tg mice by single carbon tetrachloride (acute) or multiple injections for 4 (intermediate) or 8 (chronic) weeks. Fibrotic parameters, inflammatory responses and hepatocyte turnover were extensively examined. Hepatic expression of HCV NS3/4A did not induce spontaneous liver damage. However, NS3/4A expression exerted contrasting effects during acute and chronic liver damage. During early fibrogenesis and intermediate fibrosis (4 weeks), NS3/4A-Tg mice exhibited enhanced liver damage whereas reduced fibrosis was observed in NS3/4A-Tg during chronic liver fibrosis (8 weeks). Furthermore, attenuated inflammation was observed in NS3/4A-Tg during chronic fibrosis with increase in M2 macrophages, hepatocyte proliferation, decreased hepatocyte apoptosis and decreased ductular reaction. In conclusion, during early fibrogenesis, HCV NS3/4A contributes to liver damage. While, during chronic liver fibrosis, NS3/4A dampens inflammation and induces hepatocyte regeneration thereby contributing to slow fibrosis progression to promote its survival or persistence.
Collapse
Affiliation(s)
- Ruchi Bansal
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
- Targeted Therapeutics, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
- * E-mail:
| | - Lars Frelin
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Erwin Daniel Brenndörfer
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Gert Storm
- Targeted Therapeutics, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jai Prakash
- Targeted Therapeutics, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Matti Sällberg
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
42
|
Abstract
Hepatitis C virus (HCV) is a global health burden with an estimated 170-200 million peoples chronically infected worldwide. HCV infection remains as an independent risk factor for chronic hepatitis, liver cirrhosis, hepatocellular carcinoma, and a major reason for liver transplantation. Discovery of direct acting antiviral (DAA) drugs have shown promising results with more than 90% success rate in clearing the HCV RNA in patients, although long-term consequences remain to be evaluated. microRNAs (miRNAs) are important players in establishment of HCV infection and target crucial host cellular factors needed for productive HCV replication and augmented cell growth. Altered expression of miRNAs is involved in the pathogenesis associated with HCV infection by controlling signaling pathways such as immune response, proliferation and apoptosis. miRNA is emerging as a means of communication between various cell types inside the liver. There is likely possibility of developing circulating miRNAs as biomarkers of disease progression and can also serve as diagnostic tool with potential of early therapeutic intervention in HCV associated end stage liver disease. This review focuses on recent studies highlighting the contribution of miRNAs in HCV life cycle and their coordinated regulation in HCV mediated liver disease progression.
Collapse
Affiliation(s)
| | - Robert Steele
- Departments of Pathology, Saint Louis University, St. Louis, Missouri, USA
| | - Ranjit Ray
- Departments of Internal Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Ratna B Ray
- Departments of Pathology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
43
|
Abstract
Chronic HCV infection is the leading indication for liver transplantation. However, as a result of HCV recurrence, patient and graft survival after liver transplantation are inferior compared with other indications for transplantation. HCV recurrence after liver transplantation is associated with considerable mortality and morbidity. The development of HCV-related fibrosis is accelerated after liver transplantation, which is influenced by a combination of factors related to the virus, donor, recipient, surgery and immunosuppression. Successful antiviral therapy is the only treatment that can attenuate fibrosis. The advent of direct-acting antiviral agents (DAAs) has changed the therapeutic landscape for the treatment of patients with HCV. DAAs have improved tolerability, and can potentially be used without PEG-IFN for a shorter time than previous therapies, which should result in better outcomes. In this Review, we describe the important risk factors that influence HCV recurrence after liver transplantation, highlighting the mechanisms of fibrosis and the integral role of hepatic stellate cells. Indirect and direct assessment of fibrosis, in addition to new antiviral therapies, are also discussed.
Collapse
|
44
|
Abstract
Hepatitis C virus (HCV) is one of the major etiologic agents of liver cancer. HCV is an RNA virus that, unlike hepatitis B virus, is unable to integrate into the host genome. Through complex interactions between viral and host proteins that induce host responses and promote inflammation, fibrosis, and ultimately cirrhosis, HCV infection can result in the development of hepatocellular carcinoma (HCC). The HCV oncogenic process involves genetic and epigenetic alterations and oncogenic effects mediated by viral proteins in the activation of cellular oncogenes, inactivation of tumor-suppressor genes, and dysregulation of multiple signal-transduction pathways. Advances in genetics and gene expression profiling have enhanced our current understanding of the pathways involved in HCV-associated liver cancer development. In this review, we summarize the current understanding of mechanisms of hepatocarcinogenesis induced by HCV infection.
Collapse
Affiliation(s)
- Ming V Lin
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114; , ,
| | | | | |
Collapse
|
45
|
Gao P, Li L, Ji L, Wei Y, Li H, Shang G, Zhao Z, Chen Q, Jiang T, Zhang N. Nrf2 ameliorates diabetic nephropathy progression by transcriptional repression of TGFβ1 through interactions with c-Jun and SP1. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:1110-1120. [PMID: 25046864 DOI: 10.1016/j.bbagrm.2014.06.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN) is one of the major complications in diabetes patients. Reactive oxygen species (ROS) play key roles in DN progression. As a primary transcription factor, Nrf2 controls the antioxidant response to maintain cellular redox homeostasis. Herein we systemically examined the role of Nrf2 in DN progression and its regulatory mechanism in a mouse model bearing type II diabetes and in cultured human renal mesangial cells (HRMCs). We found that Nrf2 could ameliorate DN progression by transcriptional repression of TGFβ1 in vivo and in vitro. Moreover, Nrf2 bound to the specific region in TGFβ1 promoter by interactions with transcription factors c-Jun and SP1. Significant abolishment of Nrf2-mediated TGFβ1 transcriptional repression could be accomplished by knockdown of either c-Jun or SP1, and site-directed mutagenesis of c-Jun and SP1 binding sites in the TGFβ1 promoter specific region. Moreover, after interacting with c-Jun and SP1, Nrf2 inhibited c-Jun and SP1 activations, and thus reversed c-Jun- and SP1-promoted TGFβ1 transcription. In all, Nrf2 could slow down DN progression by repression of TGFβ1 in a c-Jun and SP1-dependent way. Our findings may provide novel clues for DN preventions and interventions in clinic.
Collapse
Affiliation(s)
- Pan Gao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai, China.
| | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai, China.
| | - Lili Ji
- Department of Pathology, Medical School of Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, China.
| | - Yingze Wei
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai, China.
| | - Hui Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai, China.
| | - Guoguo Shang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai, China.
| | - Zhonghua Zhao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai, China.
| | - Qi Chen
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai, China.
| | - Tao Jiang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai, China.
| | - Nong Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai, China.
| |
Collapse
|
46
|
Gambato M, Lens S, Navasa M, Forns X. Treatment options in patients with decompensated cirrhosis, pre- and post-transplantation. J Hepatol 2014; 61:S120-31. [PMID: 25443340 DOI: 10.1016/j.jhep.2014.07.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/03/2014] [Accepted: 07/11/2014] [Indexed: 12/21/2022]
Abstract
Interferon-based treatments have a poor safety profile and limited efficacy in patients with advanced liver disease and in patients with hepatitis C (HCV) recurrence after liver transplantation (LT). Despite the recent approval of the first interferon-free regimen, which will be followed by several other interferon-free combinations in 2014 and 2015, data in patients with advanced cirrhosis and hepatitis C after LT are still limited. One study has already proven the concept that graft HCV infection can be prevented in a significant proportion of patients by treating them with sofosbuvir and ribavirin while awaiting LT. Two interferon-free regimens have also demonstrated a high efficacy in patients with hepatitis C recurrence after transplantation. Before these treatment strategies can be implemented in clinical practice, a few issues need to be addressed: (1) safety and efficacy of new antivirals in patients with decompensated cirrhosis, (2) the impact of viral clearance on liver function, (3) the potential consequences of virological failure (and the selection of multi-drug resistant HCV strains) in patients with decompensated cirrhosis or with severe hepatitis C recurrence after LT, and (4) drug-drug interactions (DDI) profiles. Finally, in the transplant setting it is also relevant to learn which strategy is most cost-effective in minimizing the negative impact of hepatitis C: preventing graft infection by treating patients before transplantation or treating hepatitis C recurrence after LT.
Collapse
Affiliation(s)
- Martina Gambato
- Liver Unit, Hospital Clinic, IDIBAPS and CIBEREHD, University of Barcelona, Spain
| | - Sabela Lens
- Liver Unit, Hospital Clinic, IDIBAPS and CIBEREHD, University of Barcelona, Spain
| | - Miquel Navasa
- Liver Unit, Hospital Clinic, IDIBAPS and CIBEREHD, University of Barcelona, Spain
| | - Xavier Forns
- Liver Unit, Hospital Clinic, IDIBAPS and CIBEREHD, University of Barcelona, Spain.
| |
Collapse
|
47
|
Martín-Vílchez S, Rodríguez-Muñoz Y, López-Rodríguez R, Hernández-Bartolomé Á, Borque-Iñurrita MJ, Molina-Jiménez F, García-Buey L, Moreno-Otero R, Sanz-Cameno P. Inhibition of tyrosine kinase receptor Tie2 reverts HCV-induced hepatic stellate cell activation. PLoS One 2014; 9:e106958. [PMID: 25302785 PMCID: PMC4193738 DOI: 10.1371/journal.pone.0106958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/12/2014] [Indexed: 01/18/2023] Open
Abstract
Background Hepatitis C virus (HCV) infection is a major cause of chronic liver disease (CLD) and is frequently linked to intrahepatic microvascular disorders. Activation of hepatic stellate cells (HSC) is a central event in liver damage, due to their contribution to hepatic renewal and to the development of fibrosis and hepatocarcinoma. During the progression of CLDs, HSC attempt to restore injured tissue by stimulating repair processes, such as fibrosis and angiogenesis. Because HSC express the key vascular receptor Tie2, among other angiogenic receptors and mediators, we analyzed its involvement in the development of CLD. Methods Tie2 expression was monitored in HSC cultures that were exposed to media from HCV-expressing cells (replicons). The effects of Tie2 blockade on HSC activation by either neutralizing antibody or specific signaling inhibitors were also examined. Results Media from HCV-replicons enhanced HSC activation and invasion and upregulated Tie2 expression. Notably, the blockade of Tie2 receptor (by a specific neutralizing antibody) or signaling (by selective AKT and MAPK inhibitors) significantly reduced alpha-smooth muscle actin (α-SMA) expression and the invasive potential of HCV-conditioned HSC. Conclusions These findings ascribe a novel profibrogenic function to Tie2 receptor in the progression of chronic hepatitis C, highlighting the significance of its dysregulation in the evolution of CLDs and its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Samuel Martín-Vílchez
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Yolanda Rodríguez-Muñoz
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-ehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rosario López-Rodríguez
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-ehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ángel Hernández-Bartolomé
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - María Jesús Borque-Iñurrita
- Unidad de Biología Molecular, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Francisca Molina-Jiménez
- Unidad de Biología Molecular, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Luisa García-Buey
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-ehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ricardo Moreno-Otero
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-ehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Paloma Sanz-Cameno
- Unidad de Hepatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-ehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- * E-mail:
| |
Collapse
|
48
|
Wong GLH. Prediction of fibrosis progression in chronic viral hepatitis. Clin Mol Hepatol 2014; 20:228-36. [PMID: 25320725 PMCID: PMC4197170 DOI: 10.3350/cmh.2014.20.3.228] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023] Open
Abstract
Prediction of liver fibrosis progression has a key role in the management of chronic viral hepatitis, as it will be translated into the future risk of cirrhosis and its various complications including hepatocellular carcinoma. Both hepatitis B and C viruses mainly lead to fibrogenesis induced by chronic inflammation and a continuous wound healing response. At the same time direct and indirect profibrogenic responses are also elicited by the viral infection. There are a handful of well-established risk factors for fibrosis progression including older age, male gender, alcohol use, high viral load and co-infection with other viruses. Metabolic syndrome is an evolving risk factor of fibrosis progression. The new notion of regression of advanced fibrosis or even cirrhosis is now strongly supported various clinical studies. Even liver biopsy retains its important role in the assessment of fibrosis progression, various non-invasive assessments have been adopted widely because of their non-invasiveness, which facilitates serial applications in large cohorts of subjects. Transient elastography is one of the most validated tools which has both diagnostic and prognostic role. As there is no single perfect test for liver fibrosis assessment, algorithms combining the most validated noninvasive methods should be considered as initial screening tools.
Collapse
Affiliation(s)
- Grace Lai-Hung Wong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
49
|
GIV/Girdin is a central hub for profibrogenic signalling networks during liver fibrosis. Nat Commun 2014; 5:4451. [PMID: 25043713 PMCID: PMC4107319 DOI: 10.1038/ncomms5451] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 06/18/2014] [Indexed: 01/18/2023] Open
Abstract
Progressive liver fibrosis is characterized by the deposition of collagen by activated hepatic stellate cells (HSCs). Activation of HSCs is a multiple receptor-driven process in which profibrotic signals are enhanced, and anti-fibrotic pathways are suppressed. Here we report the discovery of a novel signaling platform comprised of G protein subunit, Gαi and GIV, its guanine exchange factor (GEF), which serves as a central hub within the fibrogenic signalling network initiated by diverse classes of receptors. GIV is expressed in the liver after fibrogenic injury and is required for HSC activation. Once expressed, GIV enhances the profibrotic (PI3K-Akt-FoxO1 and TGFβ-SMAD) and inhibits the anti-fibrotic (cAMP-PKA-pCREB) pathways to skew the signalling network in favor of fibrosis, all via activation of Gαi. We also provide evidence that GIV may serve as a biomarker for progression of fibrosis after liver injury and a therapeutic target for arresting and/or reversing HSC activation during liver fibrosis.
Collapse
|
50
|
Zhou WC, Zhang QB, Qiao L. Pathogenesis of liver cirrhosis. World J Gastroenterol 2014; 20:7312-7324. [PMID: 24966602 PMCID: PMC4064077 DOI: 10.3748/wjg.v20.i23.7312] [Citation(s) in RCA: 380] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/16/2014] [Accepted: 04/29/2014] [Indexed: 02/06/2023] Open
Abstract
Liver cirrhosis is the final pathological result of various chronic liver diseases, and fibrosis is the precursor of cirrhosis. Many types of cells, cytokines and miRNAs are involved in the initiation and progression of liver fibrosis and cirrhosis. Activation of hepatic stellate cells (HSCs) is a pivotal event in fibrosis. Defenestration and capillarization of liver sinusoidal endothelial cells are major contributing factors to hepatic dysfunction in liver cirrhosis. Activated Kupffer cells destroy hepatocytes and stimulate the activation of HSCs. Repeated cycles of apoptosis and regeneration of hepatocytes contribute to pathogenesis of cirrhosis. At the molecular level, many cytokines are involved in mediation of signaling pathways that regulate activation of HSCs and fibrogenesis. Recently, miRNAs as a post-transcriptional regulator have been found to play a key role in fibrosis and cirrhosis. Robust animal models of liver fibrosis and cirrhosis, as well as the recently identified critical cellular and molecular factors involved in the development of liver fibrosis and cirrhosis will facilitate the development of more effective therapeutic approaches for these conditions.
Collapse
|