1
|
Kondoh N, Mizuno-Kamiya M, Umemura N, Takayama E, Kawaki H, Mitsudo K, Muramatsu Y, Sumitomo S. Immunomodulatory aspects in the progression and treatment of oral malignancy. JAPANESE DENTAL SCIENCE REVIEW 2019; 55:113-120. [PMID: 31660091 PMCID: PMC6806653 DOI: 10.1016/j.jdsr.2019.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/28/2022] Open
Abstract
Inflammation substantially affects the risk of oral malignancy. Pro-inflammatory cytokine, interferon (IFN)-γ, confers anti-tumor activity using several different mechanisms. Conversely, higher expression of interleukin (IL)-17 is associated with worse prognosis. Monocyte chemotactic protein (MCP)-1 correlates positively with poor long-term survival of head and neck squamous cell carcinoma (HNSCC) patients. IL-1α affects cancer associated fibroblasts and macrophages, and promote several malignant phenotypes including immune suppression. Some anti-inflammatory cytokines, including IL-10 and transforming growth factor (TGF)-β, relate to pro-tumoral activities. Among immune checkpoint modulators, programmed death (PD-)1 and PD-ligand (L)1 facilitate oral squamous cell carcinoma (OSCC) cell evasion from immune surveillance, and the expression status of these has a prognostic value. OSCCs contain tumor associated macrophages (TAMs) as major stromal cells of their tumor microenvironment. Among the two distinctive states, M2 macrophages support tumor invasion, metastasis and immune suppression. Crosstalk between TAMs and OSCC or cancer-associated fibroblasts (CAF) plays an important role in the progression of OSCC. Clinical trials with blocking antibodies against IL-1α or melanoma-associated antigens have been reported as therapeutic approaches against OSCCs. The most promising approach activating antitumor immunity is the blockade of PD-1/PD-L1 axis. Manipulating the polarization of pro-tumorigenic macrophages has been reported as a novel therapeutic approach.
Collapse
Affiliation(s)
- Nobuo Kondoh
- Department of Oral Biochemistry, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Masako Mizuno-Kamiya
- Chemistry Laboratory, Department of Business Administration, Asahi University School of Business Administration, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Naoki Umemura
- Department of Oral Biochemistry, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Eiji Takayama
- Department of Oral Biochemistry, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Harumi Kawaki
- Department of Oral Biochemistry, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Yasunori Muramatsu
- Department of Oral and Maxillofacial Surgery, Division of Oral Pathogenesis and Disease Control, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Shinichiro Sumitomo
- Department of Oral and Maxillofacial Surgery, Division of Oral Pathogenesis and Disease Control, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| |
Collapse
|
2
|
Gkouveris I, Nikitakis NG, Aseervatham J, Ogbureke KUE. Interferon γ suppresses dentin sialophosphoprotein in oral squamous cell carcinoma cells resulting in antitumor effects, via modulation of the endoplasmic reticulum response. Int J Oncol 2018; 53:2423-2432. [PMID: 30320380 PMCID: PMC6203152 DOI: 10.3892/ijo.2018.4590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022] Open
Abstract
The expression of proinflammatory cytokines in various malignant neoplasms is widely considered to represent the host immune response to tumor development. The role of interferon (IFN)γ in head and neck squamous cell carcinoma, and its association with endoplasmic reticulum (ER) stress pathways, remains a subject of ongoing investigation. Dentin sialophosphoprotein (DSPP), which is a member of the small integrin-binding N-linked glycoproteins family, has been implicated in malignant transformation and invasion of oral squamous cell carcinoma (OSCC). Recent studies have established matrix metalloproteinase (MMP)20 as the cognate MMP partner of DSPP. The present study examined the effects of IFNγ treatment on DSPP and MMP20 expression, ER stress, the unfolded protein response (UPR), and calcium (Ca) homeostasis regulatory mechanisms in OSCC cells. The OSC2 OSCC cell line was treated with IFNγ at specific time-points. At each time-point, the mRNA expression levels of DSPP and MMP20, and those of ER-stress-, UPR- and Ca homeostasis-associated proteins [78-kDa glucose-regulated protein (GRP78), sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2b), inositol 1,4,5-trisphosphate receptor (IP3r), protein kinase R-like ER kinase (PERK) and inositol-requiring enzyme 1 (IRE1)], were assessed by reverse transcription-quantitative polymerase chain reaction. The protein expression levels of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), proliferating cell nuclear antigen (PCNA) and cytochrome c were analyzed by western blotting. Cell viability, apoptosis and migration were evaluated by MTT, Annexin V-fluorescein isothiocyanate flow cytometry and wound-healing assays, respectively. IFNγ treatment significantly downregulated the mRNA expression levels of the major ER stress regulator GRP78 and, to a lesser extent, the UPR-associated molecule IRE1; however, IFNγ had no significant effect on PERK. With regards to ER Ca homeostasis molecules, treatment with IFNγ downregulated the mRNA expression levels of SERCA2b and upregulated those of IP3r. Furthermore, DSPP and MMP20 mRNA expression levels were significantly reduced following IFNγ treatment. Notably, treatment with IFNγ hampered OSC2 migration, reduced cell viability and PCNA protein expression, enhanced apoptosis, downregulated Bcl-2, and upregulated Bax and cytochrome c. Overall, IFNγ inhibited OSCC cell viability and migration, and increased apoptosis, possibly by regulating ER stress and UPR mechanisms. In addition, IFNγ-induced DSPP and MMP20 downregulation may correspond with alteration in ER Ca homeostasis.
Collapse
Affiliation(s)
- Ioannis Gkouveris
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Nikolaos G Nikitakis
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Jaya Aseervatham
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Kalu U E Ogbureke
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| |
Collapse
|
3
|
Engineering folding mechanism through Hsp70 and Hsp40 chaperones for enhancing the production of recombinant human interferon gamma (rhIFN-γ) in Pichia pastoris cell factory. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
4
|
El Jamal SM, Taylor EB, Abd Elmageed ZY, Alamodi AA, Selimovic D, Alkhateeb A, Hannig M, Hassan SY, Santourlidis S, Friedlander PL, Haikel Y, Vijaykumar S, Kandil E, Hassan M. Interferon gamma-induced apoptosis of head and neck squamous cell carcinoma is connected to indoleamine-2,3-dioxygenase via mitochondrial and ER stress-associated pathways. Cell Div 2016; 11:11. [PMID: 27486476 PMCID: PMC4969639 DOI: 10.1186/s13008-016-0023-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/15/2016] [Indexed: 12/25/2022] Open
Abstract
Background Tumor response to immunotherapy is the consequence of a concerted crosstalk between cytokines and effector cells. Interferon gamma (IFNγ) is one of the common cytokines coordinating tumor immune response and the associated biological consequences. Although the role of IFNγ in the modulation of tumor immunity has been widely documented, the mechanisms regulating IFNγ-induced cell death, during the course of immune therapy, is not described in detail. Results IFNγ triggered apoptosis of CLS-354 and RPMI 2650 cells, enhanced the protein expression and activation of indoleamine 2,3-dioxygenase (IDO), and suppressed the basal expression of heme oxygenase-1(HO-1). Interestingly, IFNγ induced the loss of mitochondrial membrane potential (Δψm) and increased accumulation of reactive oxygen species (ROS). The cytokine also induced the activation of Janus kinase (JAK)/Signal Transducer and Activator of Transcription (STAT)1, apoptosis signal-regulating kinase 1 (ASK1), p38, c-jun-N-terminal kinase (JNK) and NF-κB pathways and the transcription factors STAT1, interferon regulatory factor 1 (IRF1), AP-1, ATF-2, NF-κB and p53, and expression of Noxa protein. Furthermore, IFNγ was found to trigger endoplasmic reticulum (ER) stress as evidenced by the cleavage of caspase-4 and activation of protein kinase RNA-like endoplasmic reticulum kinase (PERK) and inositol-requiring-1α (IRE1α) pathways. Using specific inhibitors, we identified a potential role for IDO as apoptotic mediator in the regulation of IFNγ-induced apoptosis of head and neck squamous cell carcinoma (HNSCC) cells via Noxa-mediated mitochondrial dysregulation and ER stress. Conclusion In addition to the elucidation of the role of IDO in the modulation of apoptosis, our study provides new insights into the molecular mechanisms of IFNγ-induced apoptosis of HNSCC cells during the course of immune therapy.
Collapse
Affiliation(s)
- Siraj M El Jamal
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216 USA
| | - Erin B Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216 USA
| | | | - Abdulhadi A Alamodi
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216 USA
| | - Denis Selimovic
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Kirrberger Str. 100, 66421 Homburg/Saar, Germany ; Division of Oral Health Science, Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Abdulaziz Alkhateeb
- Clinic of Dermatology, University Hospital of Aachen, Puwelstrasse 30, Aachen, Germany ; College of Medicine, King Faisal University, Alhofuf, Saudi Arabia
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Kirrberger Str. 100, 66421 Homburg/Saar, Germany
| | - Sofie Y Hassan
- Clinic of Dermatology, University Hospital of Aachen, Puwelstrasse 30, Aachen, Germany
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, University Hospital of Duesseldorf, Heinrich-Heine-University of Duesseldorf, Mooren Str.5, 40225 Duesseldorf, Germany
| | - Paul L Friedlander
- Departments of Surgery, Tulane University School of Medicine, New Orleans, LA 70112 USA
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France ; Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Srinivasan Vijaykumar
- Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39216 USA ; Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216 USA
| | - Emad Kandil
- Departments of Surgery, Tulane University School of Medicine, New Orleans, LA 70112 USA
| | - Mohamed Hassan
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216 USA ; Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Kirrberger Str. 100, 66421 Homburg/Saar, Germany ; Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France ; Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216 USA
| |
Collapse
|
5
|
Role of heat shock proteins in oral squamous cell carcinoma: A systematic review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2015; 159:366-71. [DOI: 10.5507/bp.2015.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 01/15/2015] [Indexed: 01/24/2023] Open
|
6
|
Tong XB, Kita K, Chen SP, Jiang X, Sugaya S, Jing WL, Zhang SF, Suzuki N. Involvement of heat shock protein 27 in the susceptibility of KT human breast cancer cells to UVC and interferon lethality. Exp Ther Med 2012; 4:913-917. [PMID: 23226748 PMCID: PMC3493791 DOI: 10.3892/etm.2012.696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/06/2012] [Indexed: 12/27/2022] Open
Abstract
Revealing the key molecules regulating the stress-response pathways in human cells is an intriguing problem. Chaperones, such as glucose-regulated protein 78 (GRP78) and heat shock protein 27 (HSP27), are important molecules for protecting the viability of human cells; however, it remains to be further clarified whether the molecules differentially modulate cellular responses to various types of stressors, such as DNA-damaging ultraviolet ray C (principally 254-nm wavelength, UVC) and cytocidal cytokine interferons. In the present study, the human breast cancer cell lines KT and MCF-7 were examined for GRP78 and HSP27 expression following exposure to UVC and human interferon-β (HuIFN-β). The KT cells demonstrated a higher sensitivity to both UVC and HuIFN-β lethality than MCF-7 cells. The cellular expression levels of GRP78 in KT cells, assessed by western blot analysis, were approximately 2-fold higher than that in MCF-7 cells, while the expression of HSP27 in the KT cells was 20% of the expression in the MCF-7 cells. Decreased resistance to UVC lethality was observed in GRP78 siRNA-transfected KT cells. In addition, HSP27 cDNA transfection of KT cells resulted in an increased resistance to UVC lethality. The cDNA-transfected KT cells showed an increased viability against HuIFN-β, compared with that of empty vector-transfected cells. By contrast, KT cells pretreated with HuIFN-β and irradiated with UVC demonstrated an increased resistance to UVC lethality, in association with increased levels of HSP27 expression. Thus, HSP27 may control the survival response pathways to both UVC and HuIFN-β in the human cells examined.
Collapse
Affiliation(s)
- Xiao-Bo Tong
- Department of Physiology, Chengde Medical University, Chengde 067000, P.R. China ; ; Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Matijević T, Kirinec G, Pavelić J. Antitumor activity from the combined application of poly(I:C) and chemotherapeutics in human metastatic pharyngeal cell lines. Chemotherapy 2011; 57:460-7. [PMID: 22188667 DOI: 10.1159/000334122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/13/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Toll-like receptor 3 (TLR3) activation in tumor cells induces apoptosis. We investigated the effect of TLR3 ligand (poly(I:C)) in combination with chemotherapeutics applied to human pharyngeal carcinoma cells as a possible antitumor therapy. METHODS Human pharyngeal cancer cell lines were studied (FaDu and Detroit 562). Cytotoxicity assays and apoptosis assays (annexin V staining and caspase 3/7 activity measurements) were used to investigate the cytotoxic effects. By using TLR3 siRNA we confirmed that the observed effect is TLR3-dependent. RESULTS We found that the combined application of poly(I:C) and chemotherapeutics (cisPt, HU, 5-FU and MTX) has a stronger inhibitory effect on cell growth in tumor cells expressing functional TLR3 as compared with a single treatment. This is a result of TLR3-dependent apoptosis. CONCLUSION Our study showed that a combined application of the two agents already being used in tumor therapy could lower the necessary dosage of chemotherapeutics, leading to fewer side effects.
Collapse
Affiliation(s)
- Tanja Matijević
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | | | | |
Collapse
|
8
|
Mymrikov EV, Seit-Nebi AS, Gusev NB. Large potentials of small heat shock proteins. Physiol Rev 2011; 91:1123-59. [PMID: 22013208 DOI: 10.1152/physrev.00023.2010] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Modern classification of the family of human small heat shock proteins (the so-called HSPB) is presented, and the structure and properties of three members of this family are analyzed in detail. Ubiquitously expressed HSPB1 (HSP27) is involved in the control of protein folding and, when mutated, plays a significant role in the development of certain neurodegenerative disorders. HSPB1 directly or indirectly participates in the regulation of apoptosis, protects the cell against oxidative stress, and is involved in the regulation of the cytoskeleton. HSPB6 (HSP20) also possesses chaperone-like activity, is involved in regulation of smooth muscle contraction, has pronounced cardioprotective activity, and seems to participate in insulin-dependent regulation of muscle metabolism. HSPB8 (HSP22) prevents accumulation of aggregated proteins in the cell and participates in the regulation of proteolysis of unfolded proteins. HSPB8 also seems to be directly or indirectly involved in regulation of apoptosis and carcinogenesis, contributes to cardiac cell hypertrophy and survival and, when mutated, might be involved in development of neurodegenerative diseases. All small heat shock proteins play important "housekeeping" roles and regulate many vital processes; therefore, they are considered as attractive therapeutic targets.
Collapse
Affiliation(s)
- Evgeny V Mymrikov
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, Russian Federation
| | | | | |
Collapse
|
9
|
Himeda T, Okuwa T, Muraki Y, Ohara Y. Cytokine/chemokine profile in J774 macrophage cells persistently infected with DA strain of Theiler's murine encephalomyelitis virus (TMEV). J Neurovirol 2010; 16:219-29. [PMID: 20515433 DOI: 10.3109/13550284.2010.484040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Theiler's murine encephalomyelitis virus (TMEV) is a picornavirus and persists in the spinal cords of mice, followed by inflammatory demyelinating disease. Viral persistence is a key determinant for the TMEV-induced demyelination. Macrophages are thought to serve as the site of TMEV persistence during the chronic demyelinating phase. We previously demonstrated that two nonstructural proteins of TMEV, L and L(*), were important for virus growth in J774.1 macrophage cells. However, the key factors of macrophage cells related to virus persistence and demyelination remain poorly understood. The inflammatory response is heavily dependent on cytokine and chemokine production by cell of both the immune system and the central nervous system (CNS). In this study, we established the macrophage cells persistently infected with DA strain, and then analyzed the cytokine expression pattern in those cells. The present results are the first to demonstrate the up-regulation of B-lymphocyte chemoattractant (BLC) and granulocyte colony-stimulating factor (G-CSF) in the macrophage cells persistently infected with DA strain. Furthermore, up-regulation of interleukin (IL)-10 and down-regulation of interferon (IFN)-alpha 4, IFN-beta, and IFN-gamma were shown in those cells. The data suggest that these cytokines/chemokines may contribute to the virus persistence and the acceleration of TMEV-induced demyelination.
Collapse
Affiliation(s)
- Toshiki Himeda
- Department of Microbiology, Kanazawa Medical University School of Medicine, Uchinada, Ishikawa, Japan
| | | | | | | |
Collapse
|
10
|
Yokota SI, Okabayashi T, Yokosawa N, Fujii N. Measles virus P protein suppresses Toll-like receptor signal through up-regulation of ubiquitin-modifying enzyme A20. FASEB J 2007; 22:74-83. [PMID: 17720800 DOI: 10.1096/fj.07-8976com] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We recently reported that the activation of NF-kappaB and AP-1 was suppressed in monocytes infected with measles virus, but not in infected epithelial cells. This cell-type-specific suppression of the inflammatory response represents a potential for measles virus to evade host immune system. In the current study, we examined the suppression mechanism of lipopolysaccharide (LPS)-induced, namely Toll-like receptor 4 (TLR4)-mediated, activation of NF-kappaB and AP-1 in measles virus-infected monocytic cells. In the infected cells, LPS treatment failed to induce the formation of active protein kinase complex containing TAK1, TAB2 and tumor necrosis factor receptor-associated factor 6 (TRAF6), dissociate from TLR complexes containing Interleukin-1 receptor-associated kinase 1 (IRAK1). Ubiquitin-modifying enzyme A20, which is a host negative feedback regulator of NF-kappaB, was dramatically up-regulated in infected monocytic cells, but not in infected epithelial cells. Suppression of A20 expression by siRNA restored LPS-induced signaling in infected cells. Measles virus phosphoprotein (P protein) expression was necessary and sufficient for the induction of A20. P protein interacted indirectly with a negative regulatory motif in the A20 gene promoter, and released the suppression of A20 transcription, independent of the activation of NF-kappaB.
Collapse
Affiliation(s)
- Shin-ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan
| | | | | | | |
Collapse
|
11
|
Indoh T, Yokota SI, Okabayashi T, Yokosawa N, Fujii N. Suppression of NF-κB and AP-1 activation in monocytic cells persistently infected with measles virus. Virology 2007; 361:294-303. [PMID: 17196632 DOI: 10.1016/j.virol.2006.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 11/02/2006] [Accepted: 11/06/2006] [Indexed: 01/27/2023]
Abstract
A major cause of the high morbidity and mortality associated with measles infection is attributed to virus-mediated immunosuppression. In this report, we present evidence for a novel strategy of immunosuppression by the measles virus. We observed a marked suppression of lipopolysaccharide (LPS)-induced IL-8, RANTES, TNF-alpha and IL-6 production and NF-kappaB activation in human monocytic cell lines persistently infected with measles virus. This effect was not observed in human epithelial cells lines persistently infected with measles virus. There were no significant differences in expression levels of Toll-like receptors (TLRs) and their associated molecules, or other intracellular signaling molecules of the NF-kappaB signaling pathway in measles-virus-infected monocytic cells compared to uninfected cells. Infected monocytic cells exhibited decreased LPS-induced DNA binding of NF-kappaB and phosphorylation of JNK, namely activation of transcription factors NF-kappaB and AP-1. NF-kappaB was constitutively activated in human epithelial cells persistently infected with measles virus, and LPS treatment resulted in further activation. The cell-type-specific suppression of NF-kappaB activation represents a potential strategy of escape from the host immune system by measles virus via induced immunological silencing in infected cells.
Collapse
Affiliation(s)
- Tomokazu Indoh
- Department of Microbiology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan
| | | | | | | | | |
Collapse
|
12
|
Mookerjee A, Mookerjee Basu J, Dutta P, Majumder S, Bhattacharyya S, Biswas J, Pal S, Mukherjee P, Raha S, Baral RN, Das T, Efferth T, Sa G, Roy S, Choudhuri SK. Overcoming drug-resistant cancer by a newly developed copper chelate through host-protective cytokine-mediated apoptosis. Clin Cancer Res 2007; 12:4339-49. [PMID: 16857809 DOI: 10.1158/1078-0432.ccr-06-0001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Previously, we have synthesized and characterized a novel Cu(II) complex, copper N-(2-hydroxy acetophenone) glycinate (CuNG). Herein, we have determined the efficacy of CuNG in overcoming multidrug-resistant cancer using drug-resistant murine and human cancer cell lines. EXPERIMENTAL DESIGN Action of CuNG following single i.m. administration (5 mg/kg body weight) was tested in vivo on doxorubicin-resistant Ehrlich ascites carcinoma (EAC/Dox)-bearing mice and doxorubicin-resistant sarcoma 180-bearing mice. Tumor size, ascitic load, and survival rates were monitored at regular intervals. Apoptosis of cancer cells was determined by cell cycle analysis, confocal microscopy, Annexin V binding, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay ex vivo. IFN-gamma and tumor necrosis factor-alpha were assayed in the culture supernatants of in vivo and in vitro CuNG-treated splenic mononuclear cells from EAC/Dox-bearing mice and their apoptogenic effect was determined. Source of IFN-gamma and changes in number of T regulatory marker-bearing cells in the tumor site following CuNG treatment were investigated by flow cytometry. Supernatants of in vitro CuNG-treated cultures of peripheral blood mononuclear cells from different drug-insensitive cancer patients were tested for presence of the apoptogenic cytokine IFN-gamma and its involvement in induction of apoptosis of doxorubicin-resistant CEM/ADR5000 cells. RESULTS CuNG treatment could resolve drug-resistant cancers through induction of apoptogenic cytokines, such as IFN-gamma and/or tumor necrosis factor-alpha, from splenic mononuclear cells or patient peripheral blood mononuclear cells and reduce the number of T regulatory marker-bearing cells while increase infiltration of IFN-gamma-producing T cells in the ascetic tumor site. CONCLUSION Our results show the potential usefulness of CuNG in immunotherapy of drug-resistant cancers irrespective of multidrug resistance phenotype.
Collapse
Affiliation(s)
- Ananda Mookerjee
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ferns G, Shams S, Shafi S. Heat shock protein 27: its potential role in vascular disease. Int J Exp Pathol 2006; 87:253-74. [PMID: 16875491 PMCID: PMC2517372 DOI: 10.1111/j.1365-2613.2006.00484.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 03/23/2006] [Indexed: 11/30/2022] Open
Abstract
Heat shock proteins are molecular chaperones that have an ability to protect proteins from damage induced by environmental factors such as free radicals, heat, ischaemia and toxins, allowing denatured proteins to adopt their native configuration. Heat shock protein-27 (Hsp27) is a member of the small Hsp (sHsp) family of proteins, and has a molecular weight of approximately 27 KDa. In addition to its role as a chaperone, it has also been reported to have many additional functions. These include effects on the apoptotic pathway, cell movement and embryogenesis. In this review, we have focused on its possible role in vascular disease.
Collapse
Affiliation(s)
- Gordon Ferns
- Centre for Clinical Science and Measurement, School of Biomedical Science, University of Surrey, Guildford Surrey, UK.
| | | | | |
Collapse
|
14
|
Abstract
Small heat shock proteins (sHSPs) function as molecular chaperones, preventing stress induced aggregation of partially denatured proteins and promoting their return to native conformations when favorable conditions pertain. Sequence similarity between sHSPs resides predominately in an internal stretch of residues termed the alpha-crystallin domain, a region usually flanked by two extensions. The poorly conserved N-terminal extension influences oligomer construction and chaperone activity, whereas the flexible C-terminal extension stabilizes quaternary structure and enhances protein/substrate complex solubility. sHSP polypeptides assemble into dynamic oligomers which undergo subunit exchange and they bind a wide range of cellular substrates. As molecular chaperones, the sHSPs protect protein structure and activity, thereby preventing disease, but they may contribute to cell malfunction when perturbed. For example, sHSPs prevent cataract in the mammalian lens and guard against ischemic and reperfusion injury due to heart attack and stroke. On the other hand, mutated sHSPs are implicated in diseases such as desmin-related myopathy and they have an uncertain relationship to neurological disorders including Parkinson's and Alzheimer's disease. This review explores the involvement of sHSPs in disease and their potential for therapeutic intervention.
Collapse
Affiliation(s)
- Yu Sun
- Department of Biology, Dalhousie University, Halifax, Canada
| | | |
Collapse
|
15
|
Fujii N, Yokota SI, Yokosawa N, Okabayashi T. [Molecular mechanisms for suppression of interferon signal transduction pathways caused by viral infections]. Uirusu 2005; 54:169-78. [PMID: 15745154 DOI: 10.2222/jsv.54.169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In order to establish infection to host cells, viruses suppress or escape from the host immune response against microorganisms by various strategies. Interferon (IFN) system is an important contributor of innate immunity. IFN is induced by viral infection, and it promotes antiviral state through induction and/or activation of the effector molecules. Many viruses possess the suppression or inhibition mechanisms for the anti-viral effector molecules, whereas they also perform inhibition of IFN signaling pathway, JAK/STAT pathway. We consider that latter is a most effective strategy counteracting IFN function, because the signaling pathway is an entrance of the system. The strategies counteracting JAK/STAT pathway are varied among virus species. Viruses perform (i) production of IFN-binding protein, (ii) degradation of JAK/STAT components, (iii) suppression of activation (phosphorylation) of the components, (iv) inhibition of nuclear translocation of activated transcription factor, and (v) induction of host JAK/STAT negative regulator. Here, we present these strategies, especially our recent resulta of HSV1, mumps virus, and measles virus. For example, HSV1 induces a host JAK/STAT negative regulator SOCS3 (suppressor of cytokine signaling-3). Mumps virus V protein promotes degradation of both STAT-1 and STAT-3. Measles virus freezes the flexibility of IFN-alpha receptor complex by the action of viral proteins, C and V.
Collapse
Affiliation(s)
- Nobuhiro Fujii
- Department of Microbiology, Sapporo Medical University, School of Medicine, Chuo-ku, Sapporo.
| | | | | | | |
Collapse
|
16
|
Yokota SI, Yokosawa N, Kubota T, Okabayashi T, Arata S, Fujii N. Suppression of thermotolerance in mumps virus-infected cells is caused by lack of HSP27 induction contributed by STAT-1. J Biol Chem 2003; 278:41654-60. [PMID: 12917439 DOI: 10.1074/jbc.m305701200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Viral infection modulates the regulation of apoptosis in host cells. Here, we report a novel mechanism by which human cells infected with mumps virus become susceptible to apoptosis caused by extracellular stresses. Mumps virus stimulates proteasome-dependent degradation of STAT-1 by action of viral accessory protein V, resulting in a severe decrease in STAT-1 protein in infected cells. We exposed mumps virus-infected and uninfected cells to heat and chemical stress. The infected cells failed to acquire resistance to apoptotic stimuli (thermotolerance) after exposure to these mild stresses. The induction of HSP27 by stress exposure was dramatically suppressed in the infected cells, but HSP70 induction was not affected. STAT-1 was required for transcriptional activation of the HSP27 gene, but not for the HSP70 gene, and cDNA transfection of STAT-1 in mumps virus-infected cells restored thermotolerance. Phosphorylated heat shock factor-1 (HSF-1) and STAT-1 phosphorylated on neither tyrosine nor serine residues were co-transported to the nucleus in response to stress. Furthermore, overexpression of unphosphorylatable mutants of STAT-1 also restored thermotolerance in mumps virus-infected cells. These lines of evidence indicate that the induction of HSP27 by stress requires STAT-1 in addition to the activated HSF-1. Furthermore, STAT-1 required for the induction of HSP27 worked independent to its phosphorylation. Thus, HSP27-dependent thermotolerance is suppressed by mumps virus infection through the destruction of STAT-1. The lack of thermotolerance should allow the infected cells to be eliminated by apoptosis and might be a host defense against viral infection.
Collapse
Affiliation(s)
- Shin-ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo 060-8556, Japan
| | | | | | | | | | | |
Collapse
|