1
|
Nishida K, Matsumura S, Uchida H, Abe M, Sakimura K, Badea TC, Kobayashi T. Brn3a controls the soma localization and axonal extension patterns of developing spinal dorsal horn neurons. PLoS One 2023; 18:e0285295. [PMID: 37733805 PMCID: PMC10513334 DOI: 10.1371/journal.pone.0285295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
The spinal dorsal horn comprises heterogeneous neuronal populations, that interconnect with one another to form neural circuits modulating various types of sensory information. Decades of evidence has revealed that transcription factors expressed in each neuronal progenitor subclass play pivotal roles in the cell fate specification of spinal dorsal horn neurons. However, the development of subtypes of these neurons is not fully understood in more detail as yet and warrants the investigation of additional transcription factors. In the present study, we examined the involvement of the POU domain-containing transcription factor Brn3a in the development of spinal dorsal horn neurons. Analyses of Brn3a expression in the developing spinal dorsal horn neurons in mice demonstrated that the majority of the Brn3a-lineage neurons ceased Brn3a expression during embryonic stages (Brn3a-transient neurons), whereas a limited population of them continued to express Brn3a at high levels after E18.5 (Brn3a-persistent neurons). Loss of Brn3a disrupted the localization pattern of Brn3a-persistent neurons, indicating a critical role of this transcription factor in the development of these neurons. In contrast, Brn3a overexpression in Brn3a-transient neurons directed their localization in a manner similar to that in Brn3a-persistent neurons. Moreover, Brn3a-overexpressing neurons exhibited increased axonal extension to the ventral and ventrolateral funiculi, where the axonal tracts of Brn3a-persistent neurons reside. These results suggest that Brn3a controls the soma localization and axonal extension patterns of Brn3a-persistent spinal dorsal horn neurons.
Collapse
Affiliation(s)
- Kazuhiko Nishida
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Osaka, Japan
| | - Shinji Matsumura
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Osaka, Japan
| | - Hitoshi Uchida
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tudor Constantin Badea
- Research and Development Institute, Faculty of Medicine, Transylvania University of Brasov, Brasov, Romania
- National Brain Research Center, ICIA, Romanian Academy, Bucharest, Romania
| | - Takuya Kobayashi
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
2
|
Budhram-Mahadeo VS, Solomons MR, Mahadeo-Heads EAO. Linking metabolic dysfunction with cardiovascular diseases: Brn-3b/POU4F2 transcription factor in cardiometabolic tissues in health and disease. Cell Death Dis 2021; 12:267. [PMID: 33712567 PMCID: PMC7955040 DOI: 10.1038/s41419-021-03551-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/26/2022]
Abstract
Metabolic and cardiovascular diseases are highly prevalent and chronic conditions that are closely linked by complex molecular and pathological changes. Such adverse effects often arise from changes in the expression of genes that control essential cellular functions, but the factors that drive such effects are not fully understood. Since tissue-specific transcription factors control the expression of multiple genes, which affect cell fate under different conditions, then identifying such regulators can provide valuable insight into the molecular basis of such diseases. This review explores emerging evidence that supports novel and important roles for the POU4F2/Brn-3b transcription factor (TF) in controlling cellular genes that regulate cardiometabolic function. Brn-3b is expressed in insulin-responsive metabolic tissues (e.g. skeletal muscle and adipose tissue) and is important for normal function because constitutive Brn-3b-knockout (KO) mice develop profound metabolic dysfunction (hyperglycaemia; insulin resistance). Brn-3b is highly expressed in the developing hearts, with lower levels in adult hearts. However, Brn-3b is re-expressed in adult cardiomyocytes following haemodynamic stress or injury and is necessary for adaptive cardiac responses, particularly in male hearts, because male Brn-3b KO mice develop adverse remodelling and reduced cardiac function. As a TF, Brn-3b regulates the expression of multiple target genes, including GLUT4, GSK3β, sonic hedgehog (SHH), cyclin D1 and CDK4, which have known functions in controlling metabolic processes but also participate in cardiac responses to stress or injury. Therefore, loss of Brn-3b and the resultant alterations in the expression of such genes could potentially provide the link between metabolic dysfunctions with adverse cardiovascular responses, which is seen in Brn-3b KO mutants. Since the loss of Brn-3b is associated with obesity, type II diabetes (T2DM) and altered cardiac responses to stress, this regulator may provide a new and important link for understanding how pathological changes arise in such endemic diseases.
Collapse
Affiliation(s)
- Vishwanie S Budhram-Mahadeo
- Molecular Biology Development and Disease, Institute of Cardiovascular Science, University College London, London, UK.
| | - Matthew R Solomons
- Molecular Biology Development and Disease, Institute of Cardiovascular Science, University College London, London, UK
| | - Eeshan A O Mahadeo-Heads
- Molecular Biology Development and Disease, Institute of Cardiovascular Science, University College London, London, UK.,College of Medicine and Health, University of Exeter Medical School, St Luke's Campus, Exeter, UK
| |
Collapse
|
3
|
Baccouche B, Benlarbi M, Barber AJ, Ben Chaouacha-Chekir R. Short-Term Administration of Astaxanthin Attenuates Retinal Changes in Diet-Induced Diabetic Psammomys obesus. Curr Eye Res 2018; 43:1177-1189. [PMID: 30028214 DOI: 10.1080/02713683.2018.1484143] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Psammomys obesus is a high-fat diet (HFD)-fed animal model of obesity and type 2 diabetes recently explored as a model of non-proliferative diabetic retinopathy. This study tested the protective effect of the pigment astaxanthin (AST) in the P. obesus diabetic retina. METHODS Young adult P. obesus were randomly assigned to two groups. The control group received a normal diet consisting of a plant-based regimen, and the HFD group received an enriched laboratory chow. After 3 months, control and diabetic rodents were administered vehicle or AST, daily for 7 days. Body weight, blood glucose, and plasma pentosidine were assessed. Frozen sections of retinas were immunolabeled for markers of oxidative stress, glial reactivity and retinal ganglion cell bodies, and imaged by confocal microscopy. RESULTS Retinal tissue from AST-treated control and HFD-diabetic P. obesus showed a greater expression of the antioxidant enzyme heme oxygenase-1 (HO-1). In retinas of HFD-diabetic AST-treated P. obesus, cellular retinaldehyde binding protein and glutamine synthetase in Müller cells were more intense compared to the untreated HFD-diabetic group. HFD-induced diabetes downregulated the expression of glial fibrillary acidic protein in astrocytes, the POU domain protein 3A in retinal ganglion cells, and synaptophysin throughout the plexiform layers. DISCUSSION Our results show that type 2-like diabetes induced by HFD affected glial and neuronal retinal cell homeostasis. AST treatment induced the antioxidant enzyme HO-1 and reduced glial reactivity. These findings suggest that diabetic P. obesus is a useful model of HFD-induced obesity and diabetes to evaluate early neuroglial retinal alterations and antioxidant neuroprotection mechanisms in DR.
Collapse
Affiliation(s)
- Basma Baccouche
- a Laboratoire de Physiopthologies , Alimentations et Biomolécules (PAB), Institut Supérieur de Biotechnologie de Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet , Ariana , Tunisie
- b Faculté des Sciences de Bizerte (FSB) , Université de Carthage (UCAR) , Tunis , Tunisie
| | - Maha Benlarbi
- a Laboratoire de Physiopthologies , Alimentations et Biomolécules (PAB), Institut Supérieur de Biotechnologie de Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet , Ariana , Tunisie
| | - Alistair J Barber
- c Department of Ophthalmology , Penn State Hershey Eye Center, Milton S. Hershey Medical Center, Penn State College of Medicine , Hershey , PA , USA
| | - Rafika Ben Chaouacha-Chekir
- a Laboratoire de Physiopthologies , Alimentations et Biomolécules (PAB), Institut Supérieur de Biotechnologie de Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet , Ariana , Tunisie
| |
Collapse
|
4
|
Maskell LJ, Qamar K, Babakr AA, Hawkins TA, Heads RJ, Budhram-Mahadeo VS. Essential but partially redundant roles for POU4F1/Brn-3a and POU4F2/Brn-3b transcription factors in the developing heart. Cell Death Dis 2017; 8:e2861. [PMID: 28594399 PMCID: PMC5520879 DOI: 10.1038/cddis.2017.185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 01/15/2023]
Abstract
Congenital heart defects contribute to embryonic or neonatal lethality but due to the complexity of cardiac development, the molecular changes associated with such defects are not fully understood. Here, we report that transcription factors (TFs) Brn-3a (POU4F1) and Brn-3b (POU4F2) are important for normal cardiac development. Brn-3a directly represses Brn-3b promoter in cardiomyocytes and consequently Brn-3a knockout (KO) mutant hearts express increased Brn-3b mRNA during mid-gestation, which is linked to hyperplastic growth associated with elevated cyclin D1, a known Brn-3b target gene. However, during late gestation, Brn-3b can cooperate with p53 to enhance transcription of pro-apoptotic genes e.g. Bax, thereby increasing apoptosis and contribute to morphological defects such as non-compaction, ventricular wall/septal thinning and increased crypts/fissures, which may cause lethality of Brn-3a KO mutants soon after birth. Despite this, early embryonic lethality in e9.5 double KO (Brn-3a-/- : Brn-3b-/-) mutants indicate essential functions with partial redundancy during early embryogenesis. High conservation between mammals and zebrafish (ZF) Brn-3b (87%) or Brn-3a (76%) facilitated use of ZF embryos to study potential roles in developing heart. Double morphant embryos targeted with morpholino oligonucleotides to both TFs develop significant cardiac defects (looping abnormalities and valve defects) suggesting essential roles for Brn-3a and Brn-3b in developing hearts.
Collapse
Affiliation(s)
- Lauren J Maskell
- Medical Molecular Biology Unit, Institute of Cardiovascular Science, University College London, UCL Rayne Building, London, UK
| | - Kashif Qamar
- Medical Molecular Biology Unit, Institute of Cardiovascular Science, University College London, UCL Rayne Building, London, UK
| | - Aram A Babakr
- Medical Molecular Biology Unit, Institute of Cardiovascular Science, University College London, UCL Rayne Building, London, UK
| | - Thomas A Hawkins
- Division of Biosciences, Cell and Developmental Biology, UCL, London, UK
| | - Richard J Heads
- Cardiovascular Division, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Vishwanie S Budhram-Mahadeo
- Medical Molecular Biology Unit, Institute of Cardiovascular Science, University College London, UCL Rayne Building, London, UK
| |
Collapse
|
5
|
Rai R, Chauhan SK, Singh VV, Rai M, Rai G. Heat shock protein 27 and its regulatory molecules express differentially in SLE patients with distinct autoantibody profiles. Immunol Lett 2015; 164:25-32. [PMID: 25655337 DOI: 10.1016/j.imlet.2015.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/16/2014] [Accepted: 01/26/2015] [Indexed: 01/15/2023]
Abstract
Generation of autoantigens of nuclear origin, like dsDNA and extractable nuclear antigens (ENA) have largely been associated with dysregulated apoptosis and defective clearance of apoptotic debris in SLE. Heat shock protein (HSP) 27 has been reported to have anti-apoptotic properties hence it was of interest to study the expression of HSP27 and its regulatory molecule Brn3a and hsa-miR-939 in SLE patients with distinct autoantibodies specificities. SLE patients were categorized into three subsets based on their distinct sero-positivity for either anti-dsDNA antibody alone (anti-dsDNA(+) group) or anti-ENA antibody alone (anti-ENA(+) group) or both (anti-dsDNA(+) ENA(+) group). We investigated the mRNA and protein expression of HSP27 and Brn3a in peripheral blood leukocytes (PBLs) by real-time reverse transcriptase PCR and Western blotting. Expression of apoptosis markers caspase 3 and poly (ADP-ribose) polymerase (PARP) was determined by Western blotting. Hsa-miR-939 expression was determined using TaqMan(®) miRNA assay. In this study, we report significant downregulation of HSP27 in anti-ENA(+) patients and increased expression of caspase 3 and PARP in both anti-ENA(+) and anti-dsDNA(+) SLE subsets. A negative correlation was observed between the expression of HSP27 and apoptosis markers caspase 3 and PARP. Decreased Brn3a expression was observed in anti-ENA(+) SLE patients, which correlated positively with HSP27 expression. Expression of hsa-miR-939, which has a potential target site for Brn3a 3' UTR, was also elevated specifically in anti-ENA(+) patients. The decreased expressions of HSP27, Brn3a along with elevated levels of hsa-miR-939 are selectively associated with anti-ENA(+) patients and HSP27 was observed to be inversely associated with apoptosis. These findings are suggestive of distinct regulatory processes operative in SLE patient subsets with different autoantibody specificities.
Collapse
Affiliation(s)
- Richa Rai
- Department of Molecular and Human Genetics, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Sudhir Kumar Chauhan
- Department of Molecular and Human Genetics, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Vikas Vikram Singh
- Department of Molecular and Human Genetics, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Madhukar Rai
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221 005, India
| | - Geeta Rai
- Department of Molecular and Human Genetics, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
6
|
Nadal-Nicolás FM, Jiménez-López M, Salinas-Navarro M, Sobrado-Calvo P, Alburquerque-Béjar JJ, Vidal-Sanz M, Agudo-Barriuso M. Whole number, distribution and co-expression of brn3 transcription factors in retinal ganglion cells of adult albino and pigmented rats. PLoS One 2012; 7:e49830. [PMID: 23166779 PMCID: PMC3500320 DOI: 10.1371/journal.pone.0049830] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/12/2012] [Indexed: 12/15/2022] Open
Abstract
The three members of the Pou4f family of transcription factors: Pou4f1, Pou4f2, Pou4f3 (Brn3a, Brn3b and Brn3c, respectively) play, during development, essential roles in the differentiation and survival of sensory neurons. The purpose of this work is to study the expression of the three Brn3 factors in the albino and pigmented adult rat. Animals were divided into these groups: i) untouched; ii) fluorogold (FG) tracing from both superior colliculli; iii) FG-tracing from one superior colliculus; iv) intraorbital optic nerve transection or crush. All retinas were dissected as flat-mounts and subjected to single, double or triple immunohistofluorescence The total number of FG-traced, Brn3a, Brn3b, Brn3c or Brn3 expressing RGCs was automatically quantified and their spatial distribution assessed using specific routines. Brn3 factors were studied in the general RGC population, and in the intrinsically photosensitive (ip-RGCs) and ipsilateral RGC sub-populations. Our results show that: i) 70% of RGCs co- express two or three Brn3s and the remaining 30% express only Brn3a (26%) or Brn3b; ii) the most abundant Brn3 member is Brn3a followed by Brn3b and finally Brn3c; iii) Brn3 a-, b- or c- expressing RGCs are similarly distributed in the retina; iv) The vast majority of ip-RGCs do not express Brn3; v) The main difference between both rat strains was found in the population of ipsilateral-RGCs, which accounts for 4.2% and 2.5% of the total RGC population in the pigmented and albino strain, respectively. However, more ipsilateral-RGCs express Brn3 factors in the albino than in the pigmented rat; vi) RGCs that express only Brn3b and RGCs that co-express the three Brn3 members have the biggest nuclei; vii) After axonal injury the level of Brn3a expression in the surviving RGCs decreases compared to control retinas. Finally, this work strengthens the validity of Brn3a as a marker to identify and quantify rat RGCs.
Collapse
Affiliation(s)
- Francisco M Nadal-Nicolás
- Unidad de Investigación, Hospital Universitario Virgen de la Arrixaca. Fundación para la Formación e Investigación Sanitarias de la Región de Murcia, IMIB, El Palmar, Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
7
|
Nagaraja GM, Kaur P, Neumann W, Asea EE, Bausero MA, Multhoff G, Asea A. Silencing Hsp25/Hsp27 gene expression augments proteasome activity and increases CD8+ T-cell-mediated tumor killing and memory responses. Cancer Prev Res (Phila) 2011; 5:122-37. [PMID: 22185976 DOI: 10.1158/1940-6207.capr-11-0121] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Relatively high expression of Hsp27 in breast and prostate cancer is a predictor of poor clinical outcome. This study elucidates a hitherto unknown mechanism by which Hsp27 regulates proteasome function and modulates tumor-specific T-cell responses. Here, we showed that short-term silencing of Hsp25 or Hsp27 using siRNA or permanent silencing of Hsp25 using lentivirus RNA interference technology enhanced PA28α mRNA expression, PA28α protein expression, and proteasome activity; abrogated metastatic potential; induced the regression of established breast tumors by tumor-specific CD8(+) T cells; and stimulated long-lasting memory responses. The adoptive transfer of reactive CD8(+) T cells from mice bearing Hsp25-silenced tumors efficiently induced the regression of established tumors in nontreated mice which normally succumb to tumor burden. The overexpression of Hsp25 and Hsp27 resulted in the repression of normal proteasome function, induced poor antigen presentation, and resulted in increased tumor burden. Taken together, this study establishes a paradigm shift in our understanding of the role of Hsp27 in the regulation of proteasome function and tumor-specific T-cell responses and paves the way for the development of molecular targets to enhance proteasome function and concomitantly inhibit Hsp27 expression in tumors for therapeutic gain.
Collapse
Affiliation(s)
- Ganachari M Nagaraja
- Division of Investigative Pathology, Scott & White Healthcare and Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Fujita R, Ounzain S, Wang ACY, Heads RJ, Budhram-Mahadeo VS. Hsp-27 induction requires POU4F2/Brn-3b TF in doxorubicin-treated breast cancer cells, whereas phosphorylation alters its cellular localisation following drug treatment. Cell Stress Chaperones 2011; 16:427-39. [PMID: 21279488 PMCID: PMC3118820 DOI: 10.1007/s12192-011-0256-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/06/2011] [Accepted: 01/10/2011] [Indexed: 11/28/2022] Open
Abstract
POU4F2/Brn-3b transcription factor (referred to as Brn-3b) is elevated in >60% of breast cancers and profoundly alters growth and behaviour of cancer cells by regulating distinct subsets of target genes. Previous studies showed that Brn-3b was required to maximally transactivate small heat shock protein, HSPB1/Hsp-27 (referred to as Hsp-27), and consequently, Brn-3b expression correlated well with Hsp27 levels in human breast biopsies. In these studies, we showed that Brn-3b is increased in MCF7 breast cancer cells that survive following treatment with chemotherapeutic drug doxorubicin (Dox) with concomitant increases in Hsp-27 expression. Targeting of Brn-3b using short interfering RNA reduced Hsp-27 in Dox-treated cells, suggesting that Brn-3b regulates Hsp-27 expression under these conditions. Wound healing assays showed increased Brn-3b in Dox-treated migratory cells that also express Hsp-27. Interestingly, Hsp-27 phosphorylation and cellular localisation are also significantly altered at different times following Dox treatment. Thus, phospho-Hsp-27 (p-Hsp27) protein displayed widespread distribution after 24 hrs of Dox treatment but was restricted to the nucleus after 5 days. However, in drug-resistant cells (grown in Dox for > 1 month), p-Hsp-27 was excluded from nuclei and most of the cytoplasm and appeared to be associated with the cell membrane. Studies to determine how this protein promotes survival and migration in breast cancer cells showed that the protective effects were conferred by unphosphorylated Hsp-27 protein. Thus, complex and dynamic mechanisms underlie effects of Hsp-27 protein in breast cancer cells following treatment with chemotherapeutic drugs such as Dox, and this may contribute to invasiveness and drug resistance following chemotherapy.
Collapse
Affiliation(s)
- Rieko Fujita
- Medical Molecular Biology Unit, University College London, 30 Guilford Street, London, WC1N 1EH UK
| | - Samir Ounzain
- Medical Molecular Biology Unit, University College London, 30 Guilford Street, London, WC1N 1EH UK
| | - Alice Chun Yin Wang
- Medical Molecular Biology Unit, University College London, 30 Guilford Street, London, WC1N 1EH UK
| | - Richard John Heads
- Cardiovascular Division, Kings College London, Department of Cardiology, The Rayne Institute, St Thomas’s Hospital, Lambeth Palace Road, SE1 7EH, London, UK
- Cardiology Department, The Rayne Institute, St Thomas’s Hospital, Lambeth Palace Road, London, SE1 7EH UK
| | | |
Collapse
|
9
|
Berwick DC, Diss JKJ, Budhram-Mahadeo VS, Latchman DS. A simple technique for the prediction of interacting proteins reveals a direct Brn-3a-androgen receptor interaction. J Biol Chem 2010; 285:15286-15295. [PMID: 20228055 PMCID: PMC2865324 DOI: 10.1074/jbc.m109.071456] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 02/18/2010] [Indexed: 11/06/2022] Open
Abstract
The formation of multiprotein complexes constitutes a key step in determining the function of any translated gene product. Thus, the elucidation of interacting partners for a protein of interest is of fundamental importance to cell biology. Here we describe a simple methodology for the prediction of novel interactors. We have applied this to the developmental transcription factor Brn-3a to predict and verify a novel interaction between Brn-3a and the androgen receptor (AR). We demonstrate that these transcription factors form complexes within the nucleus of ND7 neuroblastoma cells, while in vitro pull-down assays show direct association. As a functional consequence of the Brn-3a-AR interaction, the factors bind cooperatively to multiple elements within the promoter of the voltage-gated sodium channel, Nav1.7, leading to a synergistic increase in its expression. Thus, these data define AR as a direct Brn-3a interactor and verify a simple interacting protein prediction methodology that is likely to be useful for many other proteins.
Collapse
Affiliation(s)
- Daniel C Berwick
- Medical Molecular Biology Unit, University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom.
| | - James K J Diss
- Medical Molecular Biology Unit, University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Vishwanie S Budhram-Mahadeo
- Medical Molecular Biology Unit, University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - David S Latchman
- Medical Molecular Biology Unit, University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom; Birkbeck, University of London, Malet Street, London WC1E 7HX, United Kingdom
| |
Collapse
|
10
|
Farooqui-Kabir SR, Diss JKJ, Henderson D, Marber MS, Latchman DS, Budhram-Mahadeo V, Heads RJ. Cardiac expression of Brn-3a and Brn-3b POU transcription factors and regulation of Hsp27 gene expression. Cell Stress Chaperones 2008; 13:297-312. [PMID: 18368538 PMCID: PMC2673938 DOI: 10.1007/s12192-008-0028-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 01/29/2008] [Accepted: 01/31/2008] [Indexed: 11/24/2022] Open
Abstract
The Brn-3 family of transcription factors play a critical role in regulating expression of genes that control cell fate, including the small heat shock protein Hsp27. The aim of this study was to investigate the relationship between Brn-3a and Brn-3b and Hsp27 expression in the developing rodent heart. Brn-3a and Brn-3b were detected from embryonic days 9.5-10.5 (E9.5-E10.5) in the mouse heart, with significant increases seen later during development. Two isoforms (long and short) of each protein were detected during embryogenesis and postnatally. Brn-3a messenger RNA (mRNA) and protein were localized by E13.0 to the atrio-ventricular (AV) valve cushions and leaflets, outflow tract (OFT), epicardium and cardiac ganglia. By E14.5, Brn-3a was also localised to the septa and compact ventricular myocardium. An increase in expression of the long Brn-3a(l) isoform between E17 and adult coincided with a decrease in expression of Brn-3b(l) and a marked increase in expression of Hsp27. Hearts from Brn-3a-/- mice displayed a partially penetrant phenotype marked by thickening of the endocardial cushions and AV valve leaflets and hypoplastic ventricular myocardium. Loss of Brn-3a was correlated with a compensatory increase in Brn-3b and GATA3 mRNA but no change in Hsp27 mRNA. Reporter assays in isolated cardiomyocytes demonstrated that both Brn-3a and Brn-3b activate the hsp27 promoter via a consensus Brn-3-binding site. Therefore, Brn-3 POU factors may play an important role in the development and maintenance of critical cell types and structures within the heart, in part via developmental regulation of myocardial Hsp27 expression. Furthermore, Brn-3a may be necessary for correct valve and myocardial remodelling and maturation.
Collapse
Affiliation(s)
- Saleha R. Farooqui-Kabir
- Cardiovascular Division, King’s College London School of Medicine, Department of Cardiology, The Rayne Institute, St Thomas’s Hospital, Lambeth Palace Road, London, SE1 7EH UK
| | - James K. J. Diss
- Medical Molecular Biology Unit, The Institute of Child Health, University College London, London, WC1N 1EH UK
| | - Deborah Henderson
- Institute of Human Genetics, University of Newcastle-Upon-Tyne, International Centre for Life, Newcastle-Upon Tyne, NE1 3BZ UK
| | - Michael S. Marber
- Cardiovascular Division, King’s College London School of Medicine, Department of Cardiology, The Rayne Institute, St Thomas’s Hospital, Lambeth Palace Road, London, SE1 7EH UK
| | - David S. Latchman
- Medical Molecular Biology Unit, The Institute of Child Health, University College London, London, WC1N 1EH UK
| | - Vishwanie Budhram-Mahadeo
- Medical Molecular Biology Unit, The Institute of Child Health, University College London, London, WC1N 1EH UK
| | - Richard J. Heads
- Cardiovascular Division, King’s College London School of Medicine, Department of Cardiology, The Rayne Institute, St Thomas’s Hospital, Lambeth Palace Road, London, SE1 7EH UK
| |
Collapse
|
11
|
Calderwood SK, Ciocca DR. Heat shock proteins: stress proteins with Janus-like properties in cancer. Int J Hyperthermia 2008; 24:31-9. [PMID: 18214767 DOI: 10.1080/02656730701858305] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Heat shock proteins (HSPs) were first identified as stress proteins that confer resistance to physical stresses such as elevated temperatures in all cellular organisms. HSPs are rapidly elevated after stress and confer a temperature resistant phenotype. Temperature resistance is dependent on the ability of HSPs to function as molecular chaperones and prevent aggregation and on the capacity of Hsp27 and Hsp70 to act as wide spectrum inhibitors of the cell death pathways. HSP expression becomes deregulated in cancer leading to elevated expression. Elevated HSP expression promotes cancer by inhibiting programmed cell death (Hsp27, Hsp70) and by promoting autonomous growth (Hsp90) and leads to resistance to chemotherapy and hyperthermia. Tumor HSPs have another property that can be exploited in therapy. They are immunogenic and can be used to form the basis of anticancer vaccines. Elevation in HSP levels may thus have competing effects in tumor growth, being required for tumor cell survival but conferring a hazard for cancer cells due to their immunogenic properties. This dichotomy is also reflected by the approaches used to target HSP in therapy. Pharmacological approaches are being employed to inhibit activity or expression of tumor HSP. Immunological approaches aim at increasing HSP levels in cells and tissues with the aim of increasing tumor antigen presentation to the immune system.
Collapse
Affiliation(s)
- Stuart K Calderwood
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | |
Collapse
|
12
|
Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR. Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 2006; 31:164-72. [PMID: 16483782 DOI: 10.1016/j.tibs.2006.01.006] [Citation(s) in RCA: 708] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 01/06/2006] [Accepted: 01/31/2006] [Indexed: 12/30/2022]
Abstract
The heat shock proteins (HSPs) induced by cell stress are expressed at high levels in a wide range of tumors and are closely associated with a poor prognosis and resistance to therapy. The increased transcription of HSPs in tumor cells is due to loss of p53 function and to higher expression of the proto-oncogenes HER2 and c-Myc, and is crucial to tumorigenesis. The HSP family members play overlapping, essential roles in tumor growth both by promoting autonomous cell proliferation and by inhibiting death pathways. The HSPs have thus become targets for rational anti-cancer drug design: HSP90 inhibitors are currently showing much promise in clinical trials, whereas the increased expression of HSPs in tumors is forming the basis of chaperone-based immunotherapy.
Collapse
Affiliation(s)
- Stuart K Calderwood
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
13
|
Lee SA, Ndisang D, Patel C, Dennis JH, Faulkes DJ, D'Arrigo C, Samady L, Farooqui-Kabir S, Heads RJ, Latchman DS, Budhram-Mahadeo VS. Expression of the Brn-3b Transcription Factor Correlates with Expression of HSP-27 in Breast Cancer Biopsies and Is Required for Maximal Activation of the HSP-27 Promoter. Cancer Res 2005; 65:3072-80. [PMID: 15833836 DOI: 10.1158/0008-5472.can-04-2865] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In breast cancer, overexpression of the small heat shock protein, HSP-27, is associated with increased anchorage-independent growth, increased invasiveness, and resistance to chemotherapeutic drugs and is associated with poor prognosis and reduced disease-free survival. Therefore, factors that increase the expression of HSP-27 in breast cancer are likely to affect the prognosis and outcome of treatment. In this study, we show a strong correlation between elevated levels of the Brn-3b POU transcription factor and high levels of HSP-27 protein in manipulated MCF-7 breast cancer cells as well as in human breast biopsies. Conversely, HSP-27 is decreased on loss of Brn-3b. In cotransfection assays, Brn-3b can strongly transactivate the HSP-27 promoter, supporting a role for direct regulation of HSP-27 expression. Brn-3b also cooperates with the estrogen receptor (ER) to facilitate maximal stimulation of the HSP-27 promoter, with significantly enhanced activity of this promoter observed on coexpression of Brn-3b and ER compared with either alone. RNA interference and site-directed mutagenesis support the requirement for the Brn-3b binding site on the HSP-27 promoter, which facilitates maximal transactivation either alone or on interaction with the ER. Chromatin immunoprecipitation provides evidence for association of Brn-3b with the HSP-27 promoter in the intact cell. Thus, Brn-3b can, directly and indirectly (via interaction with the ER), activate HSP-27 expression, and this may represent one mechanism by which Brn-3b mediates its effects in breast cancer cells.
Collapse
Affiliation(s)
- Sonia A Lee
- Medical Molecular Biology Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|