1
|
Quan Z, Ye F, Yu H, Li H, Sun S, Xu Y. Bioinspired glycocalyx-mimetic hydrogel enabling photothermal-amplified therapeutic cascade for chronic wound healing. J Colloid Interface Sci 2025; 694:137669. [PMID: 40306123 DOI: 10.1016/j.jcis.2025.137669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/03/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
Regeneration and repair of chronic wounds are still clinical challenges due to the imbalance of the microenvironment caused by biofilm formation by multidrug-resistant bacteria and excessive accumulation of reactive oxygen species. Here, a multifunctional OACPPIh hydrogel is developed using modified dextran (OD-AB), chitosan derivatives (CMCS-PEI), polydopamine (PDA), and iron-hydrated nanoparticles (Ih NPs). The hydrogel not only effectively combats bacterial infections and eradicates biofilms through the bacterial capture capability of OD-AB and the cationic/photothermal synergistic effects of CMCS-PEI/PDA, but also utilizes the photothermal-enhanced nanozyme activity of Ih NPs to simultaneously scavenge reactive oxygen species and generate oxygen, thereby remodeling the hypoxic microenvironment. This multi-mechanism synergistic action provides a comprehensive solution for chronic wound management. In vivo assessment conducted in a diabetic murine model achieved 94.95 % wound closure efficacy within a 15-day therapeutic regimen, with histopathological and immunofluorescence analyses corroborating its marked therapeutic potential in augmenting tissue regeneration and re-epithelialization. This integrated strategy provides a translatable solution for microenvironment-tailored chronic wound therapy materials.
Collapse
Affiliation(s)
- Zongyan Quan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fangdie Ye
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Han Yu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Mao J, Zheng H, Zeng Q, Lv G. Bioactive electrospun Poly(p-dioxanone)/bioactive glass Hierarchical structured fibrous membrane for enhanced dura mater regeneration and integration. J Colloid Interface Sci 2025; 689:137290. [PMID: 40086361 DOI: 10.1016/j.jcis.2025.137290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/26/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
This study presents a dual-layer artificial dura mater, a hierarchically structured fibrous membrane composed of poly(p-dioxanone) (PPDO) and bioactive glass (BG), fabricated using electrospinning and melt-casting techniques. Designed to address the challenges of dura mater repair, the membrane features a dense outer PPDO layer for mechanical resilience and an electrospun inner layer embedded with BG to enable controlled ion release, promoting tissue regeneration and angiogenesis. We evaluated the fibrous membrane's surface morphology, mechanical properties, hydrophilicity, and in vitro degradation, demonstrating that increasing BG content enhances hydrophilicity, reduces crystallinity, and modulates degradation kinetics. In vitro assays using L929 fibroblasts and human umbilical vein endothelial cells reveal that the PPDO/BG membrane not only supports cell adhesion and proliferation but also fosters a pro-angiogenic environment through the controlled release of bioactive silicon ions. In vivo implantation in a rat dura mater defect model further validates its therapeutic potential, showing reduced adhesion, improved tissue integration, and enhanced vascularization, with the PBD-3 variant exhibiting superior performance due to its optimized BG composition. The synergistic effects of bioactive ion release, mechanical stability, and biocompatibility establish the PPDO/BG membrane as a highly promising dura mater substitute, offering a bioengineered solution for neurosurgical applications aimed at functional tissue regeneration.
Collapse
Affiliation(s)
- Junqin Mao
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Heng Zheng
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Qiuyu Zeng
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Guoyu Lv
- College of Physics, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
3
|
Wang X, Song L, Zhao J, Xiong Y, Jin R, He J. Matrix viscoelasticity drives cell cluster formation to counteract cellular senescence. J Mater Chem B 2025. [PMID: 40432619 DOI: 10.1039/d5tb00174a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
During tissue repair, stress-induced cellular senescence represents a critical factor that impedes the regenerative potential of tissues. While the regulatory effects of matrix viscoelasticity on cellular behavior have been documented, their role and correlated mechanisms underlying cellular senescence remain unclear. In this study, we engineered a viscoelastic gel matrix exhibiting a storage modulus of approximately 3 kPa, with a tunable loss modulus ranging from 0 to 300 Pa by incorporating linear alginate and modulating the compactness of a polyacrylamide-based covalent network. Utilizing a UV-induced senescence model, we observed that increasing the matrix's viscoelasticity from 0 Pa to 300 Pa led to a significant reduction in the proportion of senescent cells, from 90.5% to 22.7%. Furthermore, cells cultured in these matrices exhibited a tendency to form cell aggregation, with the cell populations demonstrating a collective resistance to stresses. This indicated that viscoelastic materials would promote enhanced cellular interactions, thereby strengthening cellular resilience against UV-induced stresses. Furthermore, combined with microarray analysis, it was concluded that the presence of viscoelastic components activated the connexin 43 (Cx43)-modulated gap junction for cluster formation, thereby suppressing the senescence-associated signaling pathways, including Wnt/β-catenin, MAPK, NF-κB, and TGF-β. Additionally, the integrin-cytoskeleton-Yes-associated protein (YAP) signaling axis played an active role in delaying cell aging. These results provide novel insights into the regulatory role of viscoelastic materials in cellular senescence and offer a compelling foundation for the development of advanced biomaterials for tissue repair.
Collapse
Affiliation(s)
- Xinying Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China.
| | - Limin Song
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China.
| | - Jingwen Zhao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China.
| | - Yiling Xiong
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China.
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China.
| | - Jing He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China.
| |
Collapse
|
4
|
Chantachotikul P, Liu S, Furukawa K, Deguchi S. AP2A1 modulates cell states between senescence and rejuvenation. Cell Signal 2025; 127:111616. [PMID: 39848456 DOI: 10.1016/j.cellsig.2025.111616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/31/2024] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Aging proceeds with the accumulation of senescent cells in multiple organs. These cells exhibit increased size compared to young cells, which promotes further senescence and age-related diseases. Currently, the molecular mechanism behind the maintenance of such huge cell architecture undergoing senescence remains poorly understood. Here we focus on the reorganization of actin stress fibers induced upon replicative senescence in human fibroblasts, widely used as a senescent cell model. We identified, together with our previous proteomic study, that AP2A1 (alpha 1 adaptin subunit of the adaptor protein 2) is upregulated in senescent cells along the length of enlarged stress fibers. Knockdown of AP2A1 reversed senescence-associated phenotypes, exhibiting features of cellular rejuvenation, while its overexpression in young cells advanced senescence phenotypes. Similar functions of AP2A1 were identified in UV- or drug-induced senescence and were observed in epithelial cells as well. Furthermore, we found that AP2A1 is colocalized with integrin β1, and both proteins move linearly along stress fibers. With the observations that focal adhesions are enlarged in senescent cells and that this coincides with strengthened cell adhesion to the substrate, these results suggest that senescent cells maintain their large size by reinforcing their effective anchorage through integrin β1 translocation along stress fibers. This mechanism may work efficiently in senescent cells, compared with a case relying on random diffusion of integrin β1, given the enlarged cell size and resulting increase in travel time and distance for endocytosed vesicle transportation.
Collapse
Affiliation(s)
- Pirawan Chantachotikul
- Division of Bioengineering, Graduate School of Engineering Science, The University of Osaka, Japan
| | - Shiyou Liu
- Division of Bioengineering, Graduate School of Engineering Science, The University of Osaka, Japan
| | - Kana Furukawa
- Division of Bioengineering, Graduate School of Engineering Science, The University of Osaka, Japan; R(3) Institute for Newly-Emerging Science Design, The University of Osaka, Japan
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, The University of Osaka, Japan; R(3) Institute for Newly-Emerging Science Design, The University of Osaka, Japan; Global Center for Medical Engineering and Informatics, The University of Osaka, Japan.
| |
Collapse
|
5
|
Zhao W, Chen X, Han Z, Xun Z, Qi Y, Wang H, Chen C, Gong Z, Xue X. Nanoenzymes-Integrated and Microenvironment Self-Adaptive Hydrogel for the Healing of Burn Injury and Post-Burn Depression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413032. [PMID: 39721011 PMCID: PMC11831452 DOI: 10.1002/advs.202413032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Burn injuries often cause prolonged oxidative stress and inflammatory pain due to an initial increase in inflammatory responses, consequently exacerbating depressive disorders and severely impairing patients' quality of life. The primary function of traditional burn dressings is to prevent infection and facilitate tissue repair. However, these dressings are not intended for the inflammatory pain and depression that often occur during recovery. This study describes a self-healing hydrogel H@EFCP, which is designed to alleviate inflammatory pain and post-burn depression in burn injuries. This hydrogel is synthesized through the cross-linking of carboxymethyl chitosan with borate ester chelates formed from epigallocatechin gallate and 4-formylphenylboronic acid. The incorporated Prussian blue nanoparticles increase the ability of H@EFCP to regulate the inflammatory process. H@EFCP is effective in the treatment of skin burns by reducing oxidative stress and improving the microenvironment of peripheral inflammation in mice. This modulation consists of a reduction of central nervous system inflammation and the risk of post-burn depression. Behavioral assays indicate that the hydrogel significantly reduces feelings of despair and anxiety after burns. Consequently, H@EFCP provides a dual-effect solution for the care and recovery of burn patients, including both burn repair and the associated psychological effects.
Collapse
Affiliation(s)
- Weitao Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| | - Xi Chen
- State Key Laboratory of Medicinal Chemical Biology, College of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| | - Ziwei Han
- State Key Laboratory of Medicinal Chemical Biology, College of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| | - Zengyu Xun
- State Key Laboratory of Medicinal Chemical Biology, College of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| | - Yilin Qi
- State Key Laboratory of Medicinal Chemical Biology, College of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| | - Heping Wang
- State Key Laboratory of Medicinal Chemical Biology, College of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| | - Chang Chen
- State Key Laboratory of Medicinal Chemical Biology, College of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| | - Zhongying Gong
- Tianjin First Central Hospital, School of MedcineNankai UniversityNo. 24 Fukang Road, Nankai DistrictTianjin300192P. R. China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical Biology, College of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| |
Collapse
|
6
|
He W, Yan L, Hu D, Hao J, Liou Y, Luo G. Neutrophil heterogeneity and plasticity: unveiling the multifaceted roles in health and disease. MedComm (Beijing) 2025; 6:e70063. [PMID: 39845896 PMCID: PMC11751288 DOI: 10.1002/mco2.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025] Open
Abstract
Neutrophils, the most abundant circulating leukocytes, have long been recognized as key players in innate immunity and inflammation. However, recent discoveries unveil their remarkable heterogeneity and plasticity, challenging the traditional view of neutrophils as a homogeneous population with a limited functional repertoire. Advances in single-cell technologies and functional assays have revealed distinct neutrophil subsets with diverse phenotypes and functions and their ability to adapt to microenvironmental cues. This review provides a comprehensive overview of the multidimensional landscape of neutrophil heterogeneity, discussing the various axes along which diversity manifests, including maturation state, density, surface marker expression, and functional polarization. We highlight the molecular mechanisms underpinning neutrophil plasticity, focusing on the complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications that shape neutrophil responses. Furthermore, we explore the implications of neutrophil heterogeneity and plasticity in physiological processes and pathological conditions, including host defense, inflammation, tissue repair, and cancer. By integrating insights from cutting-edge research, this review aims to provide a framework for understanding the multifaceted roles of neutrophils and their potential as therapeutic targets in a wide range of diseases.
Collapse
Affiliation(s)
- Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Dongxue Hu
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| |
Collapse
|
7
|
Takizawa C, Qin Q, Haba D, Sasaki S, Kawasaki A, Miyake T, Oba J, Kitamura A, Abe M, Tomida S, Nakagami G. Relationship between gene expression associated with cellular senescence in cells from discarded wound dressings and wound healing: A retrospective cohort study. J Tissue Viability 2024; 33:726-731. [PMID: 39129112 DOI: 10.1016/j.jtv.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/14/2024] [Accepted: 07/21/2024] [Indexed: 08/13/2024]
Abstract
AIM Senescent cells, inducing a senescence-associated secretory phenotype (SASP), lead to chronic inflammation in hard-to-heal wound tissue. However, eliminating senescent cells may impede normal wound healing due to their important role in the wound healing mechanism. Accordingly, we focused on wound exudates in hard-to-heal wounds, which contain many inflammation biomarkers consistent with SASP. Therefore, we hypothesized that senescent cells might be present in the exudates and induce chronic inflammation. This study investigated the relationship between gene expression associated with cellular senescence in exudates from pressure injuries and wound healing status. METHODS This retrospective cohort study involved patients treated by a pressure injury team. We collected viable cells from wound dressings and analyzed gene expression. Pearson's correlation coefficient was calculated between cellular senescence and SASP expression. The relationship between the gene expression of cellular senescence and the wound area reduction rate by the following week was examined using a mixed-effects model. RESULTS CDKN1A-related to cellular senescence-was expressed in 96.3 % of 54 samples, and CDKN1A expression and SASPs positively correlated (PLAU: r = 0.68 and TNF: r = 0.34). Low CDKN1A expression was statistically associated with a large wound area reduction rate (β = 0.83, p < 0.01). CONCLUSIONS Gene expression of both cellular senescence and SASP factor in wound dressings suggests the presence of cellular senescence. Senescent cells in wound dressings could be associated with delayed wound healing in the following week.
Collapse
Affiliation(s)
- Chihiro Takizawa
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Qi Qin
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Daijiro Haba
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Well-being Nursing, Graduate School of Nursing, Ishikawa Prefectural Nursing University, Ishikawa, Japan
| | - Sanae Sasaki
- Department of Nursing, The University of Tokyo Hospital, Tokyo, Japan
| | - Akiko Kawasaki
- Department of Nursing, The University of Tokyo Hospital, Tokyo, Japan
| | - Tomomi Miyake
- Department of Dermatology, The University of Tokyo Hospital, Tokyo, Japan
| | - Jun Oba
- Department of Plastic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Aya Kitamura
- Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Nursing Administration and Advanced Clinical Nursing, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mari Abe
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sanai Tomida
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Gojiro Nakagami
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
8
|
Mullin JA, Rahmani E, Kiick KL, Sullivan MO. Growth factors and growth factor gene therapies for treating chronic wounds. Bioeng Transl Med 2024; 9:e10642. [PMID: 38818118 PMCID: PMC11135157 DOI: 10.1002/btm2.10642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 06/01/2024] Open
Abstract
Chronic wounds are an unmet clinical need affecting millions of patients globally, and current standards of care fail to consistently promote complete wound closure and prevent recurrence. Disruptions in growth factor signaling, a hallmark of chronic wounds, have led researchers to pursue growth factor therapies as potential supplements to standards of care. Initial studies delivering growth factors in protein form showed promise, with a few formulations reaching clinical trials and one obtaining clinical approval. However, protein-form growth factors are limited by instability and off-target effects. Gene therapy offers an alternative approach to deliver growth factors to the chronic wound environment, but safety concerns surrounding gene therapy as well as efficacy challenges in the gene delivery process have prevented clinical translation. Current growth factor delivery and gene therapy approaches have primarily used single growth factor formulations, but recent efforts have aimed to develop multi-growth factor approaches that are better suited to address growth factor insufficiencies in the chronic wound environment, and these strategies have demonstrated improved efficacy in preclinical studies. This review provides an overview of chronic wound healing, emphasizing the need and potential for growth factor therapies. It includes a summary of current standards of care, recent advances in growth factor, cell-based, and gene therapy approaches, and future perspectives for multi-growth factor therapeutics.
Collapse
Affiliation(s)
- James A. Mullin
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Erfan Rahmani
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Kristi L. Kiick
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
- Department of Materials Science and EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Millicent O. Sullivan
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| |
Collapse
|
9
|
Zand H, Pourvali K. The Function of the Immune System, Beyond Strategies Based on Cell-Autonomous Mechanisms, Determines Cancer Development: Immune Response and Cancer Development. Adv Biol (Weinh) 2024; 8:e2300528. [PMID: 38221702 DOI: 10.1002/adbi.202300528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/09/2023] [Indexed: 01/16/2024]
Abstract
Although cancer remains a challenging disease to treat, early detection and removal of primary tumors through surgery or chemotherapy/radiotherapy can offer hope for patients. The privilege paradigm in cancer biology suggests that cell-autonomous mechanisms play a central role in tumorigenesis. According to this paradigm, these cellular mechanisms are the primary focus for the prevention and treatment of cancers. However, this point of view does not present a comprehensive theory for the initiation of cancer and an effective therapeutic strategy. Having an incomplete understanding of the etiology of cancer, it is essential to re-examine previous assumptions about carcinogenesis and develop new, practical theories that can account for all available clinical and experimental evidence. This will not only help to gain a better understanding of the disease, but also offer new avenues for treatment. This review provides evidence suggesting a shift in focus from a cell-autonomous mechanism to systemic mechanisms, particularly the immune system, that are involved in cancer formation.
Collapse
Affiliation(s)
- Hamid Zand
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| | - Katayoun Pourvali
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| |
Collapse
|
10
|
Domingues RB, von Rautenfeld M, Kavalco CM, Caliari C, Dellagiustina C, da Fonseca LF, Costa FR, da Cruz Silva Reis A, Santos GS, Azzini G, de Faria APL, Santos N, Pires L, Huber SC, Mahmood A, Dallo I, Everts P, Lana JF. The role of orthobiologics in chronic wound healing. Int Wound J 2024; 21:e14854. [PMID: 38619232 PMCID: PMC11017856 DOI: 10.1111/iwj.14854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/13/2024] [Indexed: 04/16/2024] Open
Abstract
Chronic wounds, characterized by prolonged healing processes, pose a significant medical challenge with multifaceted aetiologies, including local and systemic factors. Here, it explores the complex pathogenesis of chronic wounds, emphasizing the disruption in the normal phases of wound healing, particularly the inflammatory phase, leading to an imbalance in extracellular matrix (ECM) dynamics and persistent inflammation. Senescent cell populations further contribute to impaired wound healing in chronic lesions. Traditional medical management focuses on addressing underlying causes, but many chronic wounds resist to conventional treatments, necessitating innovative approaches. Recent attention has turned to autologous orthobiologics, such as platelet-rich plasma (PRP), platelet-rich fibrin (PRF) and mesenchymal stem cells (MSCs), as potential regenerative interventions. These biologically derived materials, including bone marrow aspirate/concentrate (BMA/BMAC) and adipose tissue-derived stem cells (ADSCs), exhibit promising cytokine content and regenerative potential. MSCs, in particular, have emerged as key players in wound healing, influencing inflammation and promoting tissue regeneration. This paper reviews relevant scientific literature regarding basic science and brings real-world evidence regarding the use of orthobiologics in the treatment of chronic wounds, irrespective of aetiology. The discussion highlights the regenerative properties of PRP, PRF, BMA, BMAC and SVF, showcasing their potential to enhance wound healing. Despite advancements, further research is essential to elucidate the specific roles of each orthobiologic and determine optimal applications for different wound types. The conclusion underscores the evolving landscape in chronic wound management, with a call for more comprehensive studies to refine treatment strategies and maximize the benefits of regenerative medicine.
Collapse
Affiliation(s)
- Rafael Barnabé Domingues
- Clinical ResearchAnna Vitória Lana Institute (IAVL)SPBrazil
- Regenerative Medicine, Orthoregen International CourseIndaiatubaSPBrazil
| | | | | | | | - Celso Dellagiustina
- Department of OrthopedicsBrazilian Institute of Regenerative Medicine (BIRM)SPBrazil
| | | | - Fabio Ramos Costa
- Department of Orthopedics, FC Sports Traumatology ClinicSalvadorBABrazil
| | | | - Gabriel Silva Santos
- Regenerative Medicine, Orthoregen International CourseIndaiatubaSPBrazil
- Department of OrthopedicsBrazilian Institute of Regenerative Medicine (BIRM)SPBrazil
| | - Gabriel Azzini
- Regenerative Medicine, Orthoregen International CourseIndaiatubaSPBrazil
- Department of OrthopedicsBrazilian Institute of Regenerative Medicine (BIRM)SPBrazil
| | | | - Napoliane Santos
- Department of OrthopedicsBrazilian Institute of Regenerative Medicine (BIRM)SPBrazil
| | - Luyddy Pires
- Department of OrthopedicsBrazilian Institute of Regenerative Medicine (BIRM)SPBrazil
| | - Stephany Cares Huber
- Regenerative Medicine, Orthoregen International CourseIndaiatubaSPBrazil
- Department of OrthopedicsBrazilian Institute of Regenerative Medicine (BIRM)SPBrazil
| | - Ansar Mahmood
- Regenerative Medicine, Orthoregen International CourseIndaiatubaSPBrazil
- Medical SchoolUniMAXIndaiatubaSPBrazil
| | - Ignacio Dallo
- Regenerative Medicine, Orthoregen International CourseIndaiatubaSPBrazil
- Medical SchoolUniMAXIndaiatubaSPBrazil
| | - Peter Everts
- Regenerative Medicine, Orthoregen International CourseIndaiatubaSPBrazil
- Medical SchoolUniMAXIndaiatubaSPBrazil
| | - José Fábio Lana
- Clinical ResearchAnna Vitória Lana Institute (IAVL)SPBrazil
- Regenerative Medicine, Orthoregen International CourseIndaiatubaSPBrazil
- Department of OrthopedicsBrazilian Institute of Regenerative Medicine (BIRM)SPBrazil
- Medical SchoolUniMAXIndaiatubaSPBrazil
- Medical SchoolUniFAJJaguariúnaSPBrazil
| |
Collapse
|
11
|
Zheng Y, Pan C, Xu P, Liu K. Hydrogel-mediated extracellular vesicles for enhanced wound healing: the latest progress, and their prospects for 3D bioprinting. J Nanobiotechnology 2024; 22:57. [PMID: 38341585 PMCID: PMC10858484 DOI: 10.1186/s12951-024-02315-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Extracellular vesicles have shown promising tissue recovery-promoting effects, making them increasingly sought-after for their therapeutic potential in wound treatment. However, traditional extracellular vesicle applications suffer from limitations such as rapid degradation and short maintenance during wound administration. To address these challenges, a growing body of research highlights the role of hydrogels as effective carriers for sustained extracellular vesicle release, thereby facilitating wound healing. The combination of extracellular vesicles with hydrogels and the development of 3D bioprinting create composite hydrogel systems boasting excellent mechanical properties and biological activity, presenting a novel approach to wound healing and skin dressing. This comprehensive review explores the remarkable mechanical properties of hydrogels, specifically suited for loading extracellular vesicles. We delve into the diverse sources of extracellular vesicles and hydrogels, analyzing their integration within composite hydrogel formulations for wound treatment. Different composite methods as well as 3D bioprinting, adapted to varying conditions and construction strategies, are examined for their roles in promoting wound healing. The results highlight the potential of extracellular vesicle-laden hydrogels as advanced therapeutic tools in the field of wound treatment, offering both mechanical support and bioactive functions. By providing an in-depth examination of the various roles that these composite hydrogels can play in wound healing, this review sheds light on the promising directions for further research and development. Finally, we address the challenges associated with the application of composite hydrogels, along with emerging trends of 3D bioprinting in this domain. The discussion covers issues such as scalability, regulatory considerations, and the translation of this technology into practical clinical settings. In conclusion, this review underlines the significant contributions of hydrogel-mediated extracellular vesicle therapy to the field of 3D bioprinting and wound healing and tissue regeneration. It serves as a valuable resource for researchers and practitioners alike, fostering a deeper understanding of the potential benefits, applications, and challenges involved in utilizing composite hydrogels for wound treatment.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Chuqiao Pan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Peng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| |
Collapse
|
12
|
Ni H, Xi J, Tang J, Yan Y, Chu Y, Zhou J. Therapeutic Potential of Extracellular Vesicles from Different Stem Cells in Chronic Wound Healing. Stem Cell Rev Rep 2023; 19:1596-1614. [PMID: 37178227 DOI: 10.1007/s12015-023-10540-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 05/15/2023]
Abstract
Wound healing has long been a complex problem, especially in chronic wounds. Although debridement, skin grafting, and antimicrobial dressings have been used to treat chronic wounds, their treatment period is long, expensive, and has specific rejection reactions. The poor treatment results of traditional methods have caused psychological stress to patients and a substantial economic burden to society. Extracellular vesicles (EVs) are nanoscale vesicles secreted by cells. They play an essential role in intercellular communication. Numerous studies have confirmed that stem cell-derived extracellular vesicles (SC-EVs) can inhibit overactive inflammation, induce angiogenesis, promote re-epithelization, and reduce scar formation. Therefore, SC-EVs are expected to be a novel cell-free strategy for chronic wound treatment. We first summarize the pathological factors that hinder wound healing and discuss how SC-EVs accelerate chronic wound repair. And then, we also compare the advantages and disadvantages of different SC-EVs for chronic wound treatment. Finally, we discuss the limitations of SC-EVs usage and provide new thoughts for future SC-EVs research in chronic wound treatment.
Collapse
Affiliation(s)
- Haoxi Ni
- School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jianbo Xi
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, 213017, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou, 213017, China
| | - Jianjun Tang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, 213017, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou, 213017, China
- Department of General Surgery, Wujin Clinical College of Xuzhou Medical University, Changzhou, 213017, China
| | - Yongmin Yan
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, 213017, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou, 213017, China
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213017, China
| | - Ying Chu
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, 213017, China.
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou, 213017, China.
| | - Jing Zhou
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, 213017, China.
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou, 213017, China.
| |
Collapse
|
13
|
Chen Q, Young L, Barsotti R. Mitochondria in cell senescence: A Friend or Foe? ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:35-91. [PMID: 37437984 DOI: 10.1016/bs.apcsb.2023.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Cell senescence denotes cell growth arrest in response to continuous replication or stresses damaging DNA or mitochondria. Mounting research suggests that cell senescence attributes to aging-associated failing organ function and diseases. Conversely, it participates in embryonic tissue maturation, wound healing, tissue regeneration, and tumor suppression. The acute or chronic properties and microenvironment may explain the double faces of senescence. Senescent cells display unique characteristics. In particular, its mitochondria become elongated with altered metabolomes and dynamics. Accordingly, mitochondria reform their function to produce more reactive oxygen species at the cost of low ATP production. Meanwhile, destructed mitochondrial unfolded protein responses further break the delicate proteostasis fostering mitochondrial dysfunction. Additionally, the release of mitochondrial damage-associated molecular patterns, mitochondrial Ca2+ overload, and altered NAD+ level intertwine other cellular organelle strengthening senescence. These findings further intrigue researchers to develop anti-senescence interventions. Applying mitochondrial-targeted antioxidants reduces cell senescence and mitigates aging by restoring mitochondrial function and attenuating oxidative stress. Metformin and caloric restriction also manifest senescent rescuing effects by increasing mitochondria efficiency and alleviating oxidative damage. On the other hand, Bcl2 family protein inhibitors eradicate senescent cells by inducing apoptosis to facilitate cancer chemotherapy. This review describes the different aspects of mitochondrial changes in senescence and highlights the recent progress of some anti-senescence strategies.
Collapse
Affiliation(s)
- Qian Chen
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States.
| | - Lindon Young
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Robert Barsotti
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| |
Collapse
|
14
|
Luo J, Sun F, Rao P, Zhu T, Liu Y, Du J, Chen S, Jin X, Jin J, Chai Y. A poly (glycerol-sebacate-acrylate) nanosphere enhanced injectable hydrogel for wound treatment. Front Bioeng Biotechnol 2023; 10:1091122. [PMID: 36714634 PMCID: PMC9877222 DOI: 10.3389/fbioe.2022.1091122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Wound repair remains a huge clinical challenge, which can cause bleeding, infection, and patient death. In our current research, a bioactive, injectable, multifunctional composite hydrogel doped with nanospheres was prepared with antibacterial and angiogenesis-promoting functions for the treatment of wounds. Amino groups in ε-polylysine (ε-EPL) undergo dynamic Schiff base reaction cross-linking with oxidized hyaluronic acid (OHA), and F127 exhibits unique temperature sensitivity to form an injectable thermosensitive hydrogel (FHE10), which can form a hydrogel to cover the wound at body temperature. Nanospheres (PNs) prepared using poly (glyceryl-sebacate-acrylate) (PGSA) were loaded into hydrogels (FHE10) for promoting wound repair. The prepared FHE10 exhibited rapid gelation, good injectable abilities, and showed resistance to the flourish of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In vitro investigations showed that FHE10 had good hemocompatibility and cytocompatibility. FHE10@PNs exhibited good proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) and human foreskin fibroblasts (HFF-1). Furthermore, FHE10@PNs significantly promoted reepithelialization and collagen deposition as well as micro-vascularization compared with the use of FHE10 or PNs alone, thereby accelerating the repair of wounds. In general, this study demonstrated that the multifunctional injectable composite hydrogel showed great potential in wound treatment.
Collapse
Affiliation(s)
- Jiajia Luo
- School of Chemistry and Chemical Engineering, Institute for Frontier Medical Technology, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Shanghai University of Engineering Science, Shanghai, China
| | - Fenglei Sun
- Department of Neurosurgery, Weifang People’s Hospital, Weifang, Shandong, China
| | - Pinhua Rao
- School of Chemistry and Chemical Engineering, Institute for Frontier Medical Technology, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Shanghai University of Engineering Science, Shanghai, China,*Correspondence: Pinhua Rao, ; Jiale Jin, ; Yi Chai,
| | - Tonghe Zhu
- School of Chemistry and Chemical Engineering, Institute for Frontier Medical Technology, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Shanghai University of Engineering Science, Shanghai, China
| | - Yonghang Liu
- School of Chemistry and Chemical Engineering, Institute for Frontier Medical Technology, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Shanghai University of Engineering Science, Shanghai, China
| | - Juan Du
- School of Chemistry and Chemical Engineering, Institute for Frontier Medical Technology, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Shanghai University of Engineering Science, Shanghai, China
| | - Sihao Chen
- School of Chemistry and Chemical Engineering, Institute for Frontier Medical Technology, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Shanghai University of Engineering Science, Shanghai, China
| | - Xiangyun Jin
- Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiale Jin
- Spine Lab, Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China,*Correspondence: Pinhua Rao, ; Jiale Jin, ; Yi Chai,
| | - Yi Chai
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Pinhua Rao, ; Jiale Jin, ; Yi Chai,
| |
Collapse
|
15
|
Zhou S, Xie M, Su J, Cai B, Li J, Zhang K. New insights into balancing wound healing and scarless skin repair. J Tissue Eng 2023; 14:20417314231185848. [PMID: 37529248 PMCID: PMC10388637 DOI: 10.1177/20417314231185848] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/17/2023] [Indexed: 08/03/2023] Open
Abstract
Scars caused by skin injuries after burns, wounds, abrasions and operations have serious physical and psychological effects on patients. In recent years, the research of scar free wound repair has been greatly expanded. However, understanding the complex mechanisms of wound healing, in which various cells, cytokines and mechanical force interact, is critical to developing a treatment that can achieve scarless wound healing. Therefore, this paper reviews the types of wounds, the mechanism of scar formation in the healing process, and the current research progress on the dual consideration of wound healing and scar prevention, and some strategies for the treatment of scar free wound repair.
Collapse
Affiliation(s)
- Shengxi Zhou
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Mengbo Xie
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jingjing Su
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Bingjie Cai
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| |
Collapse
|
16
|
Zheng Y, Xu P, Pan C, Wang Y, Liu Z, Chen Y, Chen C, Fu S, Xue K, Zhou Q, Liu K. Production and Biological Effects of Extracellular Vesicles from Adipose-Derived Stem Cells Were Markedly Increased by Low-Intensity Ultrasound Stimulation for Promoting Diabetic Wound Healing. Stem Cell Rev Rep 2022; 19:784-806. [PMID: 36562958 DOI: 10.1007/s12015-022-10487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
Diabetic wound treatment has posed a significant challenge in clinical practice. As a kind of cell-derived nanoparticles, extracellular vesicles produced by adipose-derived stem cells (ADSC-EVs) have been reported to be potential agents for diabetic wound treatment. However, ADSC-EV yield is insufficient to meet the demands of clinical therapy. In this study, a novel method involving the use of low-intensity ultrasound stimulation on ADSCs is developed to promote EV secretion for clinical use. A proper low-intensity ultrasound stimulation parameter which significantly increases ADSC-EV quantity has been found. In addition, EVs secreted by ADSCs following low-intensity ultrasound stimulation (US-EVs) are enriched in wound healing-related miRNAs. Moreover, US-EVs promote the biological functions of fibroblasts, keratinocytes, and endothelial cells in vitro, and promote diabetic wound healing in db/db mice in vivo through re-epithelialization, collagen production, cell proliferation, keratinocyte differentiation and migration, and angiogenesis. This study proposes low-intensity ultrasound stimulation as a new method for promoting significant EV secretion by ADSCs and for improving the diabetic wound-healing potential of EVs, which will meet the clinical needs for these nanoparticles. The production of extracellular vesicles of adipose-derived stem cells is obviously promoted by a low-intensity ultrasound stimulation method, and the biological effects of promoting diabetic wound healing were markedly increased in vitro and in vivo.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Peng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China.
| | - Chuqiao Pan
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Yikai Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Zibo Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Yahong Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Chuhsin Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Shibo Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Ke Xue
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Qimin Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China.
| |
Collapse
|
17
|
desJardins-Park HE, Gurtner GC, Wan DC, Longaker MT. From Chronic Wounds to Scarring: The Growing Health Care Burden of Under- and Over-Healing Wounds. Adv Wound Care (New Rochelle) 2022; 11:496-510. [PMID: 34521257 PMCID: PMC9634983 DOI: 10.1089/wound.2021.0039] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/03/2021] [Indexed: 12/26/2022] Open
Abstract
Significance: Wound healing is the largest medical market without an existing small molecule/drug treatment. Both "under-healing" (chronic wounds) and "over-healing" (scarring) cause a substantial biomedical burden and lifelong consequences for patients. These problems cost tens of billions of dollars per year in the United States alone, a number expected to grow as the population ages and the prevalence of common comorbidities (e.g., diabetes) rises. However, no therapies currently exist to produce the "ideal" healing outcome: efficient wound repair through regeneration of normal tissue. Recent Advances: Ongoing research continues to illuminate possible therapeutic avenues for wound healing. By identifying underlying mechanisms of wound repair-for instance, tissue mechanics' role in fibrosis or cell populations that modulate wound healing and scarring-novel molecular targets may be defined. This Advances in Wound Care Forum issue includes reviews of scientific literature and original research from the Hagey Laboratory for Pediatric Regenerative Medicine at Stanford and its alumni, including developing approaches for encouraging wound healing, minimizing fibrosis, and coaxing regeneration. Critical Issues: Wound healing problems reflect an enormous and rapidly expanding clinical burden. The issues of both under- and over-healing wound outcomes will continue to expand as their underlying causes (e.g., diabetes) grow. Targeted treatments are needed to enable wound repair with functional tissue restoration and decreased scarring. Future Directions: Basic scientists will continue to refine understanding of factors driving undesirable wound outcomes. These discoveries are beginning to be translated and, in the coming years, will hopefully form the foundation for antiscarring drugs and other wound therapeutics.
Collapse
Affiliation(s)
- Heather E. desJardins-Park
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine; Stanford University School of Medicine, Stanford, California, USA
| | - Geoffrey C. Gurtner
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Derrick C. Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine; Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
18
|
Li R, Liu K, Huang X, Li D, Ding J, Liu B, Chen X. Bioactive Materials Promote Wound Healing through Modulation of Cell Behaviors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105152. [PMID: 35138042 PMCID: PMC8981489 DOI: 10.1002/advs.202105152] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/24/2021] [Indexed: 05/13/2023]
Abstract
Skin wound repair is a multistage process involving multiple cellular and molecular interactions, which modulate the cell behaviors and dynamic remodeling of extracellular matrices to maximize regeneration and repair. Consequently, abnormalities in cell functions or pathways inevitably give rise to side effects, such as dysregulated inflammation, hyperplasia of nonmigratory epithelial cells, and lack of response to growth factors, which impedes angiogenesis and fibrosis. These issues may cause delayed wound healing or even non-healing states. Current clinical therapeutic approaches are predominantly dedicated to preventing infections and alleviating topical symptoms rather than addressing the modulation of wound microenvironments to achieve targeted outcomes. Bioactive materials, relying on their chemical, physical, and biological properties or as carriers of bioactive substances, can affect wound microenvironments and promote wound healing at the molecular level. By addressing the mechanisms of wound healing from the perspective of cell behaviors, this review discusses how bioactive materials modulate the microenvironments and cell behaviors within the wounds during the stages of hemostasis, anti-inflammation, tissue regeneration and deposition, and matrix remodeling. A deeper understanding of cell behaviors during wound healing is bound to promote the development of more targeted and efficient bioactive materials for clinical applications.
Collapse
Affiliation(s)
- Ruotao Li
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Kai Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Xu Huang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
- Department of Hepatobiliary and Pancreatic SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
| | - Di Li
- Department of Hepatobiliary and Pancreatic SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Bin Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
19
|
Wei X, Li M, Zheng Z, Ma J, Gao Y, Chen L, Peng Y, Yu S, Yang L. Senescence in chronic wounds and potential targeted therapies. BURNS & TRAUMA 2022; 10:tkab045. [PMID: 35187179 PMCID: PMC8853744 DOI: 10.1093/burnst/tkab045] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/15/2021] [Accepted: 11/19/2021] [Indexed: 01/10/2023]
Abstract
Chronic wounds (e.g. diabetic wounds, pressure wounds, vascular ulcers, etc.) do not usually heal in a timely and orderly manner but rather last for years and may lead to irreversible adverse events, resulting in a substantial financial burden for patients and society. Recently, a large amount of evidence has proven that cellular senescence has a crucial influence on chronic nonhealing wounds. As a defensive mechanism, cell senescence is a manner of cell-cycle arrest with increased secretory phenotype to resist death, preventing cells from stress-induced damage in cancer and noncancer diseases. A growing amount of research has advanced the perception of cell senescence in various chronic wounds and focuses on pathological and physiological processes and therapies targeting senescent cells. However, previous reviews have failed to sum up novel understandings of senescence in chronic wounds and emerging strategies targeting senescence. Herein, we discuss the characteristics and mechanisms of cellular senescence and the link between senescence and chronic wounds as well as some novel antisenescence strategies targeting other diseases that may be applied for chronic wounds.
Collapse
Affiliation(s)
- Xuerong Wei
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Minxiong Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Yujie Peng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| |
Collapse
|
20
|
Boizot J, Minville-Walz M, Reinhardt DP, Bouschbacher M, Sommer P, Sigaudo-Roussel D, Debret R. FBN2 Silencing Recapitulates Hypoxic Conditions and Induces Elastic Fiber Impairment in Human Dermal Fibroblasts. Int J Mol Sci 2022; 23:ijms23031824. [PMID: 35163744 PMCID: PMC8836539 DOI: 10.3390/ijms23031824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
Most chronic wounds are characterized by varying degrees of hypoxia and low partial pressures of O2 that may favor the development of the wound and/or delay healing. However, most studies regarding extracellular matrix remodeling in wound healing are conducted under normoxic conditions. Here, we investigated the consequences of hypoxia on elastic network formation, both in a mouse model of pressure-induced hypoxic ulcer and in human primary fibroblasts cultured under hypoxic conditions. In vitro, hypoxia inhibited elastic fiber synthesis with a reduction in fibrillin-2 expression at the mRNA and protein levels. Lysyl oxidase maturation was reduced, concomitant with lower enzymatic activity. Fibrillin-2 and lysyl oxidase could interact directly, whereas the downregulation of fibrillin-2 was associated with deficient lysyl oxidase maturation. Elastic fibers were not synthesized in the hypoxic inflammatory tissues resulting from in vivo pressure-induced ulcer. Tropoelastin and fibrillin-2 were expressed sparsely in hypoxic tissues stained with carbonic anhydrase IX. Different hypoxic conditions in culture resulted in the arrest of elastic fiber synthesis. The present study demonstrated the involvement of FBN2 in regulating elastin deposition in adult skin models and described the specific impact of hypoxia on the elastin network without consequences on collagen and fibronectin networks.
Collapse
Affiliation(s)
- Jérémy Boizot
- CNRS UMR 5305, LBTI, 7 Passage du Vercors, CEDEX 7, 69367 Lyon, France; (J.B.); (P.S.); (D.S.-R.)
- University of Lyon 1, UFR Biosciences, 7 Passage du Vercors, CEDEX 7, 69367 Lyon, France
- Urgo Research Innovation and Development, 42 Rue de Longvic, 21300 Chenôve, France; (M.M.-W.); (M.B.)
| | - Mélaine Minville-Walz
- Urgo Research Innovation and Development, 42 Rue de Longvic, 21300 Chenôve, France; (M.M.-W.); (M.B.)
| | - Dieter Peter Reinhardt
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC H3A 0C7, Canada;
- Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada
| | - Marielle Bouschbacher
- Urgo Research Innovation and Development, 42 Rue de Longvic, 21300 Chenôve, France; (M.M.-W.); (M.B.)
| | - Pascal Sommer
- CNRS UMR 5305, LBTI, 7 Passage du Vercors, CEDEX 7, 69367 Lyon, France; (J.B.); (P.S.); (D.S.-R.)
- University of Lyon 1, UFR Biosciences, 7 Passage du Vercors, CEDEX 7, 69367 Lyon, France
| | - Dominique Sigaudo-Roussel
- CNRS UMR 5305, LBTI, 7 Passage du Vercors, CEDEX 7, 69367 Lyon, France; (J.B.); (P.S.); (D.S.-R.)
- University of Lyon 1, UFR Biosciences, 7 Passage du Vercors, CEDEX 7, 69367 Lyon, France
| | - Romain Debret
- CNRS UMR 5305, LBTI, 7 Passage du Vercors, CEDEX 7, 69367 Lyon, France; (J.B.); (P.S.); (D.S.-R.)
- University of Lyon 1, UFR Biosciences, 7 Passage du Vercors, CEDEX 7, 69367 Lyon, France
- Correspondence: ; Tel.: +33-4-78-777-199
| |
Collapse
|
21
|
Effects of aging on the histology and biochemistry of rat tendon healing. BMC Musculoskelet Disord 2021; 22:949. [PMID: 34781961 PMCID: PMC8594129 DOI: 10.1186/s12891-021-04838-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/29/2021] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Tendon diseases and injuries are a serious problem for the aged population, often leading to pain, disability and a significant decline in quality of life. The purpose of this study was to determine the influence of aging on biochemistry and histology during tendon healing and to provide a new strategy for improving tendon healing. METHOD A total of 24 Sprague-Dawley rats were equally divided into a young and an aged group. A rat patellar tendon defect model was used in this study. Tendon samples were collected at weeks 2 and 4, and hematoxylin-eosin, alcian blue and immunofluorescence staining were performed for histological analysis. Meanwhile, reverse transcription-polymerase chain reaction (RT-PCR) and western blot were performed to evaluate the biochemical changes. RESULTS The histological scores in aged rats were significantly lower than those in young rats. At the protein level, collagen synthesis-related markers Col-3, Matrix metalloproteinase-1 and Metallopeptidase Inhibitor 1(TIMP-1) were decreased at week 4 in aged rats compared with those of young rats. Though there was a decrease in the expression of the chondrogenic marker aggrecan at the protein level in aged tendon, the Micro-CT results from weeks 4 samples showed no significant difference(p>0.05) on the ectopic ossification between groups. Moreover, we found more adipocytes accumulated in the aged tendon defect with the Oil Red O staining and at the gene and protein levels the markers related to adipogenic differentiation. CONCLUSIONS Our findings indicate that tendon healing is impaired in aged rats and is characterized by a significantly lower histological score, decreased collagen synthesis and more adipocyte accumulation in patellar tendon after repair.
Collapse
|
22
|
Pils V, Ring N, Valdivieso K, Lämmermann I, Gruber F, Schosserer M, Grillari J, Ogrodnik M. Promises and challenges of senolytics in skin regeneration, pathology and ageing. Mech Ageing Dev 2021; 200:111588. [PMID: 34678388 DOI: 10.1016/j.mad.2021.111588] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
The research of the last two decades has defined a crucial role of cellular senescence in both the physiology and pathology of skin, and senescent cells have been detected in conditions including development, regeneration, aging, and disease. The pathophysiology of cellular senescence in skin is complex as the phenotype of senescence pertains to several different cell types including fibroblasts, keratinocytes and melanocytes, among others. Paradoxically, the transient presence of senescent cells is believed to be beneficial in the context of development and wound healing, while the chronic presence of senescent cells is detrimental in the context of aging, diseases, and chronic wounds, which afflict predominantly the elderly. Identifying strategies to prevent senescence induction or reduce senescent burden in the skin could broadly benefit the aging population. Senolytics, drugs known to specifically eliminate senescent cells while preserving non-senescent cells, are being intensively studied for use in the clinical setting. Here, we review recent research on skin senescence, on the methods for the detection of senescent cells and describe promises and challenges related to the application of senolytic drugs. This article is part of the Special Issue - Senolytics - Edited by Joao Passos and Diana Jurk.
Collapse
Affiliation(s)
- Vera Pils
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE, Vienna, Austria; Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Nadja Ring
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Karla Valdivieso
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Ingo Lämmermann
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Florian Gruber
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE, Vienna, Austria; Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Markus Schosserer
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Johannnes Grillari
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Mikolaj Ogrodnik
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
23
|
Bekeschus S, von Woedtke T, Emmert S, Schmidt A. Medical gas plasma-stimulated wound healing: Evidence and mechanisms. Redox Biol 2021; 46:102116. [PMID: 34474394 PMCID: PMC8408623 DOI: 10.1016/j.redox.2021.102116] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Defective wound healing poses a significant burden on patients and healthcare systems. In recent years, a novel reactive oxygen and nitrogen species (ROS/RNS) based therapy has received considerable attention among dermatologists for targeting chronic wounds. The multifaceted ROS/RNS are generated using gas plasma technology, a partially ionized gas operated at body temperature. This review integrates preclinical and clinical evidence into a set of working hypotheses mainly based on redox processes aiding in elucidating the mechanisms of action and optimizing gas plasmas for therapeutic purposes. These hypotheses include increased wound tissue oxygenation and vascularization, amplified apoptosis of senescent cells, redox signaling, and augmented microbial inactivation. Instead of a dominant role of a single effector, it is proposed that all mechanisms act in concert in gas plasma-stimulated healing, rationalizing the use of this technology in therapy-resistant wounds. Finally, addressable current challenges and future concepts are outlined, which may further promote the clinical utilization, efficacy, and safety of gas plasma technology in wound care in the future.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), A Member of the Leibniz Research Alliance Leibniz Health Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| | - Thomas von Woedtke
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), A Member of the Leibniz Research Alliance Leibniz Health Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Sauerbruchstr., 17475, Greifswald, Germany
| | - Steffen Emmert
- Clinic for Dermatology and Venereology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany
| | - Anke Schmidt
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), A Member of the Leibniz Research Alliance Leibniz Health Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| |
Collapse
|
24
|
Ho CY, Dreesen O. Faces of cellular senescence in skin aging. Mech Ageing Dev 2021; 198:111525. [PMID: 34166688 DOI: 10.1016/j.mad.2021.111525] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/30/2021] [Accepted: 06/20/2021] [Indexed: 02/06/2023]
Abstract
The skin is comprised of different cell types with different proliferative capacities. Skin aging occurs with chronological age and upon exposure to extrinsic factors such as photodamage. During aging, senescent cells accumulate in different compartments of the human skin, leading to impaired skin physiology. Diverse skin cell types may respond differently to senescence-inducing stimuli and it is not clear how this results in aging-associated skin phenotypes and pathologies. This review aims to examine and provide an overview of current evidence of cellular senescence in the skin. We will focus on cellular characteristics and behaviour of different skin cell types undergoing senescence in the epidermis and dermis, with a particular focus on the complex interplay between mitochondrial dysfunction, autophagy and DNA damage pathways. We will also examine how the dermis and epidermis cope with the accumulation of DNA damage during aging.
Collapse
Affiliation(s)
- Chin Yee Ho
- Skin Research Institute of Singapore, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Oliver Dreesen
- Skin Research Institute of Singapore, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore.
| |
Collapse
|
25
|
Human Mesenchymal Stromal Cell-Derived Exosomes Promote In Vitro Wound Healing by Modulating the Biological Properties of Skin Keratinocytes and Fibroblasts and Stimulating Angiogenesis. Int J Mol Sci 2021; 22:ijms22126239. [PMID: 34207905 PMCID: PMC8228793 DOI: 10.3390/ijms22126239] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (MSCs) are major players in regenerative therapies for wound healing via their paracrine activity, mediated partially by exosomes. Our purpose was to test if MSC-derived exosomes could accelerate wound healing by enhancing the biological properties of the main cell types involved in the key phases of this process. Thus, the effects of exosomes on (i) macrophage activation, (ii) angiogenesis, (iii) keratinocytes and dermal fibroblasts proliferation and migration, and (iv) the capacity of myofibroblasts to regulate the turnover of the extracellular matrix were evaluated. The results showed that, although exosomes did not exhibit anti-inflammatory properties, they stimulated angiogenesis. Exposure of keratinocytes and dermal (myo)fibroblasts to exosomes enhanced their proliferation and migratory capacity. Additionally, exosomes prevented the upregulation of gene expression for type I and III collagen, α-smooth muscle actin, and MMP2 and 14, and they increased MMP13 expression during the fibroblast–myofibroblast transition. The regenerative properties of exosomes were validated using a wound healing skin organotypic model, which exhibited full re-epithelialization upon exosomes exposure. In summary, these data indicate that exosomes enhance the biological properties of keratinocytes, fibroblasts, and endothelial cells, thus providing a reliable therapeutic tool for skin regeneration.
Collapse
|
26
|
Abdelgawad IY, Sadak KT, Lone DW, Dabour MS, Niedernhofer LJ, Zordoky BN. Molecular mechanisms and cardiovascular implications of cancer therapy-induced senescence. Pharmacol Ther 2021; 221:107751. [PMID: 33275998 PMCID: PMC8084867 DOI: 10.1016/j.pharmthera.2020.107751] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022]
Abstract
Cancer treatment has been associated with accelerated aging that can lead to early-onset health complications typically experienced by older populations. In particular, cancer survivors have an increased risk of developing premature cardiovascular complications. In the last two decades, cellular senescence has been proposed as an important mechanism of premature cardiovascular diseases. Cancer treatments, specifically anthracyclines and radiation, have been shown to induce senescence in different types of cardiovascular cells. Additionally, clinical studies identified increased systemic markers of senescence in cancer survivors. Preclinical research has demonstrated the potential of several approaches to mitigate cancer therapy-induced senescence. However, strategies to prevent and/or treat therapy-induced cardiovascular senescence have not yet been translated to the clinic. In this review, we will discuss how therapy-induced senescence can contribute to cardiovascular complications. Thereafter, we will summarize the current in vitro, in vivo, and clinical evidence regarding cancer therapy-induced cardiovascular senescence. Then, we will discuss interventional strategies that have the potential to protect against therapy-induced cardiovascular senescence. To conclude, we will highlight challenges and future research directions to mitigate therapy-induced cardiovascular senescence in cancer survivors.
Collapse
Affiliation(s)
- Ibrahim Y Abdelgawad
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA
| | - Karim T Sadak
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; University of Minnesota Masonic Children's Hospital, Minneapolis, MN 55455, USA; University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - Diana W Lone
- University of Minnesota Masonic Children's Hospital, Minneapolis, MN 55455, USA
| | - Mohamed S Dabour
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA.
| |
Collapse
|
27
|
Geng K, Ma X, Jiang Z, Huang W, Gao C, Pu Y, Luo L, Xu Y, Xu Y. Innate Immunity in Diabetic Wound Healing: Focus on the Mastermind Hidden in Chronic Inflammatory. Front Pharmacol 2021; 12:653940. [PMID: 33967796 PMCID: PMC8097165 DOI: 10.3389/fphar.2021.653940] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
A growing body of evidence suggests that the interaction between immune and metabolic responses is essential for maintaining tissue and organ homeostasis. These interacting disorders contribute to the development of chronic diseases associated with immune-aging such as diabetes, obesity, atherosclerosis, and nonalcoholic fatty liver disease. In Diabetic wound (DW), innate immune cells respond to the Pathogen-associated molecular patterns (PAMAs) and/or Damage-associated molecular patterns (DAMPs), changes from resting to an active phenotype, and play an important role in the triggering and maintenance of inflammation. Furthermore, the abnormal activation of innate immune pathways secondary to immune-aging also plays a key role in DW healing. Here, we review studies of innate immune cellular molecular events that identify metabolic disorders in the local microenvironment of DW and provide a historical perspective. At the same time, we describe some of the recent progress, such as TLR receptor-mediated intracellular signaling pathways that lead to the activation of NF-κB and the production of various pro-inflammatory mediators, NLRP3 inflammatory via pyroptosis, induction of IL-1β and IL-18, cGAS-STING responds to mitochondrial injury and endoplasmic reticulum stress, links sensing of metabolic stress to activation of pro-inflammatory cascades. Besides, JAK-STAT is also involved in DW healing by mediating the action of various innate immune effectors. Finally, we discuss the great potential of targeting these innate immune pathways and reprogramming innate immune cell phenotypes in DW therapy.
Collapse
Affiliation(s)
- Kang Geng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, China.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China.,Department of Plastic and Burn Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,National Key Clinical Construction Specialty, Luzhou, China
| | - Xiumei Ma
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, China.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Zongzhe Jiang
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Chenlin Gao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Yueli Pu
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Lifang Luo
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, China.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, China
| | - Yong Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, China.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, China.,Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
28
|
Ding X, Kakanj P, Leptin M, Eming SA. Regulation of the Wound Healing Response during Aging. J Invest Dermatol 2021; 141:1063-1070. [DOI: 10.1016/j.jid.2020.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
|
29
|
Restoration of the healing microenvironment in diabetic wounds with matrix-binding IL-1 receptor antagonist. Commun Biol 2021; 4:422. [PMID: 33772102 PMCID: PMC7998035 DOI: 10.1038/s42003-021-01913-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic wounds are a major clinical problem where wound closure is prevented by pathologic factors, including immune dysregulation. To design efficient immunotherapies, an understanding of the key molecular pathways by which immunity impairs wound healing is needed. Interleukin-1 (IL-1) plays a central role in regulating the immune response to tissue injury through IL-1 receptor (IL-1R1). Generating a knockout mouse model, we demonstrate that the IL-1-IL-1R1 axis delays wound closure in diabetic conditions. We used a protein engineering approach to deliver IL-1 receptor antagonist (IL-1Ra) in a localised and sustained manner through binding extracellular matrix components. We demonstrate that matrix-binding IL-1Ra improves wound healing in diabetic mice by re-establishing a pro-healing microenvironment characterised by lower levels of pro-inflammatory cells, cytokines and senescent fibroblasts, and higher levels of anti-inflammatory cytokines and growth factors. Engineered IL-1Ra has translational potential for chronic wounds and other inflammatory conditions where IL-1R1 signalling should be dampened.
Collapse
|
30
|
Jones J, Hampton S. Use of a superabsorbent dressing in the management of exudate in hard-to-heal wounds. Br J Community Nurs 2021; 26:S20-S29. [PMID: 33688756 DOI: 10.12968/bjcn.2021.26.sup3.s20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
With the shift in demographics towards an ageing population with multimorbidity, the number of hard-to-heal (chronic) wounds is increasing each year. This poses a challenge for both health professionals, for whom wound management is becoming more complex, and for patients, who have to cope with exudate production, malodour and pain. This article summarises understanding of healing in such wounds and how best to meet the challenge of exudate, which is a ubiquitous hallmark of hard-to-heal wounds. The role of superabsorbent dressings is considered, with particular reference to Kliniderm superabsorbent in the management of people with these challenging wounds.
Collapse
Affiliation(s)
| | - Sylvie Hampton
- Tissue Viability Consultant Nurse, Director of Wound Care Consultancy Ltd. (this author contributed all the case studies)
| |
Collapse
|
31
|
Functional heterogeneity in senescence. Biochem Soc Trans 2021; 48:765-773. [PMID: 32369550 PMCID: PMC7329341 DOI: 10.1042/bst20190109] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/22/2022]
Abstract
Senescence is a tumour suppressor mechanism which is cell-intrinsically activated in the context of cellular stress. Senescence can further be propagated to neighbouring cells, a process called secondary senescence induction. Secondary senescence was initially shown as a paracrine response to the secretion of cytokines from primary senescent cells. More recently, juxtacrine Notch signalling has been implicated in mediating secondary senescence induction. Primary and secondary senescent induction results in distinct transcriptional outcomes. In addition, cell type and the stimulus in which senescence is induced can lead to variations in the phenotype of the senescence response. It is unclear whether heterogeneous senescent end-points are associated with distinct cellular function in situ, presenting functional heterogeneity. Thus, understanding senescence heterogeneity could prove to be important when devising ways of targeting senescent cells by senolytics, senostatics or senogenics. In this review, we discuss a role for functional heterogeneity in senescence in tissue- and cell-type specific manners, highlighting potential differences in senescence outcomes of primary and secondary senescence.
Collapse
|
32
|
Ye D, Wu S, Zhang B, Hong C, Yang L. Characteristics and clinical potential of a cellularly modified gelatin sponge. J Appl Biomater Funct Mater 2021; 19:22808000211035061. [PMID: 34519565 DOI: 10.1177/22808000211035061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Human umbilical cord mesenchymal stem cells (HuMSCs) injected directly have been proven effective for improving chronic wounds. However, HuMSCs largely die within 14 days. The aim of study is to establish a cellularly modified gelatin sponge and investigate its characteristics and clinical potential. METHODS HuMSCs were isolated, expanded and seeded in a poly-L-lysine (PLL)-coated gelatin sponge. Fabricated gelatin sponges were estimated through observation of morphological surface and ultrastructure, following confirmed by histology method. Supernatants were collected at different times for enzyme-linked immunosorbent assays (ELISAs) to measure growth factors. The cell embedded gelatin sponges were implanted subcutaneously on the backs of mice and the samples were harvested and studied histologically. RESULTS HuMSCs gradually modified the gelatin sponge by depositing collagen and hyaluronic acid, and degrading the structure of gelatin, resulting in a dense, and elastic structure. Compared with cells cultured in monolayer, the levels of growth factors increased remarkably when HuMSCs were cultivated in the gelatin sponge. Upon subcutaneous implantation in the backs of mice, the cellularized gelatin sponges persisted for up to 2 months and eventually integrated into the host tissue, while blank gelatin sponges degraded completely by the end of the second month. CONCLUSION Gelatin sponge is a clinically accessible scaffold for HuMSCs implantation to maintain short-term survival of the cells and high-level production of growth factors, which demonstrates good clinical potential for enhancing wound healing.
Collapse
Affiliation(s)
- Danyan Ye
- Research Center for Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Sixun Wu
- Department of Burns and Plastic Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Bingna Zhang
- Research Center for Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Chuzhu Hong
- Clinical Research Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Lujun Yang
- Research Center for Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P.R. China
- Department of Burns and Plastic Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P.R. China
| |
Collapse
|
33
|
Resnik SR, Egger A, Abdo Abujamra B, Jozic I. Clinical Implications of Cellular Senescence on Wound Healing. CURRENT DERMATOLOGY REPORTS 2020. [DOI: 10.1007/s13671-020-00320-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Evaluation of the Effect of Plasma from Patients with Trophic Ulcers on the Function of Dermal Fibroblasts, Mesenchymal Stem Cells, and Endothelial Cells. Bull Exp Biol Med 2020; 169:558-563. [PMID: 32910395 DOI: 10.1007/s10517-020-04929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Indexed: 10/23/2022]
Abstract
We studied the effect of platelet lysate and platelet-poor plasma from patients with trophic ulcers with and without type 2 diabetes mellitus on proliferation, migration, and apoptosis of human dermal fibroblast, mesenchymal stem cells, and endothelial cells. It is shown that plasma obtained from patients with type 2 diabetes mellitus produced inhibitory effects.
Collapse
|
35
|
Groppa E, Colliva A, Vuerich R, Kocijan T, Zacchigna S. Immune Cell Therapies to Improve Regeneration and Revascularization of Non-Healing Wounds. Int J Mol Sci 2020; 21:E5235. [PMID: 32718071 PMCID: PMC7432547 DOI: 10.3390/ijms21155235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
With the increased prevalence of chronic diseases, non-healing wounds place a significant burden on the health system and the quality of life of affected patients. Non-healing wounds are full-thickness skin lesions that persist for months or years. While several factors contribute to their pathogenesis, all non-healing wounds consistently demonstrate inadequate vascularization, resulting in the poor supply of oxygen, nutrients, and growth factors at the level of the lesion. Most existing therapies rely on the use of dermal substitutes, which help the re-epithelialization of the lesion by mimicking a pro-regenerative extracellular matrix. However, in most patients, this approach is not efficient, as non-healing wounds principally affect individuals afflicted with vascular disorders, such as peripheral artery disease and/or diabetes. Over the last 25 years, innovative therapies have been proposed with the aim of fostering the regenerative potential of multiple immune cell types. This can be achieved by promoting cell mobilization into the circulation, their recruitment to the wound site, modulation of their local activity, or their direct injection into the wound. In this review, we summarize preclinical and clinical studies that have explored the potential of various populations of immune cells to promote skin regeneration in non-healing wounds and critically discuss the current limitations that prevent the adoption of these therapies in the clinics.
Collapse
Affiliation(s)
- Elena Groppa
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (E.G.); (A.C.); (R.V.); (T.K.)
| | - Andrea Colliva
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (E.G.); (A.C.); (R.V.); (T.K.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Roman Vuerich
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (E.G.); (A.C.); (R.V.); (T.K.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Tea Kocijan
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (E.G.); (A.C.); (R.V.); (T.K.)
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (E.G.); (A.C.); (R.V.); (T.K.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
36
|
Dietary administration of the probiotic Shewanella putrefaciens to experimentally wounded gilthead seabream (Sparus aurata L.) facilitates the skin wound healing. Sci Rep 2020; 10:11029. [PMID: 32620795 PMCID: PMC7335042 DOI: 10.1038/s41598-020-68024-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 06/17/2020] [Indexed: 11/08/2022] Open
Abstract
The effect of the probiotic Shewanella putrefaciens Pdp11 (SpPdp11) was studied on the skin healing of experimentally wounded gilthead seabream (Sparus aurata L.). Two replicates (n = 12) of fish were fed CON diet or SP diet for 30 days. Half of the fish were sampled while the others were injured and sampled 7 days post-wounding. Results by image analysis of wound areas showed that SpPdp11 inclusion facilitated wound closure. Compared with the CON group, fish in SP group sampled 7 days post-wounding had a significantly decreased serum AST and increased ALB/GLOB ratio. Furthermore, protease and peroxidase activities were significantly increased in skin mucus from fish in SP group sampled 7 days post-wounding, compared with those fed CON diet. Additionally, SP diet up-regulated the gene expression of antioxidant enzymes, anti-inflammatory cytokines, and re-epithelialization related genes in the fish skin. Furthermore, significant decreases in pro-inflammatory cytokines expression were detected in fish from SP group, respect to control ones. Overall, SpPdp11 inclusion facilitated the wound healing and the re-epithelialization of the damaged skin, alleviated the inflammatory response in the wound area through intensifying the antioxidant system, and enhancing the neo-vascularization and the synthesis of matrix proteins in the skin wound sites of fish.
Collapse
|
37
|
Isabela Avila-Rodríguez M, Meléndez-Martínez D, Licona-Cassani C, Manuel Aguilar-Yañez J, Benavides J, Lorena Sánchez M. Practical context of enzymatic treatment for wound healing: A secreted protease approach (Review). Biomed Rep 2020; 13:3-14. [PMID: 32440346 PMCID: PMC7238406 DOI: 10.3892/br.2020.1300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Skin wounds have been extensively studied as their healing represents a critical step towards achieving homeostasis following a traumatic event. Dependent on the severity of the damage, wounds are categorized as either acute or chronic. To date, chronic wounds have the highest economic impact as long term increases wound care costs. Chronic wounds affect 6.5 million patients in the United States with an annual estimated expense of $25 billion for the health care system. Among wound treatment categories, active wound care represents the fastest-growing category due to its specific actions and lower costs. Within this category, proteases from various sources have been used as successful agents in debridement wound care. The wound healing process is predominantly mediated by matrix metalloproteinases (MMPs) that, when dysregulated, result in defective wound healing. Therapeutic activity has been described for animal secretions including fish epithelial mucus, maggot secretory products and snake venom, which contain secreted proteases (SPs). No further alternatives for use, sources or types of proteases used for wound healing have been found in the literature to date. Through the present review, the context of enzymatic wound care alternatives will be discussed. In addition, substrate homology of SPs and human MMPs will be compared and contrasted. The purpose of these discussions is to identify and propose the stages of wound healing in which SPs may be used as therapeutic agents to improve the wound healing process.
Collapse
Affiliation(s)
| | - David Meléndez-Martínez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León 64849, Mexico
| | | | - José Manuel Aguilar-Yañez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León 64849, Mexico
- Scicore Medical SAPI de CV, Monterrey, Nuevo León 64920, Mexico
| | - Jorge Benavides
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León 64849, Mexico
| | - Mirna Lorena Sánchez
- Laboratorio de Materiales Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes-Imbice-Conicet-Cicpba, Bernal, Buenos Aires B1876BXD, Argentina
| |
Collapse
|
38
|
Wang Z, Shi C. Cellular senescence is a promising target for chronic wounds: a comprehensive review. BURNS & TRAUMA 2020; 8:tkaa021. [PMID: 32607375 PMCID: PMC7309580 DOI: 10.1093/burnst/tkaa021] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/07/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022]
Abstract
Chronic wounds include, but are not limited to, radiation ulcers, pressure ulcers, vascular ulcers and diabetic foot ulcers. These chronic wounds can persist for years without healing and severe ulcers may lead to amputation. Unfortunately, the underlying pathologies of refractory chronic wounds are not fully characterized, and new treatments are urgently needed. Recently, increasing evidence has indicated that cell senescence plays an important role in the development of chronic wounds, and preventing cell senescence or removing senescent cells holds promise as a new therapeutic strategy. In this review, we aim to probe these latest findings to promote the understanding of cellular senescence in the pathological process and potential management of chronic wounds.
Collapse
Affiliation(s)
- Ziwen Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| |
Collapse
|
39
|
Bae YU, Son Y, Kim CH, Kim KS, Hyun SH, Woo HG, Jee BA, Choi JH, Sung HK, Choi HC, Park SY, Bae JH, Doh KO, Kim JR. Embryonic Stem Cell-Derived mmu-miR-291a-3p Inhibits Cellular Senescence in Human Dermal Fibroblasts Through the TGF-β Receptor 2 Pathway. J Gerontol A Biol Sci Med Sci 2020; 74:1359-1367. [PMID: 30239625 DOI: 10.1093/gerona/gly208] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Indexed: 12/15/2022] Open
Abstract
Senescent cells accumulate in various tissues over time and contribute to tissue dysfunction and aging-associated phenotypes. Accumulating evidence suggests that cellular senescence can be inhibited through pharmacological intervention, as well as through treatment with soluble factors derived from embryonic stem cells (ESCs). In an attempt to investigate the anti-senescence factors secreted by ESCs, we analyzed mouse ESC-derived extracellular microRNAs in conditioned medium via microRNA array analysis. We selected mmu-miR-291a-3p as a putative anti-senescence factor via bioinformatics analysis. We validated its inhibitory effects on replicative, Adriamycin-induced, and ionizing radiation-induced senescence in human dermal fibroblasts. Treatment of senescent cells with mmu-miR-291a-3p decreased senescence-associated β-galactosidase activity, enhanced proliferative potential, and reduced mRNA and protein expression of TGF-β receptor 2, p53, and p21. mmu-miR-291a-3p in conditioned medium was enclosed in ESC-derived exosomes and exosomes purified from ESC conditioned medium inhibited cellular senescence. The inhibitory effects of mmu-miR-291a-3p were mediated through the TGF-β receptor 2 signaling pathway. Hsa-miR-371a-3p and hsa-miR-520e, the human homologs of mmu-miR-291a-3p, showed similar anti-senescence activity. Furthermore, mmu-miR-291a-3p accelerated the excisional skin wound healing process in aged mice. Our results indicate that the ESC-derived mmu-miR-291a-3p is a novel candidate agent that can be utilized for cell-free therapeutic intervention against aging and aging-related diseases.
Collapse
Affiliation(s)
- Yun-Ui Bae
- Department of Biochemistry and Molecular Biology, College of Medicine, Daegu, Republic of Korea
- Smart-Aging Convergence Research Center, Yeungnam University, Daegu, Republic of Korea
| | - Youlim Son
- Department of Biochemistry and Molecular Biology, College of Medicine, Daegu, Republic of Korea
- Smart-Aging Convergence Research Center, Yeungnam University, Daegu, Republic of Korea
| | - Chang-Hyun Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Daegu, Republic of Korea
| | - Kwang Seok Kim
- Division of Applied Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Se Hee Hyun
- Division of Applied Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Byul A Jee
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Jun-Hyuk Choi
- Department of Pathology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Hoon-Ki Sung
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Hyung-Chul Choi
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - So Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Ju-Hyun Bae
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Kyung-Oh Doh
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Daegu, Republic of Korea
- Smart-Aging Convergence Research Center, Yeungnam University, Daegu, Republic of Korea
| |
Collapse
|
40
|
Baldan-Martin M, Martin-Rojas T, Corbacho-Alonso N, Lopez JA, Sastre-Oliva T, Gil-Dones F, Vazquez J, Arevalo JM, Mourino-Alvarez L, Barderas MG. Comprehensive Proteomic Profiling of Pressure Ulcers in Patients with Spinal Cord Injury Identifies a Specific Protein Pattern of Pathology. Adv Wound Care (New Rochelle) 2020; 9:277-294. [PMID: 32226651 PMCID: PMC7099418 DOI: 10.1089/wound.2019.0968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/10/2019] [Indexed: 12/26/2022] Open
Abstract
Objective: Severe pressure ulcers (PUs) do not respond to conservative wound therapy and need surgical repair. To better understand the pathogenesis and to advance on new therapeutic options, we focused on the proteomic analysis of PU, which offers substantial opportunities to identify significant changes in protein abundance during the course of PU formation in an unbiased manner. Approach: To better define the protein pattern of this pathology, we performed a proteomic approach in which we compare severe PU tissue from spinal cord injury (SCI) patients with control tissue from the same patients. Results: We found 76 proteins with difference in abundance. Of these, 10 proteins were verified as proteins that define the pathology: antithrombin-III, alpha-1-antitrypsin, kininogen-1, alpha-2-macroglobulin, fibronectin, apolipoprotein A-I, collagen alpha-1 (XII) chain, haptoglobin, apolipoprotein B-100, and complement factor B. Innovation: This is the first study to analyze differential abundance protein of PU tissue from SCI patients using high-throughput protein identification and quantification by tandem mass tags followed by liquid chromatography tandem mass spectrometry. Conclusion: Differential abundance proteins are mainly involved in tissue regeneration. These proteins might be considered as future therapeutic options to enhance the physiological response and permit cellular repair of damaged tissue.
Collapse
Affiliation(s)
- Montserrat Baldan-Martin
- Department of Vascular Physiopathology, National Hospital for Paraplegics (HNP), SESCAM, Toledo, Spain
| | - Tatiana Martin-Rojas
- Department of Vascular Physiopathology, National Hospital for Paraplegics (HNP), SESCAM, Toledo, Spain
| | - Nerea Corbacho-Alonso
- Department of Vascular Physiopathology, National Hospital for Paraplegics (HNP), SESCAM, Toledo, Spain
| | - Juan Antonio Lopez
- Department of Plastic Surgery, National Hospital for Paraplegics (HNP), SESCAM, Toledo, Spain
| | - Tamara Sastre-Oliva
- Department of Vascular Physiopathology, National Hospital for Paraplegics (HNP), SESCAM, Toledo, Spain
| | - Felix Gil-Dones
- Department of Vascular Physiopathology, National Hospital for Paraplegics (HNP), SESCAM, Toledo, Spain
| | - Jesus Vazquez
- Department of Plastic Surgery, National Hospital for Paraplegics (HNP), SESCAM, Toledo, Spain
| | | | - Laura Mourino-Alvarez
- Department of Vascular Physiopathology, National Hospital for Paraplegics (HNP), SESCAM, Toledo, Spain
| | - Maria G. Barderas
- Department of Vascular Physiopathology, National Hospital for Paraplegics (HNP), SESCAM, Toledo, Spain
| |
Collapse
|
41
|
Khor ES, Wong PF. The roles of MTOR and miRNAs in endothelial cell senescence. Biogerontology 2020; 21:517-530. [PMID: 32246301 DOI: 10.1007/s10522-020-09876-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
Accumulation of senescent cells in vascular endothelium is known to contribute to vascular aging and increases the risk of developing cardiovascular diseases. The involvement of classical pathways such as p53/p21 and p16/pRB in cellular senescence are well described but there are emerging evidence supporting the increasingly important role of mammalian target of rapamycin (MTOR) as driver of cellular senescence via these pathways or other effector molecules. MicroRNAs (miRNAs) are a highly conserved group of small non-coding RNAs (18-25 nucleotides), instrumental in modulating the expression of target genes associated with various biological and cellular processes including cellular senescence. The inhibition of MTOR activity is predominantly linked to cellular senescence blunting and prolonged lifespan in model organisms. To date, known miRNAs regulating MTOR in endothelial cell senescence remain limited. Herein, this review discusses the roles of MTOR and MTOR-associated miRNAs in regulating endothelial cell senescence, including the crosstalk between MTOR Complex 1 (MTORC1) and cell cycle pathways and the emerging role of MTORC2 in cellular senescence. New insights on how MTOR and miRNAs coordinate underlying molecular mechanisms of endothelial senescence will provide deeper understanding and clarity to the complexity of the regulation of cellular senescence.
Collapse
Affiliation(s)
- Eng-Soon Khor
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
42
|
Zhang P, He L, Zhang J, Mei X, Zhang Y, Tian H, Chen Z. Preparation of novel berberine nano-colloids for improving wound healing of diabetic rats by acting Sirt1/NF-κB pathway. Colloids Surf B Biointerfaces 2020; 187:110647. [PMID: 31761520 DOI: 10.1016/j.colsurfb.2019.110647] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/28/2019] [Accepted: 11/13/2019] [Indexed: 02/05/2023]
Abstract
In the present work, novel berberine nano-colloids hydrogel (BNH) was prepared for improving wound healing of diabetic rats. Polyvinyl alcohol (PVA), sodium alginate (Alg) were adopted as building blocks to form BNH. Calcium ions was used as crosslink agent to construct BNH. The skin injury model of diabetic rats was successfully established, and the prepared hydrogel was applied to the wound. Animal experiments proved that BNH could promote wound healing of diabetic rats. Further molecular mechanism research revealed that BNH could inhibit the expression of NF-κB, TNF-a and IL-6, but increase the expression of F VEGF, CD 31 and SMA by activating Sirt 1 which were benefit for wound healing of diabetic rats.
Collapse
Affiliation(s)
- Peng Zhang
- Jinzhou Medical University, Jinzhou, 121001, People's Republic of China
| | - Libang He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Jie Zhang
- Jinzhou Medical University, Jinzhou, 121001, People's Republic of China
| | - Xifan Mei
- Jinzhou Medical University, Jinzhou, 121001, People's Republic of China.
| | - Yiyao Zhang
- Jinzhou Medical University, Jinzhou, 121001, People's Republic of China
| | - He Tian
- Jinzhou Medical University, Jinzhou, 121001, People's Republic of China.
| | - Zhenhua Chen
- Jinzhou Medical University, Jinzhou, 121001, People's Republic of China.
| |
Collapse
|
43
|
Wilkinson HN, Hardman MJ. Wound senescence: A functional link between diabetes and ageing? Exp Dermatol 2020; 30:68-73. [PMID: 32009254 DOI: 10.1111/exd.14082] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
Arguably, the two most important causes of pathological healing in the skin are diabetes and ageing. While these factors have historically been considered independent modifiers of the healing process, recent studies suggest that they may be mechanistically linked. The primary contributor to diabetic pathology is hyperglycaemia, which accelerates the production of advanced glycation end products, a characteristic of ageing tissue. Indeed, advanced age also leads to mild hyperglycaemia. Here, we discuss emerging literature that reveals a hitherto unappreciated link between cellular senescence, diabetes and wound repair. Senescent cells cause widespread destruction of normal tissue architecture in ageing and have been shown to be increased in chronic wounds. However, the role of senescence remains controversial, with several studies reporting beneficial effects for transiently induced senescence in wound healing. We recently highlighted a direct role for senescence in diabetic healing pathology, mediated by the senescence receptor, CXCR2. These findings suggest that targeting local tissue senescence may provide a therapeutic strategy applicable to a broad range of chronic wound types.
Collapse
Affiliation(s)
- Holly N Wilkinson
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, The University of Hull, Hull, UK
| | - Matthew J Hardman
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, The University of Hull, Hull, UK
| |
Collapse
|
44
|
Hamsanathan S, Alder JK, Sellares J, Rojas M, Gurkar AU, Mora AL. Cellular Senescence: The Trojan Horse in Chronic Lung Diseases. Am J Respir Cell Mol Biol 2020; 61:21-30. [PMID: 30965013 DOI: 10.1165/rcmb.2018-0410tr] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Senescence is a cell fate decision characterized by irreversible arrest of proliferation accompanied by a senescence-associated secretory phenotype. Traditionally, cellular senescence has been recognized as a beneficial physiological mechanism during development and wound healing and in tumor suppression. However, in recent years, evidence of negative consequences of cellular senescence has emerged, illuminating its role in several chronic pathologies. In this context, senescent cells persist or accumulate and have detrimental consequences. In this review, we discuss the possibility that in chronic obstructive pulmonary disease, persistent senescence impairs wound healing in the lung caused by secretion of proinflammatory senescence-associated secretory phenotype factors and exhaustion of progenitor cells. In contrast, in idiopathic pulmonary fibrosis, chronic senescence in alveolar epithelial cells exacerbates the accumulation of senescent fibroblasts together with production of extracellular matrix. We review how cellular senescence may contribute to lung disease pathology.
Collapse
Affiliation(s)
| | - Jonathan K Alder
- 2 Division of Pulmonary Allergy and Critical Care Medicine, and.,3 Dorothy P. and Richard P. Simmons Center for Interstitial Lung Diseases
| | - Jacobo Sellares
- 4 Interstitial Lung Disease Program, Servei de Pneumologia, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,5 Centro de Investigaciones Biomedicas en Red-Enfermedades Respiratorias (CibeRes CB06/06/0028), Instituto de Salud Carlos III, Barcelona, Spain; and
| | - Mauricio Rojas
- 2 Division of Pulmonary Allergy and Critical Care Medicine, and.,3 Dorothy P. and Richard P. Simmons Center for Interstitial Lung Diseases.,6 McGowan Institute of Regenerative Medicine, and
| | - Aditi U Gurkar
- 1 Aging Institute.,7 Division of Geriatric Medicine, Department of Medicine.,8 Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Ana L Mora
- 1 Aging Institute.,2 Division of Pulmonary Allergy and Critical Care Medicine, and.,9 Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
45
|
Liarte S, Bernabé-García Á, Nicolás FJ. Human Skin Keratinocytes on Sustained TGF-β Stimulation Reveal Partial EMT Features and Weaken Growth Arrest Responses. Cells 2020; 9:cells9010255. [PMID: 31968599 PMCID: PMC7017124 DOI: 10.3390/cells9010255] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
Defects in wound closure can be related to the failure of keratinocytes to re-epithelize. Potential mechanisms driving this impairment comprise unbalanced cytokine signaling, including Transforming Growth Factor-β (TFG-β). Although the etiologies of chronic wound development are known, the relevant molecular events are poorly understood. This lack of insight is a consequence of ethical issues, which limit the available evidence to humans. In this work, we have used an in vitro model validated for the study of epidermal physiology and function, the HaCaT cells to provide a description of the impact of sustained exposure to TGF-β. Long term TGF-β1 treatment led to evident changes, HaCaT cells became spindle-shaped and increased in size. This phenotype change involved conformational re-arrangements for actin filaments and E-Cadherin cell-adhesion structures. Surprisingly, the signs of consolidated epithelial-to-mesenchymal transition were absent. At the molecular level, modified gene expression and altered protein contents were found. Non-canonical TGF-β pathway elements did not show relevant changes. However, R-Smads experienced alterations best characterized by decreased Smad3 levels. Functionally, HaCaT cells exposed to TGF-β1 for long periods showed cell-cycle arrest. Yet, the strength of this restraint weakens the longer the treatment, as revealed when challenged by pro-mitogenic factors. The proposed setting might offer a useful framework for future research on the mechanisms driving wound chronification.
Collapse
|
46
|
Lee H, Cha H, Park JH. Derivation of Cell-Engineered Nanovesicles from Human Induced Pluripotent Stem Cells and Their Protective Effect on the Senescence of Dermal Fibroblasts. Int J Mol Sci 2020; 21:E343. [PMID: 31948013 PMCID: PMC6981782 DOI: 10.3390/ijms21010343] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/20/2019] [Accepted: 01/02/2020] [Indexed: 12/29/2022] Open
Abstract
Stem cells secrete numerous paracrine factors, such as cytokines, growth factors, and extracellular vesicles. As a kind of extracellular vesicle (EV), exosomes produced in the endosomal compartment of eukaryotic cells have recently emerged as a biomedical material for regenerative medicine, because they contain many valuable contents that are derived from the host cells, and can stably deliver those contents to other recipient cells. Although we have previously demonstrated the beneficial effects of human induced potent stem cell-derived exosomes (iPSC-Exo) on the aging of skin fibroblasts, low production yield has remained an obstacle for clinical applications. In this study, we generated cell-engineered nanovesicles (CENVs) by serial extrusion of human iPSCs through membrane filters with diminishing pore sizes, and explored whether the iPSC-CENV ameliorates physiological alterations of human dermal fibroblasts (HDFs) that occur by natural senescence. The iPSC-CENV exhibited similar characteristics to the iPSC-Exo, while the production yield was drastically increased compared to that of iPSC-derived EVs, including exosomes. The proliferation and migration of both young and senescent HDFs were stimulated by the treatment with iPSC-CENVs. In addition, it was revealed that the iPSC-CNEV restored senescence-related alterations of gene expression. Treatment with iPSC-CENVs significantly reduced the activity of senescence-associated-β-galactosidase (SA-β-Gal) in senescent HDFs, as well as suppressing the elevated expression of p53 and p21, key factors involved in cell cycle arrest, apoptosis, and cellular senescence signaling pathways. Taken together, these results suggest that iPSC-CENV could provide an excellent alternative to iPSC-exo, and be exploited as a resource for the treatment of signs of skin aging.
Collapse
Affiliation(s)
| | | | - Ju Hyun Park
- Department of Medical Biomaterials Engineering, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do 24341, Korea; (H.L.); (H.C.)
| |
Collapse
|
47
|
Kar AK, Singh A, Dhiman N, Purohit MP, Jagdale P, Kamthan M, Singh D, Kumar M, Ghosh D, Patnaik S. Polymer-Assisted In Situ Synthesis of Silver Nanoparticles with Epigallocatechin Gallate (EGCG) Impregnated Wound Patch Potentiate Controlled Inflammatory Responses for Brisk Wound Healing. Int J Nanomedicine 2019; 14:9837-9854. [PMID: 31849472 PMCID: PMC6913939 DOI: 10.2147/ijn.s228462] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022] Open
Abstract
Introduction An ideal wound dressing material needs to be predisposed with desirable attributes like anti-infective effect, skin hydration balance, adequate porosity and elasticity, high mechanical strength, low wound surface adherence, and enhanced tissue regeneration capability. In this work, we have synthesized hydrogel-based wound patches having antibacterial silver nanoparticles and antioxidant epigallocatechin gallate (EGCG) and showed fast wound closure through their synergistic interaction without any inherent toxicity. Methods and results Wound patches were synthesized from modified guar gum polymer and assessed to determine accelerated wound healing. The modified polymer beget chemical-free in-situ synthesis of monodispersed silver NPs (~12 nm), an antimicrobial agent, besides lending ionic surface charges. EGCG impregnated during ionotropic gelation process amplified the efficacy of wound patches that possess apt tensile strength, porosity, and swellability for absorbing wound exudates. Further, in vitro studies endorsed them as non-cytotoxic and the post agent effect following exposure to the patch showed an unbiased response to E coli K12 and B. subtilis. In vivo study using sub-cutaneous wounds in Wistar rats validated its accelerated healing properties when compared to a commercially available wound dressing material (skin graft; Neuskin-F®) through better wound contraction, promoted collagen deposition and enhanced vascularization of wound region by modulating growth factors and inflammatory cytokines. Conclusion Synthesized wound patches showed all the desired attributes of a clinically effective dressing material and the results were validated in various in vitro and in vivo assays.
Collapse
Affiliation(s)
- Aditya K Kar
- Water Analysis Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - Amrita Singh
- Water Analysis Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - Nitesh Dhiman
- Water Analysis Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - Mahaveer P Purohit
- Water Analysis Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - Pankaj Jagdale
- Regulatory Toxicology, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - Mohan Kamthan
- CITAR, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - Dhirendra Singh
- Regulatory Toxicology, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - Mahadeo Kumar
- Regulatory Toxicology, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - Debabrata Ghosh
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India.,Immunotoxicology Laboratory, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| | - Satyakam Patnaik
- Water Analysis Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
48
|
Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv Drug Deliv Rev 2019; 146:209-239. [PMID: 30605737 DOI: 10.1016/j.addr.2018.12.014] [Citation(s) in RCA: 367] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/27/2018] [Accepted: 12/27/2018] [Indexed: 12/14/2022]
Abstract
Cutaneous injuries, especially chronic wounds, burns, and skin wound infection, require painstakingly long-term treatment with an immense financial burden to healthcare systems worldwide. However, clinical management of chronic wounds remains unsatisfactory in many cases. Various strategies including growth factor and gene delivery as well as cell therapy have been used to enhance the healing of non-healing wounds. Drug delivery systems across the nano, micro, and macroscales can extend half-life, improve bioavailability, optimize pharmacokinetics, and decrease dosing frequency of drugs and genes. Replacement of the damaged skin tissue with substitutes comprising cell-laden scaffold can also restore the barrier and regulatory functions of skin at the wound site. This review covers comprehensively the advanced treatment strategies to improve the quality of wound healing.
Collapse
|
49
|
Liu X, Wan M. A tale of the good and bad: Cell senescence in bone homeostasis and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 346:97-128. [PMID: 31122396 DOI: 10.1016/bs.ircmb.2019.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Historically, cellular senescence has been viewed as an irreversible cell-cycle arrest process with distinctive phenotypic alterations that were implicated primarily in aging and tumor suppression. Recent discoveries suggest that cellular senescence represents a series of diverse, dynamic, and heterogeneous cellular states with the senescence-associated secretory phenotype (SASP). Although senescent cells typically contribute to aging and age-related diseases, accumulating evidence has shown that they also have important physiological functions during embryonic development, late pubertal bone growth cessation, and adulthood tissue remodeling. Here, we review the recent research on cellular senescence and SASP, highlighting the key pathways that mediate senescence cell-cycle arrest and initiate SASP. We also summarize recent literature on the role of cellular senescence in maintaining bone homeostasis and mediating age-associated osteoporosis, discussing both the beneficial and adverse roles of cellular senescence in bone during different physiological stages, including bone development, childhood bone growth, adulthood bone remodeling, and bone aging.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mei Wan
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
50
|
Abstract
INTRODUCTION Aberrant wound healing is a significant healthcare problem, posing a substantial burden on patients, their families, and the healthcare system. Existing treatment options remain only moderately effective and often fail to promote the closure of non-healing wounds in susceptible populations, such as aging and diabetic patients. Stem cell therapy has emerged as a promising treatment modality, with the potential to restore tissue to its pre-injured state. Of particular interest are mesenchymal stromal cells, which have been shown to accelerate wound healing by modulating the immune response and promoting angiogenesis. AREAS COVERED This review provides an overview of wound healing and current methods for the management of chronic wounds, as well as the current state and considerations for optimizing stem cell therapy. Considerations include stem cell types, tissue source, donor selection, cell heterogeneity, delivery methods, and genetic engineering. EXPERT OPINION A growing body of evidence has shown that delivery of stem cells, particularly mesenchymal stromal cells, has the potential to effectively improve the rate and quality of wound healing. However, significant additional basic and clinical research must be performed to optimize cell therapy, such as further elucidation of the therapeutic mechanisms of stem cells and standardization of clinical trial guidelines.
Collapse
Affiliation(s)
- Nina Kosaric
- a Hagey Laboratory for Pediatric Regenerative Medicine; Division of Plastic and Reconstructive Surgery, Department of Surgery , Stanford University School of Medicine , Stanford , CA , USA
| | - Harriet Kiwanuka
- a Hagey Laboratory for Pediatric Regenerative Medicine; Division of Plastic and Reconstructive Surgery, Department of Surgery , Stanford University School of Medicine , Stanford , CA , USA
| | - Geoffrey C Gurtner
- a Hagey Laboratory for Pediatric Regenerative Medicine; Division of Plastic and Reconstructive Surgery, Department of Surgery , Stanford University School of Medicine , Stanford , CA , USA
| |
Collapse
|