1
|
Groeneveld CS, Sanchez-Quiles V, Dufour F, Shi M, Dingli F, Nicolle R, Chapeaublanc E, Poullet P, Jeffery D, Krucker C, Maillé P, Vacherot F, Vordos D, Benhamou S, Lebret T, Micheau O, Zinovyev A, Loew D, Allory Y, de Reyniès A, Bernard-Pierrot I, Radvanyi F. Proteogenomic Characterization of Bladder Cancer Reveals Sensitivity to Apoptosis Induced by Tumor Necrosis Factor-related Apoptosis-inducing Ligand in FGFR3-mutated Tumors. Eur Urol 2024; 85:483-494. [PMID: 37380559 DOI: 10.1016/j.eururo.2023.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/26/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Molecular understanding of muscle-invasive (MIBC) and non-muscle-invasive (NMIBC) bladder cancer is currently based primarily on transcriptomic and genomic analyses. OBJECTIVE To conduct proteogenomic analyses to gain insights into bladder cancer (BC) heterogeneity and identify underlying processes specific to tumor subgroups and therapeutic outcomes. DESIGN, SETTING, AND PARTICIPANTS Proteomic data were obtained for 40 MIBC and 23 NMIBC cases for which transcriptomic and genomic data were already available. Four BC-derived cell lines harboring FGFR3 alterations were tested with interventions. INTERVENTION Recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), second mitochondrial-derived activator of caspases mimetic (birinapant), pan-FGFR inhibitor (erdafitinib), and FGFR3 knockdown. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Proteomic groups from unsupervised analyses (uPGs) were characterized using clinicopathological, proteomic, genomic, transcriptomic, and pathway enrichment analyses. Additional enrichment analyses were performed for FGFR3-mutated tumors. Treatment effects on cell viability for FGFR3-altered cell lines were evaluated. Synergistic treatment effects were evaluated using the zero interaction potency model. RESULTS AND LIMITATIONS Five uPGs, covering both NMIBC and MIBC, were identified and bore coarse-grained similarity to transcriptomic subtypes underlying common features of these different entities; uPG-E was associated with the Ta pathway and enriched in FGFR3 mutations. Our analyses also highlighted enrichment of proteins involved in apoptosis in FGFR3-mutated tumors, not captured through transcriptomics. Genetic and pharmacological inhibition demonstrated that FGFR3 activation regulates TRAIL receptor expression and sensitizes cells to TRAIL-mediated apoptosis, further increased by combination with birinapant. CONCLUSIONS This proteogenomic study provides a comprehensive resource for investigating NMIBC and MIBC heterogeneity and highlights the potential of TRAIL-induced apoptosis as a treatment option for FGFR3-mutated bladder tumors, warranting a clinical investigation. PATIENT SUMMARY We integrated proteomics, genomics, and transcriptomics to refine molecular classification of bladder cancer, which, combined with clinical and pathological classification, should lead to more appropriate management of patients. Moreover, we identified new biological processes altered in FGFR3-mutated tumors and showed that inducing apoptosis represents a new potential therapeutic option.
Collapse
Affiliation(s)
- Clarice S Groeneveld
- Equipe labellisée Ligue Contre le Cancer, CNRS, UMR144, Institut Curie, PSL Research University, Paris, France; Centre de Recherche des Cordeliers, AP-HP, Université Paris Cité, Paris, France
| | - Virginia Sanchez-Quiles
- Equipe labellisée Ligue Contre le Cancer, CNRS, UMR144, Institut Curie, PSL Research University, Paris, France
| | - Florent Dufour
- Equipe labellisée Ligue Contre le Cancer, CNRS, UMR144, Institut Curie, PSL Research University, Paris, France; Inovarion, Paris, France
| | - Mingjun Shi
- Equipe labellisée Ligue Contre le Cancer, CNRS, UMR144, Institut Curie, PSL Research University, Paris, France; Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Florent Dingli
- Centre de Recherche, CurieCoreTech Mass Spectrometry Proteomics, Institut Curie, PSL Research University, Paris, France
| | - Rémy Nicolle
- Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, Université Paris Cité, Paris, France
| | - Elodie Chapeaublanc
- Equipe labellisée Ligue Contre le Cancer, CNRS, UMR144, Institut Curie, PSL Research University, Paris, France
| | - Patrick Poullet
- INSERM U900, MINES ParisTech, Institut Curie, PSL Research University, Paris, France
| | - Daniel Jeffery
- Urology Medico-Scientific Program, Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Clémentine Krucker
- Equipe labellisée Ligue Contre le Cancer, CNRS, UMR144, Institut Curie, PSL Research University, Paris, France
| | - Pascale Maillé
- Département de Pathologie, Hôpital Henri Mondor, APHP, Créteil, France
| | | | - Dimitri Vordos
- Service d'Urologie, Hôpital Henri Mondor, APHP, Créteil, France
| | | | - Thierry Lebret
- Service d'Urologie, Hôpital Foch, UVSQ, Université Paris-Saclay, Suresnes, France
| | - Olivier Micheau
- INSERM, LNC UMR1231, Université Bourgogne Franche-Comté, Dijon, France
| | - Andrei Zinovyev
- INSERM U900, MINES ParisTech, Institut Curie, PSL Research University, Paris, France
| | - Damarys Loew
- Centre de Recherche, CurieCoreTech Mass Spectrometry Proteomics, Institut Curie, PSL Research University, Paris, France
| | - Yves Allory
- Equipe labellisée Ligue Contre le Cancer, CNRS, UMR144, Institut Curie, PSL Research University, Paris, France; Department of Pathology, Institut Curie, UVSQ, Université Paris-Saclay, Saint-Cloud, France
| | - Aurélien de Reyniès
- Centre de Recherche des Cordeliers, AP-HP, Université Paris Cité, Paris, France
| | - Isabelle Bernard-Pierrot
- Equipe labellisée Ligue Contre le Cancer, CNRS, UMR144, Institut Curie, PSL Research University, Paris, France
| | - François Radvanyi
- Equipe labellisée Ligue Contre le Cancer, CNRS, UMR144, Institut Curie, PSL Research University, Paris, France.
| |
Collapse
|
2
|
Ibraheem K, Yhmed AMA, Nasef MM, Georgopoulos NT. TRAF3/p38-JNK Signalling Crosstalk with Intracellular-TRAIL/Caspase-10-Induced Apoptosis Accelerates ROS-Driven Cancer Cell-Specific Death by CD40. Cells 2022; 11:cells11203274. [PMID: 36291141 PMCID: PMC9600997 DOI: 10.3390/cells11203274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022] Open
Abstract
The capacity to induce tumour-cell specific apoptosis represents the most unique feature of the TNF receptor (TNFR) family member CD40. Recent studies on the signalling events triggered by its membrane-presented ligand CD40L (mCD40L) in normal and malignant epithelial cells have started to unravel an exquisite context and cell type specificity for the functional effects of CD40. Here, we demonstrate that, in comparison to other carcinomas, mCD40L triggered strikingly more rapid apoptosis in colorectal carcinoma (CRC) cells, underpinned by its ability to entrain two concurrently operating signalling axes. CD40 ligation initially activates TNFR-associated factor 3 (TRAF3) and subsequently NADPH oxidase (NOX)/Apoptosis signal-regulating kinase 1 (ASK1)-signalling and induction of reactive oxygen species (ROS) to mediate p38/JNK- and ROS-dependent cell death. At that point, p38/JNK signalling directly activates the mitochondrial pathway, and triggers rapid induction of intracellular TNF-related apoptosis-inducing ligand (TRAIL) that signals from internal compartments to initiate extrinsic caspase-10-asscociated apoptosis, leading to truncated Bid (tBid)-activated mitochondrial signalling. p38 and JNK are essential both for direct mitochondrial apoptosis induction and the TRAIL/caspase-10/tBid pathway, but their involvement follows functional hierarchy and temporally controlled interplay, as p38 function is required for JNK phosphorylation. By engaging both intrinsic and extrinsic pathways to activate apoptosis via two signals simultaneously, CD40 can accelerate CRC cell death. Our findings further unravel the multi-faceted properties of the CD40/mCD40L dyad, highlighted by the novel TNFR crosstalk that accelerates tumour cell-specific death, and may have implications for the use of CD40 as a therapeutic target.
Collapse
Affiliation(s)
- Khalidah Ibraheem
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Albashir M. A. Yhmed
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
- Department of Medical Laboratory Sciences, Faculty of Medical Technology, Wadi Alshatti University, Wadi Alshatti P.O. Box 68, Libya
| | - Mohamed M. Nasef
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Nikolaos T. Georgopoulos
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
- Correspondence: ; Tel.: +44-(0)1484-25-6860
| |
Collapse
|
3
|
Lee YR, Hwang E, Jang YJ. Involvement of p38 Activation and Mitochondria in Death of Human Leukemia Cells Induced by an Agonistic Human Monoclonal Antibody Fab Specific to TRAIL Receptor 1. Int J Mol Sci 2019; 20:ijms20081967. [PMID: 31013630 PMCID: PMC6515105 DOI: 10.3390/ijms20081967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/05/2019] [Accepted: 04/18/2019] [Indexed: 11/16/2022] Open
Abstract
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces cancer cell death with minimal damage to normal cells; however, some cancer cells are resistant to TRAIL. TRAIL resistance may be overcome by agonistic antibodies to TRAIL receptors. In this study, we report the toxic effects of a novel recombinant agonistic human anti-TRAIL receptor 1 (DR4) monoclonal antibody Fab fragment, DR4-4, on various TRAIL-resistant and -sensitive cancer cell lines. The mechanisms of DR4-4 Fab-induced cell death in a human T cell leukemia cell line (Jurkat) were investigated using cell viability testing, immunoblotting, immunoassays, flow cytometry, and morphological observation. DR4-4 Fab-induced caspase-independent necrosis was observed to occur in Jurkat cells in association with p38 mitogen-activated protein kinase activation, cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein degradation, decreased mitochondrial membrane potential, and increased mitochondrial reactive oxygen species production. Increased cytotoxic effects of DR4-4 Fab were observed in combination with TRAIL or γ-irradiation. Our results indicate that the novel DR4-4 Fab might overcome TRAIL-resistance and induce death in leukemia cells via cellular mechanisms different from those activated by TRAIL. DR4-4 Fab may have application as a potential therapeutic antibody fragment in single or combination therapy for cancer.
Collapse
Affiliation(s)
- You-Ri Lee
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Eunjoo Hwang
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Young-Ju Jang
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Korea.
| |
Collapse
|
4
|
SPAG5 promotes proliferation and suppresses apoptosis in bladder urothelial carcinoma by upregulating Wnt3 via activating the AKT/mTOR pathway and predicts poorer survival. Oncogene 2018; 37:3937-3952. [PMID: 29662193 DOI: 10.1038/s41388-018-0223-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/27/2018] [Accepted: 02/27/2018] [Indexed: 01/07/2023]
Abstract
Sperm-associated antigen 5 (SPAG5) is involved in various biological processes. However, the roles of SPAG5 in bladder urothelial carcinoma (BUC) are unknown. This study showed that upregulation of SPAG5 was detected frequently in primary BUC tissues, and was associated with significantly worse survival among the 112 patients that underwent radical cystectomy (RC). Up and downregulating the expression of SPAG5 enhanced or inhibited, respectively, the proliferation of BUC cells in vitro and in vivo, and suppressed or enhanced, respectively, apoptosis in vitro and in vivo. Moreover, SPAG5 increased the resistance of BUC cells to chemotherapy-induced apoptosis. Mechanistic investigations showed that SPAG5 promotes proliferation and suppresses apoptosis in BUC at least partially via upregulating Wnt3 through activating the AKT/mTOR signaling pathway. The importance of the SPAG5/AKT-mTOR/Wnt3 axis identified in BUC cell models was confirmed via immunohistochemical analysis of a cohort of human BUC specimens that underwent RC. Collectively, our data suggested that in patients with BUC who underwent RC, high SPAG5 expression is associated with poor survival. In addition, targeting SPAG5 might represent a novel therapeutic strategy to improve the survival of patients with BUC.
Collapse
|
5
|
Yao Q, Du J, Lin J, Luo Y, Wang Y, Liu Y, Zhang B, Ren C, Liu C. Prognostic significance of TRAIL signalling molecules in cervical squamous cell carcinoma. J Clin Pathol 2015; 69:122-7. [PMID: 26254281 DOI: 10.1136/jclinpath-2014-202811] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 07/19/2015] [Indexed: 12/27/2022]
Abstract
AIM Tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that preferentially induces apoptosis in cancer cells while exhibiting little or no toxicity in normal cells. In this study, we evaluated the clinicopathological significance of TRAIL signalling members' expression profiles in cervical squamous cell carcinoma (CSCC). METHODS TRAIL, DR5, caspase-8 and cellular FLICE-inhibitory protein (c-FLIP) protein expression was investigated in 72 stage IA2-IIIA CSCC patients using immunohistochemistry. Correlation between protein expression and clinicopathological features, radiotherapy response and survival was statistically analysed. RESULTS Positive c-FLIP expression was an independent negative indicator for disease-free survival (DFS) (p=0.015) in multivariate Cox regression analysis. The DR5 nuclear positive group (p=0.069 by log rank test) showed some advantage of radiotherapy for overall survival (OS) compared with the DR5 nuclear negative cohort (p=0.568 by log rank test). In addition, loss of TRAIL expression was associated with worse differentiation (p=0.004), while absence of caspase-8 staining was more frequently observed in cases with lymphovascular invasion (p=0.035). CONCLUSIONS High c-FLIP expression is shown to be an independent prognostic variable, DR5 nuclear expression may serve as a predictive biomarker for radiotherapy, and TRAIL as well as caspase-8 loss may be associated with malignant progression.
Collapse
Affiliation(s)
- Qian Yao
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Juan Du
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Jie Lin
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Yiming Luo
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yuxiang Wang
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yan Liu
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Bo Zhang
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Caixia Ren
- Department of Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Congrong Liu
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
6
|
Metformin sensitizes human bladder cancer cells to TRAIL-induced apoptosis through mTOR/S6K1-mediated downregulation of c-FLIP. Anticancer Drugs 2014; 25:887-97. [DOI: 10.1097/cad.0000000000000116] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Evodiamine induces apoptosis and enhances TRAIL-induced apoptosis in human bladder cancer cells through mTOR/S6K1-mediated downregulation of Mcl-1. Int J Mol Sci 2014; 15:3154-71. [PMID: 24566141 PMCID: PMC3958903 DOI: 10.3390/ijms15023154] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 12/25/2022] Open
Abstract
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), either alone or in combination with other anti-cancer agents, has been considered as a new strategy for anti-cancer therapy. In this study, we demonstrated that evodiamine, a quinolone alkaloid isolated from the fruit of Evodia fructus, induced apoptosis and enhanced TRAIL-induced apoptosis in human bladder cancer cells. To elucidate the underlying mechanism, we found that evodiamine significantly reduced the protein levels of Mcl-1 in 253J and T24 bladder cancer cells, and overexpression of this molecule attenuated the apoptosis induced by evodiamine alone, or in combination with TRAIL. Further experiments revealed that evodiamine did not affect the mRNA level, proteasomal degradation and protein stability of Mcl-1. On the other hand, evodiamine inhibited the mTOR/S6K1 pathway, which usually regulates protein translation; moreover, knockdown of S6K1 with small interfering RNA (siRNA) effectively reduced Mcl-1 levels, indicating evodiamine downregulates c-FLIP through inhibition of mTOR/S6K1 pathway. Taken together, our results indicate that evodiamine induces apoptosis and enhances TRAIL-induced apoptosis possibly through mTOR/S6K1-mediated downregulation of Mcl-1; furthermore, these findings provide a rationale for the combined application of evodiamine with TRAIL in the treatment of bladder cancer.
Collapse
|
8
|
TRAIL and osteoprotegerin (OPG) expression in bladder urothelial carcinoma: correlation with clinicopathological parameters and prognosis. Pathology 2013; 45:138-44. [DOI: 10.1097/pat.0b013e32835c9891] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Kayamba F, Dunnill C, Hamnett DJ, Rodríguez A, Georgopoulos NT, Moran WJ. Piperolein B, isopiperolein B and piperamide C9:1(8E): total synthesis and cytotoxicities. RSC Adv 2013. [DOI: 10.1039/c3ra42060d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
10
|
Ewald F, Ueffing N, Brockmann L, Hader C, Telieps T, Schuster M, Schulz WA, Schmitz I. The role of c-FLIP splice variants in urothelial tumours. Cell Death Dis 2011; 2:e245. [PMID: 22190004 PMCID: PMC3252741 DOI: 10.1038/cddis.2011.131] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 11/16/2011] [Indexed: 01/01/2023]
Abstract
Deregulation of apoptosis is common in cancer and is often caused by overexpression of anti-apoptotic proteins in tumour cells. One important regulator of apoptosis is the cellular FLICE-inhibitory protein (c-FLIP), which is overexpressed, for example, in melanoma and Hodgkin's lymphoma cells. Here, we addressed the question whether deregulated c-FLIP expression in urothelial carcinoma impinges on the ability of death ligands to induce apoptosis. In particular, we investigated the role of the c-FLIP splice variants c-FLIP(long) (c-FLIP(L)) and c-FLIP(short) (c-FLIP(S)), which can have opposing functions. We observed diminished expression of the c-FLIP(L) isoform in urothelial carcinoma tissues as well as in established carcinoma cell lines compared with normal urothelial tissues and cells, whereas c-FLIP(S) was unchanged. Overexpression and RNA interference studies in urothelial cell lines nevertheless demonstrated that c-FLIP remained a crucial factor conferring resistance towards induction of apoptosis by death ligands CD95L and TRAIL. Isoform-specific RNA interference showed c-FLIP(L) to be of particular importance. Thus, urothelial carcinoma cells appear to fine-tune c-FLIP expression to a level sufficient for protection against activation of apoptosis by the extrinsic pathway. Therefore, targeting c-FLIP, and especially the c-FLIP(L) isoform, may facilitate apoptosis-based therapies of bladder cancer in otherwise resistant tumours.
Collapse
Affiliation(s)
- F Ewald
- Laboratory of Systems-oriented Immunology and Inflammation Research, Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg and Department of Immune Control, Helmholtz Centre for Infection Research, Inhoffenstr 7, D-38124 Braunschweig, Germany
| | - N Ueffing
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University, Universitaetsstr 1, D-40225 Duesseldorf, Germany
| | - L Brockmann
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University, Universitaetsstr 1, D-40225 Duesseldorf, Germany
| | - C Hader
- Department of Urology, Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - T Telieps
- Laboratory of Systems-oriented Immunology and Inflammation Research, Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg and Department of Immune Control, Helmholtz Centre for Infection Research, Inhoffenstr 7, D-38124 Braunschweig, Germany
| | - M Schuster
- Laboratory of Systems-oriented Immunology and Inflammation Research, Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg and Department of Immune Control, Helmholtz Centre for Infection Research, Inhoffenstr 7, D-38124 Braunschweig, Germany
| | - W A Schulz
- Department of Urology, Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - I Schmitz
- Laboratory of Systems-oriented Immunology and Inflammation Research, Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg and Department of Immune Control, Helmholtz Centre for Infection Research, Inhoffenstr 7, D-38124 Braunschweig, Germany
| |
Collapse
|
11
|
Plissonnier ML, Fauconnet S, Bittard H, Lascombe I. The antidiabetic drug ciglitazone induces high grade bladder cancer cells apoptosis through the up-regulation of TRAIL. PLoS One 2011; 6:e28354. [PMID: 22174792 PMCID: PMC3236187 DOI: 10.1371/journal.pone.0028354] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/07/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Ciglitazone belongs to the thiazolidinediones class of antidiabetic drug family and is a high-affinity ligand for the Peroxisome Proliferator-Activated Receptor γ (PPARγ). Apart from its antidiabetic activity, this molecule shows antineoplastic effectiveness in numerous cancer cell lines. METHODOLOGY/PRINCIPAL FINDINGS Using RT4 (derived from a well differentiated grade I papillary tumor) and T24 (derived from an undifferentiated grade III carcinoma) bladder cancer cells, we investigated the potential of ciglitazone to induce apoptotic cell death and characterized the molecular mechanisms involved. In RT4 cells, the drug induced G2/M cell cycle arrest characterized by an overexpression of p53, p21(waf1/CIP1) and p27(Kip1) in concomitance with a decrease of cyclin B1. On the contrary, in T24 cells, it triggered apoptosis via extrinsic and intrinsic pathways. Cell cycle arrest and induction of apoptosis occurred at high concentrations through PPARγ activation-independent pathways. We show that in vivo treatment of nude mice by ciglitazone inhibits high grade bladder cancer xenograft development. We identified a novel mechanism by which ciglitazone kills cancer cells. Ciglitazone up-regulated soluble and membrane-bound TRAIL and let TRAIL-resistant T24 cells to respond to TRAIL through caspase activation, death receptor signalling pathway and Bid cleavage. We provided evidence that TRAIL-induced apoptosis is partially driven by ciglitazone-mediated down-regulation of c-FLIP and survivin protein levels through a proteasome-dependent degradation mechanism. CONCLUSIONS/SIGNIFICANCE Therefore, ciglitazone could be clinically relevant as chemopreventive or therapeutic agent for the treatment of TRAIL-refractory high grade urothelial cancers.
Collapse
Affiliation(s)
- Marie-Laure Plissonnier
- Laboratoire de Biologie Cellulaire et Moléculaire, Equipe d'Accueil 3181 – Institut Fédératif de Recherche N°133, Université de Franche – Comté, Faculté des Sciences Médicales et Pharmaceutiques, Besançon, France
| | - Sylvie Fauconnet
- Laboratoire de Biologie Cellulaire et Moléculaire, Equipe d'Accueil 3181 – Institut Fédératif de Recherche N°133, Université de Franche – Comté, Faculté des Sciences Médicales et Pharmaceutiques, Besançon, France
- CHRU (Centre Hospitalier Régional Universitaire) de Besançon, Service d'Urologie et d'Andrologie, Besançon, France
| | - Hugues Bittard
- CHRU (Centre Hospitalier Régional Universitaire) de Besançon, Service d'Urologie et d'Andrologie, Besançon, France
| | - Isabelle Lascombe
- Laboratoire de Biologie Cellulaire et Moléculaire, Equipe d'Accueil 3181 – Institut Fédératif de Recherche N°133, Université de Franche – Comté, Faculté des Sciences Médicales et Pharmaceutiques, Besançon, France
- * E-mail:
| |
Collapse
|
12
|
Stress-activated kinase pathway alteration is a frequent event in bladder cancer. Urol Oncol 2011; 30:415-20. [PMID: 22154358 DOI: 10.1016/j.urolonc.2010.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/04/2010] [Accepted: 03/09/2010] [Indexed: 11/24/2022]
Abstract
OBJECTIVES The stress-activated MAP kinases (SAPK) signaling pathways play a critical role in the cellular response to toxins and physical stress, mediate inflammation, and modulate carcinogenesis and tumor metastasis. The stress-activated MAP kinases (MAPK) c-Jun N-terminal kinase (JNK) and p38 are activated upon phosphorylation by a widely expressed and conserved family of upstream MAP kinase kinases (MAP2K). Signaling mediated by p38 and JNK has well-established importance in cancer, yet the contribution of this pathway in urothelial bladder cancer is not understood. This study evaluated stress-activated MAP kinase pathway expression in cell lines derived from human urothelial carcinomas. MATERIALS AND METHODS Total protein lysates from a panel of human urothelial bladder cancer cell lines (RT4, T24, UMUC-3, J82, 5637, 253J, and 253J-BV) were analyzed by immunoblotting for the JNK and p38 MAPKs, as well as MKK3, MKK4, MKK6, and MKK7. Quantitative real time PCR was utilized to determine mRNA expression levels of the MAP2Ks. Stress stimuli (sorbitol, hydrogen peroxide, and UV irradiation) were used to active p38, which was measured by phospho-antibody. RESULTS Although protein levels were variable, all cell lines expressed p38 and JNK. On the other hand, with the exception of the well-differentiated cell line RT4, each cell line had a reduction or absence of expression of one or more MAP2K. 253J and 253J-BV exhibited no expression of MKK6, even when an excess of protein was queried. mRNA levels indicated that both transcriptional and post-transcriptional mechanisms are involved in the regulation of MAP2Ks. Decreased MAP2K expression correlated with decreased ability to activate p38 in response to stress stimuli. CONCLUSIONS Aberrant MAP2K protein expression indicates that altered cellular signal transduction mediated via JNK and p38 may be common in bladder cancer. Down-regulation of MAP2Ks likely occurs at both the transcriptional and post-transcriptional levels. Consistent with the known function of p38 and JNK in apoptosis, defects in normal pathway function caused by decreased expression of upstream MAP2Ks may provide a survival advantage to bladder cancer cells. Further investigations should focus on identifying a functional role for these pathways in bladder cancer development.
Collapse
|
13
|
Corallini F, Celeghini C, Rimondi E, di Iasio MG, Gonelli A, Secchiero P, Zauli G. Trail down-regulates the release of osteoprotegerin (OPG) by primary stromal cells. J Cell Physiol 2011; 226:2279-86. [PMID: 21660951 DOI: 10.1002/jcp.22564] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The soluble member of the TNF-R superfamily osteoprotegerin (OPG) is abundantly released under basal conditions by both mesenchymal stem cells (MSC) and fibroblasts and by endothelial cells upon stimulation with inflammatory cytokines. Since MSC, fibroblasts and endothelial cells represent key elements of the normal and tumor microenvironment and express detectable levels of surface TRAIL receptors, we investigated the effect of TRAIL on OPG release. Unexpectedly, recombinant TRAIL decreased the spontaneous OPG release in all cell types examined. Moreover, TRAIL decreased OPG release also in stromal cells co-cultured with lymphoma cells and counteracted the OPG induction by TN-alpha in HUVEC and MSC. Such down-regulation was not due to a masking effect in the ELISA quantification of the OPG released in the culture supernatants due to binding of OPG to its ligands (TRAIL and RANKL), as demonstrated by competition experiments with recombinant TRAIL and by the lack of RANKL release/induction. In addition, OPG down-regulation was not due to induction of cytotoxic effects by TRAIL, since the degree of apoptosis in response to TRAIL was negligible in all primary cell types. With regards to the possible molecular mechanism accounting for the down-regulation of OPG release by TRAIL, we found that treatment of MSC with TRAIL significantly decreased the phosphorylation levels of p38/MAPK. There is a suggestion that this pathway is involved in the stabilization of OPG mRNA. In this respect, the ability of TRAIL to decrease the release of OPG, in the absence of cell cytotoxicity, was mimicked by the p38/MAPK inhibitor SB203580.
Collapse
Affiliation(s)
- Federica Corallini
- Department of Morphology and Embryology and LTTA Centre, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Radiotherapy and TRAIL for cancer therapy. Cancer Lett 2011; 332:184-93. [PMID: 21824725 DOI: 10.1016/j.canlet.2011.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 06/10/2011] [Accepted: 07/02/2011] [Indexed: 11/22/2022]
Abstract
The use of radiotherapy and concomitant chemotherapy substantially improved cure rates in patients with different malignant tumours. However, it is unlikely that further improvements based on conventional chemotherapy may be achieved in the future since increased rates of acute side effects already limit the value of these approaches. Additionally, the increased local control rates are counterweighted by still high rates of distant failures resulting in low net gains for the patients. Thus, there is a currently unmet need for the integration of target-specific drugs improving local control as well distant control into radiation based treatment protocols. In this regard, the death-receptor ligand TNF-α-related apoptosis-inducing ligand (TRAIL/Apo2L) and TRAIL-receptor agonistic antibodies were shown to display a high selectivity for tumour cells and act synergistically with conventional chemotherapy drugs and radiation. Up to now it has been shown that radiation strongly sensitises malignant cells to TRAIL and TRAIL-agonistic antibodies. Synergistic induction of apoptosis was demonstrated in a majority of malignant cell types and xenograft models. Especially in those cells types displaying only weak responses to either treatment alone, strong sensitising effects were described. Moreover, in merely all normal cells and tissues no synergistic effects were found. Depending on cell type and experimental setting, the efficacy of combined treatment is determined by the p53-status, the balance between pro- and anti-apoptotic Bcl-2 proteins and modulation of TRAIL-receptor signal transduction.
Collapse
|
15
|
Plissonnier ML, Fauconnet S, Bittard H, Lascombe I. Insights on distinct pathways of thiazolidinediones (PPARgamma ligand)-promoted apoptosis in TRAIL-sensitive or -resistant malignant urothelial cells. Int J Cancer 2010; 127:1769-84. [PMID: 20099277 DOI: 10.1002/ijc.25189] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Thiazolidinediones, including rosiglitazone and troglitazone, are insulin-sensitizing drugs and high-affinity ligands for the peroxisome proliferator-activated receptor gamma (PPARgamma). Apart from their antidiabetic activity, these molecules possess antitumor properties. We investigated their potential apoptotic effects on RT4 (derived from a well-differentiated Grade I papillary tumor) and T24 (derived from an undifferentiated Grade III carcinoma) bladder cancer cells. Rosiglitazone induced G2/M or G0/G1 phase cell cycle arrest in RT4 and T24 cells, respectively. Only troglitazone triggered apoptosis via extrinsic and intrinsic pathways in both cell lines. Interestingly, rosiglitazone amplified TRAIL-induced apoptosis in TRAIL-sensitive RT4 cells or let TRAIL-resistant T24 cells to respond to TRAIL. Thiazolidinediones acted through PPARgamma activation-independent mechanisms. The underlying mechanisms involved for the first time in cancer cells the upregulation of soluble and/or membrane-bound TRAIL. This was associated with increased cell surface death receptor 5 expression and c-FLIP and survivin downregulation, mediated in part through proteasome-dependent degradation in troglitazone-promoted cell death. Therefore, the combination of rosiglitazone and TRAIL could be clinically relevant as chemopreventive or therapeutic agents for the treatment of TRAIL-resistant high-grade urothelial cancers.
Collapse
Affiliation(s)
- Marie Laure Plissonnier
- Laboratoire de Biologie Cellulaire et Moléculaire, EA3181-IFR N133, Université de Franche-Comté, UFR des Sciences Médicales et Pharmaceutiques, Besançon, France
| | | | | | | |
Collapse
|
16
|
Dai Y, Liu M, Tang W, Li Y, Lian J, Lawrence TS, Xu L. A Smac-mimetic sensitizes prostate cancer cells to TRAIL-induced apoptosis via modulating both IAPs and NF-kappaB. BMC Cancer 2009; 9:392. [PMID: 19895686 PMCID: PMC2779195 DOI: 10.1186/1471-2407-9-392] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 11/06/2009] [Indexed: 02/03/2023] Open
Abstract
Background Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for human cancer therapy, prostate cancer still remains resistant to TRAIL. Both X-linked inhibitor of apoptosis (XIAP) and nuclear factor-kappaB function as key negative regulators of TRAIL signaling. In this study, we evaluated the effect of SH122, a small molecule mimetic of the second mitochondria-derived activator of caspases (Smac), on TRAIL-induced apoptosis in prostate cancer cells. Methods The potential of Smac-mimetics to bind XIAP or cIAP-1 was examined by pull-down assay. Cytotoxicity of TRAIL and/or Smac-mimetics was determined by a standard cell growth assay. Silencing of XIAP or cIAP-1 was achieved by transient transfection of short hairpin RNA. Apoptosis was detected by Annexin V-PI staining followed by flow cytometry and by Western Blot analysis of caspases, PARP and Bid. NF-kappaB activation was determined by subcellular fractionation, real time RT-PCR and reporter assay. Results SH122, but not its inactive analog, binds to XIAP and cIAP-1. SH122 significantly sensitized prostate cancer cells to TRAIL-mediated cell death. Moreover, SH122 enhanced TRAIL-induced apoptosis via both the death receptor and the mitochondrial pathway. Knockdown of both XIAP and cIAP-1 sensitized cellular response to TRAIL. XIAP-knockdown attenuated sensitivity of SH122 to TRAIL-induced cytotoxicity, confirming that XIAP is an important target for IAP-inhibitor-mediated TRAIL sensitization. SH122 also suppressed TRAIL-induced NF-kappaB activation by preventing cytosolic IkappaB-alpha degradation and RelA nuclear translocation, as well as by suppressing NF-kappaB target gene expression. Conclusion These results demonstrate that SH122 sensitizes human prostate cancer cells to TRAIL-induced apoptosis by mimicking Smac and blocking both IAPs and NF-kappaB. Modulating IAPs may represent a promising approach to overcoming TRAIL-resistance in human prostate cancer with constitutively active NF-kappaB signaling.
Collapse
Affiliation(s)
- Yao Dai
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Mitra AP, Pagliarulo V, Yang D, Waldman FM, Datar RH, Skinner DG, Groshen S, Cote RJ. Generation of a concise gene panel for outcome prediction in urinary bladder cancer. J Clin Oncol 2009; 27:3929-37. [PMID: 19620494 DOI: 10.1200/jco.2008.18.5744] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE This study sought to determine if alterations in molecular pathways could supplement TNM staging to more accurately predict clinical outcome in patients with urothelial carcinoma (UC). PATIENTS AND METHODS Expressions of 69 genes involved in known cancer pathways were quantified on bladder specimens from 58 patients with UC (stages Ta-T4) and five normal urothelium controls. All tumor transcript values beyond two standard deviations from the normal mean expression were designated as over- or underexpressed. Univariate and multivariable analyses were conducted to obtain a predictive expression signature. A published external data set was used to confirm the potential of the prognostic gene panels. RESULTS In univariate analysis, six genes were significantly associated with time to recurrence, and 10 with overall survival. Recursive partitioning identified three genes as significant determinants for recurrence, and three for overall survival. Of all genes identified by either univariate or partitioning analysis, four were found to significantly predict both recurrence and survival (JUN, MAP2K6, STAT3, and ICAM1); overexpression was associated with worse outcome. Comparing the favorable (low or normal) expression of > or = three of four versus < or = two of four of these oncogenes showed 5-year recurrence probability of 41% versus 88%, respectively (P < .001), and 5-year overall survival probability of 61% versus 5%, respectively (P < .001). The prognostic potential of this four-gene panel was confirmed in a large independent external cohort (disease-specific survival, P = .039). CONCLUSION We have documented the generation of a concise, biologically relevant four-gene panel that significantly predicts recurrence and survival and may also identify potential therapeutic targets for UC.
Collapse
Affiliation(s)
- Anirban P Mitra
- Department of Pathology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Chopra B, Georgopoulos NT, Nicholl A, Hinley J, Oleksiewicz MB, Southgate J. Structurally diverse peroxisome proliferator-activated receptor agonists induce apoptosis in human uro-epithelial cells by a receptor-independent mechanism involving store-operated calcium channels. Cell Prolif 2009; 42:688-700. [PMID: 19614673 DOI: 10.1111/j.1365-2184.2009.00628.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES Peroxisome proliferator-activated receptors (PPARs) are implicated in epithelial cell proliferation and differentiation, but investigation has been confounded by potential off-target effects of some synthetic PPAR ligands. Our aim was to determine mechanisms underlying the pro-apoptotic effect of synthetic PPAR agonists in normal human bladder uro-epithelial (urothelial) cells and to reconcile this with the role of PPARs in urothelial cytodifferentiation. MATERIALS AND METHODS Normal human urothelial (NHU) cells were grown as non-immortal lines in vitro and exposed to structurally diverse agonists ciglitazone, troglitazone, rosiglitazone (PPARgamma), ragaglitazar (PPARalpha/gamma), fenofibrate (PPARalpha) and L165041 (PPARbeta/delta). RESULTS NHU cells underwent apoptosis following acute exposure to ciglitazone, troglitazone or ragaglitazar, but not fenofibrate, L165041 or rosiglitazone, and this was independent of ERK or p38 MAP-kinase activation. Pro-apoptotic agonists induced sustained increases in intracellular calcium, whereas removal of extracellular calcium altered the kinetics of ciglitazone-mediated calcium release from sustained to transient. Cell death was accompanied by plasma-membrane disruption, loss of mitochondrial membrane-potential and caspase-9/caspase-3 activation. PPARgamma-mediated apoptosis was unaffected following pre-treatment with PPARgamma antagonist T0070907 and was strongly attenuated by store-operated calcium channel (SOC) inhibitors 2-APB and SKF-96365. CONCLUSIONS Our results provide a mechanistic basis for the ability of some PPAR agonists to induce death in NHU cells and demonstrate that apoptosis is mediated via PPAR-independent mechanisms, involving intracellular calcium changes, activation of SOCs and induction of the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- B Chopra
- Department of Biology, Jack Birch Unit of Molecular Carcinogenesis, University of York, York, UK
| | | | | | | | | | | |
Collapse
|
19
|
A Histone Deacetylase Inhibitor LBH589 Downregulates XIAP in Mesothelioma Cell Lines Which is Likely Responsible for Increased Apoptosis With TRAIL. J Thorac Oncol 2009; 4:149-60. [DOI: 10.1097/jto.0b013e318194f991] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Sanlioglu AD, Griffith TS, Omer A, Dirice E, Sari R, Altunbas HA, Balci MK, Sanlioglu S. Molecular mechanisms of death ligand-mediated immune modulation: a gene therapy model to prolong islet survival in type 1 diabetes. J Cell Biochem 2008; 104:710-20. [PMID: 18247339 DOI: 10.1002/jcb.21677] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type 1 diabetes results from the T cell-mediated destruction of pancreatic beta cells. Islet transplantation has recently become a potential therapeutic approach for patients with type 1 diabetes. However, islet-graft failure appears to be a challenging issue to overcome. Thus, complementary gene therapy strategies are needed to improve the islet-graft survival following transplantation. Immune modulation through gene therapy represents a novel way of attacking cytotoxic T cells targeting pancreatic islets. Various death ligands of the TNF family such as FasL, TNF, and TNF-Related Apoptosis-Inducing Ligand (TRAIL) have been studied for this purpose. The over-expression of TNF or FasL in pancreatic islets exacerbates the onset of type 1 diabetes generating lymphocyte infiltrates responsible for the inflammation. Conversely, the lack of TRAIL expression results in higher degree of islet inflammation in the pancreas. In addition, blocking of TRAIL function using soluble TRAIL receptors facilitates the onset of diabetes. These results suggested that contrary to what was observed with TNF or FasL, adenovirus mediated TRAIL gene delivery into pancreatic islets is expected to be therapeutically beneficial in the setting of experimental models of type 1 diabetes. In conclusion; this study mainly reveals the fundamental principles of death ligand-mediated immune evasion in diabetes mellitus.
Collapse
Affiliation(s)
- Ahter Dilsad Sanlioglu
- Human Gene Therapy Unit and the Department of Medical Biology and Genetics, Akdeniz University, Faculty of Medicine, 07070 Antalya, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Day TW, Huang S, Safa AR. c-FLIP knockdown induces ligand-independent DR5-, FADD-, caspase-8-, and caspase-9-dependent apoptosis in breast cancer cells. Biochem Pharmacol 2008; 76:1694-704. [PMID: 18840411 DOI: 10.1016/j.bcp.2008.09.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 09/02/2008] [Accepted: 09/05/2008] [Indexed: 11/18/2022]
Abstract
Cellular-FLICE inhibitory protein (c-FLIP) is an inhibitor of apoptosis downstream of the death receptors Fas, DR4, and DR5, and is expressed as long (c-FLIP(L)) and short (c-FLIP(S)) splice forms. We found that the knockdown of c-FLIP using small interfering RNA (siRNA) triggered ligand-independent caspase-8- and -9-dependent spontaneous apoptosis and decreased the proliferation of MCF-7 breast cancer cells. Further analysis revealed that an apoptotic inhibitory complex (AIC) comprised of DR5, FADD, caspase-8, and c-FLIP(L) exists in MCF-7 cells, and the absence of c-FLIP(L) from this complex induces DR5- and FADD-mediated caspase-8 activation in the death inducing signaling complex (DISC). c-FLIP(S) was not detected in the AIC, and using splice form-specific siRNAs we showed that c-FLIP(L) but not c-FLIP(S) is required to prevent spontaneous death signaling in MCF-7 cells. These results clearly show that c-FLIP(L) prevents ligand-independent death signaling and provides direct support for studying c-FLIP as a relevant therapeutic target for breast cancers.
Collapse
Affiliation(s)
- Travis W Day
- Department of Pharmacology and Toxicology, Indiana University Simon Cancer Center, Indiana University School of Medicine, 1044 West Walnut Street R4-119, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
22
|
Hill KS, Errington F, Steele LP, Merrick A, Morgan R, Selby PJ, Georgopoulos NT, O'Donnell DM, Melcher AA. OK432-Activated Human Dendritic Cells Kill Tumor Cells via CD40/CD40 Ligand Interactions. THE JOURNAL OF IMMUNOLOGY 2008; 181:3108-15. [DOI: 10.4049/jimmunol.181.5.3108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Dzieran J, Beck JF, Sonnemann J. Differential responsiveness of human hepatoma cells versus normal hepatocytes to TRAIL in combination with either histone deacetylase inhibitors or conventional cytostatics. Cancer Sci 2008; 99:1685-92. [PMID: 18754884 PMCID: PMC11158644 DOI: 10.1111/j.1349-7006.2008.00868.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising candidate for the treatment of cancer because it elicits cell death in many tumor cells while sparing most normal cells. Liver cancer, however, is largely resistant to TRAIL and, thus, requires sensitization for TRAIL-mediated cytotoxicity. Sensitization may be achieved by cotreatment with chemotherapeutic agents. In this study, we comparatively investigated the treatment efficacy of TRAIL in combination with histone deacetylase inhibitors (HDI) versus TRAIL in combination with conventional cytostatics in the hepatocellular carcinoma cell line HepG2 and in the childhood hepatoblastoma cell line Huh6. We found that TRAIL resistance could be overcome by cotreatment with the HDI vorinostat, sodium butyrate and MS-275, but not by cotreatment with the cytostatics carboplatin and etoposide. However, TRAIL combination treatment bears the risk of sensitizing otherwise TRAIL-resistant normal cells. We thus explored a potential cytotoxic effect of combined HDI/TRAIL treatment in normal hepatocytes: TRAIL in conjunction with HDI did not impose any cytotoxicity on the non-malignant cells. In searching for the determinants of HDI-mediated TRAIL sensitization in hepatoma cells, we observed that HDI treatment did not increase cell-surface expression of proapoptotic TRAIL receptors. Instead, HDI treatment enhanced TRAIL-induced cleavage of Bid. In conclusion, our data suggest that HDI are potent sensitizers to TRAIL in hepatoma cells and that the combination of HDI and TRAIL is selectively active in hepatoma cells without affecting normal hepatocytes, indicating that the combination of HDI and TRAIL may be an effective approach for the treatment of advanced liver cancer.
Collapse
Affiliation(s)
- Johanna Dzieran
- Research Center of Pharmacology and Experimental Therapeutics, Ernst Moritz Arndt University, Greifswald, Germany
| | | | | |
Collapse
|
24
|
Safa AR, Day TW, Wu CH. Cellular FLICE-like inhibitory protein (C-FLIP): a novel target for cancer therapy. Curr Cancer Drug Targets 2008; 8:37-46. [PMID: 18288942 DOI: 10.2174/156800908783497087] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cellular FLICE-like inhibitory protein (c-FLIP) has been identified as a protease-dead, procaspase-8-like regulator of death ligand-induced apoptosis, based on observations that c-FLIP impedes tumor necrosis factor-alpha (TNF-alpha), Fas-L, and TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by binding to FADD and/or caspase-8 or -10 in a ligand-dependent fashion, which in turn prevents death-inducing signaling complex (DISC) formation and subsequent activation of the caspase cascade. c-FLIP is a family of alternatively spliced variants, and primarily exists as long (c-FLIP(L)) and short (c-FLIP(S)) splice variants in human cells. Although c-FLIP has apoptogenic activity in some cell contexts, which is currently attributed to heterodimerization with caspase-8 at the DISC, accumulating evidence indicates an anti-apoptotic role for c-FLIP in various types of human cancers. For example, small interfering RNAs (siRNAs) that specifically knocked down expression of c-FLIP(L) in diverse human cancer cell lines, e.g., lung and cervical cancer cells, augmented TRAIL-induced DISC recruitment, and thereby enhanced effector caspase stimulation and apoptosis. Therefore, the outlook for the therapeutic index of c-FLIP-targeted drugs appears excellent, not only from the efficacy observed in experimental models of cancer therapy, but also because the current understanding of dual c-FLIP action in normal tissues supports the notion that c-FLIP-targeted cancer therapy will be well tolerated. Interestingly, Taxol, TRAIL, as well as several classes of small molecules induce c-FLIP downregulation in neoplastic cells. Efforts are underway to develop small-molecule drugs that induce c-FLIP downregulation and other c-FLIP-targeted cancer therapies. In this review, we assess the outlook for improving cancer therapy through c-FLIP-targeted therapeutics.
Collapse
Affiliation(s)
- Ahmad R Safa
- Department of Pharmacology and Toxicology, Indiana University Cancer Center, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
25
|
Georgopoulos NT, Merrick A, Scott N, Selby PJ, Melcher A, Trejdosiewicz LK. CD40-mediated death and cytokine secretion in colorectal cancer: a potential target for inflammatory tumour cell killing. Int J Cancer 2007; 121:1373-81. [PMID: 17534894 DOI: 10.1002/ijc.22846] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CD40, a member of the tumour necrosis factor family, is expressed in a variety of epithelial cells. Although soluble CD40 agonists are growth-inhibitory, membrane-presented CD40 ligand (CD40L) induces extensive apoptosis in carcinoma cells. This study investigated whether CD40 is expressed in human colorectal carcinoma (CRC) cells and explored the functional consequences of CD40 ligation. CD40 expression in a panel of CRC lines was assessed by flow cytometry and in resected human CRCs by immunohistochemistry. CRC cells were treated in vitro with soluble CD40 agonists or cocultured with fibroblasts expressing membrane-bound CD40 ligand. Apoptosis was determined by flow cytometry using Annexin V/propidium iodide labelling and by a DNA fragmentation assay. Cytokine secretion induced by CD40 ligation was quantified by a multiplex-bead array approach. We show that CD40 is expressed in a proportion of established CRC lines in culture and that receptor expression is functional. Activation of CD40 by membrane-presented CD40L, but not soluble agonists, causes high levels of death in CD40-positive CRC cells and induces secretion of proinflammatory cytokines. In agreement with our in vitro observations, immunohistochemical studies demonstrated that CD40 is highly expressed in a proportion of colorectal cancer specimens. The high level of susceptibility of CRC cells to CD40-killing combined with the ability of CD40 to induce concomitant secretion of proinflammatory cytokines suggest that CD40 ligation may represent a novel mechanism for elimination of CRC cells and render CD40 a promising therapeutic target for the eradication of colorectal tumours.
Collapse
Affiliation(s)
- Nikolaos T Georgopoulos
- Cancer Research UK Clinical Centre, Leeds Institute of Molecular Medicine, St James's University Hospital, Leeds, United Kingdom.
| | | | | | | | | | | |
Collapse
|
26
|
Morales JC, Ruiz-Magaña MJ, Ruiz-Ruiz C. Regulation of the resistance to TRAIL-induced apoptosis in human primary T lymphocytes: Role of NF-κB inhibition. Mol Immunol 2007; 44:2587-97. [PMID: 17257681 DOI: 10.1016/j.molimm.2006.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 12/13/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022]
Abstract
Several combined strategies have been recently proposed to overcome the resistance to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) showed by some tumor cells, thus improving the use of this death ligand in antitumor therapy. However, the molecular mechanisms of the tumor selective activity of TRAIL are not completely understood and hence the effects of the combined therapy on normal cells are unknown. Here, we have studied the resistance of primary T lymphocytes to TRAIL-mediated apoptosis. No significant differences were found in the expression of proteins involved in TRAIL-mediated apoptosis between resting and activated T cells. The low expression of death receptors TRAIL-R1/-R2 as well as the high levels of the antiapoptotic proteins TRAIL-R4 and cellular Fas-associated death domain-like IL-1beta-converting enzyme-inhibitory protein (c-FLIP) may explain the lack of caspase-8 activation observed upon TRAIL treatment in both cell types. We have also analyzed the effect of different sensitizing agents such as genotoxic drugs, phosphatidylinositol-3 kinase (PI3K) inhibitors, proteasome inhibitors, microtubule depolymerizing agents, histone deacetylase inhibitors (HDACi), and NF-kappaB inhibitors. Although some of them induced T cell death, only NF-kappaB inhibitors sensitized activated T cells to TRAIL-induced apoptosis, maybe through the regulation of the antiapoptotic proteins TRAIL-R4, c-FLIP(S) and members of the inhibitors of apoptosis proteins (IAP) family. These results question the safety of the combined treatments with TRAIL and NF-kappaB inhibitors against tumors.
Collapse
Affiliation(s)
- Jorge Carlos Morales
- Departamento de Bioquímica y Biología Molecular 3 e Inmunología, Facultad de Medicina, Universidad de Granada, Avda. de Madrid 11, 18012 Granada, Spain
| | | | | |
Collapse
|