1
|
Parsons EC, Hoffmann R, Baillie GS. Revisiting the roles of cAMP signalling in the progression of prostate cancer. Biochem J 2023; 480:1599-1614. [PMID: 37830741 PMCID: PMC10586777 DOI: 10.1042/bcj20230297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Prostate cancer is one of the most common cancers in men and one of the top causes of death in men worldwide. Development and function of both normal prostate cells and early-stage prostate cancer cells are dependent on the cross-talk between androgen signalling systems and a variety of other transduction pathways which drive differentiation of these cells towards castration-resistance. One such signalling pathway is the ubiquitous cAMP signalling axis which functions to activate spatially restricted pools of cAMP effectors such as protein kinase A (PKA). The importance of both PKA and cAMP in the development of prostate cancer, and their interactions with the androgen receptor, were the focus of a review by Merkle and Hoffmann in 2010. In this updated review, we revisit this topic with analysis of current PKA-related prostate cancer literature and introduce novel information on the relevance of another cAMP effector, the exchange protein directly activated by cAMP (EPAC).
Collapse
Affiliation(s)
- Emma C. Parsons
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Bearsden, Glasgow G61 1QH, U.K
| | - Ralf Hoffmann
- Oncology, Philips Research Eindhoven, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands
- School of Cardiovascular & Metabolic Health, University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K
| | - George S. Baillie
- School of Cardiovascular & Metabolic Health, University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K
| |
Collapse
|
2
|
Huang J, Lin B, Li B. Anti-Androgen Receptor Therapies in Prostate Cancer: A Brief Update and Perspective. Front Oncol 2022; 12:865350. [PMID: 35372068 PMCID: PMC8965587 DOI: 10.3389/fonc.2022.865350] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/17/2022] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer is a major health issue in western countries and is the second leading cause of cancer death in American men. Prostate cancer depends on the androgen receptor (AR), a transcriptional factor critical for prostate cancer growth and progression. Castration by surgery or medical treatment reduces androgen levels, resulting in prostatic atrophy and prostate cancer regression. Thus, metastatic prostate cancers are initially managed with androgen deprivation therapy. Unfortunately, prostate cancers rapidly relapse after castration therapy and progress to a disease stage called castration-resistant prostate cancer (CRPC). Currently, clinical treatment for CRPCs is focused on suppressing AR activity with antagonists like Enzalutamide or by reducing androgen production with Abiraterone. In clinical practice, these treatments fail to yield a curative benefit in CRPC patients in part due to AR gene mutations or splicing variations, resulting in AR reactivation. It is conceivable that eliminating the AR protein in prostate cancer cells is a promising solution to provide a potential curative outcome. Multiple strategies have emerged, and several potent agents that reduce AR protein levels were reported to eliminate xenograft tumor growth in preclinical models via distinct mechanisms, including proteasome-mediated degradation, heat-shock protein inhibition, AR splicing suppression, blockage of AR nuclear localization, AR N-terminal suppression. A few small chemical compounds are undergoing clinical trials combined with existing AR antagonists. AR protein elimination by enhanced protein or mRNA degradation is a realistic solution for avoiding AR reactivation during androgen deprivation therapy in prostate cancers.
Collapse
Affiliation(s)
- Jian Huang
- Pathological Diagnosis and Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Biyun Lin
- Pathological Diagnosis and Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
3
|
Zhang R, Huang C, Xiao X, Zhou J. Improving Strategies in the Development of Protein-Downregulation-Based Antiandrogens. ChemMedChem 2021; 16:2021-2033. [PMID: 33554455 DOI: 10.1002/cmdc.202100033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 12/20/2022]
Abstract
The androgen receptor (AR) plays a crucial role in the occurrence and development of prostate cancer (PCa), and its signaling pathway remains active in castration-resistant prostate cancer (CRPC) patients. The resistance against antiandrogen drugs in current clinical use is a major challenge for the treatment of PCa, and thus the development of new generations of antiandrogens is under high demand. Recently, strategies for downregulating the AR have attracted significant attention, given its potential in the discovery and development of new antiandrogens, including G-quadruplex stabilizers, ROR-γ inhibitors, AR-targeting proteolysis targeting chimeras (PROTACs), and other selective AR degraders (SARDs), which are able to overcome current resistance mechanisms such as acquired AR mutations, the expression of AR variable splices, or overexpression of AR. This review summarizes the various strategies for downregulating the AR protein, at either the mRNA or protein level, thus providing new ideas for the development of promising antiandrogen drugs.
Collapse
Affiliation(s)
- Rongyu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China.,Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Chenchao Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Xiaohui Xiao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China.,Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China.,Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| |
Collapse
|
4
|
Michmerhuizen AR, Spratt DE, Pierce LJ, Speers CW. ARe we there yet? Understanding androgen receptor signaling in breast cancer. NPJ Breast Cancer 2020; 6:47. [PMID: 33062889 PMCID: PMC7519666 DOI: 10.1038/s41523-020-00190-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
The role of androgen receptor (AR) activation and expression is well understood in prostate cancer. In breast cancer, expression and activation of AR is increasingly recognized for its role in cancer development and its importance in promoting cell growth in the presence or absence of estrogen. As both prostate and breast cancers often share a reliance on nuclear hormone signaling, there is increasing appreciation of the overlap between activated cellular pathways in these cancers in response to androgen signaling. Targeting of the androgen receptor as a monotherapy or in combination with other conventional therapies has proven to be an effective clinical strategy for the treatment of patients with prostate cancer, and these therapeutic strategies are increasingly being investigated in breast cancer. This overlap suggests that targeting androgens and AR signaling in other cancer types may also be effective. This manuscript will review the role of AR in various cellular processes that promote tumorigenesis and metastasis, first in prostate cancer and then in breast cancer, as well as discuss ongoing efforts to target AR for the more effective treatment and prevention of cancer, especially breast cancer.
Collapse
Affiliation(s)
- Anna R Michmerhuizen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI USA
| | - Lori J Pierce
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI USA
| | - Corey W Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
5
|
Sonkusre P. Specificity of Biogenic Selenium Nanoparticles for Prostate Cancer Therapy With Reduced Risk of Toxicity: An in vitro and in vivo Study. Front Oncol 2020; 9:1541. [PMID: 32010628 PMCID: PMC6978793 DOI: 10.3389/fonc.2019.01541] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/19/2019] [Indexed: 01/20/2023] Open
Abstract
Selenium deficiency is associated with many physiological disorders including the high risk of cancer. The rehabilitation of selenium with different selenium supplements, however, fails due to their low therapeutic index. Therefore, it is advantageous to have a less toxic form of selenium for supplementation with potentially high anticancer activity. Here we show Bacillus licheniformis derived biogenic selenium nanoparticles at a minimal concentration of 2 μg Se/ml induce necroptosis in LNCaP-FGC cells, without affecting the RBC integrity. Real-time gene expression analysis indicated the overexpression of tumor necrotic factor (TNF) and interferon regulatory factor (IRF1) and decreased expression of androgen receptor (AR) and prostate-specific antigen (PSA). Furthermore, histopathological analysis showed the subsequent oral administrations of 10 times higher concentration of these endotoxin free selenium nanoparticles in C3H/HeJ mice (50 mg Se/kg of body weight), induce significantly lower toxicity compared to the L-selenomethionine (5 mg Se/kg). Our study suggested that the biogenic SeNP could emerge as the safest form of selenium supplementation with potent anticancer activity.
Collapse
|
6
|
Folate-targeted nanoparticle delivery of androgen receptor shRNA enhances the sensitivity of hormone-independent prostate cancer to radiotherapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1309-1321. [PMID: 28185938 DOI: 10.1016/j.nano.2017.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/21/2017] [Accepted: 01/28/2017] [Indexed: 12/15/2022]
Abstract
Androgen receptor (AR) plays a crucial role in the development and progression of prostate cancer (PCa). PCa patients typically receive androgen deprivation therapy; nonetheless, these patients eventually develop castration and radiation resistance. We hypothesized that we could further improve radiotherapeutic efficacy of hormone-independent PCa (HIPC) by silencing AR. In this study, nanoparticle (NP) AR-shRNA was formulated using folate-targeted H1 nanopolymer. We demonstrated that NP AR-shRNA enhances PCa radiosensitivity as indicated by the inhibition of cell growth, increased apoptosis, and increased cell cycle arrest in AR-dependent HIPC in vitro. The radiosensitizing effect of NP AR-shRNA could be validated in vivo, as NP AR-shRNA significantly suppressed tumor growth and prolonged the survival of HIPC tumor-bearing mice. Analysis at the molecular level revealed that NP AR-shRNA inhibits DNA damage repair signaling pathways. Our study supports further investigation of NP AR-shRNA for the improvement of radiotherapy efficacy in HIPC.
Collapse
|
7
|
Abstract
Prevention and therapeutic intervention by phytochemicals are newer dimensions in the arena of cancer management. In this regard, the cancer chemopreventive role of silymarin (Silybum marianum) has been extensively studied and has shown anticancer efficacy against various cancer sites, especially skin and prostate. In skin cancer, silymarin treatment inhibits ultraviolet B radiation or chemically initiated or promoted carcinogenesis. These effects of silymarin against skin carcinogenesis have been attributed to its strong antioxidant and anti-inflammatory action as well as its inhibitory effect on mitogenic signaling. Similarly, silymarin treatment inhibits 3, 2-dimethyl-4-aminobiphenyl—induced prostate carcinogenesis and retards the growth of advanced prostate tumor xenograft in athymic nude mice. In prostate cancer, silymarin treatment down-regulates androgen receptor—, epidermal growth factor receptor—, and nuclear factor-κB— mediated signaling and induces cell cycle arrest. Extensive preclinical findings have supported the anticancer potential of silymarin, and now its efficacy is being evaluated in cancer patients.
Collapse
Affiliation(s)
- Gagan Deep
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, CO 80262, USA
| | | |
Collapse
|
8
|
Liu C, Chen Z, Hu X, Wang L, Li C, Xue J, Zhang P, Chen W, Jiang A. MicroRNA-185 downregulates androgen receptor expression in the LNCaP prostate carcinoma cell line. Mol Med Rep 2015; 11:4625-32. [PMID: 25673182 DOI: 10.3892/mmr.2015.3332] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 01/02/2015] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate whether microRNA (miR)‑185 downregulated androgen receptor expression in the LNCaP prostate carcinoma cell line. Human prostate cancer (PCa) LNCaP cells were cultured and transfected with synthetic has‑miR‑185 mimic or inhibitor. The transfected cells were subsequently evaluated with a viability assay, nuclear staining, reverse transcription quantitative polymerase chain reaction (RT‑qPCR), dual luciferase assay and western blot analysis. The results of the western blot analysis and RT‑qPCR indicated that transfection with an miR‑185 mimic markedly reduced the androgen receptor (AR) protein expression levels in LNCaP cells, whereas transfection with an miR‑185 inhibitor increased the protein expression of AR in the LNCaP cells. The results of the luciferase reporter assay demonstrated that the predicted target site in the AR 3' untranslated regions was a specific functional binding site for miR‑185, and that AR was a direct target of miR‑185. In addition, downregulation of AR by miR‑185 impaired the interaction between AR and androgen response element, and downregulated the expression of the AR target gene prostate specific antigen. Data also suggested that the downregulation of AR mediated by miR‑185, inhibited the proliferation and induced the apoptosis of the LNCaP cells. Therefore, the results of the present study suggested that miR‑185 may be a potential negative modulator of AR‑mediated signaling and may act as a tumor suppressor in prostate cancer cells.
Collapse
Affiliation(s)
- Chunyan Liu
- Department of Biochemistry and Molecular Biology, Medical School of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhaobo Chen
- Department of Biochemistry and Molecular Biology, Medical School of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaoyan Hu
- Department of Biochemistry and Molecular Biology, Medical School of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lina Wang
- Department of Biochemistry and Molecular Biology, Medical School of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chaoyang Li
- Department of Biochemistry and Molecular Biology, Medical School of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jing Xue
- Department of Biochemistry and Molecular Biology, Medical School of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Pengju Zhang
- Department of Biochemistry and Molecular Biology, Medical School of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Weiwen Chen
- Department of Biochemistry and Molecular Biology, Medical School of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Anli Jiang
- Department of Biochemistry and Molecular Biology, Medical School of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
9
|
Abstract
INTRODUCTION The androgen receptor (AR) is a ligand-activated transcription factor that is expressed in primary and metastatic prostate cancers. There are advances in endocrine therapy for prostate cancer that are based on improved understanding of AR function. AREAS COVERED PubMed has been used to include most important publications on targeting the AR in prostate cancer. AR expression may be downregulated by agents used for chemoprevention of prostate cancer or, in models of advanced prostate cancer, by antisense oligonucleotides. New drugs that inhibit the steroidogenic enzyme CYP17A1 (abiraterone acetate) or diminish nuclear translocation of the AR (enzalutamide) have been shown to improve patients' survival in prostate cancer. However, it is clear that there is a development of resistance to these novel therapies. They may include increased expression of truncated, constitutively active AR or activation of the signaling pathway of signal transducers and activators of transcription. EXPERT OPINION Although introduction of novel drugs have improved patients' survival, there is a need to investigate the mechanisms of resistance further. The role of truncated AR and compensatory activation of signaling pathways as well as the development of scientifically justified combination therapies seems to be issues of a high priority.
Collapse
Affiliation(s)
- Zoran Culig
- Innsbruck Medical University, Experimental Urology, Department of Urology , Anichstrasse 35, A-6020 Innsbruck , Austria +43 512 504 24717 ; +43 512 504 24817 ;
| |
Collapse
|
10
|
Eder IE, Egger M, Neuwirt H, Seifarth C, Maddalo D, Desiniotis A, Schäfer G, Puhr M, Bektic J, Cato ACB, Klocker H. Enhanced inhibition of prostate tumor growth by dual targeting the androgen receptor and the regulatory subunit type iα of protein kinase a in vivo. Int J Mol Sci 2013; 14:11942-62. [PMID: 23736698 PMCID: PMC3709765 DOI: 10.3390/ijms140611942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/29/2013] [Accepted: 05/29/2013] [Indexed: 12/02/2022] Open
Abstract
Progression to castration resistance is a major problem in the treatment of advanced prostate cancer and is likely to be driven by activation of several molecular pathways, including androgen receptor (AR) and cyclic AMP-dependent protein kinase A (PKA). In this study, we examined the therapeutic efficacy of a combined inhibition of the AR and the regulatory subunit type Iα (RIα) of protein kinase A with second generation antisense oligonucleotides (ODNs) in androgen-sensitive LNCaP and castration-resistant LNCaPabl tumors in vivo. We found that targeting the AR alone inhibited LNCaP, as well as LNCaPabl tumors. Combined inhibition resulted in an improved response over single targeting and even a complete tumor remission in LNCaPabl. Western blot analysis revealed that both ODNs were effective in reducing their target proteins when administered alone or in combination. In addition, treatment with the ODNs was associated with an induction of apoptosis. Our data suggest that dual targeting of the AR and PKARIα is more effective in inhibiting LNCaP and LNCaPabl tumor growth than single treatment and may give a treatment benefit, especially in castration-resistant prostate cancers.
Collapse
Affiliation(s)
- Iris E. Eder
- Division of Experimental Urology, Innsbruck Medical University, 6020 Innsbruck, Anichstraße 35, Austria; E-Mails: (M.E.); (C.S.); (A.D.); (G.S.); (M.P.); (J.B.); (H.K.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +43-512-504-24819; Fax: +43-512-504-24817
| | - Martina Egger
- Division of Experimental Urology, Innsbruck Medical University, 6020 Innsbruck, Anichstraße 35, Austria; E-Mails: (M.E.); (C.S.); (A.D.); (G.S.); (M.P.); (J.B.); (H.K.)
| | - Hannes Neuwirt
- Department of Internal Medicine IV—Nephrology and Hypertension, Innsbruck Medical University, 6020 Innsbruck, Anichstraße 35, Austria; E-Mail:
| | - Christof Seifarth
- Division of Experimental Urology, Innsbruck Medical University, 6020 Innsbruck, Anichstraße 35, Austria; E-Mails: (M.E.); (C.S.); (A.D.); (G.S.); (M.P.); (J.B.); (H.K.)
- Oncotyrol Center for Personalized Cancer Medicine GmbH, Karl-Kapferer-Straße 5, 6020 Innsbruck, Austria
| | - Danilo Maddalo
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; E-Mails: (D.M.); (A.C.B.C.)
| | - Andreas Desiniotis
- Division of Experimental Urology, Innsbruck Medical University, 6020 Innsbruck, Anichstraße 35, Austria; E-Mails: (M.E.); (C.S.); (A.D.); (G.S.); (M.P.); (J.B.); (H.K.)
| | - Georg Schäfer
- Division of Experimental Urology, Innsbruck Medical University, 6020 Innsbruck, Anichstraße 35, Austria; E-Mails: (M.E.); (C.S.); (A.D.); (G.S.); (M.P.); (J.B.); (H.K.)
| | - Martin Puhr
- Division of Experimental Urology, Innsbruck Medical University, 6020 Innsbruck, Anichstraße 35, Austria; E-Mails: (M.E.); (C.S.); (A.D.); (G.S.); (M.P.); (J.B.); (H.K.)
| | - Jasmin Bektic
- Division of Experimental Urology, Innsbruck Medical University, 6020 Innsbruck, Anichstraße 35, Austria; E-Mails: (M.E.); (C.S.); (A.D.); (G.S.); (M.P.); (J.B.); (H.K.)
| | - Andrew C. B. Cato
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; E-Mails: (D.M.); (A.C.B.C.)
| | - Helmut Klocker
- Division of Experimental Urology, Innsbruck Medical University, 6020 Innsbruck, Anichstraße 35, Austria; E-Mails: (M.E.); (C.S.); (A.D.); (G.S.); (M.P.); (J.B.); (H.K.)
| |
Collapse
|
11
|
Cui L, Chen P, Tan Z, Li W, Dong Z. Hemostatic gelatin sponge is a superior matrix to matrigel for establishment of LNCaP human prostate cancer in nude mice. Prostate 2012; 72:1669-77. [PMID: 22473906 PMCID: PMC3445655 DOI: 10.1002/pros.22520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/05/2012] [Indexed: 11/07/2022]
Abstract
BACKGROUND Matrigels, solubilized basement membrane preparations, are often used to support tumor development in animal models. However, tumors formed by a mixture of tumor cells and Matrigel may vary significantly. The purpose of this study was to compare tumor development and growth of LNCaP human prostate cancer cells mixed with Matrigel or in gelatin sponges. METHODS LNCaP cells were mixed with Matrigel or absorbed into VETSPON, a gelatin sponge, and inoculated into the subcutis of nude mice. Tumor incidence and growth rate were determined. Gene expression and cell growth and survival in tumor lesions were evaluated by immunohistochemistry (IHC), immunoblotting, and RT-PCR. RESULTS All mice (12/12) inoculated with LNCaP cells in VETSPON produced tumors, compared to 70% (19/27) of mice injected with the cells with Matrigel. Tumor volume also varied less with VETSPON implants. No significant differences were observed in gene expression, cell growth, apoptosis, and microvessel density in tumors established from the two types of implants. However, in samples collected on days 1 and 4, more cells in Matrigel implants than those in VETSPON implants were stained positive for cleaved-caspase 3 and -PARP1. Expression of VEGF-A, HIF-1α, and Bcl-2 was elevated in the early VETSPON implants. CONCLUSION These data indicate that VETSPON promotes tumor cell survival at the early stage of implantation and suggest that the gelatin sponge is superior to Matrigel in supporting development and progression of human prostate cancer in nude mice. This model should be useful for preclinical studies in nude mice using LNCaP cells.
Collapse
Affiliation(s)
- Lingling Cui
- Division of Hematology-Oncology, University of Cincinnati Cancer Institute, Cincinnati, OH, USA.45267
- College of Public Health, Zhengzhou University, Zhengzhou, China. 450001
| | | | - Zongqing Tan
- Division of Hematology-Oncology, University of Cincinnati Cancer Institute, Cincinnati, OH, USA.45267
| | - Wenjie Li
- College of Public Health, Zhengzhou University, Zhengzhou, China. 450001
| | - Zhongyun Dong
- Division of Hematology-Oncology, University of Cincinnati Cancer Institute, Cincinnati, OH, USA.45267
- To whom requests for reprints should be addressed at Department of Internal Medicine, University of Cincinnati College of Medicine, 3125 Eden Ave., Rm 1308, Cincinnati, OH 45267. Phone: 513-558-2176; Fax: 513-558-6703;
| |
Collapse
|
12
|
Antisense 2'-Deoxy, 2'-Fluroarabino Nucleic Acids (2'F-ANAs) Oligonucleotides: In Vitro Gymnotic Silencers of Gene Expression Whose Potency Is Enhanced by Fatty Acids. MOLECULAR THERAPY-NUCLEIC ACIDS 2012; 1:e43. [PMID: 23344235 PMCID: PMC3499694 DOI: 10.1038/mtna.2012.35] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Gymnosis is the process of the delivery of antisense oligodeoxynucleotides to cells, in the
absence of any carriers or conjugation, that produces sequence-specific gene silencing. While gymnosis was originally demonstrated using locked nucleic acid (LNA) gapmers, 2′-deoxy-2′fluoroarabino nucleic acid (2′F-ANA) phosphorothioate gapmer oligonucleotides (oligos) when targeted to the Bcl-2 and androgen receptor (AR) mRNAs in multiple cell lines in tissue culture, are approximately as effective at silencing of Bcl-2 expression as the iso-sequential LNA congeners. In LNCaP prostate cancer cells, gymnotic silencing of the AR by a 2′F-ANA phosphorothioate gapmer oligo led to downstream silencing of cellular prostate-specific antigen (PSA) expression even in the presence of the androgenic steroid R1881 (metribolone), which stabilizes cytoplasmic levels of the AR. Furthermore, gymnotic silencing occurs in the absence of serum, and silencing by both LNA and 2′F-ANA oligos is augmented in serum-free (SF) media in some cell lines when they are treated with oleic acid and a variety of ω-6 polyunsaturated fatty acids (ω-6 PUFAs), but not by an aliphatic (palmitic) fatty acid. These results significantly expand our understanding of and ability to successfully manipulate the cellular delivery of single-stranded oligos in vitro.
Collapse
|
13
|
Shrotriya S, Gagan D, Ramasamy K, Raina K, Barbakadze V, Merlani M, Gogilashvili L, Amiranashvili L, Mulkijanyan K, Papadopoulos K, Agarwal C, Agarwal R. Poly[3-(3, 4-dihydroxyphenyl) glyceric acid] from Comfrey exerts anti-cancer efficacy against human prostate cancer via targeting androgen receptor, cell cycle arrest and apoptosis. Carcinogenesis 2012; 33:1572-80. [PMID: 22693258 DOI: 10.1093/carcin/bgs202] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The major obstacles in human prostate cancer (PCA) treatment are the development of resistance to androgen ablation therapy leading to hormone-refractory state and the toxicity associated with chemotherapeutic drugs. Thus, the identification of additional non-toxic agents that are effective against both androgen-dependent and androgen-independent PCA is needed. In the present study, we investigated the efficacy of a novel phytochemical poly[3-(3, 4-dihydroxyphenyl)glyceric acid] (p-DGA) from Caucasian species of comfrey (Symphytum caucasicum) and its synthetic derivative syn-2, 3-dihydroxy-3-(3, 4-dihydroxyphenyl) propionic acid (m-DGA) against PCA LNCaP and 22Rv1 cells. We found that both p-DGA and m-DGA suppressed the growth and induced death in PCA cells, with comparatively lesser cytotoxicity towards non-neoplastic human prostate epithelial cells. Furthermore, we also found that both p-DGA and m-DGA caused G(1) arrest in PCA cells through modulating the expression of cell cycle regulators, especially an increase in CDKIs (p21 and p27). In addition, p-DGA and m-DGA induced apoptotic death by activating caspases, and also strongly decreased AR and PSA expression. Consistent with in vitro results, our in vivo study showed that p-DGA feeding strongly inhibited 22Rv1 tumors growth by 76% and 88% at 2.5 and 5mg/kg body weight doses, respectively, without any toxicity, together with a strong decrease in PSA level in plasma; and a decrease in PCNA, AR and PSA expression but increase in p21/p27 expression and apoptosis in tumor tissues from p-DGA-fed mice. Overall, present study identifies p-DGA as a potent agent against PCA without any toxicity, and supports its clinical application.
Collapse
Affiliation(s)
- Sangeeta Shrotriya
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences University of Colorado, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Integration of regulatory networks by NKX3-1 promotes androgen-dependent prostate cancer survival. Mol Cell Biol 2011; 32:399-414. [PMID: 22083957 DOI: 10.1128/mcb.05958-11] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The NKX3-1 gene is a homeobox gene required for prostate tumor progression, but how it functions is unclear. Here, using chromatin immunoprecipitation coupled to massively parallel sequencing (ChIP-seq) we showed that NKX3-1 colocalizes with the androgen receptor (AR) across the prostate cancer genome. We uncovered two distinct mechanisms by which NKX3-1 controls the AR transcriptional network in prostate cancer. First, NKX3-1 and AR directly regulate each other in a feed-forward regulatory loop. Second, NKX3-1 collaborates with AR and FoxA1 to mediate genes in advanced and recurrent prostate carcinoma. NKX3-1- and AR-coregulated genes include those found in the "protein trafficking" process, which integrates oncogenic signaling pathways. Moreover, we demonstrate that NKX3-1, AR, and FoxA1 promote prostate cancer cell survival by directly upregulating RAB3B, a member of the RAB GTPase family. Finally, we show that RAB3B is overexpressed in prostate cancer patients, suggesting that RAB3B together with AR, FoxA1, and NKX3-1 are important regulators of prostate cancer progression. Collectively, our work highlights a novel hierarchical transcriptional regulatory network between NKX3-1, AR, and the RAB GTPase signaling pathway that is critical for the genetic-molecular-phenotypic paradigm in androgen-dependent prostate cancer.
Collapse
|
15
|
Zhang Y, Castaneda S, Dumble M, Wang M, Mileski M, Qu Z, Kim S, Shi V, Kraft P, Gao Y, Pak J, Sapra P, Bandaru R, Zhao H, Vessella RL, Horak ID, Greenberger LM. Reduced expression of the androgen receptor by third generation of antisense shows antitumor activity in models of prostate cancer. Mol Cancer Ther 2011; 10:2309-19. [PMID: 22027692 DOI: 10.1158/1535-7163.mct-11-0329] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The androgen receptor (AR) is a member of a unique class of transcription factors because it contains a ligand-binding domain that, when activated, results in nuclear translocation and the transcriptional activation of genes associated with prostate cancer development. Although androgen deprivation therapies are effective initially for the treatment of prostate cancer, the disease eventually relapses and progresses to castration-resistant prostate cancer (CRPC). Nonetheless, the AR still plays a critical role because late-stage investigational agents that deplete testosterone (abiraterone) or block ligand binding (MDV3100) can still control tumor growth in patients with CRPC. These findings indicate that downmodulation of AR expression may provide a complementary strategy for treating CRPC. In this article, we describe a novel, locked, nucleic acid-based antisense oligonucleotide, designated EZN-4176. When administered as a single agent, EZN-4176 specifically downmodulated AR mRNA and protein, and this was coordinated with inhibition of the growth of both androgen-sensitive and CRPC tumors in vitro as well as in animal models. The effect was specific because no effect on growth was observed with a control antisense oligonucleotide that does not recognize AR mRNA, nor on tumors derived from the PC3, AR-negative, tumor cell line. In addition, EZN-4176 reduced AR luciferase reporter activity in a CRPC model derived from C4-2b cells that were implanted intratibially, indicating that the molecule may control prostate cancer that has metastasized to the bone. These data, together with the continued dependency of CRPC on the AR signaling pathway, justify the ongoing phase I evaluation of EZN-4176 in patients with CRPC.
Collapse
Affiliation(s)
- Yixian Zhang
- Department of Pharmacology, Enzon Pharmaceuticals, Inc., 20 Kingsbridge Road, Piscataway, NJ 08854, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kong L, Yuan Q, Zhu H, Li Y, Guo Q, Wang Q, Bi X, Gao X. The suppression of prostate LNCaP cancer cells growth by Selenium nanoparticles through Akt/Mdm2/AR controlled apoptosis. Biomaterials 2011; 32:6515-22. [DOI: 10.1016/j.biomaterials.2011.05.032] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/10/2011] [Indexed: 11/25/2022]
|
17
|
Hong SK, Kim JH, Lin MF, Park JI. The Raf/MEK/extracellular signal-regulated kinase 1/2 pathway can mediate growth inhibitory and differentiation signaling via androgen receptor downregulation in prostate cancer cells. Exp Cell Res 2011; 317:2671-82. [PMID: 21871886 DOI: 10.1016/j.yexcr.2011.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 12/18/2022]
Abstract
Upregulated ERK1/2 activity is correlated with androgen receptor (AR) downregulation in certain prostate cancer (PCa) that exhibits androgen deprivation-induced neuroendocrine differentiation, but its functional relevance requires elucidation. We found that sustained ERK1/2 activation using active Raf or MEK1/2 mutants is sufficient to induce AR downregulation at mRNA and protein levels in LNCaP. Downregulation of AR protein, but not mRNA, was blocked by proteasome inhibitors, MG132 and bortezomib, indicating that the pathway regulation is mediated at multiple points. Ectopic expression of a constitutively active AR inhibited Raf/MEK/ERK-mediated regulation of the differentiation markers, neuron-specific enolase and neutral endopeptidase, and the cyclin-dependent kinase inhibitors, p16(INK4A) and p21(CIP1), but not Rb phosphorylation and E2F1 expression, indicating that AR has a specific role in the pathway-mediated differentiation and growth inhibitory signaling. However, despite the sufficient role of Raf/MEK/ERK, its inhibition using U0126 or ERK1/2 knockdown could not block androgen deprivation-induced AR downregulation in an LNCaP neuroendocrine differentiation model, suggesting that additional signaling pathways are involved in the regulation. We additionally report that sustained Raf/MEK/ERK activity can downregulate full length as well as hormone binding domain-deficient AR isoforms in androgen-refractory C4-2 and CWR22Rv1, but not in LAPC4 and MDA-PCa-2b. Our study demonstrates a novel role of the Raf/MEK/ERK pathway in regulating AR expression in certain PCa types and provides an insight into PCa responses to its aberrant activation.
Collapse
Affiliation(s)
- Seung-Keun Hong
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
18
|
Sikand K, Slaibi JE, Singh R, Slane SD, Shukla GC. miR 488* inhibits androgen receptor expression in prostate carcinoma cells. Int J Cancer 2011; 129:810-9. [PMID: 21710544 PMCID: PMC3839820 DOI: 10.1002/ijc.25753] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Androgen receptor (AR) is a ligand-dependent transcription factor, which plays a significant role in prostate carcinogenesis. Blockade of AR and its ligand, androgen is the basis for the treatment of prostate cancer (PCa). Nevertheless, a modest increase in the critical levels of AR mRNA and corresponding protein is sufficient for the development of resistance to antiandrogen therapy. A strategy to further downregulate AR mRNA and protein expression in combination with antiandrogen therapy may prevent or delay the development of androgen-independent PCa. Recent studies show that microRNAs (miRNAs) perform tumor suppressor functions in various cancers. In this study, we demonstrate that the overexpression of miR 488* downregulates the transcriptional activity of AR and inhibits the endogenous AR protein production in both androgen-dependent and androgen-independent PCa cells. In addition, miR 488* blocks the proliferation and enhances the apoptosis of PCa cells. Our data indicate that miR 488* targets AR and is a potential modulator of AR mediated signaling. Our findings provide insight for utilizing miRNAs as novel therapeutics to target AR in PCa.
Collapse
Affiliation(s)
- Kavleen Sikand
- Center for Gene Regulation in Health and Disease, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH
| | - Jinani E. Slaibi
- Center for Gene Regulation in Health and Disease, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Cell and Tissue Imaging Core, Morehouse School of Medicine, Atlanta, GA
| | - Stephen D. Slane
- Department of Psychology, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH
| | - Girish C. Shukla
- Center for Gene Regulation in Health and Disease, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH
| |
Collapse
|
19
|
Liu H, Liu YQ, Liu YQ, Xu AH, Young CY, Yuan HQ, Lou HX. A novel anticancer agent, retigeric acid B, displays proliferation inhibition, S phase arrest and apoptosis activation in human prostate cancer cells. Chem Biol Interact 2010; 188:598-606. [DOI: 10.1016/j.cbi.2010.07.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/27/2010] [Accepted: 07/28/2010] [Indexed: 10/19/2022]
|
20
|
Differential androgen receptor signals in different cells explain why androgen-deprivation therapy of prostate cancer fails. Oncogene 2010; 29:3593-604. [PMID: 20440270 DOI: 10.1038/onc.2010.121] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Prostate cancer is one of the major causes of cancer-related death in the western world. Androgen-deprivation therapy (ADT) for the suppression of androgens binding to the androgen receptor (AR) has been the norm of prostate cancer treatment. Despite early success to suppress prostate tumor growth, ADT eventually fails leading to recurrent tumor growth in a hormone-refractory manner, even though AR remains to function in hormone-refractory prostate cancer. Interestingly, some prostate cancer survivors who received androgen replacement therapy had improved quality of life without adverse effect on their cancer progression. These contrasting clinical data suggest that differential androgen/AR signals in individual cells of prostate tumors can exist in the same or different patients, and may be used to explain why ADT of prostate cancer fails. Such a hypothesis is supported by the results obtained from transgenic mice with selective knockout of AR in prostatic stromal vs epithelial cells and orthotopic transplants of various human prostate cancer cell lines with AR over-expression or knockout. These studies concluded that AR functions as a stimulator for prostate cancer proliferation and metastasis in stromal cells, as a survival factor of prostatic cancer epithelial luminal cells, and as a suppressor for prostate cancer basal intermediate cell growth and metastasis. These dual yet opposite functions of the stromal and epithelial AR may challenge the current ADT to battle prostate cancer and should be taken into consideration when developing new AR-targeting therapies in selective prostate cancer cells.
Collapse
|
21
|
Desiniotis A, Schäfer G, Klocker H, Eder IE. Enhanced antiproliferative and proapoptotic effects on prostate cancer cells by simultaneously inhibiting androgen receptor and cAMP-dependent protein kinase A. Int J Cancer 2010; 126:775-89. [PMID: 19653278 DOI: 10.1002/ijc.24806] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The androgen-signaling pathway with the androgen receptor (AR) as its key molecule is widely understood to influence prostate tumor growth significantly even after androgen ablation. Under androgen-deprived conditions, the AR may be activated inappropriately through interaction with other molecules, including cyclic AMP-dependent protein kinase A (PKA). In a previous study, we have shown that knocking down the AR significantly inhibits prostate tumor growth. In this study, we show that combined inhibition of the AR and the regulatory subunit I alpha of PKA (RIalpha) with small interference RNAs significantly increased the growth-inhibitory and proapoptotic effects of AR knockdown. This treatment strategy was effective in androgen-sensitive and in androgen ablation-resistant prostate cancer cells. In addition, we report that downregulating PKA RIalpha was sufficient to inhibit PKA signaling and interestingly also impaired AR expression and activation. Vice versa, AR knockdown induced a decline in PKA RIalpha, associated with reduced PKA activity. This mutual influence on expression level was specific, because siRNAs against the AR did not affect expression of PKA RIalpha in AR negative DU-145 cells and a siRNA control did not affect protein expression. Another important finding of our study was that depletion of PKA RIalpha also potentiated the antiproliferative effect of the antiandrogen bicalutamide in androgen-sensitive LNCaP. We therefore concluded that combined inhibition of PKA RIalpha and AR may be a promising new therapeutic option for prostate cancer patients and might be superior to solely preventing AR expression.
Collapse
Affiliation(s)
- Andreas Desiniotis
- Division of Experimental Urology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | |
Collapse
|
22
|
Vis AN, Schröder FH. Key targets of hormonal treatment of prostate cancer. Part 1: the androgen receptor and steroidogenic pathways. BJU Int 2009; 104:438-48. [PMID: 19558559 DOI: 10.1111/j.1464-410x.2009.08695.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Knowledge of the molecular and cellular changes that occur during the transition of hormone-naïve to castration-resistant prostate cancer (CRPC) is increasing rapidly. This might provide a window of opportunity for (future) drug development, and for treating patients with these potential devastating states of disease. The objective of this review is to provide an understanding of the mechanisms that prostate cancer cells use to bypass androgen-deprived conditions. METHODS We searched PubMed for experimental and clinical studies that describe the molecular changes that lead to CRPC. RESULTS CRPC remains dependent on a functional androgen receptor (AR), AR-mediated processes, and on the availability of intraprostatic intracellular androgens. CRPCs might acquire different (molecular) mechanisms that enable them to use intracellular androgens more efficiently (AR amplification, AR protein overexpression, AR hypersensitivity), use alternative splice variants of the AR protein to mediate androgen-independent AR functioning, and have altered co-activator and co-repressor gene and protein expression. Furthermore, CRPCs might have the ability to synthesise androgens de novo from available precursors through a renewed and up-regulated synthesis of steroid-hormone converting enzymes. Blocking of enzymes key to de novo androgen synthesis could be an alternative means to treat patients with advanced and/or metastatic disease. CONCLUSION In CRPC, prostate cancer cells still rely on intracellular androgens and on an active AR for growth and survival. CRPCs have gained mechanisms that enable them to use steroids from the circulation more efficiently through altered gene expression, and through a renewed and up-regulated synthesis of steroid hormone-converting enzymes. Additionally, CRPCs might synthesise AR isoforms that enable AR mediated processes independent from available androgens.
Collapse
Affiliation(s)
- André N Vis
- Department of Urology, VU Medical Centre, Amsterdam, The Netherlands.
| | | |
Collapse
|
23
|
Synthesis and in vitro characterization of ionone-based chalcones as novel antiandrogens effective against multiple clinically relevant androgen receptor mutants. Invest New Drugs 2009; 28:291-8. [DOI: 10.1007/s10637-009-9251-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 03/31/2009] [Indexed: 10/20/2022]
|
24
|
Bergerat JP, Céraline J. Pleiotropic functional properties of androgen receptor mutants in prostate cancer. Hum Mutat 2009; 30:145-57. [PMID: 18800375 DOI: 10.1002/humu.20848] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The androgen receptor (AR) signaling pathway plays an important role during the development of the normal prostate gland, but also during the progression of prostate cancer on androgen ablation therapy. Mutations in the AR gene emerge to keep active the AR signaling pathway and to support prostate cancer cells growth and survival despite the low levels of circulating androgens. Indeed, mutations affecting the ligand binding domain (LBD) of the AR have been shown to generate so-called "promiscuous" receptors that present widened ligand specificity and allow the stimulation of these receptors by a larger spectrum of endogenous hormones. Another class of mutations, arising in the amino-terminal domain (NTD) of the receptor, modulate AR interactions with coregulators involved in cell proliferation regulation. Besides characteristics of these well-known types of mutations, the properties of other classes of AR mutants recently described in prostate cancer are currently under investigation. Most interestingly, in addition to their potential role in the mechanisms which allow prostate cancer cells to escape androgen ablation therapy, data suggest that certain AR mutations are present early in the natural history of the disease and may play a role in many aspects of prostate cancer progression. Surprisingly, singular truncated AR devoid of their carboxy-terminal end (CTE) region seem to exert specific paracrine effects and to induce a clonal cooperation with neighboring prostate cancer cells, which may facilitate both the invasion and metastasis processes. In this article, we review the functional properties of different classes of AR mutants and their potential impact on the natural history of prostate cancer. Hum Mutat 0, 1-14, 2008. (c) 2008 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Jean-Pierre Bergerat
- EA 3430-Signalisation et Cancer de la Prostate, Faculté de Médecine, Université Strasbourg, Strasbourg, France
| | | |
Collapse
|
25
|
Yu SQ, Lai KP, Xia SJ, Chang HC, Chang C, Yeh S. The diverse and contrasting effects of using human prostate cancer cell lines to study androgen receptor roles in prostate cancer. Asian J Androl 2009; 11:39-48. [PMID: 19098932 PMCID: PMC3735204 DOI: 10.1038/aja.2008.44] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Accepted: 11/09/2008] [Indexed: 02/06/2023] Open
Abstract
The androgen receptor (AR) plays an important role in the development and progression of prostate cancer (PCa). Androgen deprivation therapy is initially effective in blocking tumor growth, but it eventually leads to the hormone-refractory state. The detailed mechanisms of the conversion from androgen dependence to androgen independence remain unclear. Several PCa cell lines were established to study the role of AR in PCa, but the results were often inconsistent or contrasting in different cell lines, or in the same cell line grown under different conditions. The cellular and molecular alteration of epithelial cells and their microenvironments are complicated, and it is difficult to use a single cell line to address this important issue and also to study the pathophysiological effects of AR. In this paper, we summarize the different effects of AR on multiple cell lines and show the disadvantages of using a single human PCa cell line to study AR effects on PCa. We also discuss the advantages of widely used epithelium-stroma co-culture systems, xenograft mouse models, and genetically engineered PCa mouse models. The combination of in vitro cell line studies and in vivo mouse models might lead to more credible results and better strategies for the study of AR roles in PCa.
Collapse
Affiliation(s)
- Sheng-Qiang Yu
- Department of Urology,The First People's Hospital of Shanghai Jiao Tong University, Shanghai 200080, China
- George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology, The Cancer Center, University of Rochester, Rochester, NY 14642, USA
| | - Kuo-Pao Lai
- George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology, The Cancer Center, University of Rochester, Rochester, NY 14642, USA
| | - Shu-Jie Xia
- Department of Urology,The First People's Hospital of Shanghai Jiao Tong University, Shanghai 200080, China
| | - Hong-Chiang Chang
- Department of Urology, National Taiwan University/Hospital, Taipei 100, Taiwan, China
| | - Chawnshang Chang
- George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology, The Cancer Center, University of Rochester, Rochester, NY 14642, USA
| | - Shuyuan Yeh
- George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology, The Cancer Center, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
26
|
Inhibition of human prostate cancer xenograft growth by 125I labeled triple-helin forming oligonucleotide directed against androgen receptor. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200811020-00014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
27
|
Basak S, Pookot D, Noonan EJ, Dahiya R. Genistein down-regulates androgen receptor by modulating HDAC6-Hsp90 chaperone function. Mol Cancer Ther 2008; 7:3195-202. [DOI: 10.1158/1535-7163.mct-08-0617] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Mees C, Nemunaitis J, Senzer N. Transcription factors: their potential as targets for an individualized therapeutic approach to cancer. Cancer Gene Ther 2008; 16:103-12. [PMID: 18846113 DOI: 10.1038/cgt.2008.73] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pro-cancer signals are controlled by the expression and transcription of oncogenes. Transcription of DNA is dependent on the spatially and temporally coordinated interaction between transcriptional machinery (RNA polymerase II, transcription factors (TFs)) and transcriptional regulatory components (promoter elements, enhancers, silencers and locus control regions). Unique TFs have been identified in association with cancer. This review summarizes key oncogene-related TFs and organizes their pro-cancer activity according to the six hallmark functions (self sufficiency in growth signals, insensitivity to growth-inhibitory signals, evasion of programmed cell death, limitless replicative potential, sustained angiogenesis and metastatic spread) proposed as constituting the infrastructure of the malignant process.
Collapse
Affiliation(s)
- C Mees
- Mary Crowley Cancer Research Centers, Dallas, TX 75201, USA
| | | | | |
Collapse
|
29
|
Singh P, Hallur G, Anchoori RK, Bakare O, Kageyama Y, Khan SR, Isaacs JT. Rational design of novel antiandrogens for neutralizing androgen receptor function in hormone refractory prostate cancer. Prostate 2008; 68:1570-81. [PMID: 18668523 PMCID: PMC3087493 DOI: 10.1002/pros.20821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The standard hormonal therapy with currently available antiandrogens and the leutinizing hormone releasing hormone (LHRH) analogs is not effective in the hormone-refractory stage of prostate cancer due to changes in androgen receptor (AR) signaling axis. In this refractory stage, AR continues to play a significant role in the growth of cancer cells even though the cancer cells are no longer dependent on the level of circulating androgens. METHODS A series of 11beta-Delta(9)-19 nortestosterone compounds were designed through structure-based rationale and tested for their binding affinity against AR and glucocorticoid receptor (GR) using fluorescence polarization assays, their agonistic ability to induce AR dependent transcription using PSA-driven report gene assays, and their growth inhibitory affects against a series of AR positive (LAPC4, LNCap, and CWR22R) and negative human prostate cancer cell lines (PC3) using MTT cell proliferation assays. RESULTS This study proposes the design of novel bifunctional antiandrogens based on the conjugation of 11beta and/or 7alpha-Delta(9)-19 nortestosterone class of steroidal compounds to the synthetic ligand for FK506-binding proteins. As a critical step towards the development of bifunctional antiandrogens, highly potent and AR-specific lead compounds were identified using in vitro data. The lead compounds identified in this study possessed low binding affinity for GR, indicating the absence of undesirable antiglucocorticoid activity. CONCLUSIONS The results of this study validate our drug discovery rationale based on the structural biology of AR and pave the pay for future development of bifunctional compounds in order to block AR function in hormone refractory stage of prostate cancer.
Collapse
Affiliation(s)
- Pratap Singh
- Chemical and Biomolecular Engineering, Whiting School of Engineering, Baltimore, Maryland
- Chemical Therapeutics Program, Department of Oncology, Sidney Kimmel Comprehensive Cancer Research Center, Johns Hopkins University, Maryland
| | - Gurulingappa Hallur
- Chemical Therapeutics Program, Department of Oncology, Sidney Kimmel Comprehensive Cancer Research Center, Johns Hopkins University, Maryland
| | - Ravi K. Anchoori
- Chemical Therapeutics Program, Department of Oncology, Sidney Kimmel Comprehensive Cancer Research Center, Johns Hopkins University, Maryland
| | - Oladapo Bakare
- Department of Chemistry, Howard University, Washington, District of Columbia
| | - Yukio Kageyama
- Department of Urology, Saitama Cancer Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Saeed R. Khan
- Chemical Therapeutics Program, Department of Oncology, Sidney Kimmel Comprehensive Cancer Research Center, Johns Hopkins University, Maryland
| | - John T. Isaacs
- Chemical and Biomolecular Engineering, Whiting School of Engineering, Baltimore, Maryland
- Chemical Therapeutics Program, Department of Oncology, Sidney Kimmel Comprehensive Cancer Research Center, Johns Hopkins University, Maryland
| |
Collapse
|
30
|
Rodriguez-Gonzalez A, Cyrus K, Salcius M, Kim K, Crews CM, Deshaies RJ, Sakamoto KM. Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer. Oncogene 2008; 27:7201-11. [PMID: 18794799 DOI: 10.1038/onc.2008.320] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Proteolysis targeting chimeric molecules (Protacs) target proteins for destruction by exploiting the ubiquitin-dependent proteolytic system of eukaryotic cells. We designed two Protacs that contain the peptide 'degron' from hypoxia-inducible factor-1alpha, which binds to the Von-Hippel-Lindau (VHL) E3 ubiquitin ligase complex, linked to either dihydroxytestosterone that targets the androgen receptor (AR; Protac-A), or linked to estradiol (E2) that targets the estrogen receptor-alpha (ERalpha; Protac-B). We hypothesized that these Protacs would recruit hormone receptors to the VHL E3 ligase complex, resulting in the degradation of receptors, and decreased proliferation of hormone-dependent cell lines. Treatment of estrogen-dependent breast cancer cells with Protac-B induced the degradation of ERalpha in a proteasome-dependent manner. Protac-B inhibited the proliferation of ERalpha-dependent breast cancer cells by inducing G(1) arrest, inhibition of retinoblastoma phosphorylation and decreasing expression of cyclin D1, progesterone receptors A and B. Protac-B treatment did not affect the proliferation of estrogen-independent breast cancer cells that lacked ERalpha expression. Similarly, Protac-A treatment of androgen-dependent prostate cancer cells induced G(1) arrest but did not affect cells that do not express AR. Our results suggest that Protacs specifically inhibit the proliferation of hormone-dependent breast and prostate cancer cells through degradation of the ERalpha and AR, respectively.
Collapse
Affiliation(s)
- A Rodriguez-Gonzalez
- Department of Pediatrics, Gwynne Hazen Cherry Laboratories, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Mu Z, Hachem P, Hensley H, Stoyanova R, Kwon HW, Hanlon AL, Agrawal S, Pollack A. Antisense MDM2 enhances the response of androgen insensitive human prostate cancer cells to androgen deprivation in vitro and in vivo. Prostate 2008; 68:599-609. [PMID: 18196567 PMCID: PMC2763092 DOI: 10.1002/pros.20731] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Antisense MDM2 oligonucleotide (AS-MDM2) sensitizes androgen sensitive LNCaP cells to androgen deprivation (AD) in vitro and in vivo. In this study, we investigated the effects of AS-MDM2 combined with AD on androgen resistant LNCaP (LNCaP-Res) and moderately androgen resistant bcl-2 overexpressing LNCaP (LNCaP-BST) cells. METHODS The LNCaP-Res cell line was generated by culturing LNCaP cells in medium containing charcoal-stripped serum for more than 1 year. Apoptosis was quantified in vitro by Annexin V staining and caspase 3 + 7 activity. For the in vivo studies, orthotopic tumor growth was monitored by magnetic resonance imaging (MRI). AS-MDM2 and the mismatch control were given by i.p. injection at doses of 25 mg/kg per day, 5 days/week for 15 days. RESULTS LNCaP-Res cells expressed high levels of androgen receptor (AR) and bcl-2, and displayed no growth inhibition to AD. AS-MDM2 caused significant reductions in MDM2 and AR expression, and increases in p53 and p21 expression in both cell lines. AS-MDM2 + AD resulted in the highest levels of apoptosis in vitro and tumor growth inhibition in vivo in both cell lines; although, these effects were less pronounced in LNCaP-BST cells. CONCLUSIONS AS-MDM2 + AD enhanced apoptotic cell death in vitro and tumor growth inhibition in vivo in androgen resistant cell lines. The action of AS-MDM2 + AD was influenced somewhat by bcl-2 expression as an isolated change (LNCaP-BST cells), but not when accompanied by other molecular changes associated with androgen insensitivity (LNCaP-Res cells). MDM2 knockdown has promise for the treatment of men with early hormone refractory disease.
Collapse
Affiliation(s)
- Zhaomei Mu
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Paul Hachem
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Harvey Hensley
- Department of Basic Science, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Radka Stoyanova
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Hae Won Kwon
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Alexandra L. Hanlon
- Department of Public Education, Temple University, Philadelphia, Pennsylvania
| | | | - Alan Pollack
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
32
|
Yuan HQ, Kong F, Wang XL, Young CYF, Hu XY, Lou HX. Inhibitory effect of acetyl-11-keto-beta-boswellic acid on androgen receptor by interference of Sp1 binding activity in prostate cancer cells. Biochem Pharmacol 2008; 75:2112-21. [PMID: 18430409 DOI: 10.1016/j.bcp.2008.03.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 03/07/2008] [Accepted: 03/07/2008] [Indexed: 10/22/2022]
Abstract
Androgen receptor (AR)-mediated signaling is crucial for the development and progression of prostate cancer (PCa). Naturally occurring phytochemicals that target the AR signaling offer significant protection against this disease. Acetyl-11-keto-beta-boswellic acid (AKBA), a compound isolated from the gum-resin of Boswellia carterii, caused G1-phase cell cycle arrest with an induction of p21(WAF1/CIP1), and a reduction of cyclin D1 as well in prostate cancer cells. AKBA-mediated cellular proliferation inhibition was associated with a decrease of AR expression at mRNA and protein levels. Furthermore, the functional biomarkers used in evaluation of AR transactivity showed suppressions of prostate-specific antigen promoter-dependent and androgen responsive element-dependent luciferase activities. Additionally, down-regulation of an AR short promoter mainly containing a Sp1 binding site suggested the essential role of Sp1 for the reduction of AR expression in cells exposed to AKBA. Interruption effect of AKBA on Sp1 binding activity but not Sp1 protein levels was further confirmed by EMSA and transient transfection with a luciferase reporter driven by three copies of the Sp1 binding site of the AR promoter. Therefore, anti-AR properties ascribed to AKBA suggested that AKBA-containing drugs could be used for the development of novel therapeutic chemicals.
Collapse
Affiliation(s)
- Hui-Qing Yuan
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Walton TJ, Li G, Seth R, McArdle SE, Bishop MC, Rees RC. DNA demethylation and histone deacetylation inhibition co-operate to re-express estrogen receptor beta and induce apoptosis in prostate cancer cell-lines. Prostate 2008; 68:210-22. [PMID: 18092350 DOI: 10.1002/pros.20673] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Epigenetic silencing mechanisms are increasingly thought to play a major role in the development of human cancers, including prostate cancer. Promoter CpG island hypermethylation and histone hypoacetylation, catalyzed by DNA methyltransferase (DNMT) and histone deacetylase (HDAC), respectively, are associated with transcriptional repression in a number of cancers. Evidence is accumulating the two mechanisms are dynamically linked, yet few studies have examined a potential interaction in prostate cancer. METHODS LNCaP, DU-145, and PC-3 prostate cancer cells were co-treated with a DNMT inhibitor, 5'-aza-2'-deoxycytidine (5-AZAC), and an HDAC inhibitor, trichostatin A (TSA). Following treatment cells were processed for cell proliferation/apoptosis assays, or harvested for real-time RT-PCR. Assessed target genes were estrogen receptor beta (ERbeta), estrogen receptor alpha (ERalpha), androgen receptor (AR), progesterone receptor (PGR), and prostate specific antigen (PSA). RESULTS In all cell-lines, co-treatment was associated with reduced cell proliferation compared with control groups (P<0.05). A reciprocal rise in caspase activation was identified, indicating apoptosis was the major mechanism of cell death. Most marked effects were seen in the androgen-dependent, AR-positive LNCaP cell-line. In all cell-lines, an additive re-expression of ERbeta was identified in the co-treatment group, a finding not seen for either AR or PSA. CONCLUSION At concentrations associated with gene re-expression, the DNA demethylating agent 5-AZAC and the HDAC inhibitor TSA co-operate to induce apoptosis in prostate cancer cell-lines. Increased apoptosis in the co-treatment group was associated with marked re-expression of ERbeta, raising the possibility of further targeting of prostate cancer cells with ERbeta-selective agents.
Collapse
Affiliation(s)
- T J Walton
- Interdisciplinary Biomedical Research Centre, Department of Biomedical and Natural Sciences, Nottingham Trent University, Nottingham, United Kingdom.
| | | | | | | | | | | |
Collapse
|
35
|
Mukhopadhyay NK, Cinar B, Mukhopadhyay L, Lutchman M, Ferdinand AS, Kim J, Chung LWK, Adam RM, Ray SK, Leiter AB, Richie JP, Liu BCS, Freeman MR. The zinc finger protein ras-responsive element binding protein-1 is a coregulator of the androgen receptor: implications for the role of the Ras pathway in enhancing androgenic signaling in prostate cancer. Mol Endocrinol 2007; 21:2056-70. [PMID: 17550981 DOI: 10.1210/me.2006-0503] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Androgen receptor (AR) plays an important role in normal prostate function as well as in the etiology of prostate cancer. Activation of AR is dictated by hormone binding and by interactions with coregulators. Several of these coregulators are known targets of Ras-related signals. Recent evidence suggests that Ras activation may play a causal role in the progression of prostate cancer toward a more malignant and hormone-insensitive phenotype. In the present study, we used a transcription factor-transcription factor interaction array method to identify the zinc finger protein Ras-responsive element binding protein (RREB-1) as a partner and coregulator of AR. In LNCaP prostate cancer cells, RREB-1 was found to be present in a complex with endogenous AR as determined by coimmunoprecipitation, glutathione S-transferase pull down, and immunofluorescence analyses. RREB-1 bound to the prostate-specific antigen (PSA) promoter as assessed by chromatin immunoprecipitation. Transient expression of RREB-1 down-regulated AR-mediated promoter activity and suppressed expression of PSA protein. The repressor activity of RREB-1 was significantly attenuated by cotransfection of activated Ras. Moreover, expression of the dominant-negative N-17-Ras or, alternatively, use of the MAPK kinase inhibitor PD98059 [2-(2-amino-3-methyoxyphenyl)-4H-1-benzopyran-4-one] abolished the effect of Ras in attenuating RREB-1-mediated repression. Furthermore, inhibition of RREB-1 expression by RNA interference enhanced the effect of Ras on PSA promoter activity and PSA expression. In addition, activation of the Ras pathway depleted AR from the RREB-1/AR complex. Collectively, our data for the first time identify RREB-1 as a repressor of AR and further implicate the Ras/MAPK kinase pathway as a likely antagonist of the inhibitory effects of RREB-1 on androgenic signaling.
Collapse
Affiliation(s)
- Nishit K Mukhopadhyay
- Department of Urology/Surgery, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Patients with advanced prostate cancer now have many treatment options available including first- and second-line hormonal therapy, radiotherapy, bisphosphonate therapy with zoledronic acid, and taxane-based chemotherapy. These options now give clinicians an opportunity to offer their patients symptomatic relief and most importantly improve overall survival. This article reviews the current treatment options available for men with advanced prostate cancer. In addition, novel treatment options under development, including calcitriol, immunotherapies, small molecule inhibitors, and nucleotide-based targeted therapy, are discussed.
Collapse
|
37
|
Cheng H, Snoek R, Ghaidi F, Cox ME, Rennie PS. Short hairpin RNA knockdown of the androgen receptor attenuates ligand-independent activation and delays tumor progression. Cancer Res 2006; 66:10613-20. [PMID: 17079486 DOI: 10.1158/0008-5472.can-06-0028] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Progression to androgen independence is the lethal end stage of prostate cancer. We used expression of androgen receptor (AR)-targeted short hairpin RNAs (shRNA) to directly test the requirement for AR in ligand-independent activation of androgen-regulated genes and hormone-independent tumor progression. Transient transfection of LNCaP human prostate cancer cells showed that AR shRNA decreased R1881 induction of the prostate-specific antigen (PSA)-luciferase reporter by 96%, whereas activation by forskolin, interleukin-6, or epidermal growth factor was inhibited 48% to 75%. Whereas the antiandrogen bicalutamide provided no further suppression, treatment with the mitogen-activated protein kinase (MAPK) inhibitor U0126 completely abrogated the residual activity, indicating a MAPK-dependent, AR-independent pathway for regulating the PSA promoter. Expression of doxycycline-inducible AR shRNA expression in LNCaP cells resulted in decreased levels of AR and PSA as well as reduced proliferation in vitro. When these cells were grown as xenografts in immunocompromised mice, induction of AR shRNA decreased serum PSA to below castration nadir levels and significantly retarded tumor growth over the entire 55-day experimental period. This is the first demonstration that, by inducibly suppressing AR expression in vivo, there is an extensive delay in progression to androgen independence as well as a dramatic inhibition of tumor growth and decrease in serum PSA, which exceeds that seen with castration alone. Based on these findings, we propose that suppressing AR expression may provide superior therapeutic benefit in reducing tumor growth rate than castration and may additionally be very effective in delaying progression to androgen independence.
Collapse
Affiliation(s)
- Helen Cheng
- The Prostate Center at Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
38
|
Haag P, Frauscher F, Gradl J, Seitz A, Schäfer G, Lindner JR, Klibanov AL, Bartsch G, Klocker H, Eder IE. Microbubble-enhanced ultrasound to deliver an antisense oligodeoxynucleotide targeting the human androgen receptor into prostate tumours. J Steroid Biochem Mol Biol 2006; 102:103-13. [PMID: 17055720 DOI: 10.1016/j.jsbmb.2006.09.027] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We have shown recently that downregulation of the androgen receptor (AR), one of the key players in prostate tumor cells, with short antisense oligodeoxynucleotides (ODNs) results in inhibition of prostate tumor growth. Particularly with regard to an application of these antisense drugs in vivo, we now investigated the usefulness of microbubble-enhanced ultrasound to deliver these ODNs into prostate cancer cells. Our short antisense AR ODNs were loaded onto the lipid surface of cationic gas-filled microbubbles by ion charge binding, and delivered into the cells by bursting the loaded microbubbles with ultrasound. In vitro experiments were initially performed to show that this kind of delivery system works in principle. In fact, transfection of prostate tumor cells with antisense AR ODNs using microbubble-enhanced ultrasound resulted in 49% transfected cells, associated with a decrease in AR expression compared to untreated controls. In vivo, uptake of a digoxigenin-labelled ODN was found in prostate tumour xenografts in nude mice following intratumoral or intravenous injection of loaded microbubbles and subsequent exposure of the tumour to ultrasound, respectively. Our results show that ultrasound seems to be the driving force of this delivery system. Uptake of the ODN was also observed in tumors after treatment with ultrasound alone, with only minor differences compared to the combined use of microbubbles and ultrasound.
Collapse
MESH Headings
- Androgen Receptor Antagonists
- Animals
- Blotting, Western
- Down-Regulation
- Drug Delivery Systems
- Gene Expression Regulation, Neoplastic
- Genetic Therapy
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Microbubbles
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/therapy
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Tumor Cells, Cultured
- Ultrasonics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Petra Haag
- Department of Urology, Innsbruck Medical University, A-6020 Innsbruck, Anichstrasse 35, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cai C, Chen SY, Zheng Z, Omwancha J, Lin MF, Balk SP, Shemshedini L. Androgen regulation of soluble guanylyl cyclasealpha1 mediates prostate cancer cell proliferation. Oncogene 2006; 26:1606-15. [PMID: 16964290 DOI: 10.1038/sj.onc.1209956] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The growth and progression of prostate cancer are dependent on androgens and androgen receptor (AR), which act by modulating gene expression. Utilizing a gene microarray approach, we have identified the alpha1-subunit gene of soluble guanylyl cyclase (sGC) as a novel androgen-regulated gene. A heterodimeric cytoplasmic protein composed of one alpha and one beta subunit, sGC mediates the widespread cellular effects of nitric oxide (NO). We report here that, in prostate cancer cells, androgens stimulate the expression of sGCalpha1. A cloned human sGCalpha1 promoter is activated by androgen in an AR-dependent manner, suggesting that sGCalpha1 may be a direct AR target gene. Disruption of sGCalpha1 expression severely compromises the growth of both androgen-dependent and androgen-independent AR-positive prostate cancer cells. Overexpression of sGCalpha1 alone is sufficient for stimulating prostate cancer cell proliferation. Interestingly, the major growth effect of sGCalpha1 is independent of NO and cyclic guanosine monophosphate, a major mediator of the sGC enzyme. These data strongly suggest that sGCalpha1 acts in prostate cancer via a novel pathway that does not depend on sGCbeta1. Tissue studies show that sGCalpha1 expression is significantly elevated in advanced prostate cancer. Thus, sGCalpha1 may be an important mediator of the procarcinogenic effects of androgens.
Collapse
Affiliation(s)
- C Cai
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Unraveling androgen receptor interactomes by an array-based method: discovery of proto-oncoprotein c-Rel as a negative regulator of androgen receptor. Exp Cell Res 2006; 312:3782-95. [PMID: 17011549 DOI: 10.1016/j.yexcr.2006.07.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 06/29/2006] [Accepted: 07/24/2006] [Indexed: 01/11/2023]
Abstract
The androgen receptor (AR) plays a key role in the development and function of male reproductive organs. Using a high-throughput transcription factor-transcription factor (TF-TF) interaction array method, we captured the AR interactomes in androgen-responsive LNCaP cells. Several known and unknown partners of AR, including AP-2, Pax 3/5 (BSAP), c-Rel, RREB-1, LIII BP, and NPAS2 were identified. We investigated one unreported AR-associated transcription factor, the proto-oncoprotein c-Rel, in detail. C-Rel belongs to the NF-kB/Rel families and is persistently active in a number of diseases, including cancer. The presence of c-Rel transcript, protein, and its in vitro and in vivo association with AR was determined. Co-localization of c-Rel with AR both in cytoplasm and nucleus was confirmed by indirect immunofluorescence analysis. Chromatin immunoprecipitation data indicated that c-Rel, like AR, is a part of the nucleoprotein complex regulating the androgen-responsive prostate-specific antigen (PSA) promoter. Overexpression of c-Rel downregulated the promoter activity of both PSA and GRE4-TATA-Luc plasmids in LNCaP and COS cells. Analysis of AR and c-Rel protein levels indicated that the promoter downregulation was not due to reciprocal decrease in the amounts of AR or c-Rel. In summary, we have identified several new partners of AR by using the TF-TF array method and have provided the first evidence of a functional role for c-Rel in androgen-responsive human prostate cancer cells.
Collapse
|
41
|
Eder IE, Haag P, Bartsch G, Klocker H. Targeting the androgen receptor in hormone-refractory prostate cancer--new concepts. Future Oncol 2006; 1:93-101. [PMID: 16555979 DOI: 10.1517/14796694.1.1.91] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The androgen receptor (AR) plays a key regulatory role in hormone-naive, as well as in advanced, therapy-resistant prostate cancer. Therefore, the development of novel treatment strategies using new means for targeting AR function in prostate tumors aims at providing better options for control of progression and progressive disease. This review summarizes recent attempts in this field with a critical view on their clinical usefulness. In addition to classic endocrine therapy by surgical and/or chemical castration, there are concepts to inhibit the AR directly through anti-androgens, selective AR modulators, naturally occurring AR inhibitors, neutralizing antibodies and dominant-negative peptides. A unique possibility to prevent AR expression at the transcriptional level represents the use of antisense technology. The advantage of this method is that AR expression, and thus any aberrant route of its activation is prevented. Furthermore, there are several approaches by which AR signaling is inactivated indirectly. Degradation of heat-shock proteins, which direct appropriate AR protein folding, or modulation of various growth factor signaling cascades, which are thought to contribute to AR activation in the androgen-deprived patient, have been investigated.
Collapse
Affiliation(s)
- Iris E Eder
- Department of Urology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
42
|
Butler LM, Centenera MM, Neufing PJ, Buchanan G, Choong CSY, Ricciardelli C, Saint K, Lee M, Ochnik A, Yang M, Brown MP, Tilley WD. Suppression of Androgen Receptor Signaling in Prostate Cancer Cells by an Inhibitory Receptor Variant. Mol Endocrinol 2006; 20:1009-24. [PMID: 16423882 DOI: 10.1210/me.2004-0401] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
There is increasing evidence that sensitization of the androgen receptor (AR) signaling pathway contributes to the failure of androgen ablation therapy for prostate cancer, and that direct targeting of the AR may be a useful therapeutic approach. To better understand how AR function could be abrogated in prostate cancer cells, we have developed a series of putative dominant-negative variants of the human AR, containing deletions or mutations in activation functions AF-1, AF-5, and/or AF-2. One construct, AR inhibitor (ARi)-410, containing a deletion of AF-1 and part of AF-5 of the AR, had no intrinsic transactivation activity but inhibited wild-type AR (wtAR) in a ligand-dependent manner by at least 95% when transfected at a 4:1 molar ratio. ARi-410 was an equally potent inhibitor of gain-of-function AR variants. Ectopic expression of ARi-410 inhibited the proliferation of AR-positive LNCaP cells, but not AR-negative PC-3 cells. Whereas ARi-410 also marginally inhibited progesterone receptor activity, this was far less pronounced than the effect on AR (50% vs. 95% maximal inhibition, respectively), and there was no inhibition of either vitamin D or estrogen receptor activity. In the presence of ligand, ARi-410 interacted with wtAR, and both receptors translocated into the nucleus. Whereas the amino-carboxy terminal interaction was not necessary for optimal dominant-negative activity, disruption of dimerization through the ligand binding domain reduced the efficacy of ARi-410. In addition, although inhibition of AR function by ARi-410 was not dependent on DNA binding, the DNA binding domain was required for dominant-negative activity. Taken together, our results suggest that interaction between ARi-410 and the endogenous AR in prostate cancer cells, potentially through the DNA binding and ligand binding domains, results in a functionally significant reduction in AR signaling and AR-dependent cell growth.
Collapse
Affiliation(s)
- Lisa M Butler
- Dame Roma Mitchell Cancer Research Laboratories, Department of Medicine, The University of Adelaide, Hanson Institute, P.O. Box 14, Rundle Mall, Adelaide, South Australia 5000, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chen L, Meng S, Wang H, Bali P, Bai W, Li B, Atadja P, Bhalla KN, Wu J. Chemical ablation of androgen receptor in prostate cancer cells by the histone deacetylase inhibitor LAQ824. Mol Cancer Ther 2006; 4:1311-9. [PMID: 16170022 DOI: 10.1158/1535-7163.mct-04-0287] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Androgen receptor plays a critical role in the development of primary as well as advanced hormone-refractory prostate cancer. Therefore, ablation of androgen receptor from prostate cancer cells is an interesting concept for developing a new therapy not only for androgen-dependent prostate cancer but also for metastatic hormone-refractory prostate cancer, for which there is no effective treatment available. We report here that LAQ824, a cinnamyl hydroxamatic acid histone deacetylase inhibitor currently in human clinical trials, effectively depleted androgen receptor in prostate cancer cells at nanomolar concentrations. LAQ824 seemed capable of depleting both the mutant and wild-type androgen receptors in either androgen-dependent and androgen-independent prostate cancer cells. Although LAQ824 may exert its effect through multiple mechanisms, several lines of evidence suggest that inactivation of the heat shock protein-90 (Hsp90) molecular chaperone is involved in LAQ824-induced androgen receptor depletion. Besides androgen receptor, LAQ824 reduced the level of Hsp90 client proteins HER-2 (ErbB2), Akt/PKB, and Raf-1 in LNCaP cells. Another Hsp90 inhibitor, 17-allyamino-17-demethoxygeldanamycin (17-AAG), also induced androgen receptor diminution. LAQ824 induced Hsp90 acetylation in LNCaP cells, which resulted in inhibition of its ATP-binding activity, dissociation of Hsp90-androgen receptor complex, and proteasome-mediated degradation of androgen receptor. Consequently, LAQ824 blocked androgen-induced prostate-specific antigen production in LNCaP cells. LAQ824 effectively inhibited cell proliferation and induced apoptosis of these prostate cancer cells. These results reveal that LAQ824 is a potent agent for depletion of androgen receptor and a potential new drug for prostate cancer.
Collapse
Affiliation(s)
- Liwei Chen
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hoffmann J, Sommer A. Anti-hormone Therapy: Principles of Endocrine Therapy of Cancer. TOPICS IN MEDICINAL CHEMISTRY 2006. [DOI: 10.1007/7355_2006_002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Dong Y, Zhang H, Gao AC, Marshall JR, Ip C. Androgen receptor signaling intensity is a key factor in determining the sensitivity of prostate cancer cells to selenium inhibition of growth and cancer-specific biomarkers. Mol Cancer Ther 2005; 4:1047-55. [PMID: 16020662 DOI: 10.1158/1535-7163.mct-05-0124] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Our previous report showed that methylseleninic acid (MSA) significantly decreases the expression of androgen receptor and prostate-specific antigen (PSA) in LNCaP cells. The present study extended the above observations by showing the universality of this phenomenon and that the inhibitory effect of MSA on prostate cancer cell growth and cancer-specific biomarkers is mediated through androgen receptor down-regulation. First, MSA decreases the expression of androgen receptor and PSA in five human prostate cancer cell lines (LNCaP, LAPC-4, CWR22Rv1, LNCaP-C81, and LNCaP-LN3), irrespective of their androgen receptor genotype (wild type versus mutant) or sensitivity to androgen-stimulated growth. Second, by using the ARE-luciferase reporter gene assay, we found that MSA suppression of androgen receptor transactivation is accounted for primarily by the reduction of androgen receptor protein level. Third, MSA inhibition of five androgen receptor-regulated genes implicated in prostate carcinogenesis (PSA, KLK2, ABCC4, DHCR24, and GUCY1A3) is significantly attenuated by androgen receptor overexpression. Fourth, transfection of androgen receptor in LNCaP cells weakened noticeably the inhibitory effect of MSA on cell growth and proliferation. Androgen receptor signaling has been documented extensively to play an important role in the development of both androgen-dependent and -independent prostate cancer. Our finding that MSA reduces androgen receptor availability by blocking androgen receptor transcription provides justification for a mechanism-driven intervention strategy in using selenium to control prostate cancer progression.
Collapse
Affiliation(s)
- Yan Dong
- Department of Cancer Chemoprevention, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | | | | | | | | |
Collapse
|
46
|
Kokontis JM, Hsu S, Chuu CP, Dang M, Fukuchi J, Hiipakka RA, Liao S. Role of androgen receptor in the progression of human prostate tumor cells to androgen independence and insensitivity. Prostate 2005; 65:287-98. [PMID: 16015608 DOI: 10.1002/pros.20285] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Various studies have implicated the androgen receptor (AR) in the progression of androgen-dependent human prostate cancer cells to androgen-independent and androgen-insensitive phenotypes, but the exact role of AR in progression is unclear. METHODS To mimic the clinical situation and test the role of AR in progression, we cultured androgen-dependent LNCaP 104-S prostate tumor cells in the presence of the antiandrogen Casodex (bicalutamide) to derive resistant (CDXR) clones. In a second step, we cultured CDXR cells in the presence of the androgen R1881, which generated androgen- and Casodex-insensitive (IS) cells. These cells were then characterized with regard to AR function and the effect of ectopic AR expression or AR knockdown on androgen sensitivity. RESULTS CDXR cells showed increased AR expression and transcriptional activity. CDXR cell proliferation was unaffected by Casodex but was repressed by androgen in vitro and in vivo. IS cells, on the other hand, had greatly reduced AR expression and activity compared to CDXR cells. Knockdown of AR expression in CDXR cells produced cells that were insensitive to androgen. Conversely, re-expression of AR in IS cells regenerated cells that were repressed by androgen. Knockdown of AR expression in 104-S cells produced cells that remained stimulated by androgen, while overexpression of AR in 104-S cells generated an androgen-repressed phenotype but did not confer androgen-independent growth. CONCLUSIONS Increased AR expression determines whether prostate cancer cells are repressed by androgen, but is not required for androgen independence. These results may have implications for anti-AR therapy for prostate cancer.
Collapse
MESH Headings
- Androgen Antagonists/pharmacology
- Androgens/pharmacology
- Anilides/pharmacology
- Animals
- Cell Cycle/physiology
- Cell Growth Processes/drug effects
- Cell Growth Processes/physiology
- Cell Line, Tumor
- Cyclin-Dependent Kinase Inhibitor p27/biosynthesis
- Disease Progression
- Humans
- Intracellular Signaling Peptides and Proteins
- Male
- Metribolone/pharmacology
- Mice
- Mice, Inbred BALB C
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/pathology
- Nitriles
- Prostate-Specific Antigen/biosynthesis
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Androgen/biosynthesis
- Receptors, Androgen/genetics
- Receptors, Androgen/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Testosterone/pharmacology
- Tosyl Compounds
Collapse
Affiliation(s)
- John M Kokontis
- Ben May Institute for Cancer Research and the Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Gioeli D, Black BE, Gordon V, Spencer A, Kesler CT, Eblen ST, Paschal BM, Weber MJ. Stress kinase signaling regulates androgen receptor phosphorylation, transcription, and localization. Mol Endocrinol 2005; 20:503-15. [PMID: 16282370 DOI: 10.1210/me.2005-0351] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Activation of signal transduction kinase cascades is known to alter androgen receptor (AR) activity, but the molecular mechanisms are still poorly defined. Here we show that stress kinase signaling regulates Ser 650 phosphorylation and AR nuclear export. In LNCaP prostate cancer cells, activation of either MAPK kinase (MKK) 4:c-Jun N-terminal kinase (JNK) or MKK6:p38 signaling pathways increased Ser 650 phosphorylation, whereas pharmacologic inhibition of JNK or p38 signaling led to a reduction of AR Ser 650 phosphorylation. Both p38alpha and JNK1 phosphorylated Ser 650 in vitro. Small interfering RNA-mediated knockdown of either MKK4 or MKK6 increased endogenous prostate-specific antigen (PSA) transcript levels, and this increase was blocked by either bicalutamide or AR small interfering RNA. Stress kinase inhibition of PSA transcription is, therefore, dependent on the AR. Similar experiments involving either activation or inhibition of MAPK/ERK kinase:ERK signaling had little effect on Ser 650 phosphorylation or PSA mRNA levels. Ser 650 is proximal to the DNA binding domain that contains a nuclear export signal. Mutation of Ser 650 to alanine reduced nuclear export of the AR, whereas mutation of Ser 650 to the phosphomimetic amino acid aspartate restored AR nuclear export. Pharmacologic inhibition of stress kinase signaling reduced wild-type AR nuclear export equivalent to the S650A mutant without affecting nuclear export of the S650D mutant. Our data suggest that stress kinase signaling and nuclear export regulate AR transcriptional activity.
Collapse
Affiliation(s)
- Daniel Gioeli
- Department of Microbiology, P.O. Box 800734, University of Virginia Health System, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hååg P, Bektic J, Bartsch G, Klocker H, Eder IE. Androgen receptor down regulation by small interference RNA induces cell growth inhibition in androgen sensitive as well as in androgen independent prostate cancer cells. J Steroid Biochem Mol Biol 2005; 96:251-8. [PMID: 15982869 DOI: 10.1016/j.jsbmb.2005.04.029] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 04/04/2005] [Indexed: 11/29/2022]
Abstract
We investigated the effects of androgen receptor (AR) down regulation with a small interference RNA molecule (siRNA_AR(start)) on androgen sensitive LNCaP and androgen independent LNCaPabl prostate cancer cells, the latter representing an in vitro model for the development of therapy resistance in prostate cancer. Although LNCaPabl cells express increased levels of AR in comparison with androgen sensitive LNCaP cells, the protein was significantly down regulated in response to siRNA_AR(start) treatment. This AR down regulation resulted in a marked cell growth inhibition in both cell lines. By contrast, DU-145 prostate cancer cells, which lack AR expression, were not inhibited by the siRNA_AR(start). In consequence to AR down regulation, both cell lines, LNCaP and LNCaPabl, shared a highly similar gene expression profile in terms of major changes in cell cycle regulatory genes. The cell cycle inhibitor p21(Waf1/Cip1) as well as cyclin D1 were significantly up regulated by siRNA_AR(start) treatment, considering a switch in cyclin expression towards cell cycle retardation. Control molecules had moderate effects on cell proliferation and gene expression, respectively. In summary, we found that AR inhibition with siRNA induces cell growth retardation in androgen sensitive as well as in androgen independent prostate cancer cells and thus may represent an interesting approach to combat hormone-refractory prostate cancer.
Collapse
Affiliation(s)
- Petra Hååg
- Department of Urology, Medical University Innsbruck, A-6020 Innsbruck, Anichstr. 35, Austria
| | | | | | | | | |
Collapse
|
49
|
Zhang Y, Wang XW, Jelovac D, Nakanishi T, Yu MH, Akinmade D, Goloubeva O, Ross DD, Brodie A, Hamburger AW. The ErbB3-binding protein Ebp1 suppresses androgen receptor-mediated gene transcription and tumorigenesis of prostate cancer cells. Proc Natl Acad Sci U S A 2005; 102:9890-5. [PMID: 15994225 PMCID: PMC1175001 DOI: 10.1073/pnas.0503829102] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Down-regulation of the androgen receptor (AR) is being evaluated as an effective therapy for the advanced stages of prostate cancer. We report that Ebp1, a protein identified by its interactions with the ErbB3 receptor, down-regulates expression of AR and AR-regulated genes in the LNCaP prostate cancer cell line. Using microarray analysis, we identified six endogenous AR target genes, including the AR itself, that are down-regulated by ebp1 overexpression. Chromatin immunoprecipitation assays revealed that Ebp1 was recruited to the prostate-specific antigen gene promoter in response to the androgen antagonist bicalutamide, suggesting that Ebp1 directly affected the expression of AR-regulated genes in response to androgen antagonists. Ebp1 expression was reduced in cells that had become androgen-independent. Androgens failed to stimulate either the growth of ebp1 transfectants or transcription of AR-regulated reporter genes in these cells. The agonist activity of the antiandrogen cyproterone acetate was abolished in ebp1 transfectants. In severe combined immunodeficient mice, Ebp1 overexpression resulted in a reduced incidence of LNCaP tumors and slower tumor growth. These findings suggest that Ebp1 is a previously unrecognized therapeutic target for treatment of hormone refractory prostate cancer.
Collapse
Affiliation(s)
- Yuexing Zhang
- Greenebaum Cancer Center and Departments of Pathology and Pharmacology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gregory CW, Whang YE, McCall W, Fei X, Liu Y, Ponguta LA, French FS, Wilson EM, Earp HS. Heregulin-induced activation of HER2 and HER3 increases androgen receptor transactivation and CWR-R1 human recurrent prostate cancer cell growth. Clin Cancer Res 2005; 11:1704-12. [PMID: 15755991 DOI: 10.1158/1078-0432.ccr-04-1158] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The androgen receptor (AR) is a ligand-dependent transcription factor that mediates gene expression and growth of normal and malignant prostate cells. In prostate tumors that recur after androgen withdrawal, the AR is highly expressed and transcriptionally active in the absence of testicular androgens. In these "androgen-independent" tumors, alternative means of AR activation have been invoked, including regulation by growth factors and their receptors in prostate cancer recurrence. EXPERIMENTAL DESIGN AND RESULTS In this report, we show that HER receptor tyrosine kinases 1 through 4 are expressed in the CWR-R1 recurrent prostate cancer cell line; their stimulation by epidermal growth factor (EGF) and heregulin activates downstream signaling, including mitogen-activated protein kinase and phosphatidylinositol-3 kinase and Akt pathways. We show that heregulin activates HER2 and HER3 and increases androgen-dependent AR transactivation of reporter genes in CWR-R1 cells. Tyrosine phosphorylation of HER2 and HER3, AR transactivation, and cell proliferation induced by heregulin were more potently inhibited by the EGFR/HER2 dual tyrosine kinase inhibitor GW572016 (lapatinib) than the EGFR-specific inhibitor ZD1839 (gefitinib). Basal proliferation in the absence of growth factors was also inhibited by GW572016 to a greater extent than ZD1839, suggesting that low level HER2/HER3 activation perhaps by an autocrine pathway contributes to the proliferation signal. CONCLUSIONS These data indicate that heregulin signaling through HER2 and HER3 increases AR transactivation and alters growth in a recurrent prostate cancer cell line. Therefore, inhibition of low-level HER2 signaling may be a potential novel therapeutic strategy in prostate cancer.
Collapse
Affiliation(s)
- Christopher W Gregory
- Department of Pathology and Laboratory Medicine, University of North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|