1
|
Ohe G, Kudo Y, Kamada K, Mouri Y, Takamaru N, Kudoh K, Kurio N, Miyamoto Y. The Soluble Factor from Oral Cancer Cell Lines Inhibits Interferon-γ Production by OK-432 via the CD40/CD40 Ligand Pathway. Cancers (Basel) 2021; 13:cancers13133301. [PMID: 34209347 PMCID: PMC8269085 DOI: 10.3390/cancers13133301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: OK-432 is a penicillin-killed, lyophilized formulation of a low-toxicity strain (Su) of Streptococcus pyogenes (Group A). It is a potent immunotherapy agent for several types of cancer, including oral cancer. We previously showed that (i) OK-432 treatment induces a high amount of IFN-? production from peripheral blood mononuclear cells (PBMCs), and (ii) conditioned medium (CM) from oral cancer cells suppresses both the IFN-? production and cytotoxic activity of PBMCs driven by OK-432. The aim of this study was to determine the inhibitory mechanism of OK-432-induced IFN-? production from PBMCs by CM. (2) Methods: We performed cDNA microarray analysis, quantitative RT-PCR, and ELISA to reveal the inhibitory mechanism of CM. (3) Results: We found that CD40 plays a key role in IFN-? production via IL-12 production. Although OK-432 treatment upregulated the expression levels of the IL-12p40, p35, and CD40 genes, CM from oral cancer cells downregulate these genes. The amount of IFN-? production by OK-432 treatment was decreased by an anti-CD40 neutralizing antibody. (4) Conclusions: Our study suggests that uncertain soluble factor(s) produced from oral cancer cells may inhibit IFN-? production from PBMCs via suppressing the CD40/CD40L-IL-12 axis.
Collapse
Affiliation(s)
- Go Ohe
- Department of Oral Surgery, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan; (K.K.); (N.T.); (K.K.); (N.K.); (Y.M.)
- Dentistry and Oral Surgery, Takamatsu Municipal Hospital, 847-1 Ko Busshozan-cho, Takamatsu 761-8538, Japan
- Correspondence:
| | - Yasusei Kudo
- Department of Oral Bioscience, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan; (Y.K.); (Y.M.)
| | - Kumiko Kamada
- Department of Oral Surgery, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan; (K.K.); (N.T.); (K.K.); (N.K.); (Y.M.)
| | - Yasuhiro Mouri
- Department of Oral Bioscience, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan; (Y.K.); (Y.M.)
| | - Natsumi Takamaru
- Department of Oral Surgery, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan; (K.K.); (N.T.); (K.K.); (N.K.); (Y.M.)
| | - Keiko Kudoh
- Department of Oral Surgery, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan; (K.K.); (N.T.); (K.K.); (N.K.); (Y.M.)
| | - Naito Kurio
- Department of Oral Surgery, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan; (K.K.); (N.T.); (K.K.); (N.K.); (Y.M.)
| | - Youji Miyamoto
- Department of Oral Surgery, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan; (K.K.); (N.T.); (K.K.); (N.K.); (Y.M.)
| |
Collapse
|
2
|
Abstract
INTRODUCTION The mouse is an important, though imperfect, organism with which to model human disease and to discover and test novel drugs in a preclinical setting. Many experimental strategies have been used to discover new biological and molecular targets in the mouse, with the hopes of translating these discoveries into novel drugs to treat prostate cancer in humans. Modeling prostate cancer in the mouse, however, has been challenging, and often drugs that work in mice have failed in human trials. AREAS COVERED The authors discuss the similarities and differences between mice and men; the types of mouse models that exist to model prostate cancer; practical questions one must ask when using a mouse as a model; and potential reasons that drugs do not often translate to humans. They also discuss the current value in using mouse models for drug discovery to treat prostate cancer and what needs are still unmet in field. EXPERT OPINION With proper planning and following practical guidelines by the researcher, the mouse is a powerful experimental tool. The field lacks genetically engineered metastatic models, and xenograft models do not allow for the study of the immune system during the metastatic process. There remain several important limitations to discovering and testing novel drugs in mice for eventual human use, but these can often be overcome. Overall, mouse modeling is an essential part of prostate cancer research and drug discovery. Emerging technologies and better and ever-increasing forms of communication are moving the field in a hopeful direction.
Collapse
Affiliation(s)
- Kenneth C Valkenburg
- The Johns Hopkins University, The James Buchanan Brady Urological Institute, Department of Urology , 600 North Wolfe Street, Baltimore, MD 21287 , USA
| | | |
Collapse
|
3
|
Kumon H, Sasaki K, Ariyoshi Y, Sadahira T, Ebara S, Hiraki T, Kanazawa S, Yanai H, Watanabe M, Nasu Y. Ad-REIC Gene Therapy: Promising Results in a Patient with Metastatic CRPC Following Chemotherapy. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2015; 9:31-8. [PMID: 25861236 PMCID: PMC4373706 DOI: 10.4137/cmo.s23252] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/12/2015] [Accepted: 02/14/2015] [Indexed: 02/06/2023]
Abstract
A 63-year-old man with metastatic castration-resistant prostate cancer (CRPC) was successfully treated for two years with in situ gene therapy using an adenovirus vector carrying the human REIC/Dkk-3 gene (Ad-REIC), following chemotherapy. Ad-REIC mediates simultaneous induction of cancer-selective apoptosis and augmentation of antitumor immunity, and a Phase I/IIa clinical study on Ad-REIC has been conducted at Okayama University Hospital since January 2011. At the time of enrollment in December 2012, the patient presented with rapid progression of lymph node (LN) metastases. Two scheduled Ad-REIC injections and 10 additional Ad-REIC injections into metastatic pelvic and para-aortic LNs under CT guidance, with an average four weeks' interval, exhibited the potent direct and indirect effects of Ad-REIC as a therapeutic cancer vaccine. During the next 12 months, three additional injections into para-aortic LNs showing regrowth achieved adequate control of all metastatic LNs with prostate-specific antigen (PSA) decline, without any particular adverse events.
Collapse
Affiliation(s)
- Hiromi Kumon
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City, Japan
| | - Katsumi Sasaki
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City, Japan
| | - Yuichi Ariyoshi
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City, Japan
| | - Takuya Sadahira
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City, Japan
| | - Shin Ebara
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City, Japan
| | - Takao Hiraki
- Department of Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City, Japan
| | - Susumu Kanazawa
- Department of Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City, Japan
| | - Hiroyuki Yanai
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City, Japan. ; Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama City, Japan
| | - Yasutomo Nasu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City, Japan. ; Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama City, Japan
| |
Collapse
|
4
|
Al Robaian M, Chiam KY, Blatchford DR, Dufès C. Therapeutic efficacy of intravenously administered transferrin-conjugated dendriplexes on prostate carcinomas. Nanomedicine (Lond) 2014; 9:421-34. [PMID: 24910874 DOI: 10.2217/nnm.13.25] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Improved treatments for prostate cancer are critically needed in order to overcome metastasis and lethal recurrence. Intravenously administered gene therapy would be an attractive anticancer treatment strategy; however, the lack of suitable carrier systems able to selectively deliver therapeutic genes to tumors has so far limited this investigation. Given that transferrin receptors are overexpressed on prostate cancer cells, the purpose of this study is to determine whether transferrin-conjugated dendriplexes encoding TNF-α, TNF-related apoptosis-inducing ligand and IL-12 would suppress the growth of prostate cancer cell lines in vitro and in vivo. MATERIALS & METHODS Transferrin-conjugated dendriplexes encoding TNF-α, TNF-related apoptosis-inducing ligand and IL-12 were intravenously administered to mice bearing subcutaneous PC-3 and DU145 tumors. RESULTS The administration of the transferrin-conjugated generation 3 diaminobutyric polypropylenimine dendriplex encoding TNF-a resulted in tumor suppression for 60% of PC-3 and 50% of DU145 prostate tumors. CONCLUSION These dendriplexes hold great potential as a novel approach for prostate cancer therapy.
Collapse
|