1
|
Kim Y, Hwang H, Lim S, Lee D, Kim K, Kang E, Cho S, Oh Y, Hinterdorfer P, Lee HJ, Ko K. Plant-derived EpCAM-Fc fusion proteins induce in vivo immune response to produce IgGs inhibiting invasion and migration of colorectal cancer cells. PLANT CELL REPORTS 2024; 43:302. [PMID: 39630205 DOI: 10.1007/s00299-024-03377-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/10/2024] [Indexed: 12/14/2024]
Abstract
KEY MESSAGE Transgenic tobacco plant expressed EpCAM-Fc fusion proteins to induce in vivo immune responses producing anti-EpCAM antibodies inhibiting human colorectal cancer cell invasion and migration. Plant is emerging as a promising alternative to produce valuable immunotherapeutic vaccines. In this study, we examined the in vivo anti-cancer efficacy of epidermal cell adhesion molecule (EpCAM)-Fc and EpCAM-FcK fusion proteins produced in transgenic plants as colorectal cancer vaccine candidates. Mice were injected with plant-derived EpCAM-Fc (EpCAM-FcP) and EpCAM-FcP tagged with KDEL (ER retention signal) (EpCAM-FcKP), using mammalian-derived EpCAM-Fc (EpCAM-FcM) as positive control. Total IgGs from the immunized mice were used to assess immune responses. ELISA tests revealed that IgGs from mice immunized with EpCAM-FcKP (EpCAM-FcKP IgG) exhibited the highest absorbance value for binding affinity to recombinant EpCAM-FcM compared to IgGs from mice immunized with EpCAM-FcP (EpCAM-FcP IgG) and EpCAM-FcM (EpCAM-FcM IgG). Bio-layer interferometry revealed that EpCAM-FcKP IgG had a higher affinity value than EpCAM-FcM IgG and EpCAM-FcP IgG. Cell ELISA revealed that EpCAM-FcKP IgG exhibited the highest binding activity to EpCAM-positive cells SW480 and SW620 compared to EpCAM-FcP IgG, EpCAM-FcM IgG, and anti-EpCAM mAb. In the transwell invasion assay, EpCAM-FcKP IgG significantly decreased the numbers of invaded SW480 and SW620 cells compared to EpCAM-FcP IgG, whereas EpCAM-FcM IgG had similar numbers. In the wound healing assay, EpCAM-FcKP IgG showed higher migration inhibition compared to EpCAM-FcP IgG in both cell types, with similar results to EpCAM-FcM IgG in SW620 cells. These results confirm the applicability of plant systems to produce EpCAM-Fc vaccine candidates, inducing the production of anti-EpCAM IgGs against colorectal cancer cells.
Collapse
Affiliation(s)
- Yerin Kim
- Department of Medical Science, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyunjoo Hwang
- Department of Medical Science, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sohee Lim
- Department of Medical Science, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Daehwan Lee
- Department of Medical Science, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kibum Kim
- Department of Medical Science, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eunjeong Kang
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yoojin Oh
- Department of Applied Experimental Biophysics, Institute of Biophysics, Johannes Kepler University Linz, 4040, Linz, Austria
| | - Peter Hinterdorfer
- Department of Applied Experimental Biophysics, Institute of Biophysics, Johannes Kepler University Linz, 4040, Linz, Austria
| | - Hyun Jung Lee
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kisung Ko
- Department of Medical Science, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
2
|
Iezzi M, Quaglino E, Amici A, Lollini PL, Forni G, Cavallo F. DNA vaccination against oncoantigens: A promise. Oncoimmunology 2021; 1:316-325. [PMID: 22737607 PMCID: PMC3382874 DOI: 10.4161/onci.19127] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The emerging evidence that DNA vaccines elicit a protective immune response in rodents, dogs and cancer patients, coupled with the US Food and Drug Administration (FDA) approval of an initial DNA vaccine to treat canine tumors is beginning to close the gap between the optimistic experimental data and their difficult application in a clinical setting. Here we review a series of conceptual and biotechnological advances that are working together to make DNA vaccines targeting molecules that play important roles during cancer progression (oncoantigens) a promise with near-term clinical impact.
Collapse
Affiliation(s)
- Manuela Iezzi
- Aging Research Centre; G. d'Annunzio University; Chieti, Italy
| | | | | | | | | | | |
Collapse
|
3
|
Recent Development and Clinical Application of Cancer Vaccine: Targeting Neoantigens. J Immunol Res 2018; 2018:4325874. [PMID: 30662919 PMCID: PMC6313977 DOI: 10.1155/2018/4325874] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/18/2018] [Indexed: 12/30/2022] Open
Abstract
Recently, increasing data show that immunotherapy could be a powerful weapon against cancers. Comparing to the traditional surgery, chemotherapy or radiotherapy, immunotherapy more specifically targets cancer cells, giving rise to the opportunities to the patients to have higher response rates and better quality of life and even to cure the disease. Cancer vaccines could be designed to target tumor-associated antigens (TAAs), cancer germline antigens, virus-associated antigens, or tumor-specific antigens (TSAs), which are also called neoantigens. The cancer vaccines could be cell-based (e.g., dendritic cell vaccine provenge (sipuleucel-T) targeting prostatic acid phosphatase for metastatic prostate cancer), peptide/protein-based, or gene- (DNA/RNA) based, with the different kinds of adjuvants. Neoantigens are tumor-specific and could be presented by MHC molecules and recognized by T lymphocytes, serving the ideal immune targets to increase the therapeutic specificity and decrease the risk of nonspecific autoimmunity. By targeting the shared antigens and private epitopes, the cancer vaccine has potential to treat the disease. Accordingly, personalized neoantigen-based immunotherapies are emerging. In this article, we review the literature and evidence of the advantage and application of cancer vaccine. We summarize the recent clinical trials of neoantigen cancer vaccines which were designed according to the patients' personal mutanome. With the rapid development of personalized immunotherapy, it is believed that tumors could be efficiently controlled and become curable in the new era of precision medicine.
Collapse
|
4
|
Riccardo F, Réal A, Voena C, Chiarle R, Cavallo F, Barutello G. Maternal Immunization: New Perspectives on Its Application Against Non-Infectious Related Diseases in Newborns. Vaccines (Basel) 2017; 5:E20. [PMID: 28763018 PMCID: PMC5620551 DOI: 10.3390/vaccines5030020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
The continuous evolution in preventive medicine has anointed vaccination a versatile, human-health improving tool, which has led to a steady decline in deaths in the developing world. Maternal immunization represents an incisive step forward for the field of vaccination as it provides protection against various life-threatening diseases in pregnant women and their children. A number of studies to improve prevention rates and expand protection against the largest possible number of infections are still in progress. The complex unicity of the mother-infant interaction, both during and after pregnancy and which involves immune system cells and molecules, is an able partner in the success of maternal immunization, as intended thus far. Interestingly, new studies have shed light on the versatility of maternal immunization in protecting infants from non-infectious related diseases, such as allergy, asthma and congenital metabolic disorders. However, barely any attempt at applying maternal immunization to the prevention of childhood cancer has been made. The most promising study reported in this new field is a recent proof of concept on the efficacy of maternal immunization in protecting cancer-prone offspring against mammary tumor progression. New investigations into the possibility of exploiting maternal immunization to prevent the onset and/or progression of neuroblastoma, one of the most common childhood malignancies, are therefore justified. Maternal immunization is presented in a new guise in this review. Attention will be focused on its versatility and potential applications in preventing tumor progression in neuroblastoma-prone offspring.
Collapse
Affiliation(s)
- Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino 10126, Italy.
| | - Aline Réal
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino 10126, Italy.
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, Center for Experimental Research and Medical Studies, University of Torino, Torino 10126, Italy.
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, Center for Experimental Research and Medical Studies, University of Torino, Torino 10126, Italy.
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, MA 02115, USA.
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino 10126, Italy.
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino 10126, Italy.
| |
Collapse
|
5
|
Provinciali M, Barucca A, Orlando F, Pierpaoli E. Booster immunizations with DNA plasmids encoding HER-2/neu prevent spontaneous mammary cancer in HER-2/neu transgenic mice over life span. Sci Rep 2017; 7:3078. [PMID: 28596550 PMCID: PMC5465096 DOI: 10.1038/s41598-017-03286-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/25/2017] [Indexed: 12/03/2022] Open
Abstract
Cancer vaccines are less effective at old than at young age because of immunosenescence. Besides, in preliminary observations we showed that the immunization with HER-2/neu DNA plasmid in transgenic young mice (standard immunization, SI) delays but not abrogate spontaneous mammary tumours progressively appearing during aging. In this study we evaluated whether booster immunizations (BI) of HER-2/neu transgenic mice with HER-2/neu DNA plasmids every 6 (ECD6), 3 (ECD3), or 1.5 (ECD1.5) months after SI induce a protective immunity that could be maintained over life span. The long term BI significantly improved the effect of SI increasing the number of tumour free mice at 110 weeks of age from 13% (SI) to 58% (BI). Both the number and the volume of tumour masses were reduced in BI than in SI groups. The protective effect of BI was associated with increased antibody production with isotype switching to IgG2a, augmented CD4 T cells, and increased in vivo cytotoxicity of HER-2/neu specific cytotoxic T lymphocytes, mainly in ECD1.5 and ECD3 groups. The transfer of sera from ECD1.5 mice to untreated HER-2/neu mice highly protected against tumour development than sera from SI mice. We conclude that BI induce a protective immunity effective over life span.
Collapse
Affiliation(s)
- Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Ancona, Italy.
| | - Alessandra Barucca
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Ancona, Italy
| | - Fiorenza Orlando
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Ancona, Italy
| | - Elisa Pierpaoli
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Ancona, Italy
| |
Collapse
|
6
|
Tiptiri-Kourpeti A, Spyridopoulou K, Pappa A, Chlichlia K. DNA vaccines to attack cancer: Strategies for improving immunogenicity and efficacy. Pharmacol Ther 2016; 165:32-49. [DOI: 10.1016/j.pharmthera.2016.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Intradermal DNA Electroporation Induces Cellular and Humoral Immune Response and Confers Protection against HER2/neu Tumor. J Immunol Res 2015; 2015:159145. [PMID: 26247038 PMCID: PMC4515534 DOI: 10.1155/2015/159145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 11/29/2022] Open
Abstract
Skin represents an attractive target for DNA vaccine delivery because of its natural richness in APCs, whose targeting may potentiate the effect of vaccination. Nevertheless, intramuscular electroporation is the most common delivery method for ECTM vaccination. In this study we assessed whether intradermal administration could deliver the vaccine into different cell types and we analyzed the evolution of tissue infiltrate elicited by the vaccination protocol. Intradermal electroporation (EP) vaccination resulted in transfection of different skin layers, as well as mononuclear cells. Additionally, we observed a marked recruitment of reactive infiltrates mainly 6–24 hours after treatment and inflammatory cells included CD11c+.
Moreover, we tested the efficacy of intradermal vaccination against Her2/neu antigen in cellular and humoral response induction and consequent protection from a Her2/neu tumor challenge in Her2/neu nontolerant and tolerant mice. A significant delay in transplantable tumor onset was observed in both BALB/c (p ≤ 0,0003) and BALB-neuT mice (p = 0,003). Moreover, BALB-neuT mice displayed slow tumor growth as compared to control group (p < 0,0016). In addition, while in vivo cytotoxic response was observed only in BALB/c mice, a significant antibody response was achieved in both mouse models. Our results identify intradermal EP vaccination as a promising method for delivering Her2/neu DNA vaccine.
Collapse
|
8
|
Lollini PL, Cavallo F, Nanni P, Quaglino E. The Promise of Preventive Cancer Vaccines. Vaccines (Basel) 2015; 3:467-89. [PMID: 26343198 PMCID: PMC4494347 DOI: 10.3390/vaccines3020467] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 01/01/2023] Open
Abstract
Years of unsuccessful attempts at fighting established tumors with vaccines have taught us all that they are only able to truly impact patient survival when used in a preventive setting, as would normally be the case for traditional vaccines against infectious diseases. While true primary cancer prevention is still but a long-term goal, secondary and tertiary prevention are already in the clinic and providing encouraging results. A combination of immunopreventive cancer strategies and recently approved checkpoint inhibitors is a further promise of forthcoming successful cancer disease control, but prevention will require a considerable reduction of currently reported toxicities. These considerations summed with the increased understanding of tumor antigens allow space for an optimistic view of the future.
Collapse
Affiliation(s)
- Pier-Luigi Lollini
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, Viale Filopanti 22, Bologna 40126, Italy.
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, Torino 10126, Italy.
| | - Patrizia Nanni
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, Viale Filopanti 22, Bologna 40126, Italy.
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, Torino 10126, Italy.
| |
Collapse
|
9
|
Tapping the Potential of DNA Delivery with Electroporation for Cancer Immunotherapy. Curr Top Microbiol Immunol 2015; 405:55-78. [PMID: 25682101 DOI: 10.1007/82_2015_431] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer is a worldwide leading cause of death, and current conventional therapies are limited. The search for alternative preventive or therapeutic solutions is critical if we are going to improve outcomes for patients. The potential for DNA vaccines in the treatment and prevention of cancer has gained great momentum since initial findings almost 2 decades ago that revealed that genetically engineered DNA can elicit an immune response. The combination of adjuvants and an effective delivery method such as electroporation is overcoming past setbacks for naked plasmid DNA (pDNA) as a potential preventive or therapeutic approach to cancer in large animals and humans. In this chapter, we aim to focus on the novel advances in recent years for DNA cancer vaccines, current preclinical data, and the importance of adjuvants and electroporation with emphasis on prostate, melanoma, and cervical cancer.
Collapse
|
10
|
Peptide-Based Vaccination and Induction of CD8+ T-Cell Responses Against Tumor Antigens in Breast Cancer. BioDrugs 2014; 29:15-30. [DOI: 10.1007/s40259-014-0114-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Bodles-Brakhop AM, Draghia-Akli R. DNA vaccination and gene therapy: optimization and delivery for cancer therapy. Expert Rev Vaccines 2014; 7:1085-101. [DOI: 10.1586/14760584.7.7.1085] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Conti L, Lanzardo S, Iezzi M, Montone M, Bolli E, Brioschi C, Maiocchi A, Forni G, Cavallo F. Optical imaging detection of microscopic mammary cancer in ErbB-2 transgenic mice through the DA364 probe binding αv β3 integrins. CONTRAST MEDIA & MOLECULAR IMAGING 2013; 8:350-60. [PMID: 23613438 DOI: 10.1002/cmmi.1529] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 11/23/2012] [Accepted: 01/01/2013] [Indexed: 12/15/2022]
Abstract
Despite spontaneous tumor growth in genetically engineered mice being one of the most recognized tools for the in vivo evaluation of novel diagnostic and therapeutic anticancer compounds, monitoring early stage lesions in live animals is a goal that has yet to be achieved. A large number of targets for the molecular imaging of various diseases have been identified and many imaging technologies, including optical techniques are emerging. One of the most commonly exploited targets in tumor imaging is αv β3 integrin, which plays an important role in the expansion, invasiveness and metastatic capability of a number of cancers, including breast cancer. The aim of this study was to set up an optical imaging method for the early detection of autochthonous mammary cancer in female BALB/c mice transgenic for the rat-ErbB-2 oncogene (BALB-neuT). We show that DA364, a near-infrared fluorescence arginine-glycine-aspartic acid cyclic probe, was taken up by neoplastic mammary glands and that its uptake increased with cancer progression. By contrast, the nonaccumulation of DA364 in the healthy mammary glands of virgin and lactating wild-type mice suggests that the probe specifically targets breast cancers. Comparisons of optical imaging with whole-mount and histological findings showed that DA364 allows the noninvasive visualization of atypical hyperplasia and microscopic foci of in situ carcinoma 2 months before mammary lesions become detectable by palpation. Moreover, DA364 was successfully used to monitor the outcome of anticancer vaccination. Therefore, it can be considered a promising early detection tool in near-infrared noninvasive optical imaging for the early diagnosis of breast cancer.
Collapse
Affiliation(s)
- Laura Conti
- Molecular Biotechnology Center, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lin C, Li Y. The role of peptide and DNA vaccines in myeloid leukemia immunotherapy. Cancer Cell Int 2013; 13:13. [PMID: 23394714 PMCID: PMC3571936 DOI: 10.1186/1475-2867-13-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 02/06/2013] [Indexed: 12/13/2022] Open
Abstract
While chemotherapy and targeted therapy are successful in inducing the remission of myeloid leukemia as acute myeloid leukemia (AML) and chronic myeloid leukemia (CML), the disease remains largely incurable. This observation is likely due to the drug resistance of leukemic cells, which are responsible for disease relapse. Myeloid leukemia vaccines may most likely be beneficial for eradicating minimal residual disease after treatment with chemotherapy or targeted therapy. Several targeted immunotherapies using leukemia vaccines have been heavily investigated in clinical and preclinical trials. This review will focus on peptides and DNA vaccines in the context of myeloid leukemias, and optimal strategies for enhancing the efficacy of vaccines based on myeloid leukemia immunization are also summarized.
Collapse
Affiliation(s)
- Chen Lin
- Department of Microbiology and Immunology, Medical College, Jinan University, Guangzhou, 510632, China.
| | | |
Collapse
|
14
|
Vaccination for the prevention and treatment of breast cancer with special focus on Her-2/neu peptide vaccines. Breast Cancer Res Treat 2013; 138:1-12. [PMID: 23340862 DOI: 10.1007/s10549-013-2410-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 01/07/2013] [Indexed: 01/18/2023]
Abstract
Immunologic interventions in a subset of breast cancer patients represent a well-established therapeutic approach reflecting individualized treatment modalities. Thus, the therapeutic administration of monoclonal antibodies targeting tumor-associated antigens (TAA), such as Her-2/neu, represents a milestone in cancer treatment. However, passive antibody administration suffers from several drawbacks, including frequency and long duration of treatment. These undesirables may be avoidable in an approach based on generating active immune responses against these same targets. Only recently has the significance of tumors in relation to their microenvironments been understood as essential for creating an effective cancer vaccine. In particular, the immune system plays an important role in suppressing or promoting tumor formation and growth. Therefore, activation of appropriate triggers (such as induction of Th1 cells, CD8+ T cells, and suppression of regulatory cells in combination with generation of antibodies with anti-tumor activity) is a desirable goal. Current vaccination approaches have concentrated on therapeutic vaccines using certain TAA. Many cancer antigens, including breast cancer antigens, have been described and also given priority ranking for use as vaccine antigens by the US National Cancer Institute. One of the TAA antigens which has been thoroughly examined in numerous trials is Her-2/neu. This review will discuss delivery systems for this antigen with special focus on T and B cell peptide vaccines. Attention will be given to their advantages and limitations, as well as the use of certain adjuvants to improve anti-cancer responses.
Collapse
|
15
|
Induction of humoral and cellular immune responses by antigen-expressing immunostimulatory liposomes. J Control Release 2012; 164:323-30. [PMID: 22940204 DOI: 10.1016/j.jconrel.2012.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/13/2012] [Accepted: 08/14/2012] [Indexed: 01/15/2023]
Abstract
Recently we have shown that liposomes can be used as artificial microbes for the production and delivery of DNA-encoded antigens. These so-called antigen-expressing immunostimulatory liposomes (AnExILs) were superior in inducing antigen-specific antibodies compared to conventional liposomal protein or DNA vaccines when tested in mice after i.m. immunization. In this study, we investigated the capacity of AnExILs to induce T-cell responses. By using a plasmid vector encoding a model antigen under control of both the prokaryotic T7 and the eukaryotic CMV promoter we hypothesized that antigen production could lead to CTL activation via two distinct routes: i. production of antigens inside the AnExILs with subsequent cross-presentation after processing by APCs and ii. endogenous production of antigens after AnExIL-mediated transfection of the pDNA. Although we were not able to demonstrate transfection-mediated expression of luc-NP in mice, i.m. injection of AnExILs producing luc-NP resulted in T-cell responses against the encoded NP epitope, as determined by tetramer staining. T-cell responses were comparable to the responses obtained after i.m. injection of naked pDNA. In order to find out whether CTL activation was caused by cross-presentation of the exogenous antigens produced inside AnExILs or by endogenous antigen production from transfection with the same pDNA source a second study was initiated in which the contribution of each of these effects could be separately determined. These results demonstrate that the observed T-cell responses were not exclusively caused by cross-presentation of the AnExIL-produced antigens alone, but were rather a combination of dose-dependent antigen cross-presentation and low levels of endogenous antigen production.
Collapse
|
16
|
Rochard A, Scherman D, Bigey P. Genetic immunization with plasmid DNA mediated by electrotransfer. Hum Gene Ther 2011; 22:789-98. [PMID: 21631165 DOI: 10.1089/hum.2011.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The concept of DNA immunization was first advanced in the early 1990s, but was not developed because of an initial lack of efficiency. Recent technical advances in plasmid design and gene delivery techniques have allowed renewed interest in the idea. Particularly, a better understanding of genetic immunization has led to construction of optimized plasmids and the use of efficient molecular adjuvants. The field also took great advantage of new delivery techniques such as electrotransfer. This is a simple physical technique consisting of injecting plasmid DNA into a target tissue and applying an electric field, allowing up to a thousandfold more expression of the transgene than naked DNA. DNA immunization mediated by electrotransfer is now effective in a variety of preclinical models against infectious or acquired diseases such as cancer or autoimmune diseases, and is making its way through the clinics in several ongoing phase I human clinical trials. This review will briefly describe genetic immunization mediated by electrotransfer and the main fields of application.
Collapse
Affiliation(s)
- Alice Rochard
- Unité de Pharmacologie Chimique et Génétique et d'Imagerie, CNRS, UMR8151, Paris, F-75006 France
| | | | | |
Collapse
|
17
|
Quaglino E, Riccardo F, Macagno M, Bandini S, Cojoca R, Ercole E, Amici A, Cavallo F. Chimeric DNA Vaccines against ErbB2+ Carcinomas: From Mice to Humans. Cancers (Basel) 2011; 3:3225-41. [PMID: 24212954 PMCID: PMC3759195 DOI: 10.3390/cancers3033225] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/02/2011] [Accepted: 08/03/2011] [Indexed: 01/10/2023] Open
Abstract
DNA vaccination exploits a relatively simple and flexible technique to generate an immune response against microbial and tumor-associated antigens (TAAs). Its effectiveness is enhanced by the application of an electrical shock in the area of plasmid injection (electroporation). In our studies we exploited a sophisticated electroporation device approved for clinical use (Cliniporator, IGEA, Carpi, Italy). As the target antigen is an additional factor that dramatically modulates the efficacy of a vaccine, we selected ErbB2 receptor as a target since it is an ideal oncoantigen. It is overexpressed on the cell membrane by several carcinomas for which it plays an essential role in driving their progression. Most oncoantigens are self-tolerated molecules. To circumvent immune tolerance we generated two plasmids (RHuT and HuRT) coding for chimeric rat/human ErbB2 proteins. Their immunogenicity was compared in wild type mice naturally tolerant for mouse ErbB2, and in transgenic mice that are also tolerant for rat or human ErbB2. In several of these mice, RHuT and HuRT elicited a stronger anti-tumor response than plasmids coding for fully human or fully rat ErbB2. The ability of heterologous moiety to blunt immune tolerance could be exploited to elicit a significant immune response in patients. A clinical trial to delay the recurrence of ErbB2+ carcinomas of the oral cavity, oropharynx and hypopharynx is awaiting the approval of the Italian authorities.
Collapse
Affiliation(s)
- Elena Quaglino
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy; E-Mails: (E.Q.); (F.R.); (M.M.); (S.B.); (R.C.); (E.E.)
| | - Federica Riccardo
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy; E-Mails: (E.Q.); (F.R.); (M.M.); (S.B.); (R.C.); (E.E.)
| | - Marco Macagno
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy; E-Mails: (E.Q.); (F.R.); (M.M.); (S.B.); (R.C.); (E.E.)
| | - Silvio Bandini
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy; E-Mails: (E.Q.); (F.R.); (M.M.); (S.B.); (R.C.); (E.E.)
| | - Rodica Cojoca
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy; E-Mails: (E.Q.); (F.R.); (M.M.); (S.B.); (R.C.); (E.E.)
| | - Elisabetta Ercole
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy; E-Mails: (E.Q.); (F.R.); (M.M.); (S.B.); (R.C.); (E.E.)
| | - Augusto Amici
- Department of Molecular Cellular and Animal Biology, University of Camerino, 62032 Camerino, Italy; E-Mail:
| | - Federica Cavallo
- Department of Molecular Cellular and Animal Biology, University of Camerino, 62032 Camerino, Italy; E-Mail:
| |
Collapse
|
18
|
Baxevanis CN, Voutsas IF, Gritzapis AD, Perez SA, Papamichail M. HER-2/neu as a target for cancer vaccines. Immunotherapy 2010; 2:213-26. [PMID: 20635929 DOI: 10.2217/imt.09.89] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A novel modality toward the treatment of HER-2/neu-positive malignancies, mostly including breast and, more recently prostate carcinomas, has been the use of vaccines targeting HER-2/neu extracellular and intracellular domains. HER-2/neu-specific vaccines have been demonstrated to generate durable T-cell anti-HER-2/neu immunity when tested in Phase I and II clinical trials with no significant toxicity or autoimmunity directed against normal tissues. Targeting of HER-2/neu in active immunotherapy may involve peptide and DNA vaccines. Moreover, active anti-HER-2/neu immunization could facilitate the ex vivo expansion of HER-2/neu-specific T cells for use in adoptive immunotherapy for the treatment of established metastatic disease. In addition, early data from trials examining the potential use of HER-2/neu-based vaccines in the adjuvant setting to prevent the relapse of breast cancer in high-risk patients have shown promising results. Future approaches include multiepitope preventive vaccines and combinatorial treatments for generating the most efficient protective anti-tumor immunity.
Collapse
|
19
|
Gene Transfer: How Can the Biological Barriers Be Overcome? J Membr Biol 2010; 236:61-74. [DOI: 10.1007/s00232-010-9275-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
|
20
|
Rolla S, Ria F, Occhipinti S, Di Sante G, Iezzi M, Spadaro M, Nicolò C, Ambrosino E, Merighi IF, Musiani P, Forni G, Cavallo F. Erbb2 DNA vaccine combined with regulatory T cell deletion enhances antibody response and reveals latent low-avidity T cells: potential and limits of its therapeutic efficacy. THE JOURNAL OF IMMUNOLOGY 2010; 184:6124-32. [PMID: 20435927 DOI: 10.4049/jimmunol.0901215] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rat (r)Erbb2 transgenic BALB-neuT mice genetically predestined to develop multiple invasive carcinomas allow an assessment of the potential of a vaccine against the stages of cancer progression. Because of rErbb2 expression in the thymus and its overexpression in the mammary gland, CD8(+) T cell clones reacting at high avidity with dominant rErbb2 epitopes are deleted in these mice. In BALB-neuT mice with diffuse and invasive in situ lesions and almost palpable carcinomas, a temporary regulatory T cells depletion combined with anti-rErbb2 vaccine markedly enhanced the anti-rErbb2 Ab response and allowed the expansion of latent pools of low-avidity CD8(+) T cells bearing TCRs repertoire reacting with the rErbb2 dominant peptide. This combination of a higher Ab response and activation of a low-avidity cytotoxic response persistently blocked tumor progression at stages in which the vaccine alone was ineffective. However, when diffuse and invasive microscopic cancers become almost palpable, this combination was no longer able to secure a significant extension of mice survival.
Collapse
Affiliation(s)
- Simona Rolla
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Porzia A, Lanzardo S, Citti A, Cavallo F, Forni G, Santoni A, Galandrini R, Paolini R. Attenuation of PI3K/Akt-Mediated Tumorigenic Signals through PTEN Activation by DNA Vaccine-Induced Anti-ErbB2 Antibodies. THE JOURNAL OF IMMUNOLOGY 2010; 184:4170-7. [DOI: 10.4049/jimmunol.0903375] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Gene electrotransfer: from biophysical mechanisms to in vivo applications : Part 2 - In vivo developments and present clinical applications. Biophys Rev 2009; 1:185. [PMID: 28510026 DOI: 10.1007/s12551-009-0019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022] Open
Abstract
Gene electrotransfer can be obtained not just on single cells in diluted suspension. For more than 10 years, this is a quasi routine strategy in tissue on the living animal and a few clinical trials have now been approved. New problems have been brought by the close contacts of cells in tissue both on the local field distribution and on the access of DNA to target cells. They need to be solved to provide a further improvement in the efficacy and safety of protein expression. There is a competition between gene transfer and cell destruction. Nevertheless, present results are indicative that electrotransfer is a promising approach for gene therapy. High level and long-lived expression of proteins can be obtained in muscles. This is used for a successful method of electrovaccination.
Collapse
|
23
|
Structural instability of plasmid biopharmaceuticals: challenges and implications. Trends Biotechnol 2009; 27:503-11. [DOI: 10.1016/j.tibtech.2009.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/11/2009] [Accepted: 06/12/2009] [Indexed: 12/18/2022]
|
24
|
Lee WG, Demirci U, Khademhosseini A. Microscale electroporation: challenges and perspectives for clinical applications. Integr Biol (Camb) 2009; 1:242-51. [PMID: 20023735 DOI: 10.1039/b819201d] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Microscale engineering plays a significant role in developing tools for biological applications by miniaturizing devices and providing controllable microenvironments for in vitro cell research. Miniaturized devices offer numerous benefits in comparison to their macroscale counterparts, such as lower use of expensive reagents, biomimetic environments, and the ability to manipulate single cells. Microscale electroporation is one of the main beneficiaries of microscale engineering as it provides spatial and temporal control of various electrical parameters. Microscale electroporation devices can be used to reduce limitations associated with the conventional electroporation approaches such as variations in the local pH, electric field distortion, sample contamination, and the difficulties in transfecting and maintaining the viability of desired cell types. Here, we present an overview of recent advances of the microscale electroporation methods and their applications in biology, as well as current challenges for its use for clinical applications. We categorize microscale electroporation into microchannel and microcapillary electroporation. Microchannel-based electroporation can be used for transfecting cells within microchannels under dynamic flow conditions in a controlled and high-throughput fashion. In contrast, microcapillary-based electroporation can be used for transfecting cells within controlled reaction chambers under static flow conditions. Using these categories we examine the use of microscale electroporation for clinical applications related to HIV-1, stem cells, cancer and other diseases and discuss the challenges in further advancing this technology for use in clinical medicine and biology.
Collapse
Affiliation(s)
- Won Gu Lee
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
25
|
Andreasson K, Tegerstedt K, Eriksson M, Curcio C, Cavallo F, Forni G, Dalianis T, Ramqvist T. Murine pneumotropic virus chimeric Her2/neu virus-like particles as prophylactic and therapeutic vaccines against Her2/neu expressing tumors. Int J Cancer 2009; 124:150-6. [PMID: 18839427 DOI: 10.1002/ijc.23920] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Virus-like particles (VLPs) have increasingly attracted attention as DNA-free and safe antigen carriers in tumor immunotherapy, requiring only minute amounts of antigens. Previously, we have immunized with murine polyomavirus (MPyV) VLPs carrying human Her2/neu and prevented the outgrowth of a human Her2/neu expressing tumor in a transplantable tumor model as well as outgrowth of spontaneous rat Her2/neu carcinomas in BALB-neuT mice. Here, we examine if prophylactic and therapeutic protection could be obtained with murine pneumotropic virus (MPtV) VLPs, and study the cross-reactivity between human and rat Her2/neu. VLPs from MPyV and MPtV carrying human or rat Her2/neu were tested in two transplantable tumor models against a human Her2/neu positive (D2F2/E2) and a rat Her2/neu positive tumor cell line (TUBO). Rat Her2/neu-VLPs were also tested in BALB-neuT mice. Her2/neu-MPtVLPs were as efficient as prophylactic vaccines against D2F2/E2 and TUBO as those from MPyV. Homologous Her2/neu was better than heterologous, i.e. human Her2/neu-VLPs were better than rat Her2/neu-VLPs against D2F2/E2 and vice versa. Moreover, therapeutic immunization with human Her2/neu-VLPs together with CpG given up to 6 days after challenge protected against D2F2/E2. In BALB-neuT mice, rat Her2/neu-VLPs were less efficient than human Her2/neu-VLPs used in our previous study, implying that protection seen in that study was partly due to the use of human rather than rat Her2/neu. In conclusion, Her2/neu-MPtVLPs are effective both as prophylactic and therapeutic tumor vaccines. Homologous Her2/neu-VLPs are superior to heterologous in transplantable tumor models, while the opposite is true in BALB-neuT mice.
Collapse
Affiliation(s)
- Kalle Andreasson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|