1
|
Palmitoyl transferases act as potential regulators of tumor-infiltrating immune cells and glioma progression. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:716-731. [PMID: 35664705 PMCID: PMC9126852 DOI: 10.1016/j.omtn.2022.04.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 04/29/2022] [Indexed: 12/20/2022]
Abstract
High immune-cell infiltration in glioblastomas (GBMs) leads to immunotherapy resistance. Emerging evidence has shown that zinc finger Asp-His-His-Cyc-type (ZDHHC) palmitoyl transferases participate in regulating tumor progression and the immune microenvironment. In the present study, a large cohort of patients with gliomas from The Cancer Genome Atlas (TCGA) and Rembrandt databases was included to perform omics analysis of ZDHHCs in gliomas. CCK-8, flow cytometry, quantitative real-time PCR, western blotting, and transwell assays were performed to determine the effects of ZDHHC inhibition on glioma cells and microglia. We found that five (ZDHHC11, ZDHHC12, ZDHHC15, ZDHHC22, and ZDHHC23) out of 23 ZDHHCs were aberrantly expressed in gliomas and might play their roles through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway. Further results indicated that inhibition of ZDHHCs with 2-bromopalmitate (2-BP) suppressed glioma-cell viability and autophagy, as well as promoted apoptosis. Targeting ZDHHCs also promoted the sensitivity of glioma cells to temozolomide (TMZ) chemotherapy. In addition, the inhibition of ZDHHCs weakened the migratory ability of microglia induced by glioma cells in vitro and in vivo. Taken together, our findings suggest that the inhibition of ZDHHCs suppresses glioma-cell viability and microglial infiltration. Targeting ZDHHCs may be promising for glioma treatments.
Collapse
|
2
|
Bastiancich C, Bastiat G, Lagarce F. Gemcitabine and glioblastoma: challenges and current perspectives. Drug Discov Today 2017; 23:416-423. [PMID: 29074439 DOI: 10.1016/j.drudis.2017.10.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/22/2017] [Accepted: 10/12/2017] [Indexed: 12/15/2022]
Abstract
Gemcitabine is a nucleoside analog currently used for the treatment of various solid tumors as a single agent or in combination with other chemotherapeutic drugs. Its use against highly aggressive brain tumors (glioblastoma) has been evaluated in preclinical and clinical trials leading to controversial results. Gemcitabine can inhibit DNA chain elongation, is a potent radiosensitizer and it can enhance antitumor immune activity, but it also presents some drawbacks (e.g., short half-life, side effects, chemoresistance). The aim of this review is to discuss the challenges related to the use of gemcitabine for glioblastoma and to report recent studies that suggest overcoming these obstacles opening new perspectives for its use in the field (e.g., gemcitabine derivatives and/or nanomedicines).
Collapse
Affiliation(s)
- Chiara Bastiancich
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France; Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Guillaume Bastiat
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France
| | - Frederic Lagarce
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France; Pharmacy Department, CHU Angers, Angers University Hospital, France.
| |
Collapse
|
3
|
The Role of Deoxycytidine Kinase (dCK) in Radiation-Induced Cell Death. Int J Mol Sci 2016; 17:ijms17111939. [PMID: 27879648 PMCID: PMC5133934 DOI: 10.3390/ijms17111939] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/12/2016] [Accepted: 11/14/2016] [Indexed: 12/26/2022] Open
Abstract
Deoxycytidine kinase (dCK) is a key enzyme in deoxyribonucleoside salvage and the anti-tumor activity for many nucleoside analogs. dCK is activated in response to ionizing radiation (IR)-induced DNA damage and it is phosphorylated on Serine 74 by the Ataxia-Telangiectasia Mutated (ATM) kinase in order to activate the cell cycle G2/M checkpoint. However, whether dCK plays a role in radiation-induced cell death is less clear. In this study, we genetically modified dCK expression by knocking down or expressing a WT (wild-type), S74A (abrogates phosphorylation) and S74E (mimics phosphorylation) of dCK. We found that dCK could decrease IR-induced total cell death and apoptosis. Moreover, dCK increased IR-induced autophagy and dCK-S74 is required for it. Western blotting showed that the ratio of phospho-Akt/Akt, phospho-mTOR/mTOR, phospho-P70S6K/P70S6K significantly decreased in dCK-WT and dCK-S74E cells than that in dCK-S74A cells following IR treatment. Reciprocal experiment by co-immunoprecipitation showed that mTOR can interact with wild-type dCK. IR increased polyploidy and decreased G2/M arrest in dCK knock-down cells as compared with control cells. Taken together, phosphorylated and activated dCK can inhibit IR-induced cell death including apoptosis and mitotic catastrophe, and promote IR-induced autophagy through PI3K/Akt/mTOR pathway.
Collapse
|
4
|
Xiong J, Altaf K, Ke N, Wang Y, Tang J, Tan C, Li A, Zhang H, He D, Liu X. dCK Expression and Gene Polymorphism With Gemcitabine Chemosensitivity in Patients With Pancreatic Ductal Adenocarcinoma: A Strobe-Compliant Observational Study. Medicine (Baltimore) 2016; 95:e2936. [PMID: 26962792 PMCID: PMC4998873 DOI: 10.1097/md.0000000000002936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to investigate the relationship of deoxycytidine kinase (dCK) protein expression and gene single-nucleotide polymorphisms to gemcitabine chemosensitivity in patients with pancreatic ductal adenocarcinoma (PDAC).In total, 54 patients with resectable PDAC, who received postoperative gemcitabine-based therapy, were enrolled in this study, from January 2011 to April 2013. The dCK protein expression was measured retrospectively by immunohistochemistry. Furthermore, 5 single-nucleotide polymorphisms (C1205T, A9846G, A70G, C356G, and C364T) of the dCK gene were detected in PDAC cells by PCR amplification and sequencing.The dCK protein expression was found to be negatively correlated with age (P = 0.006), but correlated positively with overall survival (OS) (P = 0.000) and disease-free survival (DFS) (P = 0.003). The A9846G AA genotype in the dCK gene was significantly associated with reduced mortality compared with AG and GG genotypes. The OS and DFS were longer in patients with the A9846G AA genotype than the AG and GG genotypes. In univariate and multivariate analyses, we found that the dCK protein expression and A9846G genotype were significant predictors of both OS and DFS.Our study suggests that the dCK protein expression and A9846G genotype may act as prognostic biomarkers in identifying patients who are likely to benefit from postoperative gemcitabine therapy in PDAC.
Collapse
Affiliation(s)
- Junjie Xiong
- From the Department of Pancreatic Surgery (JX, NK, AL, CT, HZ, XL); State Key Laboratory of Biotherapy and Cancer Center (JT); Department of Thyroid and Breast Surgery (YW); Department of Pathology (DH), West China Hospital, Sichuan University, Chengdu, China; and Department of General Surgery (KA), Warrington and Halton Hospitals, NHS Foundation Trust, Lovely Lane, Warrington, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Slot Christiansen L, Egeblad L, Munch-Petersen B, Piškur J, Knecht W. New Variants of Tomato Thymidine Kinase 1 Selected for Increased Sensitivity of E. coli KY895 towards Azidothymidine. Cancers (Basel) 2015; 7:966-80. [PMID: 26061968 PMCID: PMC4491694 DOI: 10.3390/cancers7020819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/19/2015] [Accepted: 05/27/2015] [Indexed: 11/17/2022] Open
Abstract
Nucleoside analogues (NA) are prodrugs that are phosphorylated by deoxyribonucleoside kinases (dNKs) as the first step towards a compound toxic to the cell. During the last 20 years, research around dNKs has gone into new organisms other than mammals and viruses. Newly discovered dNKs have been tested as enzymes for suicide gene therapy. The tomato thymidine kinase 1 (ToTK1) is a dNK that has been selected for its in vitro kinetic properties and then successfully been tested in vivo for the treatment of malignant glioma. We present the selection of two improved variants of ToTK1 generated by random protein engineering for suicide gene therapy with the NA azidothymidine (AZT).We describe their selection, recombinant production and a subsequent kinetic and biochemical characterization. Their improved performance in killing of E. coli KY895 is accompanied by an increase in specificity for the NA AZT over the natural substrate thymidine as well as a decrease in inhibition by dTTP, the end product of the nucleoside salvage pathway for thymidine. The understanding of the enzymatic properties improving the variants efficacy is instrumental to further develop dNKs for use in suicide gene therapy.
Collapse
Affiliation(s)
- Louise Slot Christiansen
- Department of Biology, Lund University, Lund 22362, Sweden; E-Mail:
- Lund Protein Production Platform, Lund University, Lund 22362, Sweden; E-Mail:
| | - Louise Egeblad
- Lund Protein Production Platform, Lund University, Lund 22362, Sweden; E-Mail:
| | - Birgitte Munch-Petersen
- Department of Science, Systems and Models, Roskilde University, Roskilde 4000, Denmark; E-Mail:
| | - Jure Piškur
- Department of Biology, Lund University, Lund 22362, Sweden; E-Mail:
| | - Wolfgang Knecht
- Department of Biology, Lund University, Lund 22362, Sweden; E-Mail:
- Lund Protein Production Platform, Lund University, Lund 22362, Sweden; E-Mail:
| |
Collapse
|
6
|
Slot Christiansen L, Munch-Petersen B, Knecht W. Non-Viral Deoxyribonucleoside Kinases--Diversity and Practical Use. J Genet Genomics 2015; 42:235-48. [PMID: 26059771 DOI: 10.1016/j.jgg.2015.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/04/2015] [Accepted: 01/05/2015] [Indexed: 12/30/2022]
Abstract
Deoxyribonucleoside kinases (dNKs) phosphorylate deoxyribonucleosides to their corresponding monophosphate compounds. dNks also phosphorylate deoxyribonucleoside analogues that are used in the treatment of cancer or viral infections. The study of the mammalian dNKs has therefore always been of great medical interest. However, during the last 20 years, research on dNKs has gone into non-mammalian organisms. In this review, we focus on non-viral dNKs, in particular their diversity and their practical applications. The diversity of this enzyme family in different organisms has proven to be valuable in studying the evolution of enzymes. Some of these newly discovered enzymes have been useful in numerous practical applications in medicine and biotechnology, and have contributed to our understanding of the structural basis of nucleoside and nucleoside analogue activation.
Collapse
Affiliation(s)
| | - Birgitte Munch-Petersen
- Department of Biology, Lund University, Lund 22362, Sweden; Department of Science, Systems and Models, Roskilde University, Roskilde 4000, Denmark
| | - Wolfgang Knecht
- Department of Biology, Lund University, Lund 22362, Sweden; Lund Protein Production Platform, Lund University, Lund 22362, Sweden.
| |
Collapse
|
7
|
In vitro and in vivo double-enhanced suicide gene therapy mediated by generation 5 polyamidoamine dendrimers for PC-3 cell line. World J Surg Oncol 2012; 10:3. [PMID: 22226139 PMCID: PMC3283475 DOI: 10.1186/1477-7819-10-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 01/08/2012] [Indexed: 11/27/2022] Open
Abstract
Background One of the most frequently used and efficient suicide gene therapies for prostate cancer is HSV-TK/GCV system, but its application has been limited due to lack of favorable gene vector and the reduction of "bystander effect". We investigated the effect of a novel combination of HSV-TK/GCV fused with Cx43 and gemcitabine using non-viral vector generation 5 polyamidoamine dendrimers (G5-PAMAM-D) on PC-3 cells. Methods RT-PCR and Western blot were used to detect TK and Cx43 expression. Cell viability and proliferation were measured by using MTT assay. Cell apoptosis was detected with double-staining of Annexin V-FITC and propidium iodide (PI) by flow cytometry. Nude mice models were established to evaluate the therapeutic effect in vivo. Results G5-PAMAM-D efficiently delivered recombinant plasmids into PC-3 cells and HSV-TK and Cx43 could be expressed successfully. With gemcitabine, G5-PAMAM-D mediated HSV-TK and Cx43 expression effectively inhibited prostate cancer PC-3 cell proliferation, leading to more cellular apoptosis and inhibiting PC-3 tumor growth in nude mice models. Conclusions This study illustrates that this new suicide gene system mediated by G5-PAMAM-D is effective in decreasing PC-3 cell proliferation and inducing cell apoptosis, and inhibiting tumor growth in vivo. In a word, our study could provide a potential approach for gene therapy of prostate cancer.
Collapse
|
8
|
Chen Y, Wang G, Kong D, Zhang Z, Yang K, Liu R, Zhao W, Xu Y. Double-targeted and double-enhanced suicide gene therapy mediated by generation 5 polyamidoamine dendrimers for prostate cancer. Mol Carcinog 2011; 52:237-46. [DOI: 10.1002/mc.21850] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 11/02/2011] [Accepted: 11/08/2011] [Indexed: 01/09/2023]
|
9
|
Geutjes EJ, Tian S, Roepman P, Bernards R. Deoxycytidine kinase is overexpressed in poor outcome breast cancer and determines responsiveness to nucleoside analogs. Breast Cancer Res Treat 2011; 131:809-18. [PMID: 21465168 DOI: 10.1007/s10549-011-1477-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 03/19/2011] [Indexed: 11/24/2022]
Abstract
Only a minority of breast cancer patients responds to chemotherapy and we lack predictive biomarkers that help to select a patient-tailored therapy that takes into consideration the molecular heterogeneity of the cancer type. Responsiveness to the clinically important nucleoside analogs gemcitabine and decitabine may be critically determined by Deoxycytidine kinase (DCK) expression as this enzyme is required to convert the inactive prodrugs into their pharmacologically active forms. Here, we examined whether DCK is differentially expressed in breast cancer and evaluated whether DCK expression levels control responsiveness to these nucleoside analogs in vitro by experimentally modulating DCK expression levels. We examined DCK expression in gene expression data sets of breast tumors including the series of 295 consecutive patients that have been classified into low or high risk for recurrence using the MammaPrint 70 gene profile. We found that DCK is expressed at higher levels in patients having poor clinical outcome as judged by the MammaPrint assay. As such, patients that have a poor prognosis may thus be susceptible to treatment with nucleoside analogs. In support of this, we found a causal relationship between DCK levels and sensitivity to these nucleoside analogs in breast cancer cell lines. The data indicate that breast cancers that are at high risk of recurrence express higher levels of DCK, which we find to be strongly correlated to a favorable response to nucleoside analogs. The data suggest that DCK expression in breast cancer could be exploited to select patients that are likely to respond to treatment with nucleoside analogs.
Collapse
Affiliation(s)
- Ernst-Jan Geutjes
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
10
|
Saini V, Martyshki DV, Towner VD, Mirov SB, Everts M. Limitations of Adenoviral Vector-Mediated Delivery of Gold Nanoparticles to Tumors for Hyperthermia Induction. ACTA ACUST UNITED AC 2009; 2. [PMID: 24403982 DOI: 10.2174/1875933500902010027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Novel combinatorial treatment strategies are desired to achieve tumor eradication. In this regard, nanotechnology and gene therapy hold the potential to expand the available tumor treatment options. In particular, gold nanoparticles (AuNPs) have been utilized for hyperthermic tumor cell ablation. Similarly, adenoviral (Ad) vectors have been utilized for targeting, imaging, and cancer gene therapy. Thus, to combine AuNP-mediated hyperthermia with Ad vector-based gene therapy, we have previously coupled AuNPs to Ad vectors. Herein we tested the capability of these AuNP-coupled Ad vectors for hyperthermic tumor cell ablation. Towards this end, we compared absorption characteristics of different sized AuNPs and determined that in our system 20 nm diameter AuNPs are suitable for laser induced hyperthermic tumor cell killing. In addition, we observed that AuNPs outside and inside the cell contribute differentially towards hyperthermia induction. Unfortunately, due to the limitation of delivery of required amounts of AuNPs to cells, we observed that AuNP-coupled Ad vectors are unable to kill tumor cells via hyperthermia. However, with future technological advances, it may become possible to realize the potential of the multifunctional AuNP-coupled Ad vector system for simultaneous targeting, imaging, and combined hyperthermia and gene therapy of tumors.
Collapse
Affiliation(s)
- Vaibhav Saini
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, Surgery, and the Gene Therapy Center ; Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama ; Screening Technologies Branch, Developmental Therapeutics Program, National Cancer Institute at Frederick, Frederick, Maryland
| | - Dmitri V Martyshki
- Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Victoria D Towner
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, Surgery, and the Gene Therapy Center
| | - Sergey B Mirov
- Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Maaike Everts
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, Surgery, and the Gene Therapy Center ; Division of Molecular and Cellular Pathology, Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
11
|
Development of gene therapy in association with clinically used cytotoxic deoxynucleoside analogues. Cancer Gene Ther 2009; 16:541-50. [PMID: 19343063 DOI: 10.1038/cgt.2009.25] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The clinical use of cytotoxic deoxynucleoside analogues is often limited by resistance mechanisms due to enzymatic deficiency, or high toxicity in nontumor tissues. To improve the use of these drugs, gene therapy approaches have been proposed and studied, associating clinically used deoxynucleoside analogues such as araC and gemcitabine and suicide genes or myeloprotective genes. In this review, we provide an update of recent results in this area, with particular emphasis on human deoxycytidine kinase, the deoxyribonucleoside kinase from Drosophila melanogaster, purine nucleoside phosphorylase from Escherichia coli, and human cytidine deaminase. Data from literature clearly show the feasibility of these systems, and clinical trials are warranted to conclude on their use in the treatment of cancer patients.
Collapse
|
12
|
Maes W, Rosas GG, Verbinnen B, Boon L, De Vleeschouwer S, Ceuppens JL, Van Gool SW. DC vaccination with anti-CD25 treatment leads to long-term immunity against experimental glioma. Neuro Oncol 2009; 11:529-42. [PMID: 19336528 DOI: 10.1215/15228517-2009-004] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We studied the feasibility, efficacy, and mechanisms of dendritic cell (DC) immunotherapy against murine malignant glioma in the experimental GL261 intracranial (IC) tumor model. When administered prophylactically, mature DCs (DCm) ex vivo loaded with GL261 RNA (DCm-GL261-RNA) protected half of the vaccinated mice against IC glioma, whereas treatment with mock-loaded DCm or DCm loaded with irrelevant antigens did not result in tumor protection. In DCm-GL261-RNA-vaccinated mice, a tumor-specific cellular immune response was observed ex vivo in the spleen and tumordraining lymph node cells. Specificity was also shown in vivo on the level of tumor challenge. Depletion of CD8(+) T-cells by anti-CD8 treatment at the time of tumor challenge demonstrated their essential role in vaccine-mediated antitumor immunity. Depletion of CD25(+) regulatory T-cells (Tregs) by anti-CD25 (aCD25) treatment strongly enhanced the efficacy of DC vaccination and was itself also protective, independently of DC vaccination. However, DC vaccination was essential to protect the animals from IC tumor rechallenge. No long-term protection was observed in animals that initially received aCD25 treatment only. In mice that received DC and/or aCD25 treatment, we retrieved tumor-specific brain-infiltrating cytotoxic T-lymphocytes. These data clearly demonstrate the effectiveness of DC vaccination for the induction of long-lasting immunological protection against IC glioma. They also show the beneficial effect of Treg depletion in this kind of glioma immunotherapy, even combined with DC vaccination.
Collapse
Affiliation(s)
- Wim Maes
- Clinical Immunology, Department of Experimental Medicine, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|