1
|
Suraninpong P, Thongkhao K, Azzeme AM, Suksa-Ard P. Monitoring Drought Tolerance in Oil Palm: Choline Monooxygenase as a Novel Molecular Marker. PLANTS (BASEL, SWITZERLAND) 2023; 12:3089. [PMID: 37687336 PMCID: PMC10490023 DOI: 10.3390/plants12173089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Water scarcity negatively impacts oil palm production, necessitating the development of drought-tolerant varieties. This study aimed to develop molecular markers for oil palm breeding programs focused on drought tolerance. Genes associated with drought tolerance were selected, and single nucleotide polymorphism (SNP)-based markers were developed. Genomic DNA was successfully extracted from 17 oil palm varieties, and 20 primers out of 44 were effectively amplified. Screening with single-strand conformation polymorphism (SSCP) revealed an informative SNP marker from the choline monooxygenase (CMO) gene, exhibiting CC, CT, and TT genotypes. Notably, the oil palm variety La Mé showed the CT genotype, while Surat Thani 2 (Deli × La Mé) exhibited the CT and CC genotypes in a 1:1 ratio. Gene expression analysis confirmed the association of the CMO gene with drought tolerance in commercial oil palm varieties. The full-length CMO gene was 1308 bp long and shared sequence similarities with other plant species. However, amino acid sequence variations were observed compared with existing databases. These findings highlight the potential utility of the CMO marker for drought tolerance selection, specifically within the La Mé parent of oil palm Surat Thani 2 varieties, and strongly confirm the La Mé S5 population and Surat Thani 2 as drought-tolerant varieties.
Collapse
Affiliation(s)
- Potjamarn Suraninpong
- School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand;
- Biomass and Oil Palm Center of Excellence, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Kannika Thongkhao
- School of Languages and General Education, Walailak University, Nakhon Si Thammarat 80161, Thailand;
| | - Azzreena Mohamad Azzeme
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Padungsak Suksa-Ard
- School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand;
| |
Collapse
|
2
|
Chakraborty J, Suzuki-Minakuchi C, Okada K, Nojiri H. Thermophilic bacteria are potential sources of novel Rieske non-heme iron oxygenases. AMB Express 2017; 7:17. [PMID: 28050858 PMCID: PMC5209329 DOI: 10.1186/s13568-016-0318-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/23/2016] [Indexed: 11/10/2022] Open
Abstract
Rieske non-heme iron oxygenases, which have a Rieske-type [2Fe-2S] cluster and a non-heme catalytic iron center, are an important family of oxidoreductases involved mainly in regio- and stereoselective transformation of a wide array of aromatic hydrocarbons. Though present in all domains of life, the most widely studied Rieske non-heme iron oxygenases are found in mesophilic bacteria. The present study explores the potential for isolating novel Rieske non-heme iron oxygenases from thermophilic sources. Browsing the entire bacterial genome database led to the identification of 45 homologs from thermophilic bacteria distributed mainly among Chloroflexi, Deinococcus-Thermus and Firmicutes. Thermostability, measured according to the aliphatic index, showed higher values for certain homologs compared with their mesophilic relatives. Prediction of substrate preferences indicated that a wide array of aromatic hydrocarbons could be transformed by most of the identified oxygenase homologs. Further identification of putative genes encoding components of a functional oxygenase system opens up the possibility of reconstituting functional thermophilic Rieske non-heme iron oxygenase systems with novel properties.
Collapse
|
3
|
|
4
|
Chakraborty J, Ghosal D, Dutta A, Dutta TK. An insight into the origin and functional evolution of bacterial aromatic ring-hydroxylating oxygenases. J Biomol Struct Dyn 2012; 30:419-36. [PMID: 22694139 DOI: 10.1080/07391102.2012.682208] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Bacterial aromatic ring-hydroxylating oxygenases (RHOs) are multicomponent enzyme systems which have potential utility in bioremediation of aromatic compounds in the environment. To cope with the enormous diversity of aromatic compounds in the environment, this enzyme family has evolved remarkably exhibiting broad substrate specificity. RHOs are multicomponent enzymes comprising of a homo- or hetero-multimeric terminal oxygenase and one or more electron transport (ET) protein(s). The present study attempts in depicting the evolutionary scenarios that might have occurred during the evolution of RHOs, by analyzing a set of available sequences including those obtained from complete genomes. A modified classification scheme identifying four new RHO types has been suggested on the basis of their evolutionary and functional behaviours, in relation to structural configuration of substrates and preferred oxygenation site(s). The present scheme emphasizes on the fact that the phylogenetic affiliation of RHOs is distributed among four distinct 'Similarity classes', independent of the constituent ET components. Similar combination of RHO components that was previously considered to be equivalent and classified together [Kweon et al., BMC Biochemistry 9, 11 (2008)] were found here in distinct similarity classes indicating the role of substrate-binding terminal oxygenase in guiding the evolution of RHOs irrespective of the nature of constituent ET components. Finally, a model for evolution of the multicomponent RHO enzyme system has been proposed, beginning from genesis of the terminal oxygenase components followed by recruitment of constituent ET components, finally evolving into various 'extant' RHO types.
Collapse
|
5
|
Díaz-Sánchez ÁG, González-Segura L, Mújica-Jiménez C, Rudiño-Piñera E, Montiel C, Martínez-Castilla LP, Muñoz-Clares RA. Amino acid residues critical for the specificity for betaine aldehyde of the plant ALDH10 isoenzyme involved in the synthesis of glycine betaine. PLANT PHYSIOLOGY 2012; 158:1570-82. [PMID: 22345508 PMCID: PMC3343730 DOI: 10.1104/pp.112.194514] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plant Aldehyde Dehydrogenase10 (ALDH10) enzymes catalyze the oxidation of ω-primary or ω-quaternary aminoaldehydes, but, intriguingly, only some of them, such as the spinach (Spinacia oleracea) betaine aldehyde dehydrogenase (SoBADH), efficiently oxidize betaine aldehyde (BAL) forming the osmoprotectant glycine betaine (GB), which confers tolerance to osmotic stress. The crystal structure of SoBADH reported here shows tyrosine (Tyr)-160, tryptophan (Trp)-167, Trp-285, and Trp-456 in an arrangement suitable for cation-π interactions with the trimethylammonium group of BAL. Mutation of these residues to alanine (Ala) resulted in significant K(m)(BAL) increases and V(max)/K(m)(BAL) decreases, particularly in the Y160A mutant. Tyr-160 and Trp-456, strictly conserved in plant ALDH10s, form a pocket where the bulky trimethylammonium group binds. This space is reduced in ALDH10s with low BADH activity, because an isoleucine (Ile) pushes the Trp against the Tyr. Those with high BADH activity instead have Ala (Ala-441 in SoBADH) or cysteine, which allow enough room for binding of BAL. Accordingly, the mutation A441I decreased the V(max)/K(m)(BAL) of SoBADH approximately 200 times, while the mutation A441C had no effect. The kinetics with other ω-aminoaldehydes were not affected in the A441I or A441C mutant, demonstrating that the existence of an Ile in the second sphere of interaction of the aldehyde is critical for discriminating against BAL in some plant ALDH10s. A survey of the known sequences indicates that plants have two ALDH10 isoenzymes: those known to be GB accumulators have a high-BAL-affinity isoenzyme with Ala or cysteine in this critical position, while non GB accumulators have low-BAL-affinity isoenzymes containing Ile. Therefore, BADH activity appears to restrict GB synthesis in non-GB-accumulator plants.
Collapse
|
6
|
Chen THH, Murata N. Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. PLANT, CELL & ENVIRONMENT 2011; 34:1-20. [PMID: 20946588 DOI: 10.1111/j.1365-3040.2010.02232.x] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Various compatible solutes enable plants to tolerate abiotic stress, and glycinebetaine (GB) is one of the most-studied among such solutes. Early research on GB focused on the maintenance of cellular osmotic potential in plant cells. Subsequent genetically engineered synthesis of GB-biosynthetic enzymes and studies of transgenic plants demonstrated that accumulation of GB increases tolerance of plants to various abiotic stresses at all stages of their life cycle. Such GB-accumulating plants exhibit various advantageous traits, such as enlarged fruits and flowers and/or increased seed number under non-stress conditions. However, levels of GB in transgenic GB-accumulating plants are relatively low being, generally, in the millimolar range. Nonetheless, these low levels of GB confer considerable tolerance to various stresses, without necessarily contributing significantly to cellular osmotic potential. Moreover, low levels of GB, applied exogenously or generated by transgenes for GB biosynthesis, can induce the expression of certain stress-responsive genes, including those for enzymes that scavenge reactive oxygen species. Thus, transgenic approaches that increase tolerance to abiotic stress have enhanced our understanding of mechanisms that protect plants against such stress.
Collapse
Affiliation(s)
- Tony H H Chen
- Department of Horticulture, ALS 4017, Oregon State University, Corvallis, OR 97331, USA National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | |
Collapse
|
7
|
Structural characterization of a heteropolysaccharide isolated from hot water extract of the stems of Amaranthus tricolor Linn. (Amaranthus gangeticus L.). Carbohydr Res 2009; 344:2412-6. [DOI: 10.1016/j.carres.2009.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/09/2009] [Accepted: 09/13/2009] [Indexed: 11/20/2022]
|
8
|
Li Q, Yin H, Li D, Zhu H, Zhang Y, Zhu W. Isolation and characterization of CMO gene promoter from halophyte Suaeda liaotungensis K. J Genet Genomics 2009; 34:355-61. [PMID: 17498634 DOI: 10.1016/s1673-8527(07)60038-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 08/05/2006] [Indexed: 11/21/2022]
Abstract
The 5'-flanking proximal region of stress-induced gene encoding choline monooxygenase (CMO) was isolated by Adaptor-PCR and TAIL-PCR from halophyte Suaeda liaotungensis K. A total of 2,204 bp DNA sequence was obtained. The transcription start site, which is located at 128 bp upstream to the start ATG, was predicted by the TSSP-TCM program. The functional elements were analysed by PLACE program. The obtained SlCMO gene promoter contains the basic elements: TATA-box, CAAT-box, and stress-induced elements, for example, salt responsive element (GAAAAA), cold responsive elements (CANNTG), ABA (Abscisic Acid) responsive elements (NAACAA), water stress element (CGGTTG), and WUN responsive elements (GTTAGGTTC). Isolation and analysis of the promoter of the CMO gene from S. liaotungensis lays a foundation for characterising the stress-induced promoter elements, studying the relationship between the structure and function of the promoter, and investigating the molecular mechanism of CMO gene regulation.
Collapse
Affiliation(s)
- Qiuli Li
- College of Life Science, Liaoning Normal University, Dalian 116029, China.
| | | | | | | | | | | |
Collapse
|
9
|
Fitzgerald TL, Waters DLE, Henry RJ. Betaine aldehyde dehydrogenase in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2009; 11:119-30. [PMID: 19228319 DOI: 10.1111/j.1438-8677.2008.00161.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant betaine aldehyde dehydrogenases (BADHs) have been the target of substantial research, especially during the last 20 years. Initial characterisation of BADH as an enzyme involved in the production of glycine betaine (GB) has led to detailed studies of the role of BADH in the response of plants to abiotic stress in vivo, and the potential for transgenic expression of BADH to improve abiotic stress tolerance. These studies have, in turn, yielded significant information regarding BADH and GB function. Recent research has identified the potential for BADH as an antibiotic-free marker for selection of transgenic plants, and a major role for BADH in 2-acetyl-1-pyrroline-based fragrance associated with jasmine and basmati style aromatic rice varieties.
Collapse
Affiliation(s)
- T L Fitzgerald
- Grain Foods CRC, Centre for Plant Conservation Genetics, Southern Cross University, Lismore, NSW, Australia
| | | | | |
Collapse
|
10
|
Wang LW, Showalter AM. Cloning and salt-induced, ABA-independent expression of choline mono-oxygenase in Atriplex prostrata. PHYSIOLOGIA PLANTARUM 2004; 120:405-412. [PMID: 15032837 DOI: 10.1111/j.0031-9317.2004.00247.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Certain plants accumulate glycinebetaine, a type of osmoprotectant, in response to salinity. Glycinebetaine is synthesized in these plants via the two-step oxidation of choline, and the first step is catalysed by choline mono-oxygenase (CMO; EC 1.14.15.7). Cloned by RT-PCR and 3'-RACE, the cDNA of Atriplex prostrata CMO (ApCMO) is 1669 bp in length and encodes a full-length protein of 438 amino acids. The deduced amino acid sequence of ApCMO revealed a Rieske-type [2Fe-2S] cluster motif and a mononuclear non-heme Fe binding motif, and shares 82.9% identity and 87.2% similarity with the deduced amino acid sequence of spinach CMO. Accumulation of CMO transcript and glycinebetaine both increased in response to NaCl treatment. Without salt treatment, CMO mRNA was detected in stems and 5-day-old seedlings, but not in leaves, roots and older seedlings. With salt treatment, CMO mRNA accumulated dramatically in stems, leaves and roots, with the most abundant accumulation occurring in young stems. Although abscisic acid may initiate global physiological reactions in response to osmotic stress, it did not induce the expression of CMO in A. prostrata. In summary, salt-induction of CMO mRNA in A. prostrata is more substantial than that reported in spinach and sugar beet, and the plant may serve as a useful model to study regulation of glycinebetaine synthesis by environmental stress.
Collapse
Affiliation(s)
- Li-Wen Wang
- Department of Environmental and Plant Biology, Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701-2979, USA
| | | |
Collapse
|