1
|
Banliat C, Mahé C, Lavigne R, Com E, Pineau C, Labas V, Guyonnet B, Mermillod P, Saint-Dizier M. The proteomic analysis of bovine embryos developed in vivo or in vitro reveals the contribution of the maternal environment to early embryo. BMC Genomics 2022; 23:839. [PMID: 36536309 PMCID: PMC9764490 DOI: 10.1186/s12864-022-09076-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Despite many improvements with in vitro culture systems, the quality and developmental ability of mammalian embryos produced in vitro are still lower than their in vivo counterparts. Though previous studies have evidenced differences in gene expression between in vivo- and in vitro-derived bovine embryos, there is no comparison at the protein expression level. RESULTS A total of 38 pools of grade-1 quality bovine embryos at the 4-6 cell, 8-12 cell, morula, compact morula, and blastocyst stages developed either in vivo or in vitro were analyzed by nano-liquid chromatography coupled with label-free quantitative mass spectrometry, allowing for the identification of 3,028 proteins. Multivariate analysis of quantified proteins showed a clear separation of embryo pools according to their in vivo or in vitro origin at all stages. Three clusters of differentially abundant proteins (DAPs) were evidenced according to embryo origin, including 463 proteins more abundant in vivo than in vitro across development and 314 and 222 proteins more abundant in vitro than in vivo before and after the morula stage, respectively. The functional analysis of proteins found more abundant in vivo showed an enrichment in carbohydrate metabolism and cytoplasmic cellular components. Proteins found more abundant in vitro before the morula stage were mostly localized in mitochondrial matrix and involved in ATP-dependent activity, while those overabundant after the morula stage were mostly localized in the ribonucleoprotein complex and involved in protein synthesis. Oviductin and other oviductal proteins, previously shown to interact with early embryos, were among the most overabundant proteins after in vivo development. CONCLUSIONS The maternal environment led to higher degradation of mitochondrial proteins at early developmental stages, lower abundance of proteins involved in protein synthesis at the time of embryonic genome activation, and a global upregulation of carbohydrate metabolic pathways compared to in vitro production. Furthermore, embryos developed in vivo internalized large amounts of oviductin and other proteins probably originated in the oviduct as soon as the 4-6 cell stage. These data provide new insight into the molecular contribution of the mother to the developmental ability of early embryos and will help design better in vitro culture systems.
Collapse
Affiliation(s)
- Charles Banliat
- grid.12366.300000 0001 2182 6141INRAE, CNRS, Tours University, IFCE, UMR PRC, Nouzilly, France ,Union Evolution, Rue Eric Tabarly, Noyal-Sur-Vilaine, France
| | - Coline Mahé
- grid.12366.300000 0001 2182 6141INRAE, CNRS, Tours University, IFCE, UMR PRC, Nouzilly, France
| | - Régis Lavigne
- grid.410368.80000 0001 2191 9284Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Rennes, France ,grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, Rennes, France
| | - Emmanuelle Com
- grid.410368.80000 0001 2191 9284Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Rennes, France ,grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, Rennes, France
| | - Charles Pineau
- grid.410368.80000 0001 2191 9284Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Rennes, France ,grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, Rennes, France
| | - Valérie Labas
- grid.12366.300000 0001 2182 6141INRAE, CNRS, Tours University, IFCE, UMR PRC, Nouzilly, France ,Pixanim, INRAE, Tours University, CHU of Tours, Nouzilly, France
| | - Benoit Guyonnet
- Union Evolution, Rue Eric Tabarly, Noyal-Sur-Vilaine, France
| | - Pascal Mermillod
- grid.12366.300000 0001 2182 6141INRAE, CNRS, Tours University, IFCE, UMR PRC, Nouzilly, France
| | - Marie Saint-Dizier
- grid.12366.300000 0001 2182 6141INRAE, CNRS, Tours University, IFCE, UMR PRC, Nouzilly, France
| |
Collapse
|
2
|
Zhao Y, Vanderkooi S, Kan FWK. The role of oviduct-specific glycoprotein (OVGP1) in modulating biological functions of gametes and embryos. Histochem Cell Biol 2022; 157:371-388. [PMID: 34993641 PMCID: PMC8979936 DOI: 10.1007/s00418-021-02065-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 01/13/2023]
Abstract
Diverse lines of evidence indicate that the mammalian oviduct makes important contributions to the complex process of reproduction other than being simply a conduit for the transport of gametes and embryos. The cumulative synthesis and transport of proteins secreted by oviductal secretory cells into the oviductal lumen create a microenvironment supporting important reproductive events, including sperm capacitation, fertilization, and early embryo development. Among the components that have been identified in the oviductal fluid is a family of glycosylated proteins known collectively as oviduct-specific glycoprotein (OVGP1) or oviductin. OVGP1 has been identified in several mammalian species, including humans. The present review summarizes the work carried out, in various mammalian species, by many research groups revealing the synthesis and secretion of OVGP1, its fate in the female reproductive tract upon secretion by the oviductal epithelium, and its role in modulating biological functions of gametes and embryos. The production and functions of recombinant human OVGP1 and recombinant OVGP1 of other mammalian species are also discussed. Some of the findings obtained with immunocytochemistry will be highlighted in the present review. It is hoped that the findings obtained from recent studies carried out with recombinant OVGP1 from various species will rekindle researchers’ interest in pursuing further the role of the oviductal microenvironment, of which OVGP1 is a major component, in contributing to the successful occurrence of early reproductive events, and the potential use of OVGP1 in improving the current assisted reproductive technology in alleviating infertility.
Collapse
Affiliation(s)
- Yuewen Zhao
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, ON, K7L 3N, Canada
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Fertility Center, Yale University, Orange, CT, 06477, USA
| | - Sydney Vanderkooi
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, ON, K7L 3N, Canada
| | - Frederick W K Kan
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, ON, K7L 3N, Canada.
| |
Collapse
|
3
|
González-Brusi L, Algarra B, Moros-Nicolás C, Izquierdo-Rico MJ, Avilés M, Jiménez-Movilla M. A Comparative View on the Oviductal Environment during the Periconception Period. Biomolecules 2020; 10:E1690. [PMID: 33348856 PMCID: PMC7766821 DOI: 10.3390/biom10121690] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
The oviduct plays important roles in reproductive events: sperm reservoir formation, final gamete maturation, fertilization and early embryo development. It is well known that the oviductal environment affects gametes and embryos and, ultimately, the health of offspring, so that in vivo embryos are better in terms of morphology, cryotolerance, pregnancy rates or epigenetic profile than those obtained in vitro. The deciphering of embryo-maternal interaction in the oviduct may provide a better understanding of the embryo needs during the periconception period to improve reproductive efficiency. Here, we perform a comparative analysis among species of oviductal gene expression related to embryonic development during its journey through the oviduct, as described to date. Cross-talk communication between the oviduct environment and embryo will be studied by analyses of the secreted or exosomal proteins of the oviduct and the presence of receptors in the membrane of the embryo blastomeres. Finally, we review the data that are available to date on the expression and characterization of the most abundant protein in the oviduct, oviductin (OVGP1), highlighting its fundamental role in fertilization and embryonic development.
Collapse
Affiliation(s)
| | | | | | | | - Manuel Avilés
- Department of Cell Biology and Histology, School of Medicine, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, 30100 Murcia, Spain; (L.G.-B.); (B.A.); (C.M.-N.); (M.J.I.-R.)
| | - Maria Jiménez-Movilla
- Department of Cell Biology and Histology, School of Medicine, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, 30100 Murcia, Spain; (L.G.-B.); (B.A.); (C.M.-N.); (M.J.I.-R.)
| |
Collapse
|
4
|
Banliat C, Tsikis G, Labas V, Teixeira-Gomes AP, Com E, Lavigne R, Pineau C, Guyonnet B, Mermillod P, Saint-Dizier M. Identification of 56 Proteins Involved in Embryo-Maternal Interactions in the Bovine Oviduct. Int J Mol Sci 2020; 21:ijms21020466. [PMID: 31940782 PMCID: PMC7013689 DOI: 10.3390/ijms21020466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 01/18/2023] Open
Abstract
The bovine embryo develops in contact with the oviductal fluid (OF) during the first 4–5 days of pregnancy. The aim of this study was to decipher the protein interactions occurring between the developing embryo and surrounding OF. In-vitro produced 4–6 cell and morula embryos were incubated or not (controls) in post-ovulatory OF (OF-treated embryos) and proteins were then analyzed and quantified by high resolution mass spectrometry (MS) in both embryo groups and in OF. A comparative analysis of MS data allowed the identification and quantification of 56 embryo-interacting proteins originated from the OF, including oviductin (OVGP1) and several annexins (ANXA1, ANXA2, ANXA4) as the most abundant ones. Some embryo-interacting proteins were developmental stage-specific, showing a modulating role of the embryo in protein interactions. Three interacting proteins (OVGP1, ANXA1 and PYGL) were immunolocalized in the perivitelline space and in blastomeres, showing that OF proteins were able to cross the zona pellucida and be taken up by the embryo. Interacting proteins were involved in a wide range of functions, among which metabolism and cellular processes were predominant. This study identified for the first time a high number of oviductal embryo-interacting proteins, paving the way for further targeted studies of proteins potentially involved in the establishment of pregnancy in cattle.
Collapse
Affiliation(s)
- Charles Banliat
- INRAE, CNRS, Université de Tours, IFCE, UMR PRC, 37380 Nouzilly, France; (C.B.); (G.T.); (V.L.); (P.M.)
- Union Evolution, 35530 Noyal-sur-Vilaine, France;
| | - Guillaume Tsikis
- INRAE, CNRS, Université de Tours, IFCE, UMR PRC, 37380 Nouzilly, France; (C.B.); (G.T.); (V.L.); (P.M.)
| | - Valérie Labas
- INRAE, CNRS, Université de Tours, IFCE, UMR PRC, 37380 Nouzilly, France; (C.B.); (G.T.); (V.L.); (P.M.)
- INRAE, Université de Tours, CHU de Tours, Plate-forme CIRE, PAIB, 37380 Nouzilly, France;
| | - Ana-Paula Teixeira-Gomes
- INRAE, Université de Tours, CHU de Tours, Plate-forme CIRE, PAIB, 37380 Nouzilly, France;
- INRAE, UMR 1282 ISP, 37380 Nouzilly, France
| | - Emmanuelle Com
- Inserm, University of Rennes, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, 35000 Rennes, France; (E.C.); (R.L.); (C.P.)
- Protim, Inserm U1085, Irset, Campus de Beaulieu, University of Rennes 1, Proteomics Core Facility, 35000 Rennes, France
| | - Régis Lavigne
- Inserm, University of Rennes, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, 35000 Rennes, France; (E.C.); (R.L.); (C.P.)
- Protim, Inserm U1085, Irset, Campus de Beaulieu, University of Rennes 1, Proteomics Core Facility, 35000 Rennes, France
| | - Charles Pineau
- Inserm, University of Rennes, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, 35000 Rennes, France; (E.C.); (R.L.); (C.P.)
- Protim, Inserm U1085, Irset, Campus de Beaulieu, University of Rennes 1, Proteomics Core Facility, 35000 Rennes, France
| | | | - Pascal Mermillod
- INRAE, CNRS, Université de Tours, IFCE, UMR PRC, 37380 Nouzilly, France; (C.B.); (G.T.); (V.L.); (P.M.)
| | - Marie Saint-Dizier
- INRAE, CNRS, Université de Tours, IFCE, UMR PRC, 37380 Nouzilly, France; (C.B.); (G.T.); (V.L.); (P.M.)
- Faculty of Sciences and Techniques, Department Agrosciences, University of Tours, 37000 Tours, France
- Correspondence: ; Tel.: +33-2-47-42-75-08
| |
Collapse
|
5
|
Hamdi M, Lopera-Vasquez R, Maillo V, Sanchez-Calabuig MJ, Núnez C, Gutierrez-Adan A, Rizos D. Bovine oviductal and uterine fluid support in vitro embryo development. Reprod Fertil Dev 2019; 30:935-945. [PMID: 29167013 DOI: 10.1071/rd17286] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/20/2017] [Indexed: 11/23/2022] Open
Abstract
In order to mimic the maternal oviductal environment, we evaluated the effect of oviductal fluid (OF) and/or uterine fluid (UF) supplementation on in vitro embryo development and quality. In vitro-produced zygotes were cultured with 1.25% OF from Day 1 to Day 4 after insemination (OF group), 1.25% OF from Day 1 to Day 4 followed by 1.25% UF from Day 4 to Day 9 (OF+UF group) or 1.25% UF only from Day 4 to Day 9 (UF group). Control groups were cultured in the presence of synthetic oviduct fluid (SOF) supplemented with 3mgmL-1 bovine serum albumin (BSA) or 5% fetal calf serum (FCS). Supplementation of the culture medium with OF and/or UF (both at 1.25%) supported embryo development (Day 9 blastocyst rate 28.2-30.6%). At 72h after vitrification-warming, the survival of blastocysts from the OF and OF+UF groups was similar to that of blastocysts in the SOF+BSA group (61.0±5.7% and 62.8±6.4% vs 64.8±6.4% respectively), but significantly higher than that of blastocysts from the SOF+FCS group (31.6±4.9%; P<0.001). Blastocysts from the OF group exhibited upregulation of epigenetic genes (i.e. DNA methyltransferase 3α (DNMT3A) and insulin-like growth factor 2 receptor (IGF2R)), compared with expression in the SOF+FCS group (P<0.05). Whereas those from OF+UF and UF groups exhibited downregulation of oxidative stress genes compared to SOF+BSA and OF groups for glutathione peroxidase (GPX1) and to SOF+FCS, SOF+BSA and OF groups for chloride intracellular channel 1 (CLIC1) (P<0.05). In addition, accumulation of reactive oxygen species was lower in blastocysts from the OF, OF+UF and UF groups. In conclusion, the use of low concentrations of OF and UF in in vitro serum-free culture supports embryo development, with OF providing a better control of embryo methylation, whereas UF may have antioxidant activity.
Collapse
Affiliation(s)
- Meriem Hamdi
- Departamento de Reproduccion Animal, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Ctra. de la Coruna KM 5.9 - 28040 Madrid, Spain
| | - Ricaurte Lopera-Vasquez
- Departamento de Reproduccion Animal, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Ctra. de la Coruna KM 5.9 - 28040 Madrid, Spain
| | - Veronica Maillo
- Departamento de Reproduccion Animal, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Ctra. de la Coruna KM 5.9 - 28040 Madrid, Spain
| | - Maria Jesus Sanchez-Calabuig
- Departamento de Reproduccion Animal, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Ctra. de la Coruna KM 5.9 - 28040 Madrid, Spain
| | - Carolina Núnez
- Departamento de Reproduccion Animal, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Ctra. de la Coruna KM 5.9 - 28040 Madrid, Spain
| | - Alfonso Gutierrez-Adan
- Departamento de Reproduccion Animal, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Ctra. de la Coruna KM 5.9 - 28040 Madrid, Spain
| | - Dimitrios Rizos
- Departamento de Reproduccion Animal, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Ctra. de la Coruna KM 5.9 - 28040 Madrid, Spain
| |
Collapse
|
6
|
Algarra B, Maillo V, Avilés M, Gutiérrez-Adán A, Rizos D, Jiménez-Movilla M. Effects of recombinant OVGP1 protein on in vitro bovine embryo development. J Reprod Dev 2018; 64:433-443. [PMID: 30078833 PMCID: PMC6189566 DOI: 10.1262/jrd.2018-058] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Previously, our group demonstrated that recombinant porcine oviductin (pOVGP1) binds to the zona pellucida (ZP) of in vitro-matured (IVM) porcine oocytes with a positive effect on in vitro fertilization (IVF). The fact that pOVGP1 was detected inside IVM oocytes suggested that this protein had a biological role during embryo development. The aim of this study was to evaluate the effects of pOVGP1 on bovine in vitro embryo development. We applied 10 or 50 µg/ml of pOVGP1 during IVF, embryonic in vitro culture (IVC), or both, to evaluate cleavage and embryo development. Blastocyst quality was assessed by analyzing the expression of important developmental genes and the survival rates after vitrification/warming. pOVGP1 was detected in the ZP, perivitelline space, and plasma membrane of blastocysts. No significant differences (P > 0.05) were found in cleavage or blastocyst yield when 10 or 50 µg/ml of pOVGP1 was used during IVF or IVC. However, when 50 µg/ml pOVGP1 was used during IVF + IVC, the number of blastocysts obtained was half that obtained with the control and 10 µg/ml pOVGP1 groups. The survival rates after vitrification/warming of expanded blastocysts cultured with pOVGP1 showed no significant differences between groups (P > 0.05). The use of pOVGP1 during IVF, IVC, or both, increased the relative abundance of mRNA of DSC2, ATF4, AQP3, and DNMT3A, the marker-genes of embryo quality. In conclusion, the use of pOVGP1 during bovine embryo in vitro culture does not affect embryo developmental rates but produces embryos of better quality in terms of the relative abundance of specific genes.
Collapse
Affiliation(s)
- Blanca Algarra
- Department of Cell Biology and Histology, Faculty of Medicine, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca-UMU), University of Murcia, Murcia 30100, Spain
| | - Verónica Maillo
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid 28040, Spain
| | - Manuel Avilés
- Department of Cell Biology and Histology, Faculty of Medicine, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca-UMU), University of Murcia, Murcia 30100, Spain
| | - Alfonso Gutiérrez-Adán
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid 28040, Spain
| | - Dimitrios Rizos
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid 28040, Spain
| | - María Jiménez-Movilla
- Department of Cell Biology and Histology, Faculty of Medicine, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca-UMU), University of Murcia, Murcia 30100, Spain
| |
Collapse
|
7
|
The C-terminal region of OVGP1 remodels the zona pellucida and modifies fertility parameters. Sci Rep 2016; 6:32556. [PMID: 27601270 PMCID: PMC5013273 DOI: 10.1038/srep32556] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/09/2016] [Indexed: 11/13/2022] Open
Abstract
OVGP1 is the major non-serum glycoprotein in the oviduct fluid at the time of fertilization and early embryo development. Its activity differs among species. Here, we show that the C-terminal region of recombinant OVGP1 regulates its binding to the extracellular zona pellucida and affects its activity during fertilization. While porcine OVGP1 penetrates two-thirds of the thickness of the zona pellucida, shorter OVGP1 glycoproteins, including rabbit OVGP1, are restricted to the outer one-third of the zona matrix. Deletion of the C-terminal region reduces the ability of the glycoprotein to penetrate through the zona pellucida and prevents OVGP1 endocytosis. This affects the structure of the zona matrix and increases its resistance to protease digestion. However, only full-length porcine OVGP1 is able to increase the efficiency rate of in vitro fertilization. Thus, our findings document that the presence or absence of conserved regions in the C-terminus of OVGP1 modify its association with the zona pellucida that affects matrix structure and renders the zona matrix permissive to sperm penetration and OVGP1 endocytosis into the egg.
Collapse
|
8
|
Avilés M, Coy P, Rizos D. The oviduct: A key organ for the success of early reproductive events. Anim Front 2015. [DOI: 10.2527/af.2015-0005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Manuel Avilés
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, IMIB-Arrixaca, Murcia, Murcia, Spain
| | - Pilar Coy
- Department of Physiology, Faculty of Veterinary, University of Murcia, IMIB-Arrixaca, Murcia, Murcia, Spain
| | - Dimitrios Rizos
- Departamento de Reproducción Animal, INIA, Ctra. de la Coruña Km. 5,9 - 28040 Madrid, Spain
| |
Collapse
|
9
|
Hribal R, Hachen A, Jewgenow K, Zahmel J, Fernandez-Gonzalez L, Braun BC. The influence of recombinant feline oviductin on different aspects of domestic cat (Felis catus) IVF and embryo quality. Theriogenology 2014; 82:742-9. [PMID: 25023298 DOI: 10.1016/j.theriogenology.2014.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/21/2014] [Accepted: 06/05/2014] [Indexed: 11/25/2022]
Abstract
Oviductin is known to be a key player providing a convenient environment for the process of fertilization affecting this by direct interaction with oocytes and sperm. As in vitro embryo production in the context of assisted reproduction for endangered felids is still in the process of optimization, oviductin might be used to improve IVF results. Recombinant His-tagged feline oviductin was expressed by transformed Escherichia coli BL21DE3 cells. The protein was purified by immobilized metal ion affinity chromatography. The effect of the recombinant protein was characterized in three experiments: a hemizona assay for sperm binding analysis, the IVF outcome, and the relative mRNA expression levels in blastocysts after IVF. A significant higher number of bound sperm cells were found after incubation in oviductin. No significant effect on cleavage, morula, and blastocyst rates with or without oviductin incubation during IVF could be observed. However, the relative mRNA abundance of GJA1, a gene, whose expression level is known to be a marker of embryo quality, was significantly increased (P value less than 0.05) in blastocysts after oviductin treatment. In contrast to this, expression of OCT4, HSP70, DNMT1, DNMT3A, BAX, IGF1R, and GAPDH was not significantly affected. We assume that our recombinant oviductin in its current nonglycosylated form is able to enhance sperm binding. Despite of a missing significant effect on IVF outcome, embryo quality in terms of relative GJA1 expression is influenced positively. These promising results demonstrate the value of recombinant oviductin for the IVF in cats.
Collapse
Affiliation(s)
- Romy Hribal
- Department Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.
| | - Alexandra Hachen
- Department Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Katarina Jewgenow
- Department Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Jennifer Zahmel
- Department Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | | | - Beate C Braun
- Department Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| |
Collapse
|
10
|
Hussain M, Wilson JB. New Paralogues and Revised Time Line in the Expansion of the Vertebrate GH18 Family. J Mol Evol 2013; 76:240-60. [DOI: 10.1007/s00239-013-9553-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 02/20/2013] [Indexed: 01/25/2023]
|
11
|
Das S, Sharma AK, Mohapatra SK, Bhatia V, Chatterjee A, Mohanty A. Purification of cattle oviduct specific proteins and their effect on in vitro embryo development. Livest Sci 2013. [DOI: 10.1016/j.livsci.2012.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Molecular cloning, sequence characterization and heterologous expression of buffalo (Bubalus bubalis) oviduct-specific glycoprotein in E. coli. Mol Biol Rep 2012; 39:10031-43. [DOI: 10.1007/s11033-012-1872-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 06/21/2012] [Indexed: 11/26/2022]
|
13
|
Pradeep MA, Jagadeesh J, De AK, Kaushik JK, Malakar D, Kumar S, Dang AK, Das SK, Mohanty AK. Purification, sequence characterization and effect of goat oviduct-specific glycoprotein on in vitro embryo development. Theriogenology 2010; 75:1005-15. [PMID: 21196036 DOI: 10.1016/j.theriogenology.2010.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 11/04/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022]
Abstract
Oviduct-specific glycoprotein (oviductin) plays an important role during fertilization and early embryonic development. The oviductin cDNA was successfully cloned and sequenced in goat, which possessed an open reading frame of 1620 nucleotides representing 539 amino acids. Predicted amino acid sequence showed very high identity with sheep (97%) followed by cow (94%), porcine (77%), hamster (69%), human (66%), rabbit (65%), mouse (64%) and baboon (62%). The bioinformatics analysis of the sequences revealed the presence of a signal sequence of 21 amino acids, one potential N-linked glycosylation site at position 402, 21 potential O-linked glycosylation sites and 36 potential phosphorylation sites. The native oviductin was purified from the oviductal tissue, which showed three distinct bands on SDS-PAGE and western blot (MW ~60-95 kDa). The predicted molecular weight of goat oviductin was 57.5 kDa, calculated from the amino acid sequences. The observed higher molecular weight has been attributed to the presence of large number of potential O-linked glycosylation sites. The lower concentration (10 μg/mL) of oviductin increased the cleavage rate, morula and blastocyst yield significantly (P < 0.05) as compared to higher concentration (100 μg/mL). Goat oviductin retarded the activity of pronase (0.1%) on zona solubility of oocytes significantly (P < 0.01).
Collapse
Affiliation(s)
- M A Pradeep
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Avilés M, Gutiérrez-Adán A, Coy P. Oviductal secretions: will they be key factors for the future ARTs? Mol Hum Reprod 2010; 16:896-906. [PMID: 20584881 DOI: 10.1093/molehr/gaq056] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A variety of evolutionary processes has led to the development of different organs to ensure that internal fertilization occur successfully. Fallopian tubes are a particularly interesting example of such organs. Some of the key events during fertilization and early embryo development occur in the oviduct. Knowledge of the different components described in the oviduct is extensive. Oviductal components include hormones, growth factors and their receptors that have important roles in the physiology of the oviduct and embryo development. Other oviductal factors protect the gamete and the embryos against oxidative stress and pathogens. Different proteins and enzymes are present in the oviductal fluid and have the ability to interact with the oocyte and the sperm before the fertilization occurs. Of special interest is the oviduct-specific glycoprotein (OVGP1), a glycoprotein that is conserved in different mammals, and its association with the zona pellucida (ZP). Interaction of the oocyte with oviductal secretions leads us to emphasize the concept of 'ZP maturation' within the oviduct. The ZP changes produced in the oviduct result in an increased efficiency of the in vitro fertilization technique in some animal models, contributing in particular to the control of polyspermy and suggesting that a similar role could be played by oviductal factors in human beings. Finally, attention should be given to the presence in the oviductal fluid of several embryotrophic factors and their importance in relation to the in vivo versus in vitro developmental ability of the embryos.
Collapse
Affiliation(s)
- Manuel Avilés
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain.
| | | | | |
Collapse
|
15
|
García ML, Peiró R, Argente MJ, Merchán M, Folch JM, Blasco A, Santacreu MA. Investigation of the oviductal glycoprotein 1 (OVGP1) gene associated with embryo survival and development in the rabbit. J Anim Sci 2010; 88:1597-602. [PMID: 20118424 DOI: 10.2527/jas.2009-2042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An association study was performed in rabbits between early embryo survival and development, and the nonconservative SNP 12944C>G located in exon 11 and the triallellic microsatellite [(GT)(15)T(G)(5), (GT)(14)T(G)(5), and (GT)(11)T(G)(7))] located in the promoter region of the oviductal glycoprotein 1 (OVGP1) gene. We analyzed an F(2) cross of 2 lines of rabbits divergently selected for uterine capacity. A total of 172 and 159 females were slaughtered at 48 and 72 h of gestation, respectively, to determine whether OVGP1 influences ovulation rate, fertilization rate, early embryo survival, and embryonic stage of development. The results of the SNP indicated that all genotypes showed similar early embryo survival and a similar embryonic stage of development at 48 h of gestation. However, at 72 h of gestation, the GG genotype showed greater early embryo survival than the CC genotype (0.56 embryos) and their embryos presented less embryonic development. Analysis of the microsatellite was performed to ascertain the presence or absence of the allele (GT)(14)T(G)(5). At both stages of gestation, the (GT)(14)T(G)(5)/(GT)(14)T(G)(5) genotype showed greater early embryo survival (0.94 and 1.54 embryos at 48 and 72 h of gestation, respectively) and less embryonic development than the homozygous genotypes without the allele (GT)(14)T(G)(5).
Collapse
Affiliation(s)
- M L García
- Departamento de Tecnología Agroalimentaria, Universidad Miguel Hernández de Elche, 03312 Orihuela, Spain.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
A block to polyspermy is required for successful fertilisation and embryo survival in mammals. A higher incidence of polyspermy is observed during in vitro fertilisation (IVF) compared with the in vivo situation in several species. Two groups of mechanisms have traditionally been proposed as contributing to the block to polyspermy in mammals: oviduct-based mechanisms, avoiding a massive arrival of spermatozoa in the proximity of the oocyte, and egg-based mechanisms, including changes in the membrane and zona pellucida (ZP) in reaction to the fertilising sperm. Additionally, a mechanism has been described recently which involves modifications of the ZP in the oviduct before the oocyte interacts with spermatozoa, termed "pre-fertilisation zona pellucida hardening". This mechanism is mediated by the oviductal-specific glycoprotein (OVGP1) secreted by the oviductal epithelial cells around the time of ovulation, and is reinforced by heparin-like glycosaminoglycans (S-GAGs) present in oviductal fluid. Identification of the molecules contributing to the ZP modifications in the oviduct will improve our knowledge of the mechanisms of sperm-egg interaction and could help to increase the success of IVF systems in domestic animals and humans.
Collapse
Affiliation(s)
- Pilar Coy
- Department of Physiology, Faculty of Veterinary, University of Murcia, Spain.
| | | |
Collapse
|
17
|
Merchán M, Peiró R, Argente MJ, Santacreu MA, García ML, Blasco A, Folch JM. Analysis of theoviductal glycoprotein 1polymorphisms and their effects on components of litter size in rabbits. Anim Genet 2009; 40:756-8. [DOI: 10.1111/j.1365-2052.2009.01898.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Kadam KM, D'Souza SJ, Natraj U. Identification of cellular isoform of oviduct-specific glycoprotein: role in oviduct tissue remodeling? Cell Tissue Res 2007; 330:545-56. [PMID: 17909859 DOI: 10.1007/s00441-007-0489-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 08/01/2007] [Indexed: 01/05/2023]
Abstract
The oviduct is known to secrete mucins (MUC1 and MUC9) under the influence of ovarian steroids. The secreted form of MUC1 binds gametes in the oviduct, whereas the cellular form seen in breast cancers has been implicated in cell adhesion and morphogenesis. The secreted MUC9 or oviduct-specific glycoprotein (OGP), in addition to being a mucin, belongs to family 18 glycosylhydrolases and is known to bind gametes and embryos in the oviduct. Studies in our laboratory have identified non-muscle myosin IIA (involved in cell shape, polarity, and morphogenesis) as the protein partner to OGP in gametes. In view of the crucial role of the cortical cytoskeleton in the selective internalization of tight junctions (TJs) /adherent junctions (AJs) or apical junctional complex (AJC) in simple epithelial cells during tissue remodeling, the present study has been undertaken to evaluate the existence of a cellular form of OGP in oviductal tissue, which itself undergoes cyclic tissue remodeling. In silico analysis of the deduced amino-acid sequence of OGP has revealed the presence of several conserved motifs; these imply that OGP is a component of multi-protein complexes such as TJs. Corroborative immunoelectron-microscopic analysis in peri-ovulatory oviduct epithelia in the bonnet monkey has revealed the presence of OGP at the TJ. Co-localization studies of OGP and cadherin demonstrate that, whereas OGP is localized at the tonofilaments of the TJs, cadherin is localized at the intercellular space of the AJ. The possible role of OGP in oviductal tissue remodeling is discussed in light of the present findings and those reported in the literature.
Collapse
Affiliation(s)
- Kaushiki M Kadam
- National Institute for Research in Reproductive Health, Indian Council for Medical Research, Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | | | | |
Collapse
|
19
|
Merchán M, Peiró R, Santacreu MA, Francino O, Folch JM. Rabbit oviductal glycoprotein 1 gene: Genomic organization polymorphism analysis and mRNA expression. Mol Reprod Dev 2007; 74:687-93. [PMID: 17154299 DOI: 10.1002/mrd.20650] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The OVGP1 is an oviductal glycoprotein that has positive effects on fertilization and early embryo development. We have amplified and sequenced the rabbit OVGP1 gene, which spans 13 kb and it is formed by 11 exons and 10 introns. To find polymorphisms, a region encompassing the promoter to intron 1 has been sequenced in 22 rabbits of the H, V, R, and A Spanish lines. We have identified five SNPs and one triallelic microsatellite in the promoter region, and three SNPs and one dinucleotide INDEL in intron 1. The 10 polymorphic sites cosegregate forming two haplotypes. The allelic frequencies of the microsatellite have been analyzed in 98 rabbits belonging to the four lines and the three alleles were found in all the lines. The relative quantification of the OVGP1 mRNA in liver, kidneys, lungs, skeletal muscle, ovary, uterus, and oviduct reveals that the OVGP1 expression in the oviduct is 5,500 higher than in the uterus or ovary, whereas a low level of basal expression is detected in non-reproductive tissues. We have also compared the mRNA expression between samples of oviducts taken from non-mated rabbit and samples of oviducts at different stages of the early pregnancy, but no significant differences were found.
Collapse
Affiliation(s)
- Maribel Merchán
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | | | | | | | | |
Collapse
|
20
|
Qiu JJ, Zhang WW, Wu ZL, Wang YH, Qian M, Li YP. Delay of ZGA initiation occurred in 2-cell blocked mouse embryos. Cell Res 2003; 13:179-85. [PMID: 12862318 DOI: 10.1038/sj.cr.7290162] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
One-cell mouse embryos from KM strain and B6C3F1 strain were cultured in M16 medium, in which 2-cell block generally occurs. Embryos of KM strain exhibited 2-cell block, whereas B6C3F1 embryos, which are regarded as a nonblocking strain, proceeded to the 4-cell stage in our culture condition. It is often assumed that the block of early development is due to the failure of zygotic gene activation (ZGA) in cultured embryos. In this study we examined protein synthesis patterns by two-dimensional gel electrophoresis of [35S] methionine radiolabeled 2-cell embryos. Embryos from the blocking strain and the nonblocking strain were compared in their development both in vitro and in vivo. The detection of TRC expression, a marker of ZGA, at 42 h post hCG in KM embryos developed in vitro suggested that ZGA was also initiated even in the 2-cell arrested embryos. Nevertheless, a significant delay of ZGA was observed in KM strain as compared with normally developed B6C3F1 embryos. At the very beginning of major ZGA as early as 36 h post hCG, TRC has already been expressed in B6C3F1 embryos developed in vitro and KM embryos developed in vivo. But for 2-cell blocked KM embryos, TRC was still not detectable even at 38 h post hCG. These evidences suggest that 2-cell-blocked embryos do initiate ZGA, and that 2-cell block phenomenon is due not to the disability in initiating ZGA, but to a delay of ZGA.
Collapse
Affiliation(s)
- Jia Jing Qiu
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031 Shanghai, China
| | | | | | | | | | | |
Collapse
|