1
|
He Z, Tan X, Yuan M, Chen L, Meng Y, Wang Q, Hu J, Qiu Z, Yang Y. Anethole trithione mitigates LPS/D-Gal-induced acute liver injury by suppressing ROS production and NF-κB activity. Int Immunopharmacol 2025; 152:114371. [PMID: 40054324 DOI: 10.1016/j.intimp.2025.114371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/14/2025] [Accepted: 02/24/2025] [Indexed: 03/24/2025]
Abstract
Acute liver injury (ALI) is a prevalent form of hepatic disease associated with significant morbidity and mortality due to medical treatments, exposure to toxins or viral infections. Anethole trithione (ATT) is a heterocyclic sulfur compound recognized for its chemoprotective properties against cancer and drug-induced toxicity. This study aimed to evaluate the effectiveness of ATT in the treatment of ALI. The therapeutic effects of ATT on hepatic injury were evaluated in vivo by inducing ALI in mice through the administration of lipopolysaccharide (LPS) and D-galactosamine (D-Gal). Additionally, HepG2 and Huh7 cells exposed to LPS were utilized to investigate the underlying mechanisms in vitro. The results indicated that ATT significantly reduced the production of reactive oxygen species (ROS), mitigated oxidative stress-related biochemical markers, and inhibited hepatocyte apoptosis in vivo, resulting in marked improvement in ALI in the murine model. Mechanistic studies conducted both in vivo and in vitro demonstrated that ATT alleviates LPS/D-Gal-induced ALI by inhibiting ROS production and the activity of nuclear factor-kappa B (NF-κB). Collectively, these findings underscore the potential therapeutic benefits of ATT in the management of ALI.
Collapse
Affiliation(s)
- Zhen He
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xiangyun Tan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Ming Yuan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Liang Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yan Meng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Qi Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Junjie Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Zhenpeng Qiu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China.
| | - Yuan Yang
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China.
| |
Collapse
|
2
|
Wang Q, Jiang Y, Xie S, Chen L. Exploring the Efficacy Enhancement Mechanism of Qixue Shuangbu prescription after TCM processing for treating chronic heart failure by regulating ERK/Bcl-2/Bax/Caspases-3 signaling pathway. Heliyon 2024; 10:e30476. [PMID: 38711633 PMCID: PMC11070905 DOI: 10.1016/j.heliyon.2024.e30476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/08/2024] Open
Abstract
Qixue Shuangbu prescription (QSP) has been used for the treatment of chronic heart failure (CHF) with remarkable curative effect. Processed QSP (PQSP) could significantly improve the treatment of CHF after traditional Chinese medicine (TCM) processing. This study elucidated the underlying efficacy enhancement mechanism of QSP after TCM processing for treating CHF in vitro and in vivo. The injury of rat cardiomyoblast H9c2 cells was induced by anoxia/reoxygenation to mimic CHF state in vitro. Sixty Sprague-Dawley rats were used to established CHF model by intraperitoneally injecting doxorubicin (the accumulative dose 15 mg/kg). Biochemical examinations were performed in serum and cellular supernatant, respectively. Cardiac functions and histopathological changes were evaluated in CHF model rats. The protein and mRNA levels of ERK1/2, Bcl-2, Bax and Caspase-3 were evaluated by Western blot and RT-PCR, respectively. All above results of low dose crude QSP-treated group (L-CQSP), high dose CQSP-treated group (H-CQSP), low dose PQSP-treated group (L-PQSP), high dose PQSP-treated group (H-PQSP) were compared to systematically explore correlations between TCM processing and the efficacy enhancement for treating CHF of PQSP. Compared with the model group, the L-CQSP group showed significant improvement in cardiac function at 8th weeks, while no significant improvement in cardiomyocyte apoptosis and fibrosis. Both H-CQSP, L-PQSP and H-PQSP exerted beneficial therapeutic effects in injured H9c2 cardiomyocytes and CHF model rats. L-PQSP and H-PQSP significantly increased cell viability and the activity of SOD, decreased the activities of LDH, MDA and NO, up-regulated the expression of ERK1/2 and Bcl-2, down-regulated the expression of Bax and Caspase-3 compared to the same dosage of CQSP. The efficacy enhancement mechanism of PQSP after TCM processing for treating CHF was directly related to the regulation of ERK/Bcl-2/Bax/Caspases-3 signaling pathway.
Collapse
Affiliation(s)
- Qin Wang
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Yong Jiang
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Shun Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Linwei Chen
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
- Department of Pharmacy, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
| |
Collapse
|
3
|
Abdel-Hady EA. Chromium picolinate supplementation improves cardiac performance in hypoxic rats. Acta Cardiol 2024; 79:387-397. [PMID: 36044000 DOI: 10.1080/00015385.2022.2041782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 12/02/2021] [Accepted: 02/09/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Conditions associated with chronic hypoxia increase morbidity and mortality attributable to cardiovascular complications. Myocardial hypoxia is a common feature in several diseases including: stroke, infarction, anaemia, chronic lung diseases, obstructive sleep apnoea and cyanotic congenital heart defects. The present study was planned to investigate the cardiovascular effects of chronic intermittent hypoxia and its association with increased myocardial oxidative stress. In addition, to evaluate the protective effect of chromium supplementation, aiming at achieving an alternative that may enable to devise a therapy for hypoxic patients. METHODS Male rats were allocated into three groups: control group (normoxic), untreated hypoxic group (exposed to hypoxia 8 h/day, 5 days/week for 6 weeks) and hypoxic group supplemented with chromium picolinate (90 µg/kg/day by gavage). Rats were subjected to measurement of body weight, haematocrit value, mean arterial blood pressure, heart rate and ECG recording. Cardiac activities of isolated hearts were studied on Langendorff preparation under basal conditions and in response to ischaemia/reperfusion. Thereafter, cardiac weights were determined and cardiac tissue catalase activity as well as malondialdhyde level were assessed. RESULTS Significant results were obtained upon exposure to hypoxia including; low body weight, increased haematocrit, elevated blood pressure, left ventricular hypertrophy and impaired cardiac activities, basally and in response to ischaemia/reperfusion challenges, associated with increased oxidative stress in cardiac tissue. At the same time, chromium supplementation increased body weight, lowered blood pressure, reduced ventricular hypertrophy and significantly improved the cardiac performance. CONCLUSION Chromium supplementation confers protection against hypoxia-induced cardiovascular dysfunction by improvement of the antioxidant capacity.
Collapse
Affiliation(s)
- Enas A Abdel-Hady
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Teng H, Wu D, Lu L, Gao C, Wang H, Zhao Y, Wang L. Design and synthesis of 3,4-seco-lupane triterpene derivatives to resist myocardial ischemia-reperfusion injury by inhibiting oxidative stress-mediated mitochondrial dysfunction via the PI3K/AKT/HIF-1α axis. Biomed Pharmacother 2023; 167:115452. [PMID: 37688986 DOI: 10.1016/j.biopha.2023.115452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023] Open
Abstract
In this study, 86 new seco-lupane triterpenoid derivatives were designed, synthesized, and characterized, and their protective activities against ischemia-reperfusion injury were investigated in vitro and in vivo. Structure-activity relationship studies revealed that most target compounds could protect cardiomyocytes against hypoxia/reoxygenation-induced injury in vitro, with compound 85 being the most active and exhibiting more potent protective activity than clinical first-line drugs. Furthermore, all thiophene derivatives exhibited stronger protective activity than furan, pyridine, and pyrazine derivatives, and the protective activity gradually increased with the extension of the alkyl chain and changed in the substituent. The data from the in-vitro and in-vivo experiments revealed that compound 85 protected mitochondria from damage by inhibiting excessive production of oxidative stressors, such as intracellular ROS, which in turn inhibited the apoptosis and necrotize of cardiomyocytes and reduced infarct size, thereby protecting normal cardiac function. It was associated with enhanced activation of the PI3K/AKT-mediated HIF-1α signaling pathway. Therefore, compound 85 acts as an oxidative stress inhibitor, blocks ROS production, protects mitochondria and cells from myocardial ischemia/reperfusion (MI/R) injury, and represents an effective new drug for treating MI/R injury.
Collapse
Affiliation(s)
- Hongbo Teng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Di Wu
- Department of Breast Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Luo Lu
- Drug Evaluation Center of Jilin Province, Changchun, Jilin, China
| | - Chunyu Gao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Haohao Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China.
| | - Liyan Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China.
| |
Collapse
|
5
|
Jghef MM, Boukholda K, Chtourou Y, Fiebich BL, Kebieche M, Soulimani R, Chigr F, Fetoui H. Punicalagin attenuates myocardial oxidative damage, inflammation, and apoptosis in isoproterenol-induced myocardial infarction in rats: Biochemical, immunohistochemical, and in silico molecular docking studies. Chem Biol Interact 2023; 385:110745. [PMID: 37806379 DOI: 10.1016/j.cbi.2023.110745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Myocardial infarction (MI) is a life-threatening ischemic disease and is one of the leading causes of morbidity and mortality worldwide. Punicalagin (PU), the major ellagitannin found in pomegranates, is characterized by multiple antioxidant activities. The aim of this study is to assess the protective effects of PU against isoproterenol (ISO)-induced acute myocardial damage and to investigate its underlying vascular mechanisms using rat model. METHODS: Rats were randomly divided into five groups and were treated orally (p.o.) with PU (25 and 50 mg/kg) for 14 days. ISO was administered subcutaneously (S.C.) (85 mg/kg) on the 15th and 16th days to induce Myocardial infarction. Cardiac markers, oxidative stress markers, and inflammatory cytokines levels were determined in the heart tissue. Immunohistochemistry analysis was performed to determine the protein expression pathways of inflammation, apoptosis and oxidative stress (Nuclear factor erythroid 2-related factor 2 (Nrf-2), and heme oxygenase-1 (HO-1) in all the groups. In silico study was carried out to evaluate the molecular interaction of PU with some molecular targets. RESULTS: Our results showed that ISO-induced cardiac tissue injury was evidenced by increased serum creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), and lactate dehydrogenase (LDH), associated with several histopathological changes. ISO also induced an increase of MDA, PCO, NO, and 8-hydroxy-2-deoxyguanosine (8-OHdG), along with a decrease of antioxidant enzyme activities in the myocardial tissues. In addition, an increase of TNF-α, NF-κB, IL-6, IL-1β, iNOS, Nrf2 and (HO-1) was observed. Pre-treatment with PU reduced myocardial infract area, ameliorated histopathological alterations in myocardium, and decreased activities of myocardial injury marker enzymes in ISO-induced rats. In addition, PU remarkably restored ISO-induced elevation of lipid peroxidation and decrease of antioxidants, significantly reduced myocardial pro-inflammatory cytokines concentrations in this animal model. Molecular docking analysis of PU with protein targets showed potent interactions with negative binding energies. In conclusion, PU can protect the myocardium from oxidative injury, inflammatory response, and cell death induced by ISO by upregulating Nrf2/HO-1 signaling and antioxidants.
Collapse
Affiliation(s)
- Muthana M Jghef
- Department of Radiology, Medical Technical College, Alkitab University, Alton Kubri, Kirkuk, Iraq; Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| | - Khadija Boukholda
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| | - Yassine Chtourou
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| | - Bernd L Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany.
| | - Mohammed Kebieche
- Faculty of Natural and Life Sciences, LMAGECA and BMBP Research Laboratories, University of Batna2, Route de Constantine, 05078, Fesdis, Batna2, Algeria.
| | - Rachid Soulimani
- Université de Lorraine, LCOMS/Neurotoxicologie Alimentaire et Bioactivité, 57000, Metz, France.
| | - Fatiha Chigr
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco.
| | - Hamadi Fetoui
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| |
Collapse
|
6
|
Chen L, Wang Y, Zheng W, Zhang H, Sun Y, Chen Y, Liu Q. Improvement of obesity-induced fatty liver disease by intermittent hypoxia exposure in a murine model. Front Pharmacol 2023; 14:1097641. [PMID: 36873991 PMCID: PMC9974667 DOI: 10.3389/fphar.2023.1097641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Background: The high prevalence of non-alcoholic fatty liver disease (NAFLD) in the world raises an important concern for human health. The western diet containing high fat and fructose is the risk factor for NAFLD development. Intermittent hypoxia (IH), known as the basis of obstructive sleep apnea (OSA), normally is correlated with impaired liver function. However, the role of IH in liver injury prevention has been revealed by many other studies based on the different IH paradigms. The current study, therefore, tests the impact of IH on the liver of high-fat and high-fructose diet (HFHFD) fed mice. Material and Method: Mice were exposed to IH (2 min cycle, FiO2 8% for 20 s, FiO2 20.9% for 100 s; 12 h/day) or intermittent air (FiO2 20.9%) for 15 weeks, with normal diet (ND) or high-fat and high-fructose diet (HFHFD). Indices of liver injury and metabolism were measured. Results: IH causes no overt liver injury in mice fed an ND. However, HFHFD-induced lipid accumulation, lipid peroxidation, neutrophil infiltration, and apoptotic process were significantly attenuated by IH exposure. Importantly, IH exposure altered bile acids composition and shifted the hepatic bile acids towards FXR agonism, which was involved in the protection of IH against HFHFD. Conclusion: These results support that the IH pattern in our model prevents liver injury from HFHFD in experimental NAFLD.
Collapse
Affiliation(s)
- Liya Chen
- Department of Pediatric Infectious Disease, Wenzhou, China.,The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yao Wang
- Department of Pediatric Hematology Disease, Wenzhou, China.,The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weikun Zheng
- Department of Pediatric Infectious Disease, Wenzhou, China.,The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hu Zhang
- Department of Pediatric Infectious Disease, Wenzhou, China.,The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Sun
- Department of Pediatric Infectious Disease, Wenzhou, China.,The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiping Chen
- Department of Pediatric Infectious Disease, Wenzhou, China.,The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qi Liu
- Department of Pediatric Infectious Disease, Wenzhou, China.,The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Shen X, Tao J, Wang Z, Li G, Zhang Z, Li J, Diliar A. MiR-7015-3p Targets Nuclear Factor-Kappa-B-Inhibitor Alpha to Aggravate Hypoxia/Reoxygenation Injury in Cardiomyocytes Through the NF-κB Pathway. Int Heart J 2022; 63:881-892. [DOI: 10.1536/ihj.22-036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Xin Shen
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region
| | - Jing Tao
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region
| | - Zhao Wang
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region
| | - Guoqing Li
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region
| | - Zilong Zhang
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region
| | - Jie Li
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region
| | - Adri Diliar
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region
| |
Collapse
|
8
|
L-Borneol 7-O-[β-D-Apiofuranosyl-(1 6)]-β-D-Glucopyranoside Alleviates Myocardial Ischemia-Reperfusion Injury in Rats and Hypoxic/Reoxygenated Injured Myocardial Cells via Regulating the PI3K/AKT/mTOR Signaling Pathway. J Immunol Res 2022; 2022:5758303. [PMID: 35600046 PMCID: PMC9119761 DOI: 10.1155/2022/5758303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemia/reperfusion (I/R) is a primary cause of morbidity and mortality in acute myocardial infarction (AMI). L-Borneol 7-O-[β-D-apiofuranosyl-(1→6)]-β-D-glucopyranoside (LBAG), extracted from the Radix Ophiopogonis, is the main bioactive component that may be exerting cardiovascular protection in AMI. The purpose was to examine the effects of LBAG on myocardial I/R injury (MIRI) in rats and H9c2 cells treated with hypoxia/reoxygenation (H/R). MIRI was induced through the combination of ischemia with reperfusion for 30 min and 24 h, respectively. LBAG was administered 7 days before vascular ligation. Myocardial function was detected by an electrocardiograph, histological, TTC, and TUNEL staining analyses. The influences of LBAG on the content concentration of cardiac enzymes in the serum were measured by ELISA. Moreover, H9c2 cells were exposed to LBAG or combined with AKT inhibitor (perifosine) and then exposed to H/R for simulating the cardiac injury process. Afterward, cell viability, LDH, CD-KM release, apoptosis, and autophagy were evaluated by CCK-8 and ELISA assays, flow cytometry, TUNEL, and immunofluorescence staining, respectively. Additionally, the proteins of apoptosis, autophagy, and PI3K/mTOR pathway were determined by western blotting. In I/R rats, LBAG pretreatment significantly ameliorated cardiac function, as illustrated by reducing the infarct size, myocardial autophagy, and apoptosis levels. In H/R-induced H9c2 cells, LBAG pretreatment significantly decreased cell apoptosis, LC3 II/I, and Beclin 1 levels, elevated the Bcl-2 levels, attenuated LDH, and CD-KM production. Moreover, LBAG pretreatment markedly increased the PI3K/mTOR pathway activation, and the protective influences of LBAG were partly abolished with the AKT inhibitor perifosine treatment. These findings demonstrated the protective functions of LBAG on I/R by regulating apoptosis and autophagy in vitro and in vivo by activating the PI3K/mTOR pathway.
Collapse
|
9
|
Mechanisms of cinnamic aldehyde against myocardial ischemia/hypoxia injury in vivo and in vitro: Involvement of regulating PI3K/AKT signaling pathway. Biomed Pharmacother 2022; 147:112674. [DOI: 10.1016/j.biopha.2022.112674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/27/2022] Open
|
10
|
Naryzhnaya NV, Maslov LN, Derkachev IA, Ma H, Zhang Y, Prasad NR, Singh N, Fu F, Pei JM, Sarybaev A, Sydykov A. The effect of adaptation to hypoxia on cardiac tolerance to ischemia/reperfusion. J Biomed Res 2022:1-25. [PMID: 37183617 PMCID: PMC10387748 DOI: 10.7555/jbr.36.20220125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The acute myocardial infarction (AMI) and sudden cardiac death (SCD), both associated with acute cardiac ischemia, are one of the leading causes of adult death in economically developed countries. The development of new approaches for the treatment and prevention of AMI and SCD remains the highest priority for medicine. A study on the cardiovascular effects of chronic hypoxia (CH) may contribute to the development of these methods. Chronic hypoxia exerts both positive and adverse effects. The positive effects are the infarct-reducing, vasoprotective, and antiarrhythmic effects, which can lead to the improvement of cardiac contractility in reperfusion. The adverse effects are pulmonary hypertension and right ventricular hypertrophy. This review presents a comprehensive overview of how CH enhances cardiac tolerance to ischemia/reperfusion. It is an in-depth analysis of the published data on the underlying mechanisms, which can lead to future development of the cardioprotective effect of CH. A better understanding of the CH-activated protective signaling pathways may contribute to new therapeutic approaches in an increase of cardiac tolerance to ischemia/reperfusion.
Collapse
|
11
|
Liang Z, Chen Y, Wang Z, Wu X, Deng C, Wang C, Yang W, Tian Y, Zhang S, Lu C, Yang Y. Protective effects and mechanisms of psoralidin against adriamycin-induced cardiotoxicity. J Adv Res 2021; 40:249-261. [PMID: 36100330 PMCID: PMC9481943 DOI: 10.1016/j.jare.2021.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023] Open
|
12
|
Wang H, Zheng B, Che K, Han X, Li L, Wang H, Liu Y, Shi J, Sun S. Protective effects of safranal on hypoxia/reoxygenation-induced injury in H9c2 cardiac myoblasts via the PI3K/AKT/GSK3β signaling pathway. Exp Ther Med 2021; 22:1400. [PMID: 34675994 PMCID: PMC8524664 DOI: 10.3892/etm.2021.10836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
Safranal (SFR), an active ingredient extracted from saffron, exhibits a protective effect on the cardiovascular system. However, the mechanism of SFR against hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury has previously not been investigated in vitro. The aim of the present study was therefore to observe the protective effects of SFR on H/R-induced cardiomyocyte injury and to explore its mechanisms. A H/R injury model of H9c2 cardiac myoblasts was established by administering 800 µmol/l CoCl2 to H9c2 cells for 24 h and reoxygenating the cells for 4 h to induce hypoxia. H9c2 cardiac myoblasts were pretreated with SFR for 12 h to evaluate the associated protective effects. A Cell Counting Kit-8 assay was used for cell viability detection, and the expression levels of lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), glutathione peroxidase (GSH-px), catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA) and caspase-3, and the intracellular Ca2+ concentration were measured using the corresponding commercial kits. Levels of reactive oxygen species (ROS) in the cells were detected using 2,7-dichlorodihydrofluorescein diacetate. Flow cytometry was used to determine the degree of apoptosis and the level of mitochondrial membrane potential (MMP). Moreover, the expression levels of phosphorylated (p-)PI3K, AKT, p-AKT, glycogen synthase kinase 3β (GSK3β), p-GSK3β, Bcl-2, Bax, caspase-3 and cleaved caspase-3 were measured using western blot analysis. Results of the present study demonstrated that the H9c2 cardiac myoblasts treated with SFR exhibited significantly improved levels of viability and significantly reduced levels of ROS, compared with the H/R group. Furthermore, compared with the H/R group, SFR treatment significantly increased the MMP levels and antioxidant enzyme levels, including CAT, SOD and GSH-px; whereas the levels of CK-MB, LDH, MDA and intracellular Ca2+ concentration were significantly decreased. Moreover, the results of the present study demonstrated that SFR significantly reduced caspase-3, cleaved caspase-3 and Bax protein expression levels, but upregulated the Bcl-2 protein expression levels. SFR also increased the protein expressions of PI3K/AKT/GSK3β. In summary, the results suggested that SFR may exert a protective effect against H/R-induced cardiomyocyte injury, which occurs in connection with the inhibition of oxidative stress and apoptosis via regulation of the PI3K/AKT/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Hefei Wang
- Department of Traditional Chinese Medicine and Medical History Literature, School of Basic Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Bin Zheng
- Department of Traditional Chinese Medicine, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Kaimeng Che
- Department of Traditional Chinese Medicine and Medical History Literature, School of Basic Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Xue Han
- Department of Traditional Chinese Medicine and Medical History Literature, School of Basic Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Li Li
- Department of Pharmacognosy, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050200, P.R. China
| | - Hongfang Wang
- Department of Traditional Chinese Medicine, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Yanshuang Liu
- Department of Diagnostics, Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Jing Shi
- Department of Scientific Research Management, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Shijiang Sun
- Department of Hospital Management and Medical History Literature, Hebei Province Hospital of Chinese Medicine, The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| |
Collapse
|
13
|
Liu Y, Xu J, Zhao L, Cheng J, Chen B. Remote Inflammatory Preconditioning Alleviates Lipopolysaccharide-Induced Acute Lung Injury via Inhibition of Intrinsic Apoptosis in Rats. J Immunol Res 2021; 2021:1125199. [PMID: 34595242 PMCID: PMC8478588 DOI: 10.1155/2021/1125199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/07/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Acute lung injury (ALI) always leads to severe inflammation. As inflammation and oxidative stress are the common pathological basis of endotoxin-induced inflammatory injury and ischemic reperfusion injury (IRI), we speculate that remote ischemic preconditioning (RIPC) can be protective for ALI when used as remote inflammatory preconditioning (RInPC). METHOD A total of 21 Sprague-Dawley rats were used for the animal experiments. Eighteen rats were equally and randomly divided into the control (NS injection), LPS (LPS injection), and RInPC groups. The RInPC was performed prior to the LPS injection via tourniquet blockage of blood flow to the right hind limb and adopted three cycles of 5 min tying followed by 5 min untying. Animals were sacrificed 24 hours later. There were 2 rats in the LPS group and 1 in the RInPC group who died before the end of the experiment. Supplementary experiments in the LPS and RInPC groups were conducted to ensure that 6 animals in each group reached the end of the experiment. RESULTS In the present study, we demonstrated that the RInPC significantly attenuated the LPS-induced ALI in rats. Apoptotic cells were reduced significantly by the RInPC, with the simultaneous improvement of apoptosis-related proteins. Reduction of MPO and MDA and increasing of SOD activity were found significantly improved by the RInPC. Increasing of TNF-α, IL-1β, and IL-6 induced by the LPS was inhibited, while IL-10 was significantly increased by RInPC, compared to the LPS group. CONCLUSION RInPC could inhibit inflammation and attenuate oxidative stress, thereby reducing intrinsic apoptosis and providing lung protection in the LPS-induced ALI in rats.
Collapse
Affiliation(s)
- Yong Liu
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430011, China
| | - Jiahang Xu
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430011, China
| | - Liang Zhao
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430011, China
| | - Jing Cheng
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430011, China
| | - Baojun Chen
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430011, China
| |
Collapse
|
14
|
Shi H, Zeng Q, Wei Y, Yang H, Tang H, Wang D, Pu P, Feng R. Canagliflozin is a potential cardioprotective drug but exerts no significant effects on pirarubicin‑induced cardiotoxicity in rats. Mol Med Rep 2021; 24:703. [PMID: 34368866 DOI: 10.3892/mmr.2021.12342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/09/2021] [Indexed: 11/05/2022] Open
Abstract
Pirarubicin (THP), one of the anthracycline anticancer drugs, is widely used in the treatment of various types of cancer, but its cardiotoxicity cannot be ignored. Canagliflozin, the first sodium‑glucose co‑transporter‑2 inhibitor approved by the USA FDA, has been shown to have a significant effect on cardiovascular damage caused by diabetes. However, it has not been reported whether it can resist THP‑induced cardiotoxicity. The aim of the present study was to investigate the effect of canagliflozin on THP‑induced cardiotoxicity and its mechanism. A rat model of cardiotoxicity induced by THP was established and canagliflozin treatment was performed at the same time. The changes of electrocardiography, cardiac coefficient and echocardiogram were observed. The levels of lactate dehydrogenase, brain natriuretic peptide, creatine kinase MB, cardiac troponin T, superoxide dismutase (SOD) and malondialdehyde were detected. The expression of SOD2, NADPH oxidase 2, pro/cleaved‑caspase‑ and Bcl‑2/Bax were evaluated by western blotting. The primary culture of cardiomyocytes was prepared to explore the effect in vitro. After eight weeks, a series of cardiotoxicity manifestations were observed in THP rats. However, canagliflozin treatment had no significant effect on the above adverse reactions. Similarly, further studies showed that canagliflozin had no significant effect on THP‑induced cardiomyocyte injury in vitro. The present study showed that there was no significant protective effect of canagliflozin on THP‑induced cardiotoxicity and cardiomyocyte injury.
Collapse
Affiliation(s)
- Hongwei Shi
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, P.R. China
| | - Qingfu Zeng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yunjie Wei
- Department of Cardiology, Hubei Shiyan Taihe Hospital, Wuhan, Hubei 430000, P.R. China
| | - Hong Yang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Yuanjiagang, Yuzhong, Chongqing 400042, P.R. China
| | - Heng Tang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuanjiagang, Yuzhong, Chongqing 400042, P.R. China
| | - Dan Wang
- Department of Cardiology, Chongqing Red Cross Hospital, Yuzhong, Chongqing 400020, P.R. China
| | - Peng Pu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuanjiagang, Yuzhong, Chongqing 400042, P.R. China
| | - Rui Feng
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuanjiagang, Yuzhong, Chongqing 400042, P.R. China
| |
Collapse
|
15
|
Castro-Grattoni AL, Suarez-Giron M, Benitez I, Tecchia L, Torres M, Almendros I, Farre R, Targa A, Montserrat JM, Dalmases M, Barbé F, Gozal D, Sánchez-de-la-Torre M. The effect of chronic intermittent hypoxia in cardiovascular gene expression is modulated by age in a mice model of sleep apnea. Sleep 2021; 44:6071377. [PMID: 33417710 DOI: 10.1093/sleep/zsaa293] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
STUDY OBJECTIVES Chronic intermittent hypoxia (CIH) is a major determinant in obstructive sleep apnea cardiovascular morbidity and this effect is influenced by age. The objective of the present study was to assess the differential molecular mechanisms at gene-level expression involved in the cardiovascular remodeling induced by CIH according to chronological age. METHODS Two- and 18-month-old mice (N = 8 each) were subjected to CIH or normoxia for 8 weeks. Total messenger RNA (mRNA) was extracted from left ventricle myocardium and aortic arch, and gene expression of 46 intermediaries of aging, oxidative stress, and inflammation was measured by quantitative real-time polymerase chain reaction. RESULTS Cardiac gene expression of Nrf2 (2.05-fold increase, p < 0.001), Sod2 (1.9-fold increase, p = 0.035), Igf1r (1.4-fold increase, p = 0.028), Mtor (1.8-fold increase, p = 0.06), Foxo3 (1.5-fold increase, p = 0.020), Sirt4, Sirt6, and Sirt7 (1.3-fold increase, p = 0.012; 1.1-fold change, p = 0.031; 1.3-fold change, p = 0.029) was increased after CIH in young mice, but not in old mice. In aortic tissue, endothelial isoform of nitric oxide synthase was reduced in young mice (p < 0.001), Nrf2 was reduced in 80% (p < 0.001) in young mice and 45% (p = 0.07) in old mice, as its downstream antioxidant target Sod2 (82% reduced, p < 0.001). IL33. CONCLUSIONS CIH effect in gene expression is organ-dependent, and is modulated by age. CIH increased transcriptional expression of genes involved in cardioprotection and cell survival in young, but not in old mice. In aortic tissue, CIH reduced gene expression related to an antioxidant response in both young and old mice, suggesting vascular oxidative stress and a proaging process.
Collapse
Affiliation(s)
- Anabel L Castro-Grattoni
- Group of Translational Research in Respiratory Medicine, Respiratory Department, Hospital University Arnau de Vilanova and Santa Maria, IRB Lleida, University of Lleida, Lleida, Catalonia, Spain.,Department of Child Health, University of Missouri, School of Medicine, Columbia, MO, USA
| | | | - Ivan Benitez
- Group of Translational Research in Respiratory Medicine, Respiratory Department, Hospital University Arnau de Vilanova and Santa Maria, IRB Lleida, University of Lleida, Lleida, Catalonia, Spain
| | - Lourdes Tecchia
- Group of Translational Research in Respiratory Medicine, Respiratory Department, Hospital University Arnau de Vilanova and Santa Maria, IRB Lleida, University of Lleida, Lleida, Catalonia, Spain
| | - Marta Torres
- Agency for Health Quality and Assessment of Catalonia (AQuAS), Barcelona - CIBER de Enfermedades Respiratorias - CIBER de Epidemiología y Salud Pública, Madrid, Spain
| | - Isaac Almendros
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Ramon Farre
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Adriano Targa
- Group of Translational Research in Respiratory Medicine, Respiratory Department, Hospital University Arnau de Vilanova and Santa Maria, IRB Lleida, University of Lleida, Lleida, Catalonia, Spain
| | - Josep M Montserrat
- Laboratori del son, Servei de Pneumologia, Hospital Clínic, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Mireia Dalmases
- Group of Translational Research in Respiratory Medicine, Respiratory Department, Hospital University Arnau de Vilanova and Santa Maria, IRB Lleida, University of Lleida, Lleida, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ferran Barbé
- Group of Translational Research in Respiratory Medicine, Respiratory Department, Hospital University Arnau de Vilanova and Santa Maria, IRB Lleida, University of Lleida, Lleida, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - David Gozal
- Department of Child Health, University of Missouri, School of Medicine, Columbia, MO, USA
| | - Manuel Sánchez-de-la-Torre
- Group of Translational Research in Respiratory Medicine, Respiratory Department, Hospital University Arnau de Vilanova and Santa Maria, IRB Lleida, University of Lleida, Lleida, Catalonia, Spain.,Group of Precision Medicine in Chronic Diseases, Hospital Arnau de Vilanova-Santa Maria, IRB Lleida, Lleida, Spain
| |
Collapse
|
16
|
Schisandrol A Attenuates Myocardial Ischemia/Reperfusion-Induced Myocardial Apoptosis through Upregulation of 14-3-3 θ. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5541753. [PMID: 34257806 PMCID: PMC8257380 DOI: 10.1155/2021/5541753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/21/2021] [Accepted: 06/04/2021] [Indexed: 11/29/2022]
Abstract
Schisandrol A (SA), one of the most abundant bioactive lignans extracted from the Schisandra chinensis (Turcz.) Baill., has multiple pharmacological properties. However, the underlying mechanisms of SA in protection against myocardial ischemia/reperfusion (MI/R) injury remain obscure. The present experiment was performed to explore the cardioprotective effects of SA in MI/R injury and hypoxia/reoxygenation- (H/R-) induced cardiomyocyte injury and clarify the potential underlying mechanisms. SA treatment significantly improved MI/R injury as reflected by reduced myocardium infarct size, attenuated histological features, and ameliorated biochemical indicators. In the meantime, SA could profoundly ameliorate oxidative stress damage as evidenced by the higher glutathione peroxidase (GSH-Px) as well as lower malondialdehyde (MDA) and reactive oxygen species (ROS). Additionally, SA alleviated myocardial apoptosis as evidenced by a striking reduction of cleaved caspase-3 expression and increase of Bcl-2/Bax ratio. Further experiments demonstrated that SA had certain binding capability to the key functional protein 14-3-3θ. Mechanistically, SA prevented myocardial apoptosis through upregulating 14-3-3θ expression. Interestingly, siRNA against 14-3-3θ could promote apoptosis of cardiomyocytes, and H/R injury after knockdown of 14-3-3θ could further aggravate apoptosis, while overexpression of 14-3-3θ could significantly reduce apoptosis induced by H/R injury. Further, 14-3-3θ siRNA markedly weakened the antiapoptotic role of SA. Our results demonstrated that SA could exert apparent cardioprotection against MI/R injury and H/R injury, and potential mechanisms might be associated with inhibition of cardiomyocyte apoptosis at least partially through upregulation of 14-3-3θ.
Collapse
|
17
|
Xie L, Zhen P, Yu F, Yu X, Qian H, Yang F, Tong J. Effects of sleep apnea hypopnea syndromes on cardiovascular events: a systematic review and meta-analysis. Sleep Breath 2021; 26:5-15. [PMID: 33772396 DOI: 10.1007/s11325-021-02294-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/13/2020] [Accepted: 01/05/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Previous studies suggest that sleep apnea hypopnea syndrome (SAHS) is an independent risk factor that contributes to certain cardiovascular events. However, there are studies arguing that patients with SAHS had lower peak troponin levels when suffering cardiovascular events compared to patients without SAHS, which indicates that there may potentially be a protective effect of SAHS. This meta-analysis aimed to assess the impact of SAHS on cardiovascular events. METHODS Databases were searched for studies that examined cardiac biomarkers or reported angiographic data when patients with SAHS experienced cardiovascular events. The data about peak cardiac biomarkers and angiographic coronary lesion were extracted and then used to compute the pooled standardized mean difference (SMD) and 95% confidence interval (95% CI). RESULTS Among 26 studies included in the meta-analysis, there was not a definite difference between the SAHS group and the control group for troponins (SMD, 0.05; 95% CI, [- 0.16, 0.26]), creatine kinase (SMD, - 0.08; 95% CI, [- 0.38, 0.22]), and CK-MB (SMD, - 0.11; 95% CI, [- 0.51, 0.29]). However, patients with SAHS revealed worse coronary lesion condition grading via both Gensini score (SMD, 0.63; 95% CI, [0.31, 0.95]) and SYNTAX score (SMD, 0.99; 95% CI, [0.31-1.67]). CONCLUSIONS Ischemic preconditioning induced by the intermittent hypoxia at the early stage could generate a cardiac protection effect, which would then benefit SAHS patients encountering a major adverse cardiovascular event.
Collapse
Affiliation(s)
- Liang Xie
- School of Medicine, Southeast University, Nanjing, China.,Jinling Hospitial, School of Medicine, Nanjing University, Nanjing, China
| | - Penghao Zhen
- School of Medicine, Southeast University, Nanjing, China.,Department of Cardiology, Zhongda Hospital, Nanjing, China
| | - Fuchao Yu
- School of Medicine, Southeast University, Nanjing, China.,Department of Cardiology, Zhongda Hospital, Nanjing, China
| | - Xiaojin Yu
- School of Public Health, Southeast University, 87 Dingjiaqiao, Nanjing, China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - Jiayi Tong
- School of Medicine, Southeast University, Nanjing, China. .,Department of Cardiology, Zhongda Hospital, Nanjing, China.
| |
Collapse
|
18
|
Xin C, Zhang Z, Gao G, Ding L, Yang C, Wang C, Liu Y, Guo Y, Yang X, Zhang L, Zhang L, Liu Y, Jin Z, Tao L. Irisin Attenuates Myocardial Ischemia/Reperfusion Injury and Improves Mitochondrial Function Through AMPK Pathway in Diabetic Mice. Front Pharmacol 2020; 11:565160. [PMID: 33013403 PMCID: PMC7516196 DOI: 10.3389/fphar.2020.565160] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/14/2020] [Indexed: 01/10/2023] Open
Abstract
Aims Several recent reports have shown irisin protects the heart against ischemia/reperfusion injury. However, the effect of irisin on I/R injury in diabetic mice has not been described. The present study was designed to investigate the role of irisin in myocardial ischemia-reperfusion (MI/R) injury in diabetic mice. Methods A mouse model of diabetes was established by feeding wild type or gene-manipulated adult male mice with a high-fat diet. All the mice received intraperitoneal injection of irisin or PBS. Thirty minutes after injection, mice were subjected to 30 min of myocardial ischemia followed by 3h (for cell apoptosis and protein determination), 24 h (for infarct size and cardiac function). Results Knock-out of gene FNDC5 augmented MI/R injury in diabetic mice, while irisin treatment attenuated MI/R injury, improved cardiac function, cellular ATP biogenetics, mitochondria potential, and impaired mitochondrion-related cell death. More severely impaired AMPK pathway was observed in diabetic FNDC5-/- mice received MI/R. Knock-out of gene AMPK blocks the beneficial effects of irisin on MI/R injury, cardiac function, cellular ATP biogenetics, mitochondria potential, and mitochondrion-related cell death. Conclusions Our present study demonstrated that irisin improves the mitochondria function and attenuates MI/R injury in diabetic mice through AMPK pathway.
Collapse
Affiliation(s)
- Chao Xin
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Zheng Zhang
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Guojie Gao
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Liping Ding
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Chao Yang
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Chengzhu Wang
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yanjun Liu
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yufei Guo
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Xueqing Yang
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Lijuan Zhang
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Lina Zhang
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yi Liu
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Zhitao Jin
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
19
|
Yao L, Chen H, Wu Q, Xie K. Hydrogen-rich saline alleviates inflammation and apoptosis in myocardial I/R injury via PINK-mediated autophagy. Int J Mol Med 2019; 44:1048-1062. [PMID: 31524220 PMCID: PMC6657957 DOI: 10.3892/ijmm.2019.4264] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 06/26/2019] [Indexed: 12/14/2022] Open
Abstract
Ischemia/reperfusion (I/R)-induced inflammatory reaction is one of the most important elements in myocardial I/R injury. In addition, autophagy serves an important role in normal cardiac homeostasis, and obstructions to the autophagy process lead to severe consequences for the heart. Hydrogen exerts an effective therapeutic role in numerous diseases associated with I/R injury via its anti-inflammation, anti-apoptosis and anti-oxidative properties. Therefore, the present study investigated the effect of hydrogen on the myocardial inflammation response and apoptosis in myocardial ischemic/reperfusion (MI/R) injury, and further explored the mechanism of PTEN-induced kinase 1 (PINK1)/Parkin-induced mitophagy in the protection of hydrogen on MI/R injury. MI/R injury was performed by surgical ligation of the left coronary artery in vivo and H9C2 cell injury was performed by hypoxia/reoxygenation (H/R) in vitro. Hydrogen-rich saline was administered twice through intraperitoneal injection at a daily dose of 10 ml/kg following the operation in the in vivo model, and hydrogen-rich medium culture was used for cells instead of normal medium in vitro. The infarction size of hearts, the levels of creati-nine kinase-muscle/brain (CK-MB) and cardiac troponin I (cTnI), cardiac function, cell viability and lactate dehydrogenase (LDH) release, levels of cytokines, apoptosis and the expression of autophagy-associated proteins were detected in the different treatment groups in vivo and in vitro. The results demonstrated that treatment with hydrogen improved the myocardial infarction size of hearts, cardiac function, apoptosis and cytokine release following MI/R in rats. In vitro, hydrogen improved cell viability and LDH release following hypoxia/reoxygenation in myocardial cells. In addition, it was demonstrated that hydrogen exerted an anti-inflammatory and anti-apoptotic effect in myocardial cells induced by H/R via PINK1/Parkin mediated autophagy. These results suggested that hydrogen-rich saline alleviated the inflammation response and apoptosis induced by MI/R or H/R in vivo or in vitro, and that hydrogen-rich saline contributed to the increased expression of proteins associated with autophagy. In summary, the present study indicated that treatment with hydrogen-rich saline improved the inflammatory response and apoptosis in MI/R via PINK1/Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Li Yao
- Sixth Department of Cardiology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Hongguang Chen
- Department of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin Institute of Anesthesiology, Tianjin 300054, P.R. China
| | - Qinghua Wu
- Sixth Department of Cardiology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Keliang Xie
- Department of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin Institute of Anesthesiology, Tianjin 300054, P.R. China
| |
Collapse
|
20
|
Intermittent hypoxia induces beneficial cardiovascular remodeling in left ventricular function of type 1 diabetic rat. Anatol J Cardiol 2019; 19:259-266. [PMID: 29615543 PMCID: PMC5998850 DOI: 10.14744/anatoljcardiol.2018.00236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Depressed mechanical activity is a marked complication in diabetics. Hypoxia has properties for novel diagnostic and therapeutic strategies, while intermittent hypoxia (IH) provides early functional and histologic remodeling, including some cardio benefits in early hemodynamic alterations with histologic remodeling and delayed changes in peripheral vasoreactivity. Therefore, we aimed to examine whether IH application presents a cardioprotective effect, via stabilization of hypoxia-inducible factor (HIF) in streptozotocin (STZ)-induced diabetic rat heart. METHODS Male 10-week-old Wistar rats were randomly assigned as control group (C), IH group, (STZ)-induced diabetic group (DM) and IH applied DM group (DM+IH). Diabetes duration was kept 6 weeks and IH groups were exposed to hypobaric hypoxia at about 70 kPa (including ~14% PO2; 6 h/day for 6-weeks). RESULTS Depressed left ventricular developed pressure (LVDP) and prolonged contraction and relaxation of Langendorff-perfused hearts, as well as increased total oxidative status from streptozotocin (STZ)-induced diabetic rats were markedly prevented with IH application. IH application induced significant increase in protein expression levels of both HIF-1α and vascular endothelial growth factor (VEGF), in both control and diabetic rat hearts, whereas there were significant decreases in the protein levels of prolyl-4 hydroxylase domain enzymes, PHD2, and PHD3 in diabetic hearts. Furthermore, IH application induced marked increases in protein levels of matrix metalloproteinases, MMP-2 and MMP-9 and capillary density in left ventricle of diabetic rats. CONCLUSION Overall, we presented how IH application has a beneficial cardiovascular remodeling effect in left ventricular function of diabetic rats, at most, via affecting increased oxidative stress and HIF-VEGF related angiogenesis, providing information on hyperglycemia associated new targets and therapeutic strategies.
Collapse
|
21
|
Liu S, Wu N, Miao J, Huang Z, Li X, Jia P, Guo Y, Jia D. Protective effect of morin on myocardial ischemia‑reperfusion injury in rats. Int J Mol Med 2018; 42:1379-1390. [PMID: 29956744 PMCID: PMC6089753 DOI: 10.3892/ijmm.2018.3743] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
Morin, a natural flavonol, exhibits antioxidative, anti-inflammatory and anti-apoptotic effects in various pathological and physiological processes. However, whether morin exerts a protective effect on myocardial ischemia-reperfusion injury (MIRI) is unknown. The present study aimed to determine the effect of morin on MIRI in cultured cardiomyocytes and isolated rat hearts, and to additionally explore the underlying mechanism. The effect of morin on the viability, lactate dehydrogenase (LDH) activity and apoptosis of H9c2 cardiomyocytes subjected to hypoxia/reoxygenation, and cardiac function and infarct size of rat hearts following ischemia/reperfusion in an animal model were measured. Furthermore, the mitochondrial permeability transition pore (MPTP) opening, mitochondrial membrane potential (ΔΨm), and the change in the expression levels of B-cell lymphoma 2 (Bcl2)-associated X protein (Bax), Bcl-2 and mitochondrial apoptosis-associated proteins following MPTP opening were also detected. The results indicated that morin treatment significantly increased cell viability, decreased LDH activity and cell apoptosis, improved the recovery of cardiac function and decreased the myocardial infarct size. Furthermore, morin treatment markedly inhibited MPTP opening, prevented the decrease of ΔΨm, and decreased the expression of cytochrome c, apoptotic protease activating factor-1, caspase-9, caspase-3 and the Bax/Bcl-2 ratio. However, these beneficial effects were reversed by treatment with atractyloside, an MPTP opener. The present study demonstrated that morin may prevent MIRI by inhibiting MPTP opening and revealed the possible mechanism of the cardioprotection of morin and its acting target. It also provided an important theoretical basis for the research on drug interventions for MIRI in clinical applications.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Nan Wu
- The Central Laboratory, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jiaxin Miao
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zijun Huang
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xuying Li
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Pengyu Jia
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuxuan Guo
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Dalin Jia
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
22
|
Mallet RT, Manukhina EB, Ruelas SS, Caffrey JL, Downey HF. Cardioprotection by intermittent hypoxia conditioning: evidence, mechanisms, and therapeutic potential. Am J Physiol Heart Circ Physiol 2018; 315:H216-H232. [PMID: 29652543 DOI: 10.1152/ajpheart.00060.2018] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The calibrated application of limited-duration, cyclic, moderately intense hypoxia-reoxygenation increases cardiac resistance to ischemia-reperfusion stress. These intermittent hypoxic conditioning (IHC) programs consistently produce striking reductions in myocardial infarction and ventricular tachyarrhythmias after coronary artery occlusion and reperfusion and, in many cases, improve contractile function and coronary blood flow. These IHC protocols are fundamentally different from those used to simulate sleep apnea, a recognized cardiovascular risk factor. In clinical studies, IHC improved exercise capacity and decreased arrhythmias in patients with coronary artery or pulmonary disease and produced robust, persistent, antihypertensive effects in patients with essential hypertension. The protection afforded by IHC develops gradually and depends on β-adrenergic, δ-opioidergic, and reactive oxygen-nitrogen signaling pathways that use protein kinases and adaptive transcription factors. In summary, adaptation to intermittent hypoxia offers a practical, largely unrecognized means of protecting myocardium from impending ischemia. The myocardial and perhaps broader systemic protection provided by IHC clearly merits further evaluation as a discrete intervention and as a potential complement to conventional pharmaceutical and surgical interventions.
Collapse
Affiliation(s)
- Robert T Mallet
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - Eugenia B Manukhina
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas.,Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences , Moscow , Russian Federation.,School of Medical Biology South Ural State University , Chelyabinsk , Russian Federation
| | - Steven Shea Ruelas
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - James L Caffrey
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - H Fred Downey
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas.,School of Medical Biology South Ural State University , Chelyabinsk , Russian Federation
| |
Collapse
|
23
|
Chen YP, Kuo WW, Baskaran R, Day CH, Chen RJ, Wen SY, Ho TJ, Padma VV, Kuo CH, Huang CY. Acute hypoxic preconditioning prevents palmitic acid-induced cardiomyocyte apoptosis via switching metabolic GLUT4-glucose pathway back to CD36-fatty acid dependent. J Cell Biochem 2018; 119:3363-3372. [PMID: 29130531 DOI: 10.1002/jcb.26501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022]
Abstract
Metabolic syndrome is a risk factor for the development of cardiovascular diseases. Myocardial cell damage leads to an imbalance of energy metabolism, and many studies have indicated that short-term hypoxia during myocardial cell injury has a protective effect. In our previous animal studies, we found that short-term hypoxia in the heart has a protective effect, but long-term hypoxia increases myocardial cell injury. Palmitic acid (PA)-treated H9c2 cardiomyoblasts and neonatal rat ventricle cardiomyocytes were used to simulate hyperlipidemia model, which suppress cluster of differentiation 36 (CD36) and activate glucose transporter type 4 (GLUT4). We exposed the cells to short- and long-term hypoxia and investigated the protective effects of hypoxic preconditioning on PA-induced lipotoxicity in H9c2 cardiomyoblasts and neonatal rat cardiomyocytes. Preconditioning with short-term hypoxia enhanced both CD36 and GLUT4 metabolism pathway protein levels. Expression levels of phospho-PI3K, phospho-Akt, phospho-AMPK, SIRT1, PGC1α, PPARα, CD36, and CPT1β induced by PA was reversed by short-term hypoxia in a time-dependent manner. PA-induced increased GLUT4 membrane protein level was reduced in the cells exposed to short-term hypoxia and si-PKCζ. Short-term hypoxia, resveratrol and si-PKCζ rescue H9c2 cells from apoptosis induced by PA and switch the metabolic pathway from GLUT4 dependent to CD36 dependent. We demonstrate short-term hypoxic preconditioning as a more efficient way as resveratrol in maintaining the energy metabolism of hearts during hyperlipidemia and can be used as a therapeutic strategy.
Collapse
Affiliation(s)
- Yeh-Peng Chen
- PhD Program for Aging, China Medical University, Taichung, Taiwan.,Division of Cardiology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Rathinasamy Baskaran
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | | | - Ray-Jade Chen
- Department of Surgery, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Su-Ying Wen
- Department of Dermatology, Taipei City Hospital, Renai Branch, Taipei, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, China Medical University Beigang Hospital, Taichung, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | | | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
24
|
Capsaicin Protects Cardiomyocytes against Anoxia/Reoxygenation Injury via Preventing Mitochondrial Dysfunction Mediated by SIRT1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1035702. [PMID: 29435095 PMCID: PMC5757131 DOI: 10.1155/2017/1035702] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022]
Abstract
Capsaicin (Cap) has been reported to have beneficial effects on cardiovascular system, but the mechanisms underlying these effects are still poorly understood. Apoptosis has been shown to be involved in mitochondrial dysfunction, and upregulating expression of SIRT1 can inhibit the apoptosis of cardiomyocytes induced by anoxia/reoxygenation (A/R). Therefore, the aim of this study was to test whether the protective effects of Cap against the injury to the cardiomyocytes are mediated by SIRT1. The effects of Cap with or without coadministration of sirtinol, a SIRT1 inhibitor, on changes induced by A/R in the cell viability, activities of lactate dehydrogenase (LDH), creatine phosphokinase (CPK), levels of intracellular reactive oxygen species (ROS), and mitochondrial membrane potential (MMP), related protein expression, mitochondrial permeability transition pore (mPTP) opening, and apoptosis rate in the primary neonatal rat cardiomyocytes were tested. Cap significantly increased the cell viability, upregulated expression of SIRT1 and Bcl-2, and decreased the LDH and CPK release, generation of ROS, loss of MMP, mPTP openness, activities of caspase-3, release of the cytochrome c, and apoptosis of the cardiomyocytes. Sirtinol significantly blocked the cardioprotective effects of Cap. The results suggest that the protective effects of Cap against A/R-induced injury to the cardiomyocytes are involved with SIRT1.
Collapse
|
25
|
Changes in proHB-EGF expression after functional activation of the immune system cells. UKRAINIAN BIOCHEMICAL JOURNAL 2017. [DOI: 10.15407/ubj89.06.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
26
|
Chang RL, Chang CF, Ju DT, Ho TJ, Chang TT, Lin JW, Li JC, Cheng SM, Day CH, Viswanadha VP, Huang CY. Short-term hypoxia upregulated Mas receptor expression to repress the AT 1 R signaling pathway and attenuate Ang II-induced cardiomyocyte apoptosis. J Cell Biochem 2017; 119:2742-2749. [PMID: 29052864 DOI: 10.1002/jcb.26440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 10/18/2017] [Indexed: 11/11/2022]
Abstract
Hypertension-stimulated cardiac hypertrophy and apoptosis play critical roles in the progression of heart failure. Our previous study suggested that hypertensive angiotensin II (Ang II) enhanced insulin-like growth factor receptor II (IGF-IIR) expression and cardiomyocyte apoptosis, which are involved JNK activation, sirtuin1 (SIRT1) degradation, and heat-shock transcription factor 1 (HSF1) acetylation. Moreover, previous studies have implied that short-term hypoxia (STH) might exert cardioprotective effects. However, the effects of STH on Ang II-induced cardiomyocyte apoptosis remain unknown. In this study, we found that STH reduced myocardial apoptosis caused by Ang II via upregulation of the Mas receptor (MasR) to inhibit the AT1 R signaling pathway. STH activates MasR to counteract the Ang II pro-apoptotic signaling cascade by inhibiting IGF-IIR expression via downregulation of JNK activation and reduction of SIRT1 degradation. Hence, HSF could remain deacetylated, and repress IGF-IIR expression. These effects decrease the activation of downstream pro-apoptotic and hypertrophic cascades and protect cardiomyocytes from Ang II-induced injury. In addition, we also found that silencing MasR expression enhanced Ang II-induced cardiac hypertrophy and the apoptosis signaling pathway. These findings suggest a critical role for MasR in cardiomyocyte survival. Altogether, our findings indicate that STH protects cardiomyocytes from Ang II-stimulated apoptosis. The protective effects of STH are associated with the upregulation of MasR to inhibit AT1 R signaling. STH could be a potential therapeutic strategy for cardiac diseases in hypertensive patients.
Collapse
Affiliation(s)
- Ruey-Lin Chang
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Fen Chang
- Division of Cardiology, Department of Internal Medicine, Taichung Armed Force Taichung General Hospital, Taichung, Taiwan
| | - Da-Tong Ju
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsung-Jung Ho
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Department, China Medical University Beigang Hospital, Beigang, Taiwan
| | - Tung-Ti Chang
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jing-Wei Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Jia-Chun Li
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Shiu-Min Cheng
- Department of Psychology, Asia University, Taichung, Taiwan
| | | | | | - Chih-Yang Huang
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan.,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
27
|
Lu Z, Miao Y, Muhammad I, Tian E, Hu W, Wang J, Wang B, Li R, Li J. Colistin-induced autophagy and apoptosis involves the JNK-Bcl2-Bax signaling pathway and JNK-p53-ROS positive feedback loop in PC-12 cells. Chem Biol Interact 2017; 277:62-73. [DOI: 10.1016/j.cbi.2017.08.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/21/2017] [Accepted: 08/17/2017] [Indexed: 01/02/2023]
|
28
|
Yuan F, Zhang L, Li YQ, Teng X, Tian SY, Wang XR, Zhang Y. Chronic Intermittent Hypobaric Hypoxia Improves Cardiac Function through Inhibition of Endoplasmic Reticulum Stress. Sci Rep 2017; 7:7922. [PMID: 28801645 PMCID: PMC5554163 DOI: 10.1038/s41598-017-08388-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/10/2017] [Indexed: 12/24/2022] Open
Abstract
We investigated the role of endoplasmic reticulum stress (ERS) in chronic intermittent hypobaric hypoxia (CIHH)-induced cardiac protection. Adult male Sprague-Dawley rats were exposed to CIHH treatment simulating 5000 m altitude for 28 days, 6 hours per day. The heart was isolated and perfused with Langendorff apparatus and subjected to 30-min ischemia followed by 60-min reperfusion. Cardiac function, infarct size, and lactate dehydrogenase (LDH) activity were assessed. Expression of ERS molecular chaperones (GRP78, CHOP and caspase-12) was assayed by western blot analysis. CIHH treatment improved the recovery of left ventricular function and decreased cardiac infarct size and activity of LDH after I/R compared to control rats. Furthermore, CIHH treatment inhibited over-expression of ERS-related factors including GRP78, CHOP and caspase-12. CIHH-induced cardioprotection and inhibition of ERS were eliminated by application of dithiothreitol, an ERS inducer, and chelerythrine, a protein kinase C (PKC) inhibitor. In conclusion CIHH treatment exerts cardiac protection against I/R injury through inhibition of ERS via PKC signaling pathway.
Collapse
Affiliation(s)
- Fang Yuan
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China
| | - Li Zhang
- Orthopedic Department of Third Hospital, Hebei Medical University, Shijiazhuang, 050000, China
| | - Yan-Qing Li
- Department of Gynecology, Hebei Traditional Medicine Hospital, Shijiazhuang, 050011, China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Lab of Laboratory Animal Science, Shijiazhuang, 050017, China
| | - Si-Yu Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiao-Ran Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China.
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China.
| |
Collapse
|
29
|
Acun A, Zorlutuna P. Engineered myocardium model to study the roles of HIF-1α and HIF1A-AS1 in paracrine-only signaling under pathological level oxidative stress. Acta Biomater 2017. [PMID: 28629892 DOI: 10.1016/j.actbio.2017.06.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Studying heart tissue is critical for understanding and developing treatments for cardiovascular diseases. In this work, we fabricated precisely controlled and biomimetic engineered model tissues to study how cell-cell and cell-matrix interactions influence myocardial cell survival upon exposure to pathological level oxidative stress. Specifically, the interactions of endothelial cells (ECs) and cardiomyocytes (CMs), and the role of hypoxia inducible factor-1α (HIF-1α), with its novel alternative regulator, HIF-1α antisense RNA1 (HIF1A-AS1), in these interactions were investigated. We encapsulated CMs in photo-crosslinkable, biomimetic hydrogels with or without ECs, then exposed to oxidative stress followed by normoxia. With precisely controlled microenvironment provided by the model tissues, cell-cell interactions were restricted to be solely through the secreted factors. CM survival after oxidative stress was significantly improved, in the presence of ECs, when cells were in the model tissues that were functionalized with cell attachment motifs. Importantly, the cardioprotective effect of ECs was reduced when HIF-1α expression was knocked down suggesting that HIF-1α is involved in cardioprotection from oxidative damage, provided through secreted factors conferred by the ECs. Using model tissues, we showed that cell survival increased with increased cell-cell communication and enhanced cell-matrix interactions. In addition, whole genome transcriptome analysis showed, for the first time to our knowledge, a possible role for HIF1A-AS1 in oxidative regulation of HIF-1α. We showed that although HIF1A-AS1 knockdown helps CM survival, its effect is overridden by CM-EC bidirectional interactions as we showed that the conditioned media taken from the CM-EC co-cultures improved CM survival, regardless of HIF1A-AS1 expression. STATEMENT OF SIGNIFICANCE Cardiovascular diseases, most of which are associated with oxidative stress, is the most common cause of death worldwide. Thus, understanding the molecular events as well as the role of intercellular communication under oxidative stress is upmost importance in its prevention. In this study we used 3D engineered tissue models to investigate the role of HIF-1α and its regulation in EC-mediated cardioprotection. We showed that EC-mediated protection is only possible when there is a bidirectional crosstalk between ECs and CMs even without physical cell-cell contact. In addition, this protective effect is at least partially related to cell-ECM interactions and HIF-1α, which is regulated by HIF1A-AS1 under oxidative stress.
Collapse
|
30
|
Gu P, Zhu L, Liu Y, Zhang L, Liu J, Shen H. Protective effects of paeoniflorin on TNBS-induced ulcerative colitis through inhibiting NF-kappaB pathway and apoptosis in mice. Int Immunopharmacol 2017; 50:152-160. [PMID: 28666238 DOI: 10.1016/j.intimp.2017.06.022] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/05/2017] [Accepted: 06/20/2017] [Indexed: 01/10/2023]
Abstract
Paeoniflorin is traditionally used to treat inflammatory disorders. In our laboratory, we have scientifically validated the anti-inflammatory effect of paeoniflorin. In this study, it has been aimed to evaluate in vivo anti-inflammatory effect of paeoniflorin isolated from the dried peeled root of Paeonia lactiflora Pall. It was further intended to find out the probable mechanism of anti-inflammatory effect of paeoniflorin. The anti-inflammatory effect of paeoniflorin (15, 30 and 45mg/kg) was measured employing TNBS-induced ulcerative colitis model of acute inflammation. The TNBS injection resulted significant colitis formation when compared with un-injected mice. The anti-inflammatory effects of paeoniflorin for ulcerative colitis were assessed by body weight, colonic weight and length, macroscopic scores, and histopathological examinations. In addition, the colonic tissue levels of inflammation markers, including myeloperoxidase (MPO), IL-2, IL-6, IL-10, IL-12, IL-1β, TNF-α and IFN-γ were also determined to assess the effect of paeoniflorin. In addition, western blot demonstrated that paeoniflorin inhibited NF-kappaB signaling pathway and apoptosis in TNBS-induced ulcerative colitis tissues. In conclusion, all the findings of this study suggested that paeoniflorin has the anti-inflammatory effect in ulcerative colitis via inhibiting MAPK/NF-kappaB pathway and apoptosis in mice.
Collapse
Affiliation(s)
- Peiqing Gu
- Department of Gastroenterology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Lei Zhu
- Department of Gastroenterology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Yajun Liu
- Department of Gastroenterology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Lu Zhang
- Department of Gastroenterology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Junlou Liu
- Department of Gastroenterology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Hong Shen
- Department of Gastroenterology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
31
|
Erythropoietin levels in patients with sleep apnea: a meta-analysis. Eur Arch Otorhinolaryngol 2017; 274:2505-2512. [PMID: 28280920 PMCID: PMC5420001 DOI: 10.1007/s00405-017-4483-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/24/2017] [Indexed: 02/08/2023]
Abstract
Currently available data regarding the blood levels of erythropoietin (EPO) in sleep apnea (SA) patients are contradictory. The aim of the present meta-analysis was to evaluate the EPO levels in SA patients via quantitative analysis. A systematic search of Pubmed, Embase, and Web of Science were performed. EPO levels in SA group and control group were extracted from each eligible study. Weight mean difference (WMD) or Standard mean difference (SMD) with 95% confidence interval (CI) was calculated by using fixed-effects or random effect model analysis according to the degree of heterogeneity between studies. A total of 9 studies involving 407 participants were enrolled. The results indicated that EPO levels in SA group were significantly higher than that in control group (SMD 0.61, 95% CI 0.11–1.11, p = 0.016). Significantly higher EPO levels were found in patients with body mass index <30 kg/m2, and cardiovascular complications in the subsequent subgroup analysis (both p < 0.05). High blood EPO levels were found in SA patients in the present meta-analysis.
Collapse
|
32
|
Liu Q, Lin X, Li H, Yuan J, Peng Y, Dong L, Dai S. Paeoniflorin ameliorates renal function in cyclophosphamide-induced mice via AMPK suppressed inflammation and apoptosis. Biomed Pharmacother 2016; 84:1899-1905. [DOI: 10.1016/j.biopha.2016.10.097] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 01/04/2023] Open
|
33
|
Manukhina EB, Downey HF, Mallet RT. Role of Nitric Oxide in Cardiovascular Adaptation to Intermittent Hypoxia. Exp Biol Med (Maywood) 2016; 231:343-65. [PMID: 16565431 DOI: 10.1177/153537020623100401] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hypoxia is one of the most frequently encountered stresses in health and disease. The duration, frequency, and severity of hypoxic episodes are critical factors determining whether hypoxia is beneficial or harmful. Adaptation to intermittent hypoxia has been demonstrated to confer cardiovascular protection against more severe and sustained hypoxia, and, moreover, to protect against other stresses, including ischemia. Thus, the direct and cross protective effects of adaptation to intermittent hypoxia have been used for treatment and prevention of a variety of diseases and to increase efficiency of exercise training. Evidence is mounting that nitric oxide (NO) plays a central role in these adaptive mechanisms. NO-dependent protective mechanisms activated by intermittent hypoxia include stimulation of NO synthesis as well as restriction of NO overproduction. In addition, alternative, nonenzymic sources of NO and negative feedback of NO synthesis are important factors in optimizing NO concentrations. The adaptive enhancement of NO synthesis and/or availability activates or increases expression of other protective factors, including heat shock proteins, antioxidants and prostaglandins, making the protection more robust and sustained. Understanding the role of NO in mechanisms of adaptation to hypoxia will support development of therapies to prevent and treat hypoxic or ischemic damage to organs and cells and to increase adaptive capabilities of the organism.
Collapse
|
34
|
Mechanisms underpinning protection against eccentric exercise-induced muscle damage by ischemic preconditioning. Med Hypotheses 2016; 98:21-27. [PMID: 28012598 DOI: 10.1016/j.mehy.2016.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/17/2016] [Indexed: 01/27/2023]
Abstract
Eccentric exercise training is effective for increasing muscle mass and strength, and improving insulin sensitivity and blood lipid profiles. However, potential muscle damage symptoms such as prolonged loss of muscle function and delayed onset of muscle soreness may restrict the use of eccentric exercise, especially in clinical populations. Therefore, strategies to reduce eccentric exercise-induced muscle damage (EIMD) are necessary, and an extensive number of scientific studies have tried to identify potential intervention modalities to perform eccentric exercises without adverse effects. The present paper is based on a narrative review of current literature, and provides a novel hypothesis by which an ischemic preconditioning (IPC) of the extremities may reduce EIMD. IPC consists of an intermittent application of short-time non-lethal ischemia to an extremity (e.g. using a tourniquet) followed by reperfusion and was discovered in clinical settings in an attempt to minimize inflammatory responses induced by ischemia and ischemia-reperfusion-injury (I/R-Injury) during surgery. The present hypothesis is based on morphological and biochemical similarities in the pathophysiology of skeletal muscle damage during clinical surgery and EIMD. Even though the primary origin of stress differs between I/R-Injury and EIMD, subsequent cellular alterations characterized by an intracellular accumulation of Ca2+, an increased production of reactive oxygen species or increased apoptotic signaling are essential elements for both. Moreover, the incipient immune response appears to be similar in I/R-Injury and EIMD, which is indicated by an infiltration of leukocytes into the damaged soft-tissue. Thus far, IPC is considered as a potential intervention strategy in the area of cardiovascular or orthopedic surgery and provides significant impact on soft-tissue protection and downregulation of undesired excessive inflammation induced by I/R-Injury. Based on the known major impact of IPC on skeletal muscle physiology and immunology, the present paper aims to illustrate the potential protective effects of IPC on EIMD by discussing possible underlying mechanisms.
Collapse
|
35
|
Huang JL, Manaenko A, Ye ZH, Sun XJ, Hu Q. Hypoxia therapy--a new hope for the treatment of mitochondrial dysfunctions. Med Gas Res 2016; 6:174-176. [PMID: 27867487 PMCID: PMC5110142 DOI: 10.4103/2045-9912.191365] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial dysfunctions are characteristic features of numerous diseases and play a critical role in disease pathogenesis. Despite intensive research in this area, there are no approved therapies that directly target mitochondria. Recently a study by Jain et al. from Massachusetts General Hospital, USA reported the effectiveness of hypoxia for treatment of mitochondrial disease in mice. In this commentary, we summarized the potential mechanisms underlying the therapeutic effects of hypoxia on mitochondrial dysfunction, and clinical limitations of hypoxia as a therapy for human patients. We hope that our concerns will be helpful for further clinical studies addressing moderate hypoxia in mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jun-Long Huang
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Naval Aviation, the Second Military Medical University, Shanghai, China
| | - Anatol Manaenko
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Zhou-Heng Ye
- Department of Naval Aviation, the Second Military Medical University, Shanghai, China
| | - Xue-Jun Sun
- Department of Naval Aviation, the Second Military Medical University, Shanghai, China
| | - Qin Hu
- Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Chronic intermittent hypobaric hypoxia attenuates radiation induced heart damage in rats. Life Sci 2016; 160:57-63. [DOI: 10.1016/j.lfs.2016.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/01/2016] [Accepted: 07/08/2016] [Indexed: 11/18/2022]
|
37
|
In Vivo Cardioprotective Effects and Pharmacokinetic Profile of N-Propyl Caffeamide Against Ischemia Reperfusion Injury. Arch Immunol Ther Exp (Warsz) 2016; 65:145-156. [DOI: 10.1007/s00005-016-0413-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/09/2016] [Indexed: 01/01/2023]
|
38
|
Involvement of inducible nitric oxide synthase in the loss of cardioprotection by ischemic postconditioning in hypothyroid rats. Gene 2016; 580:169-176. [PMID: 26774797 DOI: 10.1016/j.gene.2016.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/28/2015] [Accepted: 01/12/2016] [Indexed: 12/27/2022]
Abstract
Cardioprotection by ischemic postconditioning (IPost) is negated in hypothyroidism; the underlying mechanisms however are unknown. This study aimed at determining whether changes in Bax, Bcl-2, eNOS, and iNOS gene expressions are involved in the negating effects of IPost against ischemia-reperfusion (IR) injury in hypothyroidism. The hearts from control and hypothyroid rats were perfused in Langendorff apparatus and exposed to 30 min ischemia, followed by 120 min reperfusion and IPost. In a subgroup of hypothyroid rats, ischemia duration was extended to 40 min. Hemodynamic parameters, infarct size, and gene expressions were measured. Compared to controls, hypothyroid rats with 30 min ischemia had higher recovery of post-ischemic LVDP and ± dp/dt, confirmed by decreased CK and LDH levels (187 ± 16 vs. 485 ± 41 and 191 ± 9 vs. 702 ± 48 U/L, respectively; p<0.05), decreased infarct size (6.7 ± 1.1 vs. 46.1 ± 1.7%; p<0.05), and a reduced DNA laddering pattern. Recovery of post-ischemic LVDP and ± dp/dt decreased and infarct size increased following extension of ischemia period in hypothyroid rats. IPost increased eNOS and Bcl-2 expression by 3.2-fold and 3.7-fold and decreased Bax and iNOS expression by 79% and 38%, respectively; it also reduced IR-induced DNA laddering pattern in controls, whereas no change was observed in hypothyroid rats, regardless of the ischemia period. In conclusion, hearts from hypothyroid rats were resistant to IR injury, partly due to the lower expression of iNOS and subsequent reduction in apoptosis after IR. In hypothyroid rats, IPost was not associated with further reduction in iNOS expression and failed to provide additional cardioprotection against ischemia.
Collapse
|
39
|
Zaman J, Jeddi S, Daneshpour MS, Zarkesh M, Daneshian Z, Ghasemi A. Ischemic postconditioning provides cardioprotective and antiapoptotic effects against ischemia–reperfusion injury through iNOS inhibition in hyperthyroid rats. Gene 2015; 570:185-90. [DOI: 10.1016/j.gene.2015.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/17/2015] [Accepted: 06/04/2015] [Indexed: 01/22/2023]
|
40
|
Triptolide Attenuates Myocardial Ischemia/Reperfusion Injuries in Rats by Inducing the Activation of Nrf2/HO-1 Defense Pathway. Cardiovasc Toxicol 2015; 16:325-35. [DOI: 10.1007/s12012-015-9342-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
The cardioprotective effect of salidroside against myocardial ischemia reperfusion injury in rats by inhibiting apoptosis and inflammation. Apoptosis 2015; 20:1433-43. [DOI: 10.1007/s10495-015-1174-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Ali N. Polyphenols and Bionanoparticle Combinations as Neuroprotective and Anticarcinogenic Agents: A Potential Neuropharmacological Solution to Combat Cerebral Stroke and Cancer. PARTICULATE SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1080/02726351.2014.981904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Bu HM, Yang CY, Wang ML, Ma HJ, Sun H, Zhang Y. K(ATP) channels and MPTP are involved in the cardioprotection bestowed by chronic intermittent hypobaric hypoxia in the developing rat. J Physiol Sci 2015; 65:367-76. [PMID: 25862574 PMCID: PMC10717084 DOI: 10.1007/s12576-015-0376-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/18/2015] [Indexed: 10/23/2022]
Abstract
The aim of this study was to explore the mechanism underlying the cardioprotection bestowed by chronic intermittent hypobaric hypoxia (CIHH) against ischemia/reperfusion (I/R) injury in developing rats. Neonatal male rats were subjected to CIHH treatments that simulated an altitude of 3000 m a.s.l. for 28 days (CIHH28) and 42 days (CIHH42), respectively, or no treatment (control). The left ventricular function of isolated hearts was evaluated. The ultra-microstructure, superoxide dismutase (SOD) activity and total anti-oxidation capacity (TAC) of the myocardium were determined. The basic left ventricular function remained unchanged in CIHH rats, except for an increased coronary flow. The recovery of cardiac function from I/R, however, was much better in CIHH rats than in control rats. Compared to control rats, CIHH rats had much higher SOD levels and TAC, and the ultra-microstructure damage to mitochondria was considerably less. The cardiac protection of CIHH was canceled out by glibenclamide, an inhibitor of the ATP-sensitive potassium (K(ATP)) channel, 5-hydroxydecanoate, an inhibitor of mitochondrial K(ATP) (mitoKATP), and atractyloside, an opener of the mitochondrial permeability transition pore (MPTP). To the contrary, diazoxide, an opener of mitoKATP, and cyclosporin A, a blocker of MPTP opening, induced cardioprotection in control rats. These results suggest that CIHH protects the heart against I/R injury in developing rats through opening of the K(ATP) channel and inhibiting of opening of the MPTP.
Collapse
Affiliation(s)
- Hui-min Bu
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017 China
- Department of Physiology, Xuzhou Medical College, Xuzhou, 221004 China
| | - Chang-ying Yang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017 China
| | - Mei-ling Wang
- Electrophysiological Department, Central Hospital of Cangzhou, Cangzhou, 061001 China
| | - Hui-jie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017 China
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000 China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical College, Xuzhou, 221004 China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017 China
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000 China
| |
Collapse
|
44
|
Badalzadeh R, Mokhtari B, Yavari R. Contribution of apoptosis in myocardial reperfusion injury and loss of cardioprotection in diabetes mellitus. J Physiol Sci 2015; 65:201-15. [PMID: 25726180 PMCID: PMC10717803 DOI: 10.1007/s12576-015-0365-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/11/2015] [Indexed: 12/21/2022]
Abstract
Ischemic heart disease is one of the major causes of death worldwide. Ischemia is a condition in which blood flow of the myocardium declines, leading to cardiomyocyte death. However, reperfusion of ischemic regions decreases the rate of mortality, but it can also cause later complications. In a clinical setting, ischemic heart disease is always coincident with other co-morbidities such as diabetes. The risk of heart disease increases 2-3 times in diabetic patients. Apoptosis is considered to be one of the main pathophysiological mechanisms of myocardial ischemia-reperfusion injury. Diabetes can disrupt the anti-apoptotic intracellular signaling cascades involved in myocardial protection. Therefore, targeting these changes may be an effective cardioprotective approach in the diabetic myocardium against ischemia-reperfusion injury. In this article, we review the interaction of diabetes with the pathophysiology of myocardial ischemia-reperfusion injury, focusing on the contribution of apoptosis in this context, and then discuss the alterations of pro-apoptotic or anti-apoptotic pathways probably responsible for the loss of cardioprotection in diabetes.
Collapse
Affiliation(s)
- Reza Badalzadeh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Mokhtari
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raana Yavari
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
45
|
Verges S, Chacaroun S, Godin-Ribuot D, Baillieul S. Hypoxic Conditioning as a New Therapeutic Modality. Front Pediatr 2015; 3:58. [PMID: 26157787 PMCID: PMC4476260 DOI: 10.3389/fped.2015.00058] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/03/2015] [Indexed: 01/03/2023] Open
Abstract
Preconditioning refers to a procedure by which a single noxious stimulus below the threshold of damage is applied to the tissue in order to increase resistance to the same or even different noxious stimuli given above the threshold of damage. Hypoxic preconditioning relies on complex and active defenses that organisms have developed to counter the adverse consequences of oxygen deprivation. The protection it confers against ischemic attack for instance as well as the underlying biological mechanisms have been extensively investigated in animal models. Based on these data, hypoxic conditioning (consisting in recurrent exposure to hypoxia) has been suggested a potential non-pharmacological therapeutic intervention to enhance some physiological functions in individuals in whom acute or chronic pathological events are anticipated or existing. In addition to healthy subjects, some benefits have been reported in patients with cardiovascular and pulmonary diseases as well as in overweight and obese individuals. Hypoxic conditioning consisting in sessions of intermittent exposure to moderate hypoxia repeated over several weeks may induce hematological, vascular, metabolic, and neurological effects. This review addresses the existing evidence regarding the use of hypoxic conditioning as a potential therapeutic modality, and emphasizes on many remaining issues to clarify and future researches to be performed in the field.
Collapse
Affiliation(s)
- Samuel Verges
- Laboratoire HP2, Université Grenoble Alpes , Grenoble , France ; U1042, INSERM , Grenoble , France
| | - Samarmar Chacaroun
- Laboratoire HP2, Université Grenoble Alpes , Grenoble , France ; U1042, INSERM , Grenoble , France
| | - Diane Godin-Ribuot
- Laboratoire HP2, Université Grenoble Alpes , Grenoble , France ; U1042, INSERM , Grenoble , France
| | - Sébastien Baillieul
- Laboratoire HP2, Université Grenoble Alpes , Grenoble , France ; U1042, INSERM , Grenoble , France
| |
Collapse
|
46
|
Navarrete-Opazo A, Mitchell GS. Therapeutic potential of intermittent hypoxia: a matter of dose. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1181-97. [PMID: 25231353 DOI: 10.1152/ajpregu.00208.2014] [Citation(s) in RCA: 323] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intermittent hypoxia (IH) has been the subject of considerable research in recent years, and triggers a bewildering array of both detrimental and beneficial effects in multiple physiological systems. Here, we review the extensive literature concerning IH and its impact on the respiratory, cardiovascular, immune, metabolic, bone, and nervous systems. One major goal is to define relevant IH characteristics leading to safe, protective, and/or therapeutic effects vs. pathogenesis. To understand the impact of IH, it is essential to define critical characteristics of the IH protocol under investigation, including potentially the severity of hypoxia within episodes, the duration of hypoxic episodes, the number of hypoxic episodes per day, the pattern of presentation across time (e.g., within vs. consecutive vs. alternating days), and the cumulative time of exposure. Not surprisingly, severe/chronic IH protocols tend to be pathogenic, whereas any beneficial effects are more likely to arise from modest/acute IH exposures. Features of the IH protocol most highly associated with beneficial vs. pathogenic outcomes include the level of hypoxemia within episodes and the number of episodes per day. Modest hypoxia (9-16% inspired O2) and low cycle numbers (3-15 episodes per day) most often lead to beneficial effects without pathology, whereas severe hypoxia (2-8% inspired O2) and more episodes per day (48-2,400 episodes/day) elicit progressively greater pathology. Accumulating evidence suggests that "low dose" IH (modest hypoxia, few episodes) may be a simple, safe, and effective treatment with considerable therapeutic potential for multiple clinical disorders.
Collapse
Affiliation(s)
- Angela Navarrete-Opazo
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Gordon S Mitchell
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
47
|
WU XIAOYAN, LUO ANYU, ZHOU YIRONG, REN JIANGHUA. N-acetylcysteine reduces oxidative stress, nuclear factor‑κB activity and cardiomyocyte apoptosis in heart failure. Mol Med Rep 2014; 10:615-24. [PMID: 24889421 PMCID: PMC4094772 DOI: 10.3892/mmr.2014.2292] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/29/2014] [Indexed: 01/03/2023] Open
Abstract
The roles of oxidative stress on nuclear factor (NF)‑κB activity and cardiomyocyte apoptosis during heart failure were examined using the antioxidant N‑acetylcysteine (NAC). Heart failure was established in Japanese white rabbits with intravenous injections of doxorubicin, with ten rabbits serving as a control group. Of the rabbits with heart failure, 12 were not treated (HF group) and 13 received NAC (NAC group). Cardiac function was assessed using echocardiography and hemodynamic analysis. Myocardial cell apoptosis, apoptosis‑related protein expression, NF‑κBp65 expression and activity, total anti‑oxidative capacity (tAOC), 8‑iso‑prostaglandin F2α (8‑iso‑PGF2α) expression and glutathione (GSH) expression levels were determined. In the HF group, reduced tAOC, GSH levels and Bcl‑2/Bax ratios as well as increased 8‑iso‑PGF2α levels and apoptosis were observed (all P<0.05), which were effects that were attenuated by the treatment with NAC. NF‑κBp65 and iNOS levels were significantly higher and the P‑IκB‑α levels were significantly lower in the HF group; expression of all three proteins returned to pre‑HF levels following treatment with NAC. Myocardial cell apoptosis was positively correlated with left ventricular end-diastolic pressure (LVEDP), NF‑κBp65 expression and 8‑iso‑PGF2α levels, but negatively correlated with the maximal and minimal rates of increase in left ventricular pressure (+dp/dtmax and ‑dp/dtmin, respectively) and the Bcl‑2/Bax ratio (all P<0.001). The 8‑iso‑PGF2α levels were positively correlated with LVEDP and negatively correlated with +dp/dtmax and ‑dp/dtmin (all P<0.001). The present study demonstrated that NAC increased the antioxidant capacity, decreased the NF‑κB activation and reduced myocardial cell apoptosis in an in vivo heart failure model.
Collapse
Affiliation(s)
- XIAO-YAN WU
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - AN-YU LUO
- Hanyang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, P.R. China
| | - YI-RONG ZHOU
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH, USA
| | - JIANG-HUA REN
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| |
Collapse
|
48
|
Almendros I, Wang Y, Gozal D. The polymorphic and contradictory aspects of intermittent hypoxia. Am J Physiol Lung Cell Mol Physiol 2014; 307:L129-40. [PMID: 24838748 DOI: 10.1152/ajplung.00089.2014] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intermittent hypoxia (IH) has been extensively studied during the last decade, primarily as a surrogate model of sleep apnea. However, IH is a much more pervasive phenomenon in human disease, is viewed as a potential therapeutic approach, and has also been used in other disciplines, such as in competitive sports. In this context, adverse outcomes involving cardiovascular, cognitive, metabolic, and cancer problems have emerged in obstructive sleep apnea-based studies, whereas beneficial effects of IH have also been identified. Those a priori contradictory findings may not be as contradictory as initially thought. Indeed, the opposite outcomes triggered by IH can be explained by the specific characteristics of the large diversity of IH patterns applied in each study. The balance between benefits and injury appears to primarily depend on the ability of the organism to respond and activate adaptive mechanisms to IH. In this context, the adaptive or maladaptive responses can be generally predicted by the frequency, severity, and duration of IH. However, the presence of underlying conditions such as hypertension or obesity, as well as age, sex, or genotypic variance, may be important factors tilting the balance between an appropriate homeostatic response and decompensation. Here, the two possible facets of IH as derived from human and experimental animal settings will be reviewed.
Collapse
Affiliation(s)
- Isaac Almendros
- Department of Pediatrics, Comer Children's Hospital, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois
| | - Yang Wang
- Department of Pediatrics, Comer Children's Hospital, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois
| | - David Gozal
- Department of Pediatrics, Comer Children's Hospital, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois
| |
Collapse
|
49
|
Chronic intermittent hypoxic preconditioning suppresses pilocarpine-induced seizures and associated hippocampal neurodegeneration. Brain Res 2014; 1563:122-30. [DOI: 10.1016/j.brainres.2014.03.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 01/05/2023]
|
50
|
Zhang T, Wu W, Li D, Xu T, Zhu H, Pan D, Zhu S, Liu Y. Anti-oxidant and anti-apoptotic effects of luteolin on mice peritoneal macrophages stimulated by angiotensin II. Int Immunopharmacol 2014; 20:346-51. [PMID: 24726243 DOI: 10.1016/j.intimp.2014.03.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 02/10/2014] [Accepted: 03/25/2014] [Indexed: 01/12/2023]
Abstract
PURPOSE Luteolin, a plant flavonoid, can be found in a variety of plants and possesses anti-tumorigenic, anti-mutagenic, anti-oxidant and anti-inflammatory properties. However, the protective effects of luteolin on mice peritoneal macrophages stimulated by Angiotensin II (Ang II) have not been fully elucidated. METHODS AND RESULTS Mice peritoneal macrophages were confirmed to be strongly positive for the macrophage marker CD68. Cell viability was tested after cells were pretreated with different concentrations of luteolin (6.25, 12.5 and 25μM) and stimulated by Ang II. Luteolin not only significantly increased the viability of macrophages in the presence of Ang II, but also decreased the apoptotic rate, up-regulated Bcl-2 expression, and down-regulated Bax expression, thereby raising the ratio of Bcl-2 to Bax. In addition, luteolin pretreatment significantly increased the activity of SOD and reduced the levels of malondialdehyde (MDA), which was up-regulated in the presence of Ang II. This protective effect was also seen with Vitamin E (VitE) pretreatment, which was used as a standard control in this study. CONCLUSIONS These data clearly demonstrate that luteolin suppresses Ang II-directed oxidative stress and apoptosis on mice peritoneal macrophages.
Collapse
Affiliation(s)
- Tian Zhang
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, PR China
| | - Wanling Wu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, PR China
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, PR China; Department of Cardiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, PR China.
| | - Tongda Xu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, PR China
| | - Hong Zhu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, PR China
| | - Defeng Pan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, PR China
| | - Shasha Zhu
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, PR China
| | - Yang Liu
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, PR China
| |
Collapse
|