1
|
Shim S, Park CM, Seo PJ. iRegNet: an integrative Regulatory Network analysis tool for Arabidopsis thaliana. PLANT PHYSIOLOGY 2021; 187:1292-1309. [PMID: 34618085 PMCID: PMC8566287 DOI: 10.1093/plphys/kiab389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/09/2021] [Indexed: 05/24/2023]
Abstract
Gene expression is delicately controlled via multilayered genetic and/or epigenetic regulatory mechanisms. Rapid development of the high-throughput sequencing (HTS) technology and its derivative methods including chromatin immunoprecipitation sequencing (ChIP-seq) and DNA affinity purification sequencing (DAP-seq) have generated a large volume of data on DNA-protein interactions (DPIs) and histone modifications on a genome-wide scale. However, the ability to comprehensively retrieve empirically validated upstream regulatory networks of genes of interest (GOIs) and genomic regions of interest (ROIs) remains limited. Here, we present integrative Regulatory Network (iRegNet), a web application that analyzes the upstream regulatory network for user-queried GOIs or ROIs in the Arabidopsis (Arabidopsis thaliana) genome. iRegNet covers the largest empirically proven DNA-binding profiles of Arabidopsis transcription factors (TFs) and non-TF proteins, and histone modifications obtained from all currently available Arabidopsis ChIP-seq and DAP-seq data. iRegNet not only catalogs upstream regulomes and epigenetic chromatin states for single-query gene/genomic region but also suggests significantly overrepresented upstream genetic regulators and epigenetic chromatin states of user-submitted multiple query genes/genomic regions. Furthermore, gene-to-gene coexpression index and protein-protein interaction information were also integrated into iRegNet for a more reliable identification of upstream regulators and realistic regulatory networks. Thus, iRegNet will help discover upstream regulators as well as molecular regulatory networks of GOI(s) and/or ROI(s), and is freely available at http://chromatindynamics.snu.ac.kr:8082/iRegNet_main.
Collapse
Affiliation(s)
- Sangrea Shim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
2
|
The lineage and diversity of putative amino acid sensor ACR proteins in plants. Amino Acids 2020; 52:649-666. [PMID: 32306102 DOI: 10.1007/s00726-020-02844-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
Abstract
Amino acid metabolic enzymes often contain a regulatory ACT domain, named for aspartate kinase, chorismate mutase, and TyrA (prephenate dehydrogenase). Arabidopsis encodes 12 putative amino acid sensor ACT repeat (ACR) proteins, all containing ACT repeats but no identifiable catalytic domain. Arabidopsis ACRs comprise three groups based on domain composition and sequence: group I and II ACRs contain four ACTs each, and group III ACRs contain two ACTs. Previously, all three groups had been documented only in Arabidopsis. Here, we extended this to algae and land plants, showing that all three groups of ACRs are present in most, if not all, land plants, whereas among algal ACRs, although quite diverse, only group III is conserved. The appearance of canonical group I and II ACRs thus accompanied the evolution of plants from living in water to living on land. Alignment of ACTs from plant ACRs revealed a conserved motif, DRPGLL, at the putative ligand-binding site. Notably, the unique features of the DRPGLL motifs in each ACT domain are conserved in ACRs from algae to land plants. The conservation of plant ACRs is reminiscent of that of human cellular arginine sensor for mTORC1 (CASTOR1), a member of a small protein family highly conserved in animals. CASTOR proteins also have four ACT domains, although the sequence identities between ACRs and CASTORs are very low. Thus, plant ACRs and animal CASTORs may have adapted the regulatory ACT domains from a more ancient metabolic enzyme, and then evolved independently.
Collapse
|
3
|
Llorca CM, Berendzen KW, Malik WA, Mahn S, Piepho HP, Zentgraf U. The Elucidation of the Interactome of 16 Arabidopsis bZIP Factors Reveals Three Independent Functional Networks. PLoS One 2015; 10:e0139884. [PMID: 26452049 PMCID: PMC4599898 DOI: 10.1371/journal.pone.0139884] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/18/2015] [Indexed: 12/22/2022] Open
Abstract
The function of the bZIP transcription factors is strictly dependent on their ability to dimerize. Heterodimerization has proven to be highly specific and is postulated to operate as a combinatorial mechanism allowing the generation of a large variety of dimers with unique qualities by specifically combining a small set of monomers; an assumption that has not yet been tested systematically. Here, the interaction pattern and the transactivation properties of 16 Arabidopsis thaliana bZIPs are examined in transiently transformed Arabidopsis protoplasts to deliver a perspective on the relationship between bZIP dimerization and function. An interaction matrix of bZIPs belonging to the C, G, H, and S1 bZIP groups was resolved by Bimolecular Fluorescent Complementation (BiFC) coupled to quantitative flow cytometric analysis, while an extensive GUS reporter gene assay was carried out to determine the effect of different bZIP pairs on the expression of four different known bZIP-targeted promoters. Statistical data treatment and complementary bioinformatic analysis were performed to substantiate the biological findings. According to these results, the 16 bZIPs interact in three isolated networks, within which their members dimerize non-specifically and exhibit a significant level of functional redundancy. A coherent explanation for these results is supported by in silico analysis of differences in the length, structure and composition of their leucine zippers and appears to explain their dimerization specificity and dynamics observed in vivo quite well. A model in which the bZIP networks act as functional units is proposed.
Collapse
Affiliation(s)
- Carles Marco Llorca
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | | | - Waqas Ahmed Malik
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Stefan Mahn
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Hans-Peter Piepho
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Ulrike Zentgraf
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
4
|
Shaikhali J. GIP1 protein is a novel cofactor that regulates DNA-binding affinity of redox-regulated members of bZIP transcription factors involved in the early stages of Arabidopsis development. PROTOPLASMA 2015; 252:867-883. [PMID: 25387999 DOI: 10.1007/s00709-014-0726-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
In response to environmental light signals, gene expression adjustments play an important role in regulation of photomorphogenesis. LHCB2.4 is among the genes responsive to light signals, and its expression is regulated by redox-regulated members of G-group bZIP transcription factors. The biochemical interrelations of GBF1-interacting protein 1 (GIP1) and the G-group bZIP transcription factors have been investigated. GIP1, previously shown to enhance DNA-binding activities of maize GBF1 and Arabidopsis GBF3, is a plant specific protein that reduces DNA-binding activity of AtbZIP16, AtbZIP68, and AtGBF1 under non-reducing conditions through direct physical interaction shown by the yeast two-hybrid and pull-down assays. Fluorescence microscopy studies using cyan fluorescent protein (CFP)-fusion protein indicate that GIP1 is exclusively localized in the nucleus. Under non- reducing conditions, GIP1 exhibits predominantly high molecular weight forms, whereas it predominates in low molecular weight monomers under reducing conditions. While reduced GIP1 induced formation of DNA-protein complexes of G-group bZIPs, oxidized GIP1 decreased the amount of those complexes and instead induced its chaperone function suggesting functional switching from redox to chaperone activity. Finally analysis of transgenic plants overexpressing GIP1 revealed that GIP1 is a negative co-regulator in red and blue light mediated hypocotyl elongation. By regulating the repression effect by bZIP16 and the activation effect by bZIP68 and GBF1 on LHCB2.4 expression, GIP1 functions to promote hypocotyl elongation during the early stages of Arabidopsis seedling development.
Collapse
Affiliation(s)
- Jehad Shaikhali
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences SLU, 901 83, Umeå, Sweden,
| |
Collapse
|
5
|
Jaiswal DK, Ray D, Choudhary MK, Subba P, Kumar A, Verma J, Kumar R, Datta A, Chakraborty S, Chakraborty N. Comparative proteomics of dehydration response in the rice nucleus: new insights into the molecular basis of genotype-specific adaptation. Proteomics 2014; 13:3478-97. [PMID: 24133045 DOI: 10.1002/pmic.201300284] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/10/2013] [Accepted: 09/23/2013] [Indexed: 01/04/2023]
Abstract
Dehydration is the most crucial environmental factor that considerably reduces the crop harvest index, and thus has become a concern for global agriculture. To better understand the role of nuclear proteins in water-deficit condition, a nuclear proteome was developed from a dehydration-sensitive rice cultivar IR-64 followed by its comparison with that of a dehydration-tolerant c.v. Rasi. The 2DE protein profiling of c.v. IR-64 coupled with MS/MS analysis led to the identification of 93 dehydration-responsive proteins (DRPs). Among those identified proteins, 78 were predicted to be destined to the nucleus, accounting for more than 80% of the dataset. While the detected number of protein spots in c.v. IR-64 was higher when compared with that of Rasi, the number of DRPs was found to be less. Fifty-seven percent of the DRPs were found to be common to both sensitive and tolerant cultivars, indicating significant differences between the two nuclear proteomes. Further, we constructed a functional association network of the DRPs of c.v. IR-64, which suggests that a significant number of the proteins are capable of interacting with each other. The combination of nuclear proteome and interactome analyses would elucidate stress-responsive signaling and the molecular basis of dehydration tolerance in plants.
Collapse
|
6
|
Lee HW, Park JH, Park MY, Kim J. GIP1 may act as a coactivator that enhances transcriptional activity of LBD18 in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:14-8. [PMID: 24484953 DOI: 10.1016/j.jplph.2013.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 05/15/2023]
Abstract
The LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) gene family encodes a class of transcription factors harboring a conserved plant-specific lateral organ boundaries domain and plays a key role in lateral organ development of plants. Recent studies have revealed developmental functions of some LBD genes in Arabidopsis, rice, and maize. We have shown previously that LBD18/ASL20 promotes the emergence of lateral roots in Arabidopsis. LBD18 induces EXPANSIN14 (EXP14) expression by binding to a specific region of the EXP14 promoter. To further understand the molecular mechanism of LBD18 acting as a transcription factor, we isolated a protein interacting with LBD18 by screening an Arabidopsis cDNA library using the yeast two-hybrid system with LBD18 as bait. We found that GBF INTERACTING PROTEIN1 (GIP1) interacts with LBD18 in yeast and Arabidopsis protoplasts. Reverse-transcription-polymerase chain reaction analysis showed overlapping expression of GIP1 and LBD18 in various tissues of Arabidopsis such as roots, aerial parts, and rosette leaves. Transient gene expression assay results with Arabidopsis protoplasts indicated that GIP1 enhances transcriptional activity of LBD18 in the EXP14 promoter fused to the GUS reporter gene. These results show that GIP1 may act as a transcriptional coactivator of LBD18.
Collapse
Affiliation(s)
- Han Woo Lee
- Department of Bioenergy Science and Technology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Jong Hwa Park
- Department of Plant Biotechnology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Moung Yeon Park
- Department of Plant Biotechnology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
7
|
Nie J, Stewart R, Zhang H, Thomson JA, Ruan F, Cui X, Wei H. TF-Cluster: a pipeline for identifying functionally coordinated transcription factors via network decomposition of the shared coexpression connectivity matrix (SCCM). BMC SYSTEMS BIOLOGY 2011; 5:53. [PMID: 21496241 PMCID: PMC3101171 DOI: 10.1186/1752-0509-5-53] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 04/15/2011] [Indexed: 12/24/2022]
Abstract
BACKGROUND Identifying the key transcription factors (TFs) controlling a biological process is the first step toward a better understanding of underpinning regulatory mechanisms. However, due to the involvement of a large number of genes and complex interactions in gene regulatory networks, identifying TFs involved in a biological process remains particularly difficult. The challenges include: (1) Most eukaryotic genomes encode thousands of TFs, which are organized in gene families of various sizes and in many cases with poor sequence conservation, making it difficult to recognize TFs for a biological process; (2) Transcription usually involves several hundred genes that generate a combination of intrinsic noise from upstream signaling networks and lead to fluctuations in transcription; (3) A TF can function in different cell types or developmental stages. Currently, the methods available for identifying TFs involved in biological processes are still very scarce, and the development of novel, more powerful methods is desperately needed. RESULTS We developed a computational pipeline called TF-Cluster for identifying functionally coordinated TFs in two steps: (1) Construction of a shared coexpression connectivity matrix (SCCM), in which each entry represents the number of shared coexpressed genes between two TFs. This sparse and symmetric matrix embodies a new concept of coexpression networks in which genes are associated in the context of other shared coexpressed genes; (2) Decomposition of the SCCM using a novel heuristic algorithm termed "Triple-Link", which searches the highest connectivity in the SCCM, and then uses two connected TF as a primer for growing a TF cluster with a number of linking criteria. We applied TF-Cluster to microarray data from human stem cells and Arabidopsis roots, and then demonstrated that many of the resulting TF clusters contain functionally coordinated TFs that, based on existing literature, accurately represent a biological process of interest. CONCLUSIONS TF-Cluster can be used to identify a set of TFs controlling a biological process of interest from gene expression data. Its high accuracy in recognizing true positive TFs involved in a biological process makes it extremely valuable in building core GRNs controlling a biological process. The pipeline implemented in Perl can be installed in various platforms.
Collapse
Affiliation(s)
- Jeff Nie
- Morgridge Institute for Research, 330 N. Orchard St., Madison, WI 53715, USA
| | - Ron Stewart
- Morgridge Institute for Research, 330 N. Orchard St., Madison, WI 53715, USA
| | - Hang Zhang
- Department of Computer Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - James A Thomson
- Morgridge Institute for Research, 330 N. Orchard St., Madison, WI 53715, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin, 600 Highland Ave., Madison, WI 53792, USA
- Department of Cell & Regenerative Biology, University of Wisconsin, 1300 University Ave., Madison, WI 53705, USA
- Department of Molecular, Cellular, & Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Fang Ruan
- Program of Computing Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Xiaoqi Cui
- Department of Mathematics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Hairong Wei
- School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
- Biotechnology Research Center, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| |
Collapse
|
8
|
Smykowski A, Zimmermann P, Zentgraf U. G-Box binding factor1 reduces CATALASE2 expression and regulates the onset of leaf senescence in Arabidopsis. PLANT PHYSIOLOGY 2010; 153:1321-31. [PMID: 20484024 PMCID: PMC2899923 DOI: 10.1104/pp.110.157180] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 05/13/2010] [Indexed: 05/19/2023]
Abstract
Hydrogen peroxide (H(2)O(2)) is discussed as being a signaling molecule in Arabidopsis (Arabidopsis thaliana) leaf senescence. Intracellular H(2)O(2) levels are controlled by the H(2)O(2)-scavenging enzyme catalase in concert with other scavenging and producing systems. Catalases are encoded by a small gene family, and the expression of all three Arabidopsis catalase genes is regulated in a senescence-associated manner. CATALASE2 (CAT2) expression is down-regulated during bolting time at the onset of leaf senescence and appears to be involved in the elevation of the H(2)O(2) level at this time point. To understand the role of CAT2 in senescence regulation in more detail, we used CAT2 promoter fragments in a yeast one-hybrid screen to isolate upstream regulatory factors. Among others, we could identify G-Box Binding Factor1 (GBF1) as a DNA-binding protein of the CAT2 promoter. Transient overexpression of GBF1 together with a CAT2:beta-glucuronidase construct in tobacco (Nicotiana benthamiana) plants and Arabidopsis protoplasts revealed a negative effect of GBF1 on CAT2 expression. In gbf1 mutant plants, the CAT2 decrease in expression and activity at bolting time and the increase in H(2)O(2) could no longer be observed. Consequently, the onset of leaf senescence and the expression of senescence-associated genes were delayed in gbf1 plants, clearly indicating a regulatory function of GBF1 in leaf senescence, most likely via regulation of the intracellular H(2)O(2) content.
Collapse
Affiliation(s)
| | | | - Ulrike Zentgraf
- Center for Plant Molecular Biology, General Genetics, University of Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|