1
|
Dias MF, Cruz-Cazarim ELC, Pittella F, Baião A, Pacheco AC, Sarmento B, Fialho SL. Co-delivery of antioxidants and siRNA-VEGF: promising treatment for age-related macular degeneration. Drug Deliv Transl Res 2025:10.1007/s13346-024-01772-x. [PMID: 39751765 DOI: 10.1007/s13346-024-01772-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
Current treatments for retinal disorders are anti-angiogenic agents, laser photocoagulation, and photodynamic therapies. These conventional treatments focus on reducing abnormal blood vessel formation in the retina, which, in a low-oxygen environment, can lead to harmful proliferation of endothelial cells. This results in dysfunctional, leaky blood vessels that cause retinal edema, hemorrhage, and vision loss. Age-related Macular Degeneration is a primary cause of vision loss and blindness in the elderly, impacting around 20% of those over 50 years old. This complex disease is also closely related to oxidative stress in retina. In this review, we explore the challenge of treating retinal diseases, alternatives and possibilities of enhancing the effectiveness of therapies using co-delivery systems containing both antiangiogenic and antioxidant therapeutic agents. Despite recent proposals potential, the lack of extensive clinical studies on the long-term outcomes and optimal combinations of therapies means that the full risk profile and effectiveness of combined therapy are not yet completely understood. These factors must be carefully considered and managed by healthcare providers to optimize treatment outcomes and ensure patient safety.
Collapse
Affiliation(s)
- Marina F Dias
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, CEP 30510-010, Minas Gerais, Brazil
| | - Estael L C Cruz-Cazarim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora, CEP 36036-900, Minas Gerais, Brazil
| | - Frederico Pittella
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora, CEP 36036-900, Minas Gerais, Brazil
| | - Ana Baião
- i3S - Instituto Nacional de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- Instituto de Engenharia Biomédica, INEB, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Ana Catarina Pacheco
- i3S - Instituto Nacional de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- Instituto de Engenharia Biomédica, INEB, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- CESPU-IUCS, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Bruno Sarmento
- i3S - Instituto Nacional de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- Instituto de Engenharia Biomédica, INEB, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- CESPU-IUCS, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Silvia L Fialho
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, CEP 30510-010, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Monteleone G, Cameli P, Bonella F. The role of heat shock protein 90 in idiopathic pulmonary fibrosis: state of the art. Eur Respir Rev 2025; 34:240147. [PMID: 40107664 PMCID: PMC11920893 DOI: 10.1183/16000617.0147-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/16/2024] [Indexed: 03/22/2025] Open
Abstract
Heat shock protein 90 (HSP 90) and its isoforms are a group of homodimeric proteins that regulate several cellular processes, such as the elimination of misfolded proteins, cell development and post-translational modifications of kinase proteins and receptors. Due to its involvement in extracellular matrix (ECM) remodelling, myofibroblast differentiation and apoptosis, HSP 90 has been investigated as a key player in the pathogenesis of lung fibrosis. Idiopathic pulmonary fibrosis (IPF) is the most common and deadly interstitial lung disease, due to the progressive distortion of lung parenchyma related to the overproduction and deposition of altered ECM, driven by transforming growth factor-β (TGF-β) dependent and independent pathways. The inhibition or induction of HSP 90 is associated with a reduced or increased expression of TGF-β receptors, respectively, suggesting a role for HSP 90 as a biomarker and therapeutic target in IPF. Experimental drugs such as geldanamycin and its derivatives 17-AAG (17-N-allylamino-17-demethoxygeldanamicin) and 17-DMAG (17-dimethylaminoethylamino-17-demethoxigeldanamycin), along with AUY-922, 1G6-D7, AT-13387, TAS-116 and myricetin, have been found to reduce lung fibrosis in both in vivo and in vitro models, supporting the role of this emerging target. This review aims to illustrate the structure and biological function of HSP 90 in the context of IPF pathobiology, as well as perspective application of this molecule as a biomarker and therapeutic target for IPF.
Collapse
Affiliation(s)
- Giorgio Monteleone
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of Sacred Heart, Rome, Italy
| | - Paolo Cameli
- Respiratory Diseases Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Francesco Bonella
- Center for interstitial and rare lung diseases, Pneumology Department, Ruhrlandklinik University Hospital, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Darbinian N, Gallia GL, Darbinyan A, Vadachkoria E, Merabova N, Moore A, Goetzl L, Amini S, Selzer ME. Effects of In Utero EtOH Exposure on 18S Ribosomal RNA Processing: Contribution to Fetal Alcohol Spectrum Disorder. Int J Mol Sci 2023; 24:13714. [PMID: 37762017 PMCID: PMC10531167 DOI: 10.3390/ijms241813714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Fetal alcohol spectrum disorders (FASD) are leading causes of neurodevelopmental disability. The mechanisms by which alcohol (EtOH) disrupts fetal brain development are incompletely understood, as are the genetic factors that modify individual vulnerability. Because the phenotype abnormalities of FASD are so varied and widespread, we investigated whether fetal exposure to EtOH disrupts ribosome biogenesis and the processing of pre-ribosomal RNAs and ribosome assembly, by determining the effect of exposure to EtOH on the developmental expression of 18S rRNA and its cleaved forms, members of a novel class of short non-coding RNAs (srRNAs). In vitro neuronal cultures and fetal brains (11-22 weeks) were collected according to an IRB-approved protocol. Twenty EtOH-exposed brains from the first and second trimester were compared with ten unexposed controls matched for gestational age and fetal gender. Twenty fetal-brain-derived exosomes (FB-Es) were isolated from matching maternal blood. RNA was isolated using Qiagen RNA isolation kits. Fetal brain srRNA expression was quantified by ddPCR. srRNAs were expressed in the human brain and FB-Es during fetal development. EtOH exposure slightly decreased srRNA expression (1.1-fold; p = 0.03). Addition of srRNAs to in vitro neuronal cultures inhibited EtOH-induced caspase-3 activation (1.6-fold, p = 0.002) and increased cell survival (4.7%, p = 0.034). The addition of exogenous srRNAs reversed the EtOH-mediated downregulation of srRNAs (2-fold, p = 0.002). EtOH exposure suppressed expression of srRNAs in the developing brain, increased activity of caspase-3, and inhibited neuronal survival. Exogenous srRNAs reversed this effect, possibly by stabilizing endogenous srRNAs, or by increasing the association of cellular proteins with srRNAs, modifying gene transcription. Finally, the reduction in 18S rRNA levels correlated closely with the reduction in fetal eye diameter, an anatomical hallmark of FASD. The findings suggest a potential mechanism for EtOH-mediated neurotoxicity via alterations in 18S rRNA processing and the use of FB-Es for early diagnosis of FASD. Ribosome biogenesis may be a novel target to ameliorate FASD in utero or after birth. These findings are consistent with observations that gene-environment interactions contribute to FASD vulnerability.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (E.V.); (N.M.); (A.M.)
| | - Gary L. Gallia
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD 21287, USA;
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Ekaterina Vadachkoria
- Center for Neural Repair and Rehabilitation Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (E.V.); (N.M.); (A.M.)
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (E.V.); (N.M.); (A.M.)
- Medical College of Wisconsin-Prevea Health, Green Bay, WI 54304, USA
| | - Amos Moore
- Center for Neural Repair and Rehabilitation Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (E.V.); (N.M.); (A.M.)
| | - Laura Goetzl
- Department of Obstetrics & Gynecology, University of Texas, Houston, TX 77030, USA;
| | - Shohreh Amini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Michael E. Selzer
- Center for Neural Repair and Rehabilitation Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (E.V.); (N.M.); (A.M.)
- Departments of Neurology and Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
4
|
Chatterjee K, Lakdawala S, Quadir SS, Puri D, Mishra DK, Joshi G, Sharma S, Choudhary D. siRNA-Based Novel Therapeutic Strategies to Improve Effectiveness of Antivirals: An Insight. AAPS PharmSciTech 2023; 24:170. [PMID: 37566146 DOI: 10.1208/s12249-023-02629-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Since the ground-breaking discovery of RNA interference (RNAi), scientists have made significant progress in the field of small interfering RNA (siRNA) treatments. Due to severe barriers to the therapeutic application of siRNA, nanoparticle technologies for siRNA delivery have been designed. For pathological circumstances such as viral infection, toxic RNA abnormalities, malignancies, and hereditary diseases, siRNAs are potential therapeutic agents. However, systemic administration of siRNAs in vivo remains a substantial issue due to a lack of "drug-likeness" (siRNA are relatively larger than drugs and have low hydrophobicity), physiological obstacles, and possible toxicities. This write-up covers important accomplishment in the field of clinical trials and patents specially based of siRNAs using targeting viruses. Furthermore, it offers deep insight of nanoparticle applied for siRNA delivery and strategies to improve the effectiveness of antivirals.
Collapse
Affiliation(s)
- Krittika Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, 400056, India
| | - Sagheerah Lakdawala
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, 400056, India
| | - Sheikh Shahnawaz Quadir
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Dinesh Puri
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand, 248001, India
| | - Dinesh Kumar Mishra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur (C.G.), 495009, India
| | - Garima Joshi
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Sanjay Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, 400056, India.
| | - Deepak Choudhary
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| |
Collapse
|
5
|
Narożna M, Rubiś B. Anti-SARS-CoV-2 Strategies and the Potential Role of miRNA in the Assessment of COVID-19 Morbidity, Recurrence, and Therapy. Int J Mol Sci 2021; 22:8663. [PMID: 34445368 PMCID: PMC8395427 DOI: 10.3390/ijms22168663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 02/06/2023] Open
Abstract
Recently, we have experienced a serious pandemic. Despite significant technological advances in molecular technologies, it is very challenging to slow down the infection spread. It appeared that due to globalization, SARS-CoV-2 spread easily and adapted to new environments or geographical or weather zones. Additionally, new variants are emerging that show different infection potential and clinical outcomes. On the other hand, we have some experience with other pandemics and some solutions in virus elimination that could be adapted. This is of high importance since, as the latest reports demonstrate, vaccine technology might not follow the new, mutated virus outbreaks. Thus, identification of novel strategies and markers or diagnostic methods is highly necessary. For this reason, we present some of the latest views on SARS-CoV-2/COVID-19 therapeutic strategies and raise a solution based on miRNA. We believe that in the face of the rapidly increasing global situation and based on analogical studies of other viruses, the possibility of using the biological potential of miRNA technology is very promising. It could be used as a promising diagnostic and prognostic factor, as well as a therapeutic target and tool.
Collapse
Affiliation(s)
- Maria Narożna
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4 Święcickiego St., 60-781 Poznan, Poland;
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland
| |
Collapse
|
6
|
A small interfering RNA (siRNA) database for SARS-CoV-2. Sci Rep 2021; 11:8849. [PMID: 33893357 PMCID: PMC8065152 DOI: 10.1038/s41598-021-88310-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) rapidly transformed into a global pandemic, for which a demand for developing antivirals capable of targeting the SARS-CoV-2 RNA genome and blocking the activity of its genes has emerged. In this work, we presented a database of SARS-CoV-2 targets for small interference RNA (siRNA) based approaches, aiming to speed the design process by providing a broad set of possible targets and siRNA sequences. The siRNAs sequences are characterized and evaluated by more than 170 features, including thermodynamic information, base context, target genes and alignment information of sequences against the human genome, and diverse SARS-CoV-2 strains, to assess possible bindings to off-target sequences. This dataset is available as a set of four tables, available in a spreadsheet and CSV (Comma-Separated Values) formats, each one corresponding to sequences of 18, 19, 20, and 21 nucleotides length, aiming to meet the diversity of technology and expertise among laboratories around the world. A metadata table (Supplementary Table S1), which describes each feature, is also provided in the aforementioned formats. We hope that this database helps to speed up the development of new target antivirals for SARS-CoV-2, contributing to a possible strategy for a faster and effective response to the COVID-19 pandemic.
Collapse
|
7
|
Manzanares D, Pérez-Carrión MD, Jiménez Blanco JL, Ortiz Mellet C, García Fernández JM, Ceña V. Cyclodextrin-Based Nanostructure Efficiently Delivers siRNA to Glioblastoma Cells Preferentially via Macropinocytosis. Int J Mol Sci 2020; 21:ijms21239306. [PMID: 33291321 PMCID: PMC7731237 DOI: 10.3390/ijms21239306] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/25/2022] Open
Abstract
Small interfering ribonucleic acid (siRNA) has the potential to revolutionize therapeutics since it can knockdown very efficiently the target protein. It is starting to be widely used to interfere with cell infection by HIV. However, naked siRNAs are unable to get into the cell, requiring the use of carriers to protect them from degradation and transporting them across the cell membrane. There is no information about which is the most efficient endocytosis route for high siRNA transfection efficiency. One of the most promising carriers to efficiently deliver siRNA are cyclodextrin derivatives. We have used nanocomplexes composed of siRNA and a β-cyclodextrin derivative, AMC6, with a very high transfection efficiency to selectively knockdown clathrin heavy chain, caveolin 1, and p21 Activated Kinase 1 to specifically block clathrin-mediated, caveolin-mediated and macropinocytosis endocytic pathways. The main objective was to identify whether there is a preferential endocytic pathway associated with high siRNA transfection efficiency. We have found that macropinocytosis is the preferential entry pathway for the nanoparticle and its associated siRNA cargo. However, blockade of macropinocytosis does not affect AMC6-mediated transfection efficiency, suggesting that macropinocytosis blockade can be functionally compensated by an increase in clathrin- and caveolin-mediated endocytosis.
Collapse
Affiliation(s)
- Darío Manzanares
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (D.M.); (M.D.P.-C.)
- CIBERNED, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Dolores Pérez-Carrión
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (D.M.); (M.D.P.-C.)
- CIBERNED, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Luis Jiménez Blanco
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain; (J.L.J.B.); (C.O.M.)
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain; (J.L.J.B.); (C.O.M.)
| | - José Manuel García Fernández
- Instituto de Investigaciones Químicas (IIQ), Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092 Sevilla, Spain,
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (D.M.); (M.D.P.-C.)
- CIBERNED, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
8
|
Hu X, Xu Z, Min Q, Teng C, Tian Y. Endogenous Stimuli-Responsive DNA Nanostructures Toward Cancer Theranostics. FRONTIERS IN NANOTECHNOLOGY 2020. [DOI: 10.3389/fnano.2020.574328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nanostructures specifically responsive to endogenous biomolecules hold great potential in accurate diagnosis and precision therapy of cancers. In the pool of nanostructures with responsiveness to unique triggers, nanomaterials derived from DNA self-assembly have drawn particular attention due to their intrinsic biocompatibility and structural programmability, enabling the selective bioimaging, and site-specific drug delivery in cancer cells and tumor tissues. In this mini review, we summarize the most recent advances in the development of endogenous stimuli-responsive DNA nanostructures featured with precise self-assembly, targeted delivery, and controlled drug release for cancer theranostics. This mini review briefly discusses the diverse dynamic DNA nanostructures aiming at bioimaging and biomedicine, including DNA self-assembling materials, DNA origami structures, DNA hydrogels, etc. We then elaborate the working principles of DNA nanostructures activated by biomarkers (e.g., miRNA, mRNA, and proteins) in tumor cells and microenvironments of tumor tissue (e.g., pH, ATP, and redox gradient). Subsequently, applications of the endogenous stimuli-responsive DNA nanostructures in biological imaging probes for detecting cancer hallmarks as well as intelligent carriers for drug release in vivo are discussed. In the end, we highlight the current challenges of DNA nanotechnology and the further development of this promising research direction.
Collapse
|
9
|
Abstract
Identification of HIV-1 HDFs remains a crucial step to understand the complicated relationships between human and HIV-1. To complement the experimental identification of HDFs, we have implemented an existing network-based gene discovery strategy to predict HDFs from the human genome. The core idea of the proposed method is that the rich information deposited in host gene functional networks can be effectively utilized to infer the potential HDFs. We hope the proposed prediction method could further guide hypothesis-driven experimental efforts to interrogate human–HIV-1 relationships and provide new hints for the development of antiviral drugs to combat HIV-1 infection. Human immunodeficiency virus type 1 (HIV-1) depends on a class of host proteins called host dependency factors (HDFs) to facilitate its infection. So far experimental efforts have detected a certain number of HDFs, but the gene inventory of HIV-1 HDFs remains incomplete. Here, we implemented an existing network-based gene discovery strategy to predict HIV-1 HDFs. First, an encoding scheme based on a publicly available human tissue-specific gene functional network (GIANT; http://giant.princeton.edu/) was designed to convert each human gene into a 25,825-dimensional feature vector. Then, a random forest-based predictive model was trained on a data set containing 868 known HDFs and 1,736 non-HDFs. Through 5-fold cross-validation, an independent test, and comparison with one existing method, the proposed prediction method consistently revealed accurate and competitive performance. The highlight of our method should be ascribed to the introduction of the GIANT encoding scheme, which contains rich information regarding gene interactions. By merging known HDFs and genome-wide HDF prediction results, network analysis was conducted to catch the common patterns of HDFs in the context of the GIANT network. Interestingly, HDFs reveal significantly lower betweenness than HIV-1-interacting human proteins (i.e., HIV targets). In the meantime, the functional roles of HDFs were also examined by mapping all the HDF candidates into human protein complexes. Especially, we observed the frequent co-occurrence of HDFs and HIV targets at the protein complex level. Collectively, we hope the proposed prediction method not only can accelerate the HDF identification and antiviral drug target discovery, but also can provide some mechanistic insights into human-virus relationships. IMPORTANCE Identification of HIV-1 HDFs remains a crucial step to understand the complicated relationships between human and HIV-1. To complement the experimental identification of HDFs, we have implemented an existing network-based gene discovery strategy to predict HDFs from the human genome. The core idea of the proposed method is that the rich information deposited in host gene functional networks can be effectively utilized to infer the potential HDFs. We hope the proposed prediction method could further guide hypothesis-driven experimental efforts to interrogate human–HIV-1 relationships and provide new hints for the development of antiviral drugs to combat HIV-1 infection.
Collapse
|
10
|
Sarshar M, Scribano D, Ambrosi C, Palamara AT, Masotti A. Fecal microRNAs as Innovative Biomarkers of Intestinal Diseases and Effective Players in Host-Microbiome Interactions. Cancers (Basel) 2020; 12:E2174. [PMID: 32764361 PMCID: PMC7463924 DOI: 10.3390/cancers12082174] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, short non-coding microRNAs (miRNAs), including circulating and fecal miRNAs have emerged as important modulators of various cellular processes by regulating the expression of target genes. Recent studies revealed the role of miRNAs as powerful biomarkers in disease diagnosis and for the development of innovative therapeutic applications in several human conditions, including intestinal diseases. In this review, we explored the literature and summarized the role of identified dysregulated fecal miRNAs in intestinal diseases, with particular focus on colorectal cancer (CRC) and celiac disease (CD). The aim of this review is to highlight one fascinating aspect of fecal miRNA function related to gut microbiota shaping and bacterial metabolism influencing. The role of miRNAs as "messenger" molecules for inter kingdom communications will be analyzed to highlight their role in the complex host-bacteria interactions. Moreover, whether fecal miRNAs could open up new perspectives to develop novel suitable biomarkers for disease detection and innovative therapeutic approaches to restore microbiota balance will be discussed.
Collapse
Affiliation(s)
- Meysam Sarshar
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, 00185 Rome, Italy;
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
- Microbiology Research Center (MRC), Pasteur Institute of Iran, 1316943551 Tehran, Iran
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
- Dani Di Giò Foundation-Onlus, 00193 Rome, Italy
| | - Cecilia Ambrosi
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, 00185 Rome, Italy;
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| |
Collapse
|
11
|
In-Vitro Subtype-Specific Modulation of HIV-1 Trans-Activator of Transcription (Tat) on RNAi Silencing Suppressor Activity and Cell Death. Viruses 2019; 11:v11110976. [PMID: 31652847 PMCID: PMC6893708 DOI: 10.3390/v11110976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 01/22/2023] Open
Abstract
Human immunodeficiency virus (HIV) is a global health concern affecting millions of individuals with a wide variety of currently circulating subtypes affecting various regions of the globe. HIV relies on multiple regulatory proteins to modify the host cell to promote replication in infected T cells, and these regulatory proteins can have subtle phenotypic differences between subtypes. One of these proteins, HIV-1 Trans-Activator of Transcription (Tat), is capable of RNA interference (RNAi) Silencing Suppressor (RSS) activity and induction of cell death in T cells. However, the subtype-specific RSS activity and induction of cell death have not been explored. We investigated the ability of Tat subtypes and variants to induce RSS activity and cell death. TatB, from HIV-1 subtype B, was found to be a potent RSS activator by 40% whereas TatC, from HIV-1 subtype C, showed 15% RSS activity while subtype TatC variants exhibited varying levels. A high level of cell death (50–53%) was induced by subtype TatB when compared to subtype TatC (25–28%) and varying levels were observed with subtype TatC variants. These differential activities could be due to variations in the functional domains of Tat. These observations further our understanding of subtype-specific augmentation of Tat in HIV-1 replication and pathogenesis.
Collapse
|
12
|
El-Said H, Fayyad-Kazan M, Aoun R, Borghol N, Skafi N, Rouas R, Vanhamme L, Mourtada M, Ezzeddine M, Burny A, Fayyad-Kazan H, Badran B. MiR302c, Sp1, and NFATc2 regulate interleukin-21 expression in human CD4+CD45RO+ T lymphocytes. J Cell Physiol 2019; 234:5998-6011. [PMID: 30343493 DOI: 10.1002/jcp.27151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022]
Abstract
Interleukin-21 (IL-21) is a cytokine with potent regulatory effects on different immune cells. Recently, IL-21 has been contemplated for use in the treatment of cancers. However, the molecular mechanisms regulating human IL-21 gene expression has not yet been described. In this study, we initially studied the promoter region and identified the transcription start site. We thereafter described the essential region upstream of the transcription start site and showed the in vivo binding of NFATc2 and SP1 transcription factors to this region, in addition to their positive role in IL-21 expression. We also studied the role of microRNAs (miRNAs) in regulating IL-21 expression. We, thus, established the miRNA profile of CD4+CD45RO+ versus CD4+CD45RA+ isolated from healthy volunteers and identified a signature composed of 12 differentially expressed miRNAs. We showed that miR-302c is able to negatively regulate IL-21 expression by binding directly to its target site in the 3'-untranslated region. Moreover, after using fresh human CD4-positive T cells, we observed the high acetylation level of histone H4, an observation well in line with the already described high expression of IL-21 in CD4+CD45RO+ versus CD4+CD45RA+ T cells. Altogether, our data identified different molecular mechanisms regulating IL-21 expression.
Collapse
Affiliation(s)
- Hassan El-Said
- Department of Biology, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Mohammad Fayyad-Kazan
- Department of Hematology, Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Rabab Aoun
- Department of Biology, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Nada Borghol
- Department of Biology, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Najwa Skafi
- Department of Biology, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Redouane Rouas
- Department of Hematology, Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Luc Vanhamme
- Department of Molecular Biology, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Gosselies, Belgium
| | - Mohamad Mourtada
- Department of Biology, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Mohamad Ezzeddine
- Department of Biology, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Arsène Burny
- Department of Hematology, Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Hussein Fayyad-Kazan
- Department of Biology, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Bassam Badran
- Department of Biology, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| |
Collapse
|
13
|
Rouas R, Merimi M, Najar M, El Zein N, Fayyad‐Kazan M, Berehab M, Agha D, Bron D, Burny A, Rachidi W, Badran B, Lewalle P, Fayyad‐Kazan H. Human CD8
+
CD25
+
CD127
low
regulatory T cells: microRNA signature and impact on TGF‐β and IL‐10 expression. J Cell Physiol 2019; 234:17459-17472. [DOI: 10.1002/jcp.28367] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Redouane Rouas
- Laboratory of Experimental Hematology Institut Jules Bordet, Université Libre de Bruxelles Bruxelles Belgium
| | - Makram Merimi
- Laboratory of Experimental Hematology Institut Jules Bordet, Université Libre de Bruxelles Bruxelles Belgium
| | - Mehdi Najar
- Laboratory of Clinical Cell Therapy Institut Jules Bordet, Université Libre de Bruxelles (ULB) Brussels Belgium
| | - Nabil El Zein
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I Lebanese University Hadath Lebanon
| | - Mohammad Fayyad‐Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I Lebanese University Hadath Lebanon
| | - Mimoune Berehab
- Laboratory of Experimental Hematology Institut Jules Bordet, Université Libre de Bruxelles Bruxelles Belgium
| | - Douaa Agha
- Laboratory of Experimental Hematology Institut Jules Bordet, Université Libre de Bruxelles Bruxelles Belgium
| | - Dominique Bron
- Laboratory of Experimental Hematology Institut Jules Bordet, Université Libre de Bruxelles Bruxelles Belgium
| | - Arsene Burny
- Laboratory of Experimental Hematology Institut Jules Bordet, Université Libre de Bruxelles Bruxelles Belgium
| | - Walid Rachidi
- Univ. Grenoble Alpes, SYMMES/CIBEST UMR 5819 UGA‐CNRS‐CEA, INAC/CEA‐Grenoble Grenoble France
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I Lebanese University Hadath Lebanon
| | - Philippe Lewalle
- Laboratory of Experimental Hematology Institut Jules Bordet, Université Libre de Bruxelles Bruxelles Belgium
| | - Hussein Fayyad‐Kazan
- Laboratory of Experimental Hematology Institut Jules Bordet, Université Libre de Bruxelles Bruxelles Belgium
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I Lebanese University Hadath Lebanon
| |
Collapse
|
14
|
Liao PF, Ouyang JX, Zhang JJ, Yang L, Wang X, Peng XJ, Wang D, Zhu YL, Li SB. OsDCL3b affects grain yield and quality in rice. PLANT MOLECULAR BIOLOGY 2019; 99:193-204. [PMID: 30652247 DOI: 10.1007/s11103-018-0806-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
We reported that knockdown of OsDCL3b decreased grain yield but increased grain quality in rice, which is helpful for molecular breeding in crops. Multiple DICER-LIKE (DCL) genes usually exist and show diverse biochemical and phenotypic functions in land plants. In rice, the biochemical function of OsDCL3b is known to process 24-nucleotide panicle phased small RNAs, however, its phenotypic functions are unclear. Here we reported that knockdown of OsDCL3b led to reduced pollen fertility, seed setting rate, and decreased grain yield but increased grain quality in rice. To reveal the molecular mechanism of the above phenomena, extracted RNAs from rice panicles of the wild type (WT) and OsDCL3b-RNAi line S6-1 were analyzed by deep sequencing. It showed that knockdown of OsDCL3b affected the biogenesis of both 21- and 24-nucleotide small RNAs including miRNAs and phased small RNAs. Using RNA-seq, 644 up- and 530 down-regulated mRNA genes were identified in panicles of line S6-1, and 550 and 273 differentially spliced genes with various alternative splicing (AS) events were observed in panicles of line S6-1 and WT, respectively, suggesting that OsDCL3b involved in influencing the transcript levels of mRNA genes and the AS events in rice panicles. Thus, our results show that knockdown of OsDCL3b will affect the biogenesis of small RNAs, which is involved in regulating the transcription of mRNA genes, and consequently influence the grain yield and quality in rice.
Collapse
Affiliation(s)
- Peng-Fei Liao
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Jie-Xiu Ouyang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Jian-Jun Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lan Yang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Xin Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Xiao-Jue Peng
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Dong Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - You-Lin Zhu
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China.
| | - Shao-Bo Li
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
15
|
Malignancies in HIV-Infected and AIDS Patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1018:167-179. [PMID: 29052137 DOI: 10.1007/978-981-10-5765-6_10] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Currently, HIV infection and AIDS are still one of the most important epidemic diseases around the world. As early in the initial stage of HIV epidemic, the high incidence of ADCs including Kaposi sarcoma and non-Hodgkin's lymphoma was the substantial amount of disease burden of HIV infection and AIDS. With the increasing accessibility of HAART and improving medical care for HIV infection and AIDS, AIDS-related illness including ADCs has dramatically decreased. Meanwhile, the incidence of NADCs rises in PLWH. Compared with the general population, most of cancers are more likely to attack PLWH, and NADCs in PLWH were characterized as earlier onset and more aggressive. However, the understanding for cancer development in PLWH is still dimness. Herein, we reviewed the current knowledge of epidemiology and pathogenesis for malignancies in PLWH summarized from recent studies. On the basis of that, we discussed the special considerations for cancer treatment in PLWH. As those malignancies could be the major issue for HIV infection or AIDS in the future, we expect enhanced investigations, surveillances, and clinical trial for improving the understanding and management for cancers developed in PLWH.
Collapse
|
16
|
Laurenti M, Paez-Perez M, Algarra M, Alonso-Cristobal P, Lopez-Cabarcos E, Mendez-Gonzalez D, Rubio-Retama J. Enhancement of the Upconversion Emission by Visible-to-Near-Infrared Fluorescent Graphene Quantum Dots for miRNA Detection. ACS APPLIED MATERIALS & INTERFACES 2016; 8:12644-51. [PMID: 27153453 PMCID: PMC5058637 DOI: 10.1021/acsami.6b02361] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/06/2016] [Indexed: 05/20/2023]
Abstract
We developed a sensor for the detection of specific microRNA (miRNA) sequences that was based on graphene quantum dots (GQDs) and ssDNA-UCNP@SiO2. The proposed sensor exploits the interaction between the sp(2) carbon atoms of the GQD, mainly π-π stacking, and the DNA nucleobases anchored on the upconversion nanoparticles (UCNPs). This interaction brings the GQD to the surface of the ssDNA-UCNP@SiO2 system, enhancing the upconversion emission. On the other hand, hybridization of the single-stranded DNA (ssDNA) chains anchored on the nanoparticles with their complementary miRNA sequences blocks the capacity of the UCNPs to interact with the GQD through π-π stacking. That gives as result a reduction of the fluorescent enhancement, which is dependent on the concentration of miRNA sequences. This effect was used to create a sensor for miRNA sequences with a detection limit of 10 fM.
Collapse
Affiliation(s)
- Marco Laurenti
- Department of Physical Chemistry II, Faculty
of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Miguel Paez-Perez
- Department of Physical Chemistry II, Faculty
of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Manuel Algarra
- Department of Inorganic Chemistry. Faculty
of Science, University of Málaga, 29071 Málaga, Spain
| | - Paulino Alonso-Cristobal
- Department of Physical Chemistry II, Faculty
of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Enrique Lopez-Cabarcos
- Department of Physical Chemistry II, Faculty
of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Diego Mendez-Gonzalez
- Department of Physical Chemistry II, Faculty
of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jorge Rubio-Retama
- Department of Physical Chemistry II, Faculty
of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- E-mail: . Tel: 0034 913941750. Fax: 0034 913942030
| |
Collapse
|
17
|
Al Akoum C, Akl I, Rouas R, Fayyad-Kazan M, Falha L, Renno T, Burny A, Lewalle P, Fayyad-Kazan H, Badran B. NFAT-1, Sp-1, Sp-3, and miR-21: New regulators of chemokine C receptor 7 expression in mature human dendritic cells. Hum Immunol 2015; 76:307-17. [PMID: 25797200 DOI: 10.1016/j.humimm.2015.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/04/2015] [Accepted: 03/11/2015] [Indexed: 12/17/2022]
Abstract
The chemokine C receptor 7 (CCR7) is a G-protein-coupled heptahelical receptor (GPCR) that is expressed on a wide variety of cells including memory T cells, B cells, mature dendritic cells, and cancer cells. Activated by its ligands CCL19 or CCL21, CCR7 plays a major role in metastasis of cancer cells. Recent studies demonstrated the role of NF-κB and AP-1 transcription factors in addition to let-7 microRNA in CCR7 expression. Our ChIP assays further show the binding of Sp-1, Sp-3 and NFAT-1 transcription factors to their potential binding sites in the 1Kb promoter region with the later found to inhibit whilst Sp-1, and Sp-3 were found to stimulate CCR7 expression as demonstrated by transfection assays. On the other hand, in addition to the known let-7 regulation of CCR7, we found miR-21 to have a highly conserved target region in CCR7 3'UTR and to be significantly down-regulated during the course of dendritic cell maturation, allowing for high expression of CCR7.
Collapse
Affiliation(s)
- Carine Al Akoum
- Department of Biochemistry, Laboratory of Immunology, EDST-PRASE, Lebanese University, Faculty of Sciences, Hadath-Beirut, Lebanon
| | - Israa Akl
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Redouane Rouas
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Mohammad Fayyad-Kazan
- Department of Biochemistry, Laboratory of Immunology, EDST-PRASE, Lebanese University, Faculty of Sciences, Hadath-Beirut, Lebanon
| | - Layal Falha
- Department of Biochemistry, Laboratory of Immunology, EDST-PRASE, Lebanese University, Faculty of Sciences, Hadath-Beirut, Lebanon
| | - Toufic Renno
- Innate Immune Signalling and Oncogenesis Group Lyon Cancer Research Center, Centre Léon Bérard, 28 rue Laennec, 69373 Lyon, France
| | - Arsène Burny
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Hussein Fayyad-Kazan
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Bassam Badran
- Department of Biochemistry, Laboratory of Immunology, EDST-PRASE, Lebanese University, Faculty of Sciences, Hadath-Beirut, Lebanon.
| |
Collapse
|
18
|
A Computational Approach for Predicting Role of Human MicroRNAs in MERS-CoV Genome. Adv Bioinformatics 2014; 2014:967946. [PMID: 25610462 PMCID: PMC4283225 DOI: 10.1155/2014/967946] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/24/2014] [Accepted: 09/27/2014] [Indexed: 11/17/2022] Open
Abstract
The new epidemic Middle East Respiratory Syndrome (MERS) is caused by a type of human coronavirus called MERS-CoV which has global fatality rate of about 30%. We are investigating potential antiviral therapeutics against MERS-CoV by using host microRNAs (miRNAs) which may downregulate viral gene expression to quell viral replication. We computationally predicted potential 13 cellular miRNAs from 11 potential hairpin sequences of MERS-CoV genome. Our study provided an interesting hypothesis that those miRNAs, that is, hsa-miR-628-5p, hsa-miR-6804-3p, hsa-miR-4289, hsa-miR-208a-3p, hsa-miR-510-3p, hsa-miR-18a-3p, hsa-miR-329-3p, hsa-miR-548ax, hsa-miR-3934-5p, hsa-miR-4474-5p, hsa-miR-7974, hsa-miR-6865-5p, and hsa-miR-342-3p, would be antiviral therapeutics against MERS-CoV infection.
Collapse
|
19
|
Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: current progress and advances. J Control Release 2014; 194:238-56. [PMID: 25204288 DOI: 10.1016/j.jconrel.2014.09.001] [Citation(s) in RCA: 274] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 12/21/2022]
Abstract
Chemotherapeutic agents have certain limitations when it comes to treating cancer, the most important being severe side effects along with multidrug resistance developed against them. Tumor cells exhibit drug resistance due to activation of various cellular level processes viz. activation of drug efflux pumps, anti-apoptotic defense mechanisms, etc. Currently, RNA interference (RNAi) based therapeutic approaches are under vibrant scrutinization to seek cancer cure. Especially small interfering RNA (siRNA) and micro RNA (miRNA), are able to knock down the carcinogenic genes by targeting the mRNA expression, which underlies the uniqueness of this therapeutic approach. Recent research focus in the regime of cancer therapy involves the engagement of targeted delivery of siRNA/miRNA in combinations with other therapeutic agents (such as gene, DNA or chemotherapeutic drug) for targeting permeability glycoprotein (P-gp), multidrug resistant protein 1 (MRP-1), B-cell lymphoma (BCL-2) and other targets that are mainly responsible for resistance in cancer therapy. RNAi-chemotherapeutic drug combinations have also been found to be effective against different molecular targets as well and can increase the sensitization of cancer cells to therapy several folds. However, due to stability issues associated with siRNA/miRNA suitable protective carrier is needed and nanotechnology based approaches have been widely explored to overcome these drawbacks. Furthermore, it has been univocally advocated that the co-delivery of siRNA/miRNA with other chemodrugs significantly enhances their capability to overcome cancer resistance compared to naked counterparts. The objective of this article is to review recent nanocarrier based approaches adopted for the delivery of siRNA/miRNA combinations with other anticancer agents (siRNA/miRNA/pDNA/chemodrugs) to treat cancer.
Collapse
|
20
|
Jebbawi F, Fayyad-Kazan H, Merimi M, Lewalle P, Verougstraete JC, Leo O, Romero P, Burny A, Badran B, Martiat P, Rouas R. A microRNA profile of human CD8(+) regulatory T cells and characterization of the effects of microRNAs on Treg cell-associated genes. J Transl Med 2014; 12:218. [PMID: 25090912 PMCID: PMC4440568 DOI: 10.1186/s12967-014-0218-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 07/21/2014] [Indexed: 12/14/2022] Open
Abstract
Background Recently, regulatory T (Treg) cells have gained interest in the fields of immunopathology, transplantation and oncoimmunology. Here, we investigated the microRNA expression profile of human natural CD8+CD25+ Treg cells and the impact of microRNAs on molecules associated with immune regulation. Methods We purified human natural CD8+ Treg cells and assessed the expression of FOXP3 and CTLA-4 by flow cytometry. We have also tested the ex vivo suppressive capacity of these cells in mixed leukocyte reactions. Using TaqMan low-density arrays and microRNA qPCR for validation, we could identify a microRNA ‘signature’ for CD8+CD25+FOXP3+CTLA-4+ natural Treg cells. We used the ‘TargetScan’ and ‘miRBase’ bioinformatics programs to identify potential target sites for these microRNAs in the 3′-UTR of important Treg cell-associated genes. Results The human CD8+CD25+ natural Treg cell microRNA signature includes 10 differentially expressed microRNAs. We demonstrated an impact of this signature on Treg cell biology by showing specific regulation of FOXP3, CTLA-4 and GARP gene expression by microRNA using site-directed mutagenesis and a dual-luciferase reporter assay. Furthermore, we used microRNA transduction experiments to demonstrate that these microRNAs impacted their target genes in human primary Treg cells ex vivo. Conclusions We are examining the biological relevance of this ‘signature’ by studying its impact on other important Treg cell-associated genes. These efforts could result in a better understanding of the regulation of Treg cell function and might reveal new targets for immunotherapy in immune disorders and cancer.
Collapse
Affiliation(s)
- Fadi Jebbawi
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| | - Hussein Fayyad-Kazan
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| | - Makram Merimi
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| | - Philippe Lewalle
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| | | | - Oberdan Leo
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| | - Pedro Romero
- Ludwig Center for Cancer Research of the University of Lausanne, Lausanne, Switzerland.
| | - Arsene Burny
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| | - Bassam Badran
- Department of Biochemistry, Laboratory of Immunology, EDST-PRASE, Faculty of Sciences, Lebanese University, Hadath-Beirut, Lebanon.
| | - Philippe Martiat
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| | - Redouane Rouas
- Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| |
Collapse
|
21
|
Fayyad-Kazan H, Hamade E, Rouas R, Najar M, Fayyad-Kazan M, El Zein N, ElDirani R, Hussein N, Fakhry M, Al-Akoum C, Burny A, Martiat P, Badran B. Downregulation of microRNA-24 and -181 parallels the upregulation of IFN-γ secreted by activated human CD4 lymphocytes. Hum Immunol 2014; 75:677-85. [DOI: 10.1016/j.humimm.2014.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 01/03/2014] [Accepted: 01/14/2014] [Indexed: 11/29/2022]
|
22
|
Bhaskaran M, Mohan M. MicroRNAs: history, biogenesis, and their evolving role in animal development and disease. Vet Pathol 2014; 51:759-74. [PMID: 24045890 PMCID: PMC4013251 DOI: 10.1177/0300985813502820] [Citation(s) in RCA: 429] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery of microRNAs (miRNAs) in 1993 followed by developments and discoveries in small RNA biology have redefined the biological landscape by significantly altering the longstanding dogmas that defined gene regulation. These small RNAs play a significant role in modulation of an array of physiological and pathological processes ranging from embryonic development to neoplastic progression. Unique miRNA signatures of various inherited, metabolic, infectious, and neoplastic diseases have added a new dimension to the studies that look at their pathogenesis and highlight their potential to be reliable biomarkers. Also, altering miRNA functionality and the development of novel in vivo delivery systems to achieve targeted modulation of specific miRNA function are being actively pursued as novel approaches for therapeutic intervention in many diseases. Here we review the current body of knowledge on the role of miRNAs in development and disease and discuss future implications.
Collapse
Affiliation(s)
- M Bhaskaran
- Infectious Disease Aerobiology, Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - M Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| |
Collapse
|
23
|
Jee D, Lai EC. Alteration of miRNA activity via context-specific modifications of Argonaute proteins. Trends Cell Biol 2014; 24:546-53. [PMID: 24865524 DOI: 10.1016/j.tcb.2014.04.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 12/12/2022]
Abstract
miRNAs are enclosed within Argonaute (Ago) proteins, the downstream effectors of small RNA-mediated gene silencing. Because miRNAs mediate extensive networks of post-transcriptional control, cells have evolved multiple strategies to control their activity with precision. A growing theme of recent years is how post-translational modifications of Ago proteins, such as prolyl hydroxylation, phosphorylation, ubiquitination, and poly-ADP-ribosylation, alter miRNA activity at global or specific levels. In this review, we discuss recent advances in Ago modifications in mammalian cells and emphasize how such alterations modulate small RNA function to coordinate appropriate downstream cellular responses. These findings provide a framework to understand how Ago protein modifications are linked to reorganization of post-transcriptional regulatory networks, enabling dynamic responses to diverse external stimuli and changing environmental conditions.
Collapse
Affiliation(s)
- David Jee
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA; Program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Eric C Lai
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA.
| |
Collapse
|
24
|
Abstract
The incidence of AIDS-defining cancers (ADCs) - Kaposi sarcoma, primary central nervous system lymphoma, non-Hodgkin lymphoma, and cervical cancer - although on the decline since shortly after the introduction of HAART, has continued to be greater even in treated HIV-infected persons than in the general population. Although the survival of newly infected people living with HIV/AIDS now rivals that of the general population, morbidity and mortality associated with non-AIDS-defining cancers (NADCs) such as lung, liver, anal, and melanoma are significant and also continue to rise. Increasing age (i.e. longevity) is the greatest risk factor for NADCs, but longevity alone is not sufficient to fully explain these trends in cancer epidemiology. In this review, we briefly review the epidemiology and etiology of cancers seen in HIV/AIDS, and in this context, discuss preclinical research and broad treatment considerations. Investigation of these considerations provides insight into why malignancies continue to be a major problem in the current era of HIV/AIDS care.
Collapse
|
25
|
Cocaine enhances HIV-1 infectivity in monocyte derived dendritic cells by suppressing microRNA-155. PLoS One 2013; 8:e83682. [PMID: 24391808 PMCID: PMC3877075 DOI: 10.1371/journal.pone.0083682] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 11/06/2013] [Indexed: 01/05/2023] Open
Abstract
Cocaine and other drugs of abuse increase HIV-induced immunopathogenesis; and neurobiological mechanisms of cocaine addiction implicate a key role for microRNAs (miRNAs), single-stranded non-coding RNAs that regulate gene expression and defend against viruses. In fact, HIV defends against miRNAs by actively suppressing the expression of polycistronic miRNA cluster miRNA-17/92, which encodes miRNAs including miR-20a. IFN-g production by natural killer cells is regulated by miR-155 and this miRNA is also critical to dendritic cell (DC) maturation. However, the impact of cocaine on miR-155 expression and subsequent HIV replication is unknown. We examined the impact of cocaine on two miRNAs, miR-20a and miR-155, which are integral to HIV replication, and immune activation. Using miRNA isolation and analysis, RNA interference, quantitative real time PCR, and reporter assays we explored the effects of cocaine on miR-155 and miR-20 in the context of HIV infection. Here we demonstrate using monocyte-derived dendritic cells (MDCCs) that cocaine significantly inhibited miR-155 and miR-20a expression in a dose dependent manner. Cocaine and HIV synergized to lower miR-155 and miR-20a in MDDCs by 90%. Cocaine treatment elevated LTR-mediated transcription and PU.1 levels in MDCCs. But in context of HIV infection, PU.1 was reduced in MDDCs regardless of cocaine presence. Cocaine increased DC-SIGN and and decreased CD83 expression in MDDC, respectively. Overall, we show that cocaine inhibited miR-155 and prevented maturation of MDDCs; potentially, resulting in increased susceptibility to HIV-1. Our findings could lead to the development of novel miRNA-based therapeutic strategies targeting HIV infected cocaine abusers.
Collapse
|
26
|
Maciel-Dominguez A, Swan D, Ford D, Hesketh J. Selenium alters miRNA profile in an intestinal cell line: evidence that miR-185 regulates expression of GPX2 and SEPSH2. Mol Nutr Food Res 2013; 57:2195-205. [PMID: 23934683 DOI: 10.1002/mnfr.201300168] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/25/2013] [Accepted: 05/23/2013] [Indexed: 12/30/2022]
Abstract
SCOPE Intake of the essential micronutrient selenium (Se) has health implications. This work addressed whether some effects of Se on gene expression are exerted through microRNAs (miRNA). METHODS AND RESULTS Human colon adenocarcinoma cells (Caco-2) were grown in Se-deficient or Se-adequate medium for 72 h. RNA was extracted and subjected to analysis of 737 miRNA using microarray technology. One hundred and forty-five miRNA were found to be expressed in Caco-2 cells. Twelve miRNA showed altered expression after Se depletion: miR-625, miR-492, miR-373*, miR-22, miR-532-5p, miR-106b, miR-30b, miR-185, miR-203, miR1308, miR-28-5p, miR-10b. These changes were validated by quantitative real-time PCR (RT-qPCR). Transcriptomic analysis showed that Se depletion altered expression of 50 genes including selenoproteins GPX1, SELW, GPX3, SEPN1, SELK, SEPSH2 and GPX4. Pathway analysis identified arachidonic acid metabolism, glutathione metabolism, oxidative stress, positive acute phase response proteins and respiration of mitochondria as Se-sensitive pathways. Bioinformatic analysis identified 13 transcripts as targets for the Se-sensitive miRNA; three were predicted to be recognised by miR-185. Silencing of miR-185 increased GPX2 and SEPSH2 expression. CONCLUSIONS We propose that miR-185 plays a role in up-regulation of GPX2 and SEPHS2 expression. In the case of SEPHS2 this may contribute to maintaining selenoprotein synthesis. The data indicate that micronutrient supply can regulate the cell miRNA expression profile.
Collapse
Affiliation(s)
- Anabel Maciel-Dominguez
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK; Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|
27
|
Bertin A. Polyelectrolyte Complexes of DNA and Polycations as Gene Delivery Vectors. ADVANCES IN POLYMER SCIENCE 2013. [DOI: 10.1007/12_2013_218] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Widłak W. Nucleic Acids. Mol Biol 2013. [DOI: 10.1007/978-3-642-45361-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Burand JP, Hunter WB. RNAi: future in insect management. J Invertebr Pathol 2012; 112 Suppl:S68-74. [PMID: 22841639 DOI: 10.1016/j.jip.2012.07.012] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 05/10/2012] [Accepted: 05/13/2012] [Indexed: 12/21/2022]
Abstract
RNA interference is a post- transcriptional, gene regulation mechanism found in virtually all plants and animals including insects. The demonstration of RNAi in insects and its successful use as a tool in the study of functional genomics opened the door to the development of a variety of novel, environmentally sound approaches for insect pest management. Here the current understanding of the biogenesis of the two RNAi classes in insects is reviewed. These are microRNAs (miRNAs) and short interfering RNAs (siRNAs). Several other key approaches in RNAi -based for insect control, as well as for the prevention of diseases in insects are also reviewed. The problems and prospects for the future use of RNAi in insects are presented.
Collapse
Affiliation(s)
- John P Burand
- Department of Microbiology, University of Massachusetts - Amherst, Amherst, MA 01003, USA
| | | |
Collapse
|
30
|
Fayyad-Kazan H, Rouas R, Fayyad-Kazan M, Badran R, El Zein N, Lewalle P, Najar M, Hamade E, Jebbawi F, Merimi M, Romero P, Burny A, Badran B, Martiat P. MicroRNA profile of circulating CD4-positive regulatory T cells in human adults and impact of differentially expressed microRNAs on expression of two genes essential to their function. J Biol Chem 2012; 287:9910-9922. [PMID: 22294691 DOI: 10.1074/jbc.m111.337154] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Regulatory T cells (Tregs) are characterized by a high expression of IL-2 receptor α chain (CD25) and of forkhead box P3 (FOXP3), the latter being essential for their development and function. Another major player in the regulatory function is the cytotoxic T-lymphocyte associated molecule-4 (CTLA-4) that inhibits cytotoxic responses. However, the regulation of CTLA-4 expression remains less well explored. We therefore studied the microRNA signature of circulating CD4(+) Tregs isolated from adult healthy donors and identified a signature composed of 15 differentially expressed microRNAs. Among those, miR-24, miR-145, and miR-210 were down-regulated in Tregs compared with controls and were found to have potential target sites in the 3'-UTR of FOXP3 and CTLA-4; miR-24 and miR-210 negatively regulated FOXP3 expression by directly binding to their two target sites in its 3'-UTR. On the other hand, miR-95, which is highly expressed in adult peripheral blood Tregs, positively regulated FOXP3 expression via an indirect mechanism yet to be identified. Finally, we showed that miR-145 negatively regulated CTLA-4 expression in human CD4(+) adult peripheral blood Tregs by binding to its target site in CTLA-4 transcript 3'-UTR. To our knowledge, this is the first identification of a human adult peripheral blood CD4(+) Treg microRNA signature. Moreover, unveiling one mechanism regulating CTLA-4 expression is novel and may lead to a better understanding of the regulation of this crucial gene.
Collapse
Affiliation(s)
- Hussein Fayyad-Kazan
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Redouane Rouas
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Mohammad Fayyad-Kazan
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Rabih Badran
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Nabil El Zein
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Medhi Najar
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Eva Hamade
- Department of Biochemistry, Laboratory of Immunology, EDST-PRASE, Lebanese University, Faculty of Sciences, Hadath-Beirut, Lebanon, and
| | - Fadi Jebbawi
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Makram Merimi
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Pedro Romero
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Lausanne Branch, 4 Avenue Pierre-Decker, 1005 Lausanne, Switzerland
| | - Arsène Burny
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Bassam Badran
- Department of Biochemistry, Laboratory of Immunology, EDST-PRASE, Lebanese University, Faculty of Sciences, Hadath-Beirut, Lebanon, and
| | - Philippe Martiat
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium;.
| |
Collapse
|
31
|
siRNA directed against Livin inhibits tumor growth and induces apoptosis in human glioma cells. J Neurooncol 2011; 107:81-7. [PMID: 22086237 DOI: 10.1007/s11060-011-0728-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 09/17/2011] [Indexed: 10/15/2022]
Abstract
Livin, a novel member of the human inhibitors of apoptosis protein family, plays an important role in tumor progression and occurrence by inhibiting cell apoptosis. It is selectively expressed in the most common human neoplasms and appears to be involved in tumor cell resistance to chemotherapeutic agents. The present study was designed to investigate the potential of using RNA interference (RNAi) technique to downregulate Livin expression, and the subsequent effect on human glioma cells. The results showed that knockdown of Livin expression by short interfering RNA (siRNA) significantly inhibited glioma cell proliferation and increased cell apoptosis through cell arrest in the G(1)/G(0) phase of cell cycle in vitro. Furthermore, Livin siRNA significantly suppressed tumor growth in nude mice. Together, these findings suggest that RNAi-mediated downregulation of Livin expression could lead to potent antitumor activity in glioma cells and might serve as a novel therapeutic strategy in clinic.
Collapse
|
32
|
MicroRNA: implications in HIV, a brief overview. J Neurovirol 2011; 17:416-23. [PMID: 21786074 DOI: 10.1007/s13365-011-0046-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 06/27/2011] [Accepted: 06/29/2011] [Indexed: 10/18/2022]
Abstract
MicroRNAs (miRNAs) are 20-22 nucleotide length noncoding RNA molecules that represent key regulators of many normal cellular functions. miRNAs undergo two processing steps which transform a long primary transcript into the mature miRNA. Available literatures demonstrate the association between alterations in the expression of miRNAs and the progression of numerous human disorders. Even though significant advances have been made, many fundamental questions about their expression and function still remain unanswered. Identifying factors that block the negative action of drugs of abuse on the miRNAs could help in identifying new therapeutic strategies. In this review, we briefly discuss the importance of miRNAs on HIV, strategies used by virus to avoid the cells' antiviral miRNA defenses, and how HIV might control and regulate host cell genes by encoding viral miRNAs.
Collapse
|
33
|
Narayanan A, Kehn-Hall K, Bailey C, Kashanchi F. Analysis of the roles of HIV-derived microRNAs. Expert Opin Biol Ther 2011; 11:17-29. [PMID: 21133815 DOI: 10.1517/14712598.2011.540564] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE OF THE FIELD HIV-1 is a retrovirus that has infected millions in recent decades. The level of life cycle complexity and host control exerted by this small virus with only nine proteins is astonishing. An interesting direction that has emerged in recent years is the role of small non-coding RNAs in viral gene expression. AREAS COVERED IN THIS REVIEW We focus on HIV-1 produced microRNAs (miRNAs), namely, TAR, Nef and miR-H1, and their roles in HIV-1 biogenesis. The article provides insights into TAR miRNA-mediated downregulation of viral and host gene expression by recruitment of chromatin remodeling components (HDAC1). WHAT THE READER WILL GAIN We address the influence of TAR miRNA on host cell cycle progression and apoptosis, and the role of Nef miRNA in the regulation of viral and host gene expression. The review also highlights an intriguing connection between miR-H1 and HIV-1-associated neurological pathogenesis, and the influence of the miRNA machinery in the establishment of latency. In the Expert Opinion section, we analyze the issue of host-based therapeutics against HIV-1 and how transcription inhibitors are influenced by viral miRNA production. TAKE HOME MESSAGE HIV-derived miRNAs are of significance not only to understand host-virus interactions, but also for the design of effective therapeutics.
Collapse
Affiliation(s)
- Aarthi Narayanan
- George Mason University, National Center for Biodefense and Infectious Diseases, Manassas, VA 20110, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Endogenous RNA-silencing mechanisms have been shown to play a role in regulating viral and host processes during the course of infection. Such interactive processes may involve host cellular and/or viral-encoded microRNAs (miRNAs). Rabies is unique not only in terms of its invariably fatal course once disease signs develop, but it also has a variable incubation period (eclipse phase). It has been recently shown that cells or tissues of different origin have their own specific miRNAs that, in theory, may impact on viral transcription and replication. This may possibly explain, in part, why rabies virus remains dormant at the inoculation site in rabies patients for long periods. Owing to the RNA interference (RNAi) technology, it has been possible to introduce exogenously designed artificial short interfering RNAs (siRNAs) and miRNAs into virus-infected cells for therapeutic purposes. Successful attempts in using RNAi for prevention and treatment of DNA and RNA virus infections both in vitro and in vivo experiments have been reported. The fact that rabies remains incurable has stimulated the development of the therapeutic RNAi strategy. We describe herein preliminary evidence that cellular miRNA may play a role in suppressing viral replication, explaining the eclipse phase, and that artificially designed multitargeting miRNA can successfully inhibit rabies virus transcription and replication in vitro.
Collapse
|
35
|
Gonzalo T, Clemente MI, Chonco L, Weber ND, Díaz L, Serramía MJ, Gras R, Ortega P, de la Mata FJ, Gómez R, Lopez-Fernández LA, Muñoz-Fernández MA, Jiménez JL. Gene therapy in HIV-infected cells to decrease viral impact by using an alternative delivery method. ChemMedChem 2010; 5:921-9. [PMID: 20414916 DOI: 10.1002/cmdc.201000029] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ability of dendrimer 2G-[Si{O(CH(2))(2)N(Me)(2) (+)(CH(2))(2)NMe(3) (+)(I(-))(2)}](8) (NN16) to transfect a wide range of cell types, as well as the possible biomedical application in direct or indirect inhibition of HIV replication, was investigated. Cells implicated in HIV infection such as primary peripheral blood mononuclear cells (PBMC) and immortalized suspension cells (lymphocytes), primary macrophages and dendritic cells, and immortalized adherent cells (astrocytes and trophoblasts) were analyzed. Dendrimer toxicity was evaluated by mitochondrial activity, cell membrane rupture, release of lactate dehydrogenase, erythrocyte hemolysis, and the effect on global gene expression profiles using whole-genome human microarrays. Cellular uptake of genetic material was determined using flow cytometry and confocal microscopy. Transfection efficiency and gene knockdown was investigated using dendrimer-delivered antisense oligonucleotides and small interfering RNA (siRNA). Very little cytotoxicity was detected in a variety of cells relevant to HIV infection and erythrocytes after NN16 dendrimer treatment. Imaging of cellular uptake showed high transfection efficiency of genetic material in all cells tested. Interestingly, NN16 further enhanced the reduction of HIV protein 24 antigen release by antisense oligonucleotides due to improved transfection efficiency. Finally, the dendrimer complexed with siRNA exhibited therapeutic potential by specifically inhibiting cyclooxygenase-2 gene expression in HIV-infected nervous system cells. NN16 dendrimers demonstrated the ability to transfect genetic material into a vast array of cells relevant to HIV pathology, combining high efficacy with low toxicity. These results suggest that NN16 dendrimers have the potential to be used as a versatile non-viral vector for gene therapy against HIV infection.
Collapse
Affiliation(s)
- Teresa Gonzalo
- Laboratory of Molecular Immunobiology, Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hu R, Li H, Liu W, Yang L, Tan YF, Luo XH. Targeting miRNAs in osteoblast differentiation and bone formation. Expert Opin Ther Targets 2010; 14:1109-20. [DOI: 10.1517/14728222.2010.512916] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Abstract
Micro-RNAs (miRNAs) are a class of small non-coding RNA (ncRNA) molecules with a length of 18 to 24 nucleotides which play an essential regulative role for many cellular processes. Whereas mRNA-analysis has become a well established technique in many forensic laboratories, micro-RNA has only recently been introduced to forensic science. Herein we provide a short outline of biogenesis, mode of function and regulation of miRNAs and take a look at tissue and cell specific miRNA expression. After recapitulating the role of mRNA analysis in forensic science we compare it to miRNA analysis and discuss the results of two recent studies applying miRNA analysis to a forensic research setting. We conclude that analysis of miRNA and perhaps small non-coding RNAs in general clearly has potential for forensic applications and merits attention of forensic scientists.
Collapse
Affiliation(s)
- Cornelius Courts
- Institute of Forensic Medicine, University of Bonn, Bonn, Germany.
| | | |
Collapse
|
38
|
Lee S, Nguyen HM, Kang C. Tiny abortive initiation transcripts exert antitermination activity on an RNA hairpin-dependent intrinsic terminator. Nucleic Acids Res 2010; 38:6045-53. [PMID: 20507918 PMCID: PMC2952870 DOI: 10.1093/nar/gkq450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
No biological function has been identified for tiny RNA transcripts that are abortively and repetitiously released from initiation complexes of RNA polymerase in vitro and in vivo to date. In this study, we show that abortive initiation affects termination in transcription of bacteriophage T7 gene 10. Specifically, abortive transcripts produced from promoter ϕ10 exert trans-acting antitermination activity on terminator Tϕ both in vitro and in vivo. Following abortive initiation cycling of T7 RNA polymerase at ϕ10, short G-rich and oligo(G) RNAs were produced and both specifically sequestered 5- and 6-nt C + U stretch sequences, consequently interfering with terminator hairpin formation. This antitermination activity depended on sequence-specific hybridization of abortive transcripts with the 5′ but not 3′ half of Tϕ RNA. Antitermination was abolished when Tϕ was mutated to lack a C + U stretch, but restored when abortive transcript sequence was additionally modified to complement the mutation in Tϕ, both in vitro and in vivo. Antitermination was enhanced in vivo when the abortive transcript concentration was increased via overproduction of RNA polymerase or ribonuclease deficiency. Accordingly, antitermination activity exerted on Tϕ by abortive transcripts should facilitate expression of Tϕ-downstream promoter-less genes 11 and 12 in T7 infection of Escherichia coli.
Collapse
Affiliation(s)
- Sooncheol Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | |
Collapse
|
39
|
Viral envelope protein 53R gene highly specific silencing and iridovirus resistance in fish Cells by AmiRNA. PLoS One 2010; 5:e10308. [PMID: 20428238 PMCID: PMC2859056 DOI: 10.1371/journal.pone.0010308] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 03/31/2010] [Indexed: 12/11/2022] Open
Abstract
Background Envelope protein 53R was identified from frog Rana grylio virus (RGV), a member of the family Iridoviridae, and it plays an important role in the virus assembly. Although inhibition of iridovirus major capsid protein (MCP) by small hairpin RNAs (shRNAs) has been shown to cause resistance to viral infection in vitro, RNA interference (RNAi) to inhibit aquatic animal virus envelope protein gene product has not been reported. Methodology We devised artificial microRNAs (amiRNAs) that target a viral envelope protein gene RGV 53R. By incorporating sequences encoding amiRNAs specific to 53R of RGV into pre-miRNA155 (pSM155) vectors, which use the backbone of natural miR-155 sequence and could intracellularly express 53R-targeted pre-amiRNAs. The pre-amiRNAs could be processed by the RNase III-like enzyme Dicer into 21–25 nt amiRNAs (amiR-53Rs) in fish cell lines. The levels of 53R expression were analyzed through real-time PCR and RGV virions assembly were observed by electronic microscopy in fish cells transfected with or without amiR-53Rs at 72 h of RGV infection. Conclusion/Significance The results argue that viral envelope protein RGV 53R can be silenced and the virions assembly was deficient by amiR-53R-1, and further identified the first amiRNA of envelope protein gene from iridovirus that was able to cause resistance to virus infection in fish cells. The data demonstrate that the viral infection is efficiently suppressed (58%) by amiR-53R-1 targeting positon 36–57 of RGV 53R. Moreover, electron microscopic observations revealed virion assembly defect or reduced virions assembly capacity was closely correlated to expression of amiR-53R-1. Based on real time PCR of the Mx gene, we found no evidence of activation of IFN by amiR-53R-1.
Collapse
|
40
|
Yeung ML, Bennasser Y, Watashi K, Le SY, Houzet L, Jeang KT. Pyrosequencing of small non-coding RNAs in HIV-1 infected cells: evidence for the processing of a viral-cellular double-stranded RNA hybrid. Nucleic Acids Res 2009; 37:6575-86. [PMID: 19729508 PMCID: PMC2770672 DOI: 10.1093/nar/gkp707] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Small non-coding RNAs of 18-25 nt in length can regulate gene expression through the RNA interference (RNAi) pathway. To characterize small RNAs in HIV-1-infected cells, we performed linker-ligated cloning followed by high-throughput pyrosequencing. Here, we report the composition of small RNAs in HIV-1 productively infected MT4 T-cells. We identified several HIV-1 small RNA clones and a highly abundant small 18-nt RNA that is antisense to the HIV-1 primer-binding site (PBS). This 18-nt RNA apparently originated from the dsRNA hybrid formed by the HIV-1 PBS and the 3' end of the human cellular tRNAlys3. It was found to associate with the Ago2 protein, suggesting its possible function in the cellular RNAi machinery for targeting HIV-1.
Collapse
Affiliation(s)
- Man Lung Yeung
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0460, USA
| | | | | | | | | | | |
Collapse
|
41
|
Rouas R, Fayyad‐Kazan H, El Zein N, Lewalle P, Rothé F, Simion A, Akl H, Mourtada M, El Rifai M, Burny A, Romero P, Martiat P, Badran B. Human natural Treg microRNA signature: Role of microRNA‐31 and microRNA‐21 in FOXP3 expression. Eur J Immunol 2009; 39:1608-18. [DOI: 10.1002/eji.200838509] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
42
|
Fujii YR. Oncoviruses and Pathogenic MicroRNAs in Humans. Open Virol J 2009; 3:37-51. [PMID: 19920887 PMCID: PMC2778015 DOI: 10.2174/1874357900903010037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 03/19/2009] [Accepted: 03/24/2009] [Indexed: 12/19/2022] Open
Abstract
For disease prognosis, the functional significance of the oncoviral integration locus in oncogenesis has remained enigmatic. The locus encodes several transcripts without protein products, but microRNAs (miRNAs) have recently been identified from a common oncoviral integration locus. miRNA is an endogenous, non-coding small RNA by which gene expression is suppressed. Although miRNA genes, such as let-7 in the nematode, have orthologs among animals, the relationship between miRNAs and tumorigenesis or tumor suppression has been mainly discovered in several human cancers. On the contrary, this review clearly demonstrates the potential for human tumorigenesis of both miRNA genes from oncoviral integration sites and other cellular onco-microRNA genes, and we conclude that alteration of the miRNA profile of cells can be defined as tumorigenic or tumor suppressive. Thus, we explain here that virally-pathogenic miRNAs could also be partly responsible for oncogenesis or oncogene suppression to confirm' the RNA wave', with the miRNAs hypothesized as a mobile and functional genetic element.
Collapse
|
43
|
Dang LT, Kondo H, Aoki T, Hirono I. Engineered virus-encoded pre-microRNA (pre-miRNA) induces sequence-specific antiviral response in addition to nonspecific immunity in a fish cell line: convergence of RNAi-related pathways and IFN-related pathways in antiviral response. Antiviral Res 2008; 80:316-23. [PMID: 18687362 DOI: 10.1016/j.antiviral.2008.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 05/28/2008] [Accepted: 07/09/2008] [Indexed: 11/30/2022]
Abstract
Transfection with synthesized virus-specific small interfering RNAs (siRNAs) efficiently inhibits viral replication in viral-infected fish cell lines, implying the involvement of RNA interference (RNAi)-related pathways in the antiviral response of fish cells. Here, we demonstrate that plasmid expressing virus-encoded pre-microRNAs (pre-miRNAs) can also inhibit viral replication through these pathways. By incorporating sequences encoding miRNAs specific to major capsid protein (MCP) gene of red sea bream iridovirus (RSIV) and a miRNA specific to hirame rhabdovirus (HIRRV) genome into a murine miR-155 pre-miRNA backbone, we were able to intracellularly express viral pre-miRNAs (miR-MCPs and miR-HIRRV) in a fish cell line. The miR-MCPs and miR-HIRRV, delivered as pre-miRNA precursors in transfected cells, inhibited viral replication when these cells were infected with the target virus. Although this may suggest sequence-specific interference, inhibitory effect on viral replication was also observed in cells transfected with a plasmid expressing pre-miRNA targeting beta-galactosidase gene (miR-LacZ) that served as a specificity control. Expression of pre-miRNAs was found to activate interferon (IFN)-related pathways, correlating with upregulation of the antiviral IFN-induced Mx protein. The antiviral effects of viral-miRNAs observed here were partly the result of the antiviral miRNA-related pathways and partly the result of the antiviral IFN-related pathways. We propose that engineered virus-encoded pre-miRNA can engage not only RNAi-related pathways but also IFN-related pathways to induce potent antiviral responses in fish cells.
Collapse
Affiliation(s)
- Lua T Dang
- Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo 108-8477, Japan
| | | | | | | |
Collapse
|
44
|
Abstract
RNA interference (RNAi) is a natural mechanism in cells that suppresses or silences the expression of aberrant or foreign genes. This activity is being developed as a potential antiviral therapeutic strategy. Studies in vitro, and some in vivo, appear to show the feasibility of using RNAi to treat virus infection. Therapeutic use of RNAi seems to be promising when directed against viruses that cause localized acute infections in accessible target cells. Therapeutic strategies using RNAi against viruses that cause chronic infections, such as HIV, hepatitis B virus, or hepatitis C virus, are more difficult to design, but studies have begun to address identifiable problems. Two clinical trials using RNAi have recently been initiated--one phase II trial against respiratory syncytial virus and a phase I trial against HIV. It will be of much interest to see whether nucleic acid therapies can offer another route to treating viral infection.
Collapse
|
45
|
Lejeune FJ, Rimoldi D, Speiser D. New approaches in metastatic melanoma: biological and molecular targeted therapies. Expert Rev Anticancer Ther 2007; 7:701-13. [PMID: 17492933 DOI: 10.1586/14737140.7.5.701] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Classical metastatic melanoma therapy is disappointing but important progress has been made in the understanding of melanoma biology. Genetic lesions and several intracellular signaling pathways that could serve as targets for novel therapy have been identified and a number of new agents are under evaluation. Promising tumor cell targets were identified in the cell membrane, cytoplasm and nucleus. New therapeutic approaches, besides monoclonal antibodies and vaccination, include an increasing number of small molecules that have been shown to interfere restrictively with intracellular signaling pathways in melanoma and decrease proliferation, survival, migration or invasion. Other agents can interfere with stromal components of melanoma, such as angiogenesis and components of the immune system.
Collapse
Affiliation(s)
- Ferdy J Lejeune
- Ludwig Institute for Cancer Research, Division of Clinical Onco-Immunology and Centre Hospitalier Universitaire Vaudois, Department of Visceral Surgery, Lausanne, Switzerland.
| | | | | |
Collapse
|
46
|
Scherer LJ, Frank R, Rossi JJ. Optimization and characterization of tRNA-shRNA expression constructs. Nucleic Acids Res 2007; 35:2620-8. [PMID: 17426139 PMCID: PMC1885648 DOI: 10.1093/nar/gkm103] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 01/12/2007] [Accepted: 02/06/2007] [Indexed: 12/05/2022] Open
Abstract
Expression of short hairpin RNAs via the use of PolIII-based transcription systems has proven to be an effective mechanism for triggering RNAi in mammalian cells. The most popular promoters for this purpose are the U6 and H1 promoters since they are easily manipulated for expression of shRNAs with defined start and stop signals. Multiplexing (the use of siRNAs against multiple targets) is one strategy that is being developed by a number of laboratories for the treatment of HIV infection since it increases the likelihood of suppressing the emergence of resistant virus in applications. In this context, the development of alternative small PolIII promoters other than U6 and H1 would be useful. We describe tRNA(Lys3)-shRNA chimeric expression cassettes which produce siRNAs with comparable efficacy and strand selectivity to U6-expressed shRNAs, and show that their activity is consistent with processing by endogenous 3' tRNAse. In addition, our observations suggest general guidelines for expressing effective tRNA-shRNAs with the potential for graded response, to minimize toxicities associated with competition for components of the endogenous RNAi pathway in cells.
Collapse
MESH Headings
- Base Sequence
- Cell Line
- Gene Products, rev/genetics
- Gene Products, tat/genetics
- Genetic Vectors
- HIV-1/genetics
- Humans
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA Interference
- RNA, Small Interfering/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Untranslated/biosynthesis
- RNA, Untranslated/chemistry
- RNA, Untranslated/metabolism
- rev Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Lisa J. Scherer
- Department of Molecular Biology and Division of Hematology & Hematopoietic Cell Transplantation and Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1450 E. Duarte Road, Duarte, California 91010, USA
| | - Richard Frank
- Department of Molecular Biology and Division of Hematology & Hematopoietic Cell Transplantation and Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1450 E. Duarte Road, Duarte, California 91010, USA
| | - John J. Rossi
- Department of Molecular Biology and Division of Hematology & Hematopoietic Cell Transplantation and Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1450 E. Duarte Road, Duarte, California 91010, USA
| |
Collapse
|
47
|
Abstract
Inside eukaryotic cells, small RNA duplexes, called small interfering RNAs (siRNAs), activate a conserved RNA interference (RNAi) pathway which leads to specific degradation of complementary target mRNAs through base-pairing recognition. As with other viruses, studies have shown that replication of the HIV-1 in cultured cells can be targeted and inhibited by synthetic siRNAs. The relative ease of siRNA design and the versatility of RNAi to target a broad spectrum of mRNAs have led to the promise that drug discovery in the RNAi pathway could be effective against pathogens. This review discusses the current experimental principles that guide the application of RNAi against HIV and describes challenges and limitations that need to be surmounted in order for siRNAs to become practical antiviral drugs. The practical use of RNAi therapy for HIV infection will depend on overcoming several challenges, including the ability to establish long-term expression of siRNA without off-target effects and the capacity to counteract mutant escape viruses.
Collapse
Affiliation(s)
- Yamina Bennasser
- Molecular Virology Section, Laboratory of Molecular Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Building 4, Room 306, Bethesda, Maryland USA
| | - Man Lung Yeung
- Molecular Virology Section, Laboratory of Molecular Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Building 4, Room 306, Bethesda, Maryland USA
| | - Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Building 4, Room 306, Bethesda, Maryland USA
| |
Collapse
|
48
|
Triboulet R, Mari B, Lin YL, Chable-Bessia C, Bennasser Y, Lebrigand K, Cardinaud B, Maurin T, Barbry P, Baillat V, Reynes J, Corbeau P, Jeang KT, Benkirane M. Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 2007; 315:1579-82. [PMID: 17322031 DOI: 10.1126/science.1136319] [Citation(s) in RCA: 505] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are single-stranded noncoding RNAs of 19 to 25 nucleotides that function as gene regulators and as a host cell defense against both RNA and DNA viruses. We provide evidence for a physiological role of the miRNA-silencing machinery in controlling HIV-1 replication. Type III RNAses Dicer and Drosha, responsible for miRNA processing, inhibited virus replication both in peripheral blood mononuclear cells from HIV-1-infected donors and in latently infected cells. In turn, HIV-1 actively suppressed the expression of the polycistronic miRNA cluster miR-17/92. This suppression was found to be required for efficient viral replication and was dependent on the histone acetyltransferase Tat cofactor PCAF. Our results highlight the involvement of the miRNA-silencing pathway in HIV-1 replication and latency.
Collapse
Affiliation(s)
- Robinson Triboulet
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Christensen HS, Daher A, Soye KJ, Frankel LB, Alexander MR, Lainé S, Bannwarth S, Ong CL, Chung SWL, Campbell SM, Purcell DFJ, Gatignol A. Small interfering RNAs against the TAR RNA binding protein, TRBP, a Dicer cofactor, inhibit human immunodeficiency virus type 1 long terminal repeat expression and viral production. J Virol 2007; 81:5121-31. [PMID: 17360756 PMCID: PMC1900231 DOI: 10.1128/jvi.01511-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RNA interference (RNAi) is now widely used for gene silencing in mammalian cells. The mechanism uses the RNA-induced silencing complex, in which Dicer, Ago2, and the human immunodeficiency virus type 1 (HIV-1) TAR RNA binding protein (TRBP) are the main components. TRBP is a protein that increases HIV-1 expression and replication by inhibition of the interferon-induced protein kinase PKR and by increasing translation of viral mRNA. After HIV infection, TRBP could restrict the viral RNA through its activity in RNAi or could contribute more to the enhancement of viral replication. To determine which function will be predominant in the virological context, we analyzed whether the inhibition of its expression could enhance or decrease HIV replication. We have generated small interfering RNAs (siRNAs) against TRBP and found that they decrease HIV-1 long terminal repeat (LTR) basal expression 2-fold, and the LTR Tat transactivated level up to 10-fold. In the context of HIV replication, siRNAs against TRBP decrease the expression of viral genes and inhibit viral production up to fivefold. The moderate increase in PKR expression and activation indicates that it contributes partially to viral gene inhibition. The moderate decrease in micro-RNA (miRNA) biogenesis by TRBP siRNAs suggests that in the context of HIV replication, TRBP functions other than RNAi are predominant. In addition, siRNAs against Dicer decrease viral production twofold and impede miRNA biogenesis. These results suggest that, in the context of HIV replication, TRBP contributes mainly to the enhancement of virus production and that Dicer does not mediate HIV restriction by RNAi.
Collapse
Affiliation(s)
- Helen S Christensen
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yeung ML, Bennasser Y, Le SY, Jeang KT. RNA interference and HIV-1. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2007; 55:427-38. [PMID: 17586323 DOI: 10.1016/s1054-3589(07)55013-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Man Lung Yeung
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|