1
|
Polymorphism rs7214723 in CAMKK1: a new genetic variant associated with cardiovascular diseases. Biosci Rep 2021; 41:229102. [PMID: 34165505 PMCID: PMC8264181 DOI: 10.1042/bsr20210326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of deaths worldwide. CVDs have a complex etiology due to the several factors underlying its development including environment, lifestyle, and genetics. Given the role of calcium signal transduction in several CVDs, we investigated via PCR-restriction fragment length polymorphism (RFLP) the single nucleotide polymorphism (SNP) rs7214723 within the calcium/calmodulin-dependent kinase kinase 1 (CAMKK1) gene coding for the Ca2+/calmodulin-dependent protein kinase kinase I. The variant rs7214723 causes E375G substitution within the kinase domain of CAMKK1. A cross-sectional study was conducted on 300 cardiac patients. RFLP-PCR technique was applied, and statistical analysis was performed to evaluate genotypic and allelic frequencies and to identify an association between SNP and risk of developing specific CVD. Genotype and allele frequencies for rs7214723 were statistically different between cardiopathic and several European reference populations. A logistic regression analysis adjusted for gender, age, diabetes, hypertension, BMI and previous history of malignancy was applied on cardiopathic genotypic data and no association was found between rs7214723 polymorphism and risk of developing specific coronary artery disease (CAD) and aortic stenosis (AS). These results suggest the potential role of rs7214723 in CVD susceptibility as a possible genetic biomarker.
Collapse
|
2
|
Beghi S, Cavaliere F, Buschini A. Gene polymorphisms in calcium-calmodulin pathway: Focus on cardiovascular disease. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 786:108325. [PMID: 33339582 DOI: 10.1016/j.mrrev.2020.108325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/30/2022]
Abstract
Cardiovascular disease is the leading cause of death in industrialized countries and affects an increasing number of people. Several risk factors play an important role in the etiology of this disease, such as an unhealthy lifestyle. It is increasingly clear that genetic factors influencing the molecular basis of excitation-contraction mechanisms in the heart could contribute to modify the individual's risk. Thanks to the progress that has been made in understanding calcium signaling in the heart, it is assumed that calmodulin can play a crucial role in the excitation-contraction coupling. In fact, calmodulin (CaM) binds calcium and consequently regulates calcium channels. Several works show how some polymorphic variants can be considered predisposing factors to complex pathologies. Therefore, we hypothesize that the identification of polymorphic variants of proteins involved in the CaM pathway could be important for understanding how genetic traits can influence predisposition to myocardial infarction. This review considers each pathway of the three different isoforms of calmodulin (CaM1; CaM2; CaM3) and focuses on some common proteins involved in the three pathways, with the aim of analyzing the polymorphisms studied in the literature and understanding if they are associated with cardiovascular disease.
Collapse
Affiliation(s)
- Sofia Beghi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area Delle Scienze 11A, 43124, Parma, Italy
| | - Francesca Cavaliere
- University of Parma, Department of Food and Drug, Parco Area Delle Scienze 17A, 43124, Parma, Italy
| | - Annamaria Buschini
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area Delle Scienze 11A, 43124, Parma, Italy.
| |
Collapse
|
3
|
Huang JG, Lim T, Quek SC, Quak SH, Aw MM. De novo aortopathy and cardiovascular outcomes in paediatric liver transplant recipients. Cardiol Young 2018; 28:986-994. [PMID: 29972110 DOI: 10.1017/s104795111800063x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
With the increase in long-term survival of post-transplant children, there is a paradigm shift in the emphasis of post-transplant care. We describe de novo cardiovascular abnormalities, which occurred in otherwise asymptomatic paediatric liver transplant recipients, who received liver allografts between 1991 and 2014 at the National University Hospital, Singapore, detected during routine post-transplant monitoring. A total of 96 paediatric liver transplants were performed in 90 children. After transplant, 7/90 (7.8%) recipients were identified with new-onset aortopathy. Glycogen storage disease type I (42.9% versus 2.4%; p<0.001) and recipient Epstein-Barr virus seropositivity (85.7 versus 31.0%, p=0.004) were significant risk factors for aortopathy on univariate analysis. On multivariate analysis, only glycogen storage disease type I remained as the significant risk factor (odds ratio 51.3 [95% confidence intervals: 1.1-2498.1, p=0.047]). Liver transplant is a double-edged sword that reverses certain cardiopulmonary complications of end-stage liver disease but may induce de novo structural cardiac injury in the form of aortic dilation.
Collapse
Affiliation(s)
- James G Huang
- 1Department of Paediatrics,Yong Loo Lin School of Medicine,National University of Singapore,Singapore,Singapore
| | - Terence Lim
- 1Department of Paediatrics,Yong Loo Lin School of Medicine,National University of Singapore,Singapore,Singapore
| | - Swee-Chye Quek
- 1Department of Paediatrics,Yong Loo Lin School of Medicine,National University of Singapore,Singapore,Singapore
| | - Seng-Hock Quak
- 1Department of Paediatrics,Yong Loo Lin School of Medicine,National University of Singapore,Singapore,Singapore
| | - Marion M Aw
- 1Department of Paediatrics,Yong Loo Lin School of Medicine,National University of Singapore,Singapore,Singapore
| |
Collapse
|
4
|
Salgado PC, Genvigir FD, Felipe CR, Tedesco-Silva H, Medina-Pestana JO, Doi SQ, Hirata MH, Hirata RD. Association of the PPP3CA c.249G>A variant with clinical outcomes of tacrolimus-based therapy in kidney transplant recipients. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2017; 10:101-106. [PMID: 28435308 PMCID: PMC5386607 DOI: 10.2147/pgpm.s131390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The effects of genetic variants related to the pharmacodynamic mechanisms of immunosuppressive drugs on their therapeutic efficacy and safety have been poorly explored. This study was performed to investigate the influence of the PPP3CA c.249G>A variant on the clinical outcomes of kidney transplant recipients. PATIENTS AND METHODS A total of 148 Brazilian patients received tacrolimus (TAC)-based immunosuppressive therapy for 90 days post-kidney transplantation. The PPP3CA rs3730251 (c.249G>A) polymorphism was determined by real-time polymerase chain reaction. Single-nucleotide polymorphism (SNP) data for CYP3A5 rs776746 (CYP3A5*3C; g.6986A>G) were used to eliminate the confounding effects of this variant. RESULTS The PPP3CA c.249G>A SNP did not influence early TAC exposure, renal function, or other laboratory parameters, including levels of urea, creatinine, glucose, and lipids, and blood counts. This variant also did not account for the cumulative incidence of biopsy-confirmed acute rejection or delayed graft function. Regarding adverse events, PPP3CA c.249A allele carriers initially had a 3.05-fold increased probability of treatment-induced blood and lymphatic system disorders compared with c.249GG genotype individuals (95% confidence interval: 1.10-8.48, p=0.032). However, this result was not maintained after adjusting for body weight and CYP3A5*3C SNP status (p=0.086). CONCLUSION The PPP3CA c.249G>A variant does not influence the clinical outcomes of Brazilian patients in the early phase of TAC-based immunosuppressive regimen.
Collapse
Affiliation(s)
- Patricia C Salgado
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo
| | - Fabiana Dv Genvigir
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo
| | - Claudia R Felipe
- Division of Nephrology, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Helio Tedesco-Silva
- Division of Nephrology, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Jose O Medina-Pestana
- Division of Nephrology, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Sonia Q Doi
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Mario H Hirata
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo
| | - Rosario Dc Hirata
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo
| |
Collapse
|
5
|
Alonso-Montes C, Rodríguez-Reguero J, Martín M, Gómez J, Coto E, Naves-Díaz M, Morís C, Cannata-Andía JB, Rodríguez I. Rare genetic variants in GATA transcription factors in patients with hypertrophic cardiomyopathy. J Investig Med 2017; 65:926-934. [PMID: 28381408 DOI: 10.1136/jim-2016-000364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2017] [Indexed: 11/03/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is a very heterogeneous disease. Although primarily caused by mutations in genes encoding sarcomeric proteins, other genes might explain that heterogeneity. Potential candidate genes are GATA transcription factors that regulate the expression of proteins associated with HCM. Exons of GATA2, GATA4, and GATA6 genes were sequenced in 212 patients with unrelated HCM previously analyzed for genes encoding the most frequently mutated sarcomeric proteins. Functional effects of variants were predicted by in silico analyses. 3 potentially pathogenic variants were identified: c.-77G>A in GATA2, p.Ala343Thr (rs370588269) in GATA4, and p.Pro555Ala (rs146243018) in GATA6 Multivariate analyses showed that angina was more frequent in patients carrying sarcomeric and GATA rare variants (55% vs 23.2% in non-carriers of GATA rare variants, OR (95% CI) 7.12 (1.23 to 41.27), p=0.029). Among patients without a known causal mutation, GATA rare variants were associated with a greater maximum posterior wall thickness (16.4±4.4 vs 14.0±3.1 mm in non-carriers, p=0.021). Thus, variants having a putative effect on GATA genes would alter the expression of their target genes and could modify the hypertrophic response. Therefore, although relatively infrequent in patients with HCM, they may represent a novel insight into the molecular mechanisms related to the pathogenesis of HCM.
Collapse
Affiliation(s)
- Cristina Alonso-Montes
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain.,Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain
| | - Julián Rodríguez-Reguero
- Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain.,Cardiology Department, Fundación Asturcor, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - María Martín
- Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain.,Cardiology Department, Fundación Asturcor, Hospital Universitario Central de Asturias, Oviedo, Spain.,Molecular Genetics Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Juan Gómez
- Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain.,Universidad de Oviedo, Oviedo, Spain
| | - Eliecer Coto
- Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain.,Molecular Genetics Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain.,Universidad de Oviedo, Oviedo, Spain
| | - Manuel Naves-Díaz
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain.,Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain
| | - César Morís
- Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain.,Cardiology Department, Fundación Asturcor, Hospital Universitario Central de Asturias, Oviedo, Spain.,Molecular Genetics Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Jorge B Cannata-Andía
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain.,Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain.,Molecular Genetics Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Isabel Rodríguez
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain.,Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain
| |
Collapse
|
6
|
Pouché L, Stojanova J, Marquet P, Picard N. New challenges and promises in solid organ transplantation pharmacogenetics: the genetic variability of proteins involved in the pharmacodynamics of immunosuppressive drugs. Pharmacogenomics 2016; 17:277-96. [PMID: 26799749 DOI: 10.2217/pgs.15.169] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interindividual variability in immunosuppressive drug responses might be partly explained by genetic variants in proteins involved in the immune response or associated with IS pharmacodynamics. On a general basis, the pharmacogenetics of drug target proteins is less known and understood than that of proteins involved in drug disposition pathways. The aim of this review is to facilitate research related to the pharmacodynamics of the main immunosuppressive drugs used in solid organ transplantation. We elaborated a quality of evidence grading system based on a literature review and identified 'highly recommended', 'recommended' or 'potential' candidates for further research. It is likely that a number of additional rare variants might further explain drug response phenotypes in transplantation, and particularly the most severe ones. The advent of next-generation sequencing will help to identify those variants.
Collapse
Affiliation(s)
- Lucie Pouché
- Inserm, UMR 850, 2 Avenue Martin-Luther King, F-87042 Limoges, France.,CHU Limoges, Department of Pharmacology, Toxicology & Pharmacovigilance, 2 Avenue Martin-Luther King, F-87042 Limoges, France
| | - Jana Stojanova
- Laboratory of Chemical Carcinogenesis & Pharmacogenetics, University of Chile, Santiago, Chile
| | - Pierre Marquet
- Inserm, UMR 850, 2 Avenue Martin-Luther King, F-87042 Limoges, France.,CHU Limoges, Department of Pharmacology, Toxicology & Pharmacovigilance, 2 Avenue Martin-Luther King, F-87042 Limoges, France.,Univ. Limoges, Faculty of Medicine & Pharmacy, 2 rue du Dr Marcland, F-87025 Limoges, France.,FHU SUPORT, 87000 Limoges, France
| | - Nicolas Picard
- Inserm, UMR 850, 2 Avenue Martin-Luther King, F-87042 Limoges, France.,CHU Limoges, Department of Pharmacology, Toxicology & Pharmacovigilance, 2 Avenue Martin-Luther King, F-87042 Limoges, France.,Univ. Limoges, Faculty of Medicine & Pharmacy, 2 rue du Dr Marcland, F-87025 Limoges, France.,FHU SUPORT, 87000 Limoges, France
| |
Collapse
|
7
|
Abstract
Understanding the genetic architecture of athletic performance is an important step in the development of methods for talent identification in sport. Research concerned with molecular predictors has highlighted a number of potentially important DNA polymorphisms contributing to predisposition to success in certain types of sport. This review summarizes the evidence and mechanistic insights on the associations between DNA polymorphisms and athletic performance. A literature search (period: 1997-2014) revealed that at least 120 genetic markers are linked to elite athlete status (77 endurance-related genetic markers and 43 power/strength-related genetic markers). Notably, 11 (9%) of these genetic markers (endurance markers: ACE I, ACTN3 577X, PPARA rs4253778 G, PPARGC1A Gly482; power/strength markers: ACE D, ACTN3 Arg577, AMPD1 Gln12, HIF1A 582Ser, MTHFR rs1801131 C, NOS3 rs2070744 T, PPARG 12Ala) have shown positive associations with athlete status in three or more studies, and six markers (CREM rs1531550 A, DMD rs939787 T, GALNT13 rs10196189 G, NFIA-AS1 rs1572312 C, RBFOX1 rs7191721 G, TSHR rs7144481 C) were identified after performing genome-wide association studies (GWAS) of African-American, Jamaican, Japanese, and Russian athletes. On the other hand, the significance of 29 (24%) markers was not replicated in at least one study. Future research including multicenter GWAS, whole-genome sequencing, epigenetic, transcriptomic, proteomic, and metabolomic profiling and performing meta-analyses in large cohorts of athletes is needed before these findings can be extended to practice in sport.
Collapse
Affiliation(s)
- Ildus I Ahmetov
- Sport Technology Research Center, Volga Region State Academy of Physical Culture, Sport and Tourism, Kazan, Russia; Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia.
| | - Olga N Fedotovskaya
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Tanaka A, Yuasa S, Mearini G, Egashira T, Seki T, Kodaira M, Kusumoto D, Kuroda Y, Okata S, Suzuki T, Inohara T, Arimura T, Makino S, Kimura K, Kimura A, Furukawa T, Carrier L, Node K, Fukuda K. Endothelin-1 induces myofibrillar disarray and contractile vector variability in hypertrophic cardiomyopathy-induced pluripotent stem cell-derived cardiomyocytes. J Am Heart Assoc 2014; 3:e001263. [PMID: 25389285 PMCID: PMC4338713 DOI: 10.1161/jaha.114.001263] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Despite the accumulating genetic and molecular investigations into hypertrophic cardiomyopathy (HCM), it remains unclear how this condition develops and worsens pathologically and clinically in terms of the genetic-environmental interactions. Establishing a human disease model for HCM would help to elucidate these disease mechanisms; however, cardiomyocytes from patients are not easily obtained for basic research. Patient-specific induced pluripotent stem cells (iPSCs) potentially hold much promise for deciphering the pathogenesis of HCM. The purpose of this study is to elucidate the interactions between genetic backgrounds and environmental factors involved in the disease progression of HCM. METHODS AND RESULTS We generated iPSCs from 3 patients with HCM and 3 healthy control subjects, and cardiomyocytes were differentiated. The HCM pathological phenotypes were characterized based on morphological properties and high-speed video imaging. The differences between control and HCM iPSC-derived cardiomyocytes were mild under baseline conditions in pathological features. To identify candidate disease-promoting environmental factors, the cardiomyocytes were stimulated by several cardiomyocyte hypertrophy-promoting factors. Interestingly, endothelin-1 strongly induced pathological phenotypes such as cardiomyocyte hypertrophy and intracellular myofibrillar disarray in the HCM iPSC-derived cardiomyocytes. We then reproduced these phenotypes in neonatal cardiomyocytes from the heterozygous Mybpc3-targeted knock in mice. High-speed video imaging with motion vector prediction depicted physiological contractile dynamics in the iPSC-derived cardiomyocytes, which revealed that self-beating HCM iPSC-derived single cardiomyocytes stimulated by endothelin-1 showed variable contractile directions. CONCLUSIONS Interactions between the patient's genetic backgrounds and the environmental factor endothelin-1 promote the HCM pathological phenotype and contractile variability in the HCM iPSC-derived cardiomyocytes.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (A.T., S.Y., T.E., T.S., M.K., D.K., Y.K., S.O., T.S., T.I., S.M., K.K., K.F.) Department of Cardiovascular Medicine, Saga University, Saga, Japan (A.T., K.N.)
| | - Shinsuke Yuasa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (A.T., S.Y., T.E., T.S., M.K., D.K., Y.K., S.O., T.S., T.I., S.M., K.K., K.F.)
| | - Giulia Mearini
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (G.M., L.C.) DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany (G.M., L.C.)
| | - Toru Egashira
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (A.T., S.Y., T.E., T.S., M.K., D.K., Y.K., S.O., T.S., T.I., S.M., K.K., K.F.)
| | - Tomohisa Seki
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (A.T., S.Y., T.E., T.S., M.K., D.K., Y.K., S.O., T.S., T.I., S.M., K.K., K.F.)
| | - Masaki Kodaira
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (A.T., S.Y., T.E., T.S., M.K., D.K., Y.K., S.O., T.S., T.I., S.M., K.K., K.F.)
| | - Dai Kusumoto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (A.T., S.Y., T.E., T.S., M.K., D.K., Y.K., S.O., T.S., T.I., S.M., K.K., K.F.)
| | - Yusuke Kuroda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (A.T., S.Y., T.E., T.S., M.K., D.K., Y.K., S.O., T.S., T.I., S.M., K.K., K.F.)
| | - Shinichiro Okata
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (A.T., S.Y., T.E., T.S., M.K., D.K., Y.K., S.O., T.S., T.I., S.M., K.K., K.F.) Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan (S.O., T.F.)
| | - Tomoyuki Suzuki
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (A.T., S.Y., T.E., T.S., M.K., D.K., Y.K., S.O., T.S., T.I., S.M., K.K., K.F.)
| | - Taku Inohara
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (A.T., S.Y., T.E., T.S., M.K., D.K., Y.K., S.O., T.S., T.I., S.M., K.K., K.F.)
| | - Takuro Arimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan (T.A., A.K.)
| | - Shinji Makino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (A.T., S.Y., T.E., T.S., M.K., D.K., Y.K., S.O., T.S., T.I., S.M., K.K., K.F.)
| | - Kensuke Kimura
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (A.T., S.Y., T.E., T.S., M.K., D.K., Y.K., S.O., T.S., T.I., S.M., K.K., K.F.)
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan (T.A., A.K.)
| | - Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan (S.O., T.F.)
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (G.M., L.C.) DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany (G.M., L.C.)
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, Saga, Japan (A.T., K.N.)
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (A.T., S.Y., T.E., T.S., M.K., D.K., Y.K., S.O., T.S., T.I., S.M., K.K., K.F.)
| |
Collapse
|
9
|
Alonso-Montes C, Naves-Diaz M, Fernandez-Martin JL, Rodriguez-Reguero J, Moris C, Coto E, Cannata-Andia JB, Rodriguez I. New polymorphisms in human MEF2C gene as potential modifier of hypertrophic cardiomyopathy. Mol Biol Rep 2012; 39:8777-85. [PMID: 22718505 DOI: 10.1007/s11033-012-1740-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/07/2012] [Indexed: 02/06/2023]
Abstract
Hypertrophic cardiomyopathy is caused by mutations in genes encoding sarcomeric proteins. Its variable phenotype suggests the existence of modifier genes. Myocyte enhancer factor (MEF) 2C could be important in this process given its role as transcriptional regulator of several cardiac genes. Any variant affecting MEF2C expression and/or function may impact on hypertrophic cardiomyopathy clinical manifestations. In this candidate gene approach, we screened 209 Caucasian hypertrophic cardiomyopathy patients and 313 healthy controls for genetic variants in MEF2C gene by single-strand conformation polymorphism analysis and direct sequencing. Functional analyses were performed with transient transfections of luciferase reporter constructions. Three new variants in non-coding exon 1 were found both in patients and controls with similar frequencies. One-way ANOVA analyses showed a greater left ventricular outflow tract obstruction (p = 0.011) in patients with 10C+10C genotype of the c.-450C(8_10) variant. Moreover, one patient was heterozygous for two rare variants simultaneously. This patient presented thicker left ventricular wall than her relatives carrying the same sarcomeric mutation. In vitro assays additionally showed a slightly increased transcriptional activity for both rare MEF2C alleles. In conclusion, our data suggest that 15 bp-deletion and C-insertion in the 5'UTR region of MEF2C could affect hypertrophic cardiomyopathy, potentially by affecting expression of MEF2C and therefore, the expression of their target cardiac proteins that are implicated in the hypertrophic process.
Collapse
Affiliation(s)
- Cristina Alonso-Montes
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Genetic polymorphisms of the transcription factor NFATc4 and development of new-onset diabetes after transplantation in Hispanic kidney transplant recipients. Transplantation 2012; 93:325-30. [PMID: 22234350 DOI: 10.1097/tp.0b013e31823f7f26] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcription factors of the nuclear factor of activated T cells (NFAT) family regulate both immune activation and insulin production. Calcineurin inhibitors (CNIs) target NFAT activation. Hence, CNIs not only prevent organ transplant rejection but also contribute to the development of new-onset diabetes after transplantation (NODAT). Given individual variation in the susceptibility to NODAT, we hypothesized that polymorphisms in the cytoplasmic NFAT (NFATc)4 gene, which is expressed in pancreatic islets, may be associated with NODAT. Haplotype-tagging single-nucleotide polymorphisms (SNPs) of the NFATc4 gene were genotyped in Hispanic renal transplant patients. Cumulative incidences of NODAT were compared between recipients of different NFATc4 genotypes and haplotypes. The Cox proportional hazard model was used to examine risks for NODAT. Nongenetic and genetic characteristics were included in the multivariate risk model. The SNP (rs10141896) T allele was associated with a lower cumulative incidence of NODAT (P=0.02). This is a tagging SNP for one of the five dominant NFATc4 haplotypes, T-T-T-T-G, and CNI-treated recipients with this haplotype had a reduced adjusted risk for NODAT (hazard ratio: 0.45; 95% confidence interval: 0.19-1.01). Conversely, patients homozygous for the C-C-C-G-G haplotype were at an increased risk (hazard ratio: 2.13; 95% confidence interval: 1.01-4.46) for NODAT in subanalysis. Of the nongenetic factors, use of tacrolimus, sirolimus, and older age were associated with increased risk for NODAT. Polymorphisms in the NFATc4 gene may confer certain protection or predisposition for NODAT.
Collapse
|
11
|
Moradi Marjaneh M, Kirk EP, Posch MG, Ozcelik C, Berger F, Hetzer R, Otway R, Butler TL, Blue GM, Griffiths LR, Fatkin D, Martinson JJ, Winlaw DS, Feneley MP, Harvey RP. Investigation of association between PFO complicated by cryptogenic stroke and a common variant of the cardiac transcription factor GATA4. PLoS One 2011; 6:e20711. [PMID: 21673957 PMCID: PMC3108965 DOI: 10.1371/journal.pone.0020711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 05/08/2011] [Indexed: 01/12/2023] Open
Abstract
Patent foramen ovale (PFO) is associated with clinical conditions including cryptogenic stroke, migraine and varicose veins. Data from studies in humans and mouse suggest that PFO and the secundum form of atrial septal defect (ASDII) exist in an anatomical continuum of septal dysmorphogenesis with a common genetic basis. Mutations in multiple members of the evolutionarily conserved cardiac transcription factor network, including GATA4, cause or predispose to ASDII and PFO. Here, we assessed whether the most prevalent variant of the GATA4 gene, S377G, was significantly associated with PFO or ASD. Our analysis of world indigenous populations showed that GATA4 S377G was largely Caucasian-specific, and so subjects were restricted to those of Caucasian descent. To select for patients with larger PFO, we limited our analysis to those with cryptogenic stroke in which PFO was a subsequent finding. In an initial study of Australian subjects, we observed a weak association between GATA4 S377G and PFO/Stroke relative to Caucasian controls in whom ASD and PFO had been excluded (OR = 2.16; p = 0.02). However, in a follow up study of German Caucasians no association was found with either PFO or ASD. Analysis of combined Australian and German data confirmed the lack of a significant association. Thus, the common GATA4 variant S377G is likely to be relatively benign in terms of its participation in CHD and PFO/Stroke.
Collapse
Affiliation(s)
- Mahdi Moradi Marjaneh
- The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- Faculty of Medicine, University of New South Wales, Kensington, Australia
| | - Edwin P. Kirk
- Faculty of Medicine, University of New South Wales, Kensington, Australia
- Department of Medical Genetics, Sydney Children's Hospital, Randwick, Australia
| | - Maximilian G. Posch
- The Experimental and Clinical Research Center (ECRC), Charité – Universitätsmedizin, Berlin, Germany
- Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Cemil Ozcelik
- The Experimental and Clinical Research Center (ECRC), Charité – Universitätsmedizin, Berlin, Germany
| | | | | | - Robyn Otway
- The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Tanya L. Butler
- Heart Centre for Children, The Children's Hospital at Westmead, Westmead, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Gillian M. Blue
- Heart Centre for Children, The Children's Hospital at Westmead, Westmead, Australia
| | - Lyn R. Griffiths
- Genomics Research Centre, Griffith University, Gold Coast, Australia
| | - Diane Fatkin
- The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- Faculty of Medicine, University of New South Wales, Kensington, Australia
- Cardiology Department, St Vincent's Hospital, Darlinghurst, Australia
| | - Jeremy J. Martinson
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - David S. Winlaw
- Heart Centre for Children, The Children's Hospital at Westmead, Westmead, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Michael P. Feneley
- The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- Faculty of Medicine, University of New South Wales, Kensington, Australia
- Cardiology Department, St Vincent's Hospital, Darlinghurst, Australia
| | - Richard P. Harvey
- The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- Faculty of Medicine, University of New South Wales, Kensington, Australia
| |
Collapse
|
12
|
Mutations of the GATA4 and NKX2.5 genes in Chinese pediatric patients with non-familial congenital heart disease. Genetica 2010; 138:1231-40. [PMID: 21110066 DOI: 10.1007/s10709-010-9522-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 11/04/2010] [Indexed: 12/19/2022]
Abstract
A number of mutations in GATA4 and NKX2.5 have been identified to be causative for a subset of familial congenital heart defects (CHDs) and a small number of sporadic CHDs. In this study, we evaluated common GATA4 and NKX2.5 mutations in 135 Chinese pediatric patients with non-familial congenital heart defects. Two novel mutations in the coding region of GATA4 were identified, namely, 487C >T (Pro163Ser) in exon 1 in a child with tetralogy of Fallot and 1220C >A (Pro407Gln) in exon 6 in a pediatric patient with outlet membranous ventricular septal defect. We also found 848C >A (Pro283Gln) in exon 2 of the NKX2.5 gene in a pediatric patient with ventricular septal defect, patent ductus arteriosus and aortic isthmus stenosis. None of the mutations was detected in healthy control subjects (n = 114). This study suggests that GATA4 and NKX2.5 missense mutations may be associated with congenital heart defects in pediatric Chinese patients. Further clinical studies with large samples are warranted.
Collapse
|
13
|
Butler TL, Esposito G, Blue GM, Cole AD, Costa MW, Waddell LB, Walizada G, Sholler GF, Kirk EP, Feneley M, Harvey RP, Winlaw DS. GATA4 mutations in 357 unrelated patients with congenital heart malformation. Genet Test Mol Biomarkers 2010; 14:797-802. [PMID: 20874241 DOI: 10.1089/gtmb.2010.0028] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Congenital heart disease (CHD) represents one of the most common birth defects, but the genetic causes remain largely unknown. Mutations in GATA4, encoding a zinc finger transcription factor with a pivotal role in heart development, have been associated with CHD in several familial cases and a small subset of sporadic patients. To estimate the pathogenetic role of GATA4 in CHD, we screened for mutations in 357 unrelated patients with different congenital heart malformations. In addition to nine synonymous changes, we identified two known (A411V and D425N) and two novel putative mutations (G69D and P163R) in five patients with atrial or ventricular septal defects that were not seen in control subjects. The four mutations did not show altered GATA4 transcriptional activity in synergy with the transcription factors NKX2-5 and TBX20. Our data expand the spectrum of mutations associated with cardiac septal defects but do not support GATA4 mutations as a common cause of CHD.
Collapse
Affiliation(s)
- Tanya L Butler
- Heart Centre for Children, The Children's Hospital at Westmead, Westmead, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Posch MG, Boldt LH, Polotzki M, Richter S, Rolf S, Perrot A, Dietz R, Ozcelik C, Haverkamp W. Mutations in the cardiac transcription factor GATA4 in patients with lone atrial fibrillation. Eur J Med Genet 2010; 53:201-3. [PMID: 20363377 DOI: 10.1016/j.ejmg.2010.03.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
Abstract
Familial recurrence of atrial fibrillation (AF) is reported in up to 15% of patients with lone AF. Recently, it was proposed that congenital defects in the morphogenesis of the pulmonary vein myocardium are involved in genetic pathogenesis of lone AF. GATA4 is a cardiac transcription factor essentially involved in myocardial development. Mutations in GATA4 are associated with congenital cardiac malformations. To investigate whether GATA4 mutations represent a genetic origin for AF the coding region of GATA4 was sequenced in 96 patients with lone AF. We found a GATA4 mutation (M247T) in a patient with familial lone AF and atrial septal aneurysm without interatrial shunts. The mutation affects a deeply conserved domain adjacent to the first zinc finger domain of GATA4 and was not reported before. A second GATA4 mutation (A411V) was found in a female patient with sporadic lone AF. This variant was previously reported in patients with cardiac septal defects. However, no anomalies of the atrial or ventricular septa were noted in the AF patient harboring A411V. We report for the first time that mutations in the cardiac transcription factor GATA4 may represent a genetic origin of lone AF. The study proposes that lone AF may share a common genetic origin with congenital cardiac malformations.
Collapse
Affiliation(s)
- Maximilian G Posch
- Experimental and Clinical Research Center (ECRC) at Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ahmetov II, Williams AG, Popov DV, Lyubaeva EV, Hakimullina AM, Fedotovskaya ON, Mozhayskaya IA, Vinogradova OL, Astratenkova IV, Montgomery HE, Rogozkin VA. The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes. Hum Genet 2009; 126:751-61. [DOI: 10.1007/s00439-009-0728-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 07/25/2009] [Indexed: 11/30/2022]
|
16
|
Wat MJ, Shchelochkov OA, Holder AM, Breman AM, Dagli A, Bacino C, Scaglia F, Zori RT, Cheung SW, Scott DA, Kang SHL. Chromosome 8p23.1 deletions as a cause of complex congenital heart defects and diaphragmatic hernia. Am J Med Genet A 2009; 149A:1661-77. [PMID: 19606479 PMCID: PMC2765374 DOI: 10.1002/ajmg.a.32896] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Recurrent interstitial deletion of a region of 8p23.1 flanked by the low copy repeats 8p-OR-REPD and 8p-OR-REPP is associated with a spectrum of anomalies that can include congenital heart malformations and congenital diaphragmatic hernia (CDH). Haploinsufficiency of GATA4 is thought to play a critical role in the development of these birth defects. We describe two individuals and a monozygotic twin pair discordant for anterior CDH all of whom have complex congenital heart defects caused by this recurrent interstitial deletion as demonstrated by array comparative genomic hybridization. To better define the genotype/phenotype relationships associated with alterations of genes on 8p23.1, we review the spectrum of congenital heart and diaphragmatic defects that have been reported in individuals with isolated GATA4 mutations and interstitial, terminal, and complex chromosomal rearrangements involving the 8p23.1 region. Our findings allow us to clearly define the CDH minimal deleted region on chromosome 8p23.1 and suggest that haploinsufficiency of other genes, in addition to GATA4, may play a role in the severe cardiac and diaphragmatic defects associated with 8p23.1 deletions. These findings also underscore the importance of conducting a careful cytogenetic/molecular analysis of the 8p23.1 region in all prenatal and postnatal cases involving congenital defects of the heart and/or diaphragm.
Collapse
Affiliation(s)
- Margaret J. Wat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Oleg A. Shchelochkov
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ashley M. Holder
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Amy M. Breman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Aditi Dagli
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Carlos Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Roberto T. Zori
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sung-Hae Lee Kang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
17
|
Friedrich FW, Bausero P, Sun Y, Treszl A, Kramer E, Juhr D, Richard P, Wegscheider K, Schwartz K, Brito D, Arbustini E, Waldenstrom A, Isnard R, Komajda M, Eschenhagen T, Carrier L. A new polymorphism in human calmodulin III gene promoter is a potential modifier gene for familial hypertrophic cardiomyopathy. Eur Heart J 2009; 30:1648-55. [DOI: 10.1093/eurheartj/ehp153] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
18
|
Tomita-Mitchell A, Maslen CL, Morris CD, Garg V, Goldmuntz E. GATA4 sequence variants in patients with congenital heart disease. J Med Genet 2008; 44:779-83. [PMID: 18055909 DOI: 10.1136/jmg.2007.052183] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Recent reports have identified mutations in the transcription factor GATA4 in familial cases of cardiac septal defects. The prevalence of GATA4 mutations in the population of patients with septal defects is unknown. Given that patients with septal and conotruncal defect can share a common genetic basis, it is unclear whether patients with additional types of CHD might also have GATA4 mutations. AIMS To explore these questions by investigating a large population of 628 patients with either septal or conotruncal defects for GATA4 sequence variants. METHODS The GATA4 coding region and exon-intron boundaries were investigated for sequence variants using denaturing high-performance liquid chromatography or conformation-sensitive gel electrophoresis. Samples showing peak or band shifts were reamplified from genomic DNA and sequenced. RESULTS Four missense sequence variants (Gly93Ala, Gln316Glu, Ala411Val, Asp425Asn) were identified in five patients (two with atrial septal defect, two with ventricular septal defect and one with tetralogy of Fallot), which were not seen in a control population. All four affected amino acid residues are conserved across species, and two of the sequence variants lead to changes in polarity. Ten synonymous sequence variants were also identified in 18 patients, which were not seen in the control population. CONCLUSIONS These data suggest that non-synonymous GATA4 sequence variants are found in a small percentage of patients with septal defects and are very uncommonly found in patients with conotruncal defects.
Collapse
Affiliation(s)
- A Tomita-Mitchell
- Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
19
|
Schluterman MK, Krysiak AE, Kathiriya IS, Abate N, Chandalia M, Srivastava D, Garg V. Screening and biochemical analysis of GATA4 sequence variations identified in patients with congenital heart disease. Am J Med Genet A 2007; 143A:817-23. [PMID: 17352393 DOI: 10.1002/ajmg.a.31652] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Few known monogenic causes of non-syndromic congenital heart disease (CHD) have been identified. Mutations in NKX2.5 were initially implicated in familial cases of cardiac septal defects and subsequently, functionally significant NKX2.5 mutations were found in diverse forms of non-syndromic CHD. Similarly, mutations in GATA4, which encodes a cardiac transcription factor, were first identified in familial cases of cardiac septal defects. We hypothesize that individuals with non-syndromic CHD may harbor GATA4 mutations and that these mutations alter the biochemical properties of the protein. The coding region encompassing the six exons of GATA4 was screened in a study population of 157 patients with CHD. We identified several sequence variations in GATA4. We tested these novel sequence variations that altered evolutionarily conserved amino acids and other previously reported GATA4 mutations in various biochemical assays. The novel sequence variations had no biochemical deficits while a previously reported, but unstudied, missense mutation in GATA4 (S52F) functioned as a hypomorph in transactivation assays. We did not identify any novel GATA4 mutations in our patient population with non-syndromic CHD. Consistent with previous findings, GATA4 mutations that result in deficits in transactivation ability are consistently associated with CHD suggesting that normal transactivation properties of GATA4 are required for proper cardiac development.
Collapse
Affiliation(s)
- Marie K Schluterman
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA
| | | | | | | | | | | | | |
Collapse
|