1
|
Deutsche Gesellschaft für Humangenetik e.V., Berufsverband Deutscher Humangenetiker e.V.. Leitlinien für die molekulare und zytogenetische Diagnostik bei Prader-Willi-Syndrom und Angelman-Syndrom. MED GENET-BERLIN 2020. [DOI: 10.1515/medgen-2020-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
2
|
Beygo J, Buiting K, Ramsden SC, Ellis R, Clayton-Smith J, Kanber D. Update of the EMQN/ACGS best practice guidelines for molecular analysis of Prader-Willi and Angelman syndromes. Eur J Hum Genet 2019; 27:1326-1340. [PMID: 31235867 PMCID: PMC6777528 DOI: 10.1038/s41431-019-0435-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/20/2019] [Accepted: 05/07/2019] [Indexed: 11/23/2022] Open
Abstract
This article is an update of the best practice guidelines for the molecular analysis of Prader-Willi and Angelman syndromes published in 2010 in BMC Medical Genetics [1]. The update takes into account developments in terms of techniques, differential diagnoses and (especially) reporting standards. It highlights the advantages and disadvantages of each method and moreover, is meant to facilitate the interpretation of the obtained results - leading to improved standardised reports.
Collapse
Affiliation(s)
- Jasmin Beygo
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany.
| | - Karin Buiting
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Simon C Ramsden
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Rachael Ellis
- Department of Medical Genetics, Yorkhill NHS Trust, Yorkhill Hospital, Glasgow, G3 8SJ, UK
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
- Division of Evolution and Genomic Sciences School of Biological Sciences University of Manchester, Manchester, UK
| | - Deniz Kanber
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany.
| |
Collapse
|
3
|
A modified MS-PCR approach to diagnose patients with Prader-Willi and Angelman syndrome. Mol Biol Rep 2016; 43:1221-1225. [PMID: 27535666 DOI: 10.1007/s11033-016-4055-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 08/08/2016] [Indexed: 02/08/2023]
Abstract
Prader-Willi (PWS) and Angelman (AS) syndromes are clinically distinct neurodevelopmental genetic diseases with multiple phenotypic manifestations. They are one of the most common genetic syndromes caused by non-Mendelian inheritance in the form of genomic imprinting, and can be attributable to the loss of gene expression due to imprinting within the chromosomal region 15q11-q13. Clinical diagnosis of PWS and AS is challenging, and the use of molecular and cytomolecular studies is recommended to help in determining the diagnosis of these conditions. The methylation analysis is a sensible approach; however there are several techniques for this purpose, such as the methylation-sensitive polymerase chain reaction (MS-PCR). This study aims to optimize the MS-PCR assay for the diagnosis of potential PWS and AS patients using DNA modified by sodium bisulfite. We used the MS-PCR technique of PCR described by Kosaki et al. (1997) adapted with betaine. All different concentrations of betaine used to amplify the methylated and unmethylated chromosomal region 15q11-q13 on the gene SNRPN showed amplification results, which increased proportionally to the concentration of betaine. The methylation analysis is a technically robust and reproducible screening method for PWS and AS. The MS-PCR assures a faster, cheaper and more efficient method for the primary diagnosis of the SNRPN gene in cases with PWS and AS, and may detect all of the three associated genetic abnormalities: deletion, uniparental disomy or imprinting errors.
Collapse
|
4
|
Establishment of the first WHO international genetic reference panel for Prader Willi and Angelman syndromes. Eur J Hum Genet 2011; 19:857-64. [PMID: 21587322 DOI: 10.1038/ejhg.2011.59] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Prader Willi and Angelman syndromes are clinically distinct genetic disorders both mapping to chromosome region 15q11-q13, which are caused by a loss of function of paternally or maternally inherited genes in the region, respectively. With clinical diagnosis often being difficult, particularly in infancy, confirmatory genetic diagnosis is essential to enable clinical intervention. However, the latter is challenged by the complex genetics behind both disorders and the unmet need for characterised reference materials to aid accurate molecular diagnosis. With this in mind, a panel of six genotyping reference materials for Prader Willi and Angelman syndromes was developed, which should be stable for many years and available to all diagnostic laboratories. The panel comprises three Prader Willi syndrome materials (two with different paternal deletions, and one with maternal uniparental disomy (UPD)) and three Angelman syndrome materials (one with a maternal deletion, one with paternal UPD or an epigenetic imprinting centre defect, and one with a UBE3A point mutation). Genomic DNA was bulk-extracted from Epstein-Barr virus-transformed lymphoblastoid cell lines established from consenting patients, and freeze-dried as aliquots in glass ampoules. In total, 37 laboratories from 26 countries participated in a collaborative study to assess the suitability of the panel. Participants evaluated the blinded, triplicate materials using their routine diagnostic methods against in-house controls or externally sourced uncertified reference materials. The panel was established by the Expert Committee on Biological Standardization of the World Health Organization as the first International Genetic Reference Panel for Prader Willi and Angelman syndromes.
Collapse
|
5
|
Abstract
Normally, one inherits one chromosome of each pair from one parent and the second chromosome from the other parent. Uniparental disomy (UPD) describes the inheritance of both homologues of a chromosome pair from the same parent. The biological basis of UPD syndromes is disturbed genomic imprinting. The consequences of UPD depend on the specific chromosome/segment involved and its parental origin. Phenotypes range from unapparent to unmasking of an autosomal-recessive disease to presentation as a syndromic imprinting disorder. Whilst paternal UPD(7) is clinically unapparent, maternal UPD(7) is one of several causes of Silver-Russell syndrome. Presentation of paternal UPD(14) ("Kagami syndrome") is a thoracic dysplasia syndrome with mental retardation and limited survival. Findings in maternal UPD(14) ("Temple") syndrome show an age-dependent overlap with the well-known maternal UPD(15) (Prader-Willi) syndrome and are dominated by initial failure to thrive followed by obesity, learning difficulties and precocious puberty. Diagnostic strategies to tackle the genetic heterogeneity of UPD(7) and UPD(14) syndromes will be explained. Management issues in UPD(7) and UPD(14) patients will be discussed, and finally areas requiring further research will be outlined.
Collapse
Affiliation(s)
- Katrin Hoffmann
- Institute of Medical Genetics, Campus Virchow-Klinikum, Charité, Augustenburger Platz 1, Berlin, Germany.
| | | |
Collapse
|
6
|
Ramsden SC, Clayton-Smith J, Birch R, Buiting K. Practice guidelines for the molecular analysis of Prader-Willi and Angelman syndromes. BMC MEDICAL GENETICS 2010; 11:70. [PMID: 20459762 PMCID: PMC2877670 DOI: 10.1186/1471-2350-11-70] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 05/11/2010] [Indexed: 11/26/2022]
Abstract
Background Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are clinically distinct neurodevelopmental genetic disorders that map to 15q11-q13. The primary phenotypes are attributable to loss of expression of imprinted genes within this region which can arise by means of a number of mechanisms. The most sensitive single approach to diagnosing both PWS and AS is to study methylation patterns within 15q11-q13; however many techniques exist for this purpose. Given the diversity of techniques available, there is a need for consensus testing and reporting guidelines. Methods Testing and reporting guidelines have been drawn up and agreed in accordance with the procedures of the UK Clinical Molecular Genetics Society and the European Molecular Genetics Quality Network. Results A practical set of molecular genetic testing and reporting guidelines has been developed for these two disorders. In addition, advice is given on appropriate reporting policies, including advice on test sensitivity and recurrence risks. In considering test sensitivity, the possibility of differential diagnoses is discussed. Conclusion An agreed set of practice guidelines has been developed for the diagnostic molecular genetic testing of PWS and AS.
Collapse
Affiliation(s)
- Simon C Ramsden
- National Genetics Reference Laboratory (Manchester), Saint Mary's Hospital, Hathersage Road, Manchester M13OJH, UK.
| | | | | | | |
Collapse
|
7
|
Comparison of bisulfite sequencing PCR with pyrosequencing for measuring differences in DNA methylation. Anal Biochem 2010; 397:96-106. [DOI: 10.1016/j.ab.2009.10.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 10/02/2009] [Accepted: 10/09/2009] [Indexed: 10/20/2022]
|
8
|
Dikow N, Nygren AO, Schouten JP, Hartmann C, Krämer N, Janssen B, Zschocke J. Quantification of the methylation status of the PWS/AS imprinted region: Comparison of two approaches based on bisulfite sequencing and methylation-sensitive MLPA. Mol Cell Probes 2007; 21:208-15. [PMID: 17303379 DOI: 10.1016/j.mcp.2006.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Revised: 11/23/2006] [Accepted: 12/21/2006] [Indexed: 12/13/2022]
Abstract
Standard methods used for genomic methylation analysis allow the detection of complete absence of either methylated or non-methylated alleles but are usually unable to detect changes in the proportion of methylated and unmethylated alleles. We compare two methods for quantitative methylation analysis, using the chromosome 15q11-q13 imprinted region as model. Absence of the non-methylated paternal allele in this region leads to Prader-Willi syndrome (PWS) whilst absence of the methylated maternal allele results in Angelman syndrome (AS). A proportion of AS is caused by mosaic imprinting defects which may be missed with standard methods and require quantitative analysis for their detection. Sequence-based quantitative methylation analysis (SeQMA) involves quantitative comparison of peaks generated through sequencing reactions after bisulfite treatment. It is simple, cost-effective and can be easily established for a large number of genes. However, our results support previous suggestions that methods based on bisulfite treatment may be problematic for exact quantification of methylation status. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) avoids bisulfite treatment. It detects changes in both CpG methylation as well as copy number of up to 40 chromosomal sequences in one simple reaction. Once established in a laboratory setting, the method is more accurate, reliable and less time consuming.
Collapse
Affiliation(s)
- Nicola Dikow
- Institute of Human Genetics, University of Heidelberg, Im Neuenheimer Feld 366, D-69120 Heidelberg, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
9
|
Martínez F, León AM, Monfort S, Oltra S, Roselló M, Orellana C. Robust, Easy, and Dose-Sensitive Methylation Test for the Diagnosis of Prader–Willi and Angelman Syndromes. ACTA ACUST UNITED AC 2006; 10:174-7. [PMID: 17020468 DOI: 10.1089/gte.2006.10.174] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We present a new method for differential diagnosis of Prader-Willi (PWS) and Angelman syndromes (AS) that requires only a small amount of DNA including that obtained from amniocentesis specimens. This method not only proved to be robust and rapid, but, most importantly, it can be dosage sensitive, supplying additional information useful for genetic counselling. After methylation-dependent digestion of DNA with HpaII or McrBC, exon 1 of the SNRPN gene is amplified together with a sequence in the CpG island of the H19 gene. Given the similarities in sequence composition and methylation status between the amplified sequences, their co-amplification under semiquantitative conditions allows an easy discrimination between single dosage (present in deletions or chromosomal translocations) and a double-dosage state (uniparental disomy or imprinting error), when the appropriate controls are included. The method we have developed in combination with standard cytogenetic studies and segregation analysis of microsatellite markers offers a rapid and easy procedure to resolve most suspected cases of PWS and AS, and consequently to provide accurate genetic counselling.
Collapse
Affiliation(s)
- Francisco Martínez
- Unidad de Genética y Diagnóstico Prenatal, Hospital Universitario La Fe, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
10
|
Horsthemke B, Buiting K. Imprinting defects on human chromosome 15. Cytogenet Genome Res 2006; 113:292-9. [PMID: 16575192 DOI: 10.1159/000090844] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 06/03/2005] [Indexed: 01/25/2023] Open
Abstract
The Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two distinct neurogenetic diseases that are caused by the loss of function of imprinted genes on the proximal long arm of human chromosome 15. In a few percent of patients with PWS and AS, the disease is due to aberrant imprinting and gene silencing. In patients with PWS and an imprinting defect, the paternal chromosome carries a maternal imprint. In patients with AS and an imprinting defect, the maternal chromosome carries a paternal imprint. Imprinting defects offer a unique opportunity to identify some of the factors and mechanisms involved in imprint erasure, resetting and maintenance. In approximately 10% of cases the imprinting defects are caused by a microdeletion affecting the 5' end of the SNURF-SNRPN locus. These deletions define the 15q imprinting center (IC), which regulates imprinting in the whole domain. These findings have been confirmed and extended in knock-out and transgenic mice. In the majority of patients with an imprinting defect, the incorrect imprint has arisen without a DNA sequence change, possibly as the result of stochastic errors of the imprinting process or the effect of exogenous factors.
Collapse
Affiliation(s)
- B Horsthemke
- Institut fur Humangenetik, Universitatsklinikum Essen, Essen, Germany.
| | | |
Collapse
|
11
|
White HE, Durston VJ, Harvey JF, Cross NCP. Quantitative analysis of SNRPN(correction of SRNPN) gene methylation by pyrosequencing as a diagnostic test for Prader-Willi syndrome and Angelman syndrome. Clin Chem 2006; 52:1005-13. [PMID: 16574761 DOI: 10.1373/clinchem.2005.065086] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Angelman syndrome (AS) and Prader-Willi syndrome (PWS) are 2 distinct neurodevelopmental disorders caused primarily by deficiency of specific parental contributions at an imprinted domain within the chromosomal region 15q11.2-13. In most cases, lack of paternal contribution leads to PWS either by paternal deletion (approximately 70%) or maternal uniparental disomy (UPD; approximately 30%). Most cases of AS result from the lack of a maternal contribution from this same region by maternal deletion (approximately 70%) or by paternal UPD (approximately 5%). Analysis of allelic methylation differences at the small nuclear ribonucleoprotein polypeptide N (SNRPN) locus can differentiate the maternally and paternally inherited chromosome 15 and can be used as a diagnostic test for AS and PWS. METHODS Sodium bisulfite-treated genomic DNA was PCR-amplified for the SNRPN gene. We used pyrosequencing to individually quantify the resulting artificial C/T sequence variation at CpG sites. Anonymized DNA samples from PWS patients (n = 40), AS patients (n = 31), and controls (n = 81) were analyzed in a blinded fashion with 2 PCR and 3 pyrosequencing reactions. We compared results from the pyrosequencing assays with those obtained with a commonly used methylation-specific PCR (MS-PCR) diagnostic protocol. RESULTS The pyrosequencing assays had a sensitivity and specificity of 100% and provided quantification of methylation at 12 CpG sites within the SNRPN locus. The resulting diagnoses were 100% concordant with those obtained from the MS-PCR protocol. CONCLUSIONS Pyrosequencing is a rapid and robust method for quantitative methylation analysis of the SNRPN locus and can be used as a diagnostic test for PWS and AS.
Collapse
Affiliation(s)
- Helen E White
- National Genetics Reference Laboratory (Wessex), Salisbury District Hospital, Odstock, Salisbury, Wiltshire, United Kingdom.
| | | | | | | |
Collapse
|
12
|
Nazlican H, Zeschnigk M, Claussen U, Michel S, Boehringer S, Gillessen-Kaesbach G, Buiting K, Horsthemke B. Somatic mosaicism in patients with Angelman syndrome and an imprinting defect. Hum Mol Genet 2004; 13:2547-55. [PMID: 15385437 DOI: 10.1093/hmg/ddh296] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Angelman syndrome is a neurogenetic disorder caused by the loss of function of the imprinted UBE3A gene in 15q11-q13. In a small group of patients, the disease is due to an imprinting defect (ID) that silences the maternal UBE3A allele. The presence of a faint maternal band detected by methylation-specific PCR analysis of the SNURF-SNRPN locus in approximately one-third of patients who have an ID but no imprinting center deletion suggested that these patients are mosaics of ID cells and normal cells. In two patients studied, somatic mosaicism was proven by molecular and cellular cloning, respectively. X inactivation studies of cloned fibroblasts from one patient suggest that ID occurred before the blastocyst stage. To quantify the degree of mosaicism, we developed a novel quantitative methylation assay based on real-time PCR. In 24 patients tested, the percentage of normal cells ranged from <1% to 40%. Regression analysis suggests that patients with a higher percentage of normally methylated cells tend to have milder clinical symptoms than patients with a lower percentage. In conclusion, we suggest that the role of mosaic imprinting defects in mental retardation is underestimated.
Collapse
Affiliation(s)
- Hülya Nazlican
- Institut für Humangenetik, Universitätsklinikum Essen, Hufelandtrasse 55, G-45122 Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|