1
|
Ru Y, Deng X, Chen J, Zhang L, Xu Z, Lv Q, Long S, Huang Z, Kong M, Guo J, Jiang M. Maternal age enhances purifying selection on pathogenic mutations in complex I genes of mammalian mtDNA. NATURE AGING 2024; 4:1211-1230. [PMID: 39075271 DOI: 10.1038/s43587-024-00672-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/14/2024] [Indexed: 07/31/2024]
Abstract
Mitochondrial diseases, caused mainly by pathogenic mitochondrial DNA (mtDNA) mutations, pose major challenges due to the lack of effective treatments. Investigating the patterns of maternal transmission of mitochondrial diseases could pave the way for preventive approaches. In this study, we used DddA-derived cytosine base editors (DdCBEs) to generate two mouse models, each haboring a single pathogenic mutation in complex I genes (ND1 and ND5), replicating those found in human patients. Our findings revealed that both mutations are under strong purifying selection during maternal transmission and occur predominantly during postnatal oocyte maturation, with increased protein synthesis playing a vital role. Interestingly, we discovered that maternal age intensifies the purifying selection, suggesting that older maternal age may offer a protective effect against the transmission of deleterious mtDNA mutations, contradicting the conventional notion that maternal age correlates with increased transmitted mtDNA mutations. As collecting comprehensive clinical data is needed to understand the relationship between maternal age and transmission patterns in humans, our findings may have profound implications for reproductive counseling of mitochondrial diseases, especially those involving complex I gene mutations.
Collapse
Affiliation(s)
- Yanfei Ru
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
| | - Xiaoling Deng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- Fudan University, Shanghai, China
| | - Jiatong Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Leping Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhe Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
| | - Qunyu Lv
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shiyun Long
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zijian Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- Fudan University, Shanghai, China
| | - Minghua Kong
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jing Guo
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Min Jiang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
2
|
Borrelli E, Bandello F, Boon CJF, Carelli V, Lenaers G, Reibaldi M, Sadda SR, Sadun AA, Sarraf D, Yu-Wai-Man P, Barboni P. Mitochondrial retinopathies and optic neuropathies: The impact of retinal imaging on modern understanding of pathogenesis, diagnosis, and management. Prog Retin Eye Res 2024; 101:101264. [PMID: 38703886 DOI: 10.1016/j.preteyeres.2024.101264] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Advancements in ocular imaging have significantly broadened our comprehension of mitochondrial retinopathies and optic neuropathies by examining the structural and pathological aspects of the retina and optic nerve in these conditions. This article aims to review the prominent imaging characteristics associated with mitochondrial retinopathies and optic neuropathies, aiming to deepen our insight into their pathogenesis and clinical features. Preceding this exploration, the article provides a detailed overview of the crucial genetic and clinical features, which is essential for the proper interpretation of in vivo imaging. More importantly, we will provide a critical analysis on how these imaging modalities could serve as biomarkers for characterization and monitoring, as well as in guiding treatment decisions. However, these imaging methods have limitations, which will be discussed along with potential strategies to mitigate them. Lastly, the article will emphasize the potential advantages and future integration of imaging techniques in evaluating patients with mitochondrial eye disorders, considering the prospects of emerging gene therapies.
Collapse
Affiliation(s)
- Enrico Borrelli
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy.
| | - Francesco Bandello
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Guy Lenaers
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, Université d'Angers, 49933, Angers, France; Service de Neurologie, CHU d'Angers, 49100, Angers, France
| | - Michele Reibaldi
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Srinivas R Sadda
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - David Sarraf
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Institute of Ophthalmology, University College London, London, UK
| | - Piero Barboni
- IRCCS San Raffaele Scientific Institute, Milan, Italy; Studio Oculistico d'Azeglio, Bologna, Italy.
| |
Collapse
|
3
|
Swart G, Fraser CL, Shingde M, Thompson EO, Mallawaarachchi A, Lawlor M, Ahmad K, Halmagyi GM. Mitochondrial DNA 13513G>A Mutation Causing Leber Hereditary Optic Neuropathy Associated With Adult-Onset Renal Failure. J Neuroophthalmol 2024; 44:190-194. [PMID: 37477990 DOI: 10.1097/wno.0000000000001946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
BACKGROUND Leber hereditary optic neuropathy (LHON) is one of the more common mitochondrial diseases and is rarely associated with mitochondrial renal disease. We report 3 unrelated patients with a background of adult-onset renal failure who presented to us with LHON and were shown to have a heteroplasmic mitochondrial DNA mutation (m.13513G>A). METHODS Retrospective chart review. RESULTS All 3 patients had a background of chronic renal failure and presented to us with bilateral optic neuropathy (sequential in 2) and were found to have heteroplasmic m.13513G>A mutations in the MT-ND5 gene. Two of the patients were females (aged 30 and 45 years) with chronic kidney disease from their 20s, attributed to pre-eclampsia, one of whom also had diabetes and sudden bilateral hearing loss. One patient was a male (aged 54 years) with chronic kidney disease from his 20s attributed to IgA nephropathy. His mother had diabetes and apparently sudden bilateral blindness in her 70s. Renal biopsy findings were variable and included interstitial fibrosis, acute tubular necrosis, focal segmental glomerulosclerosis, and IgA/C3 tubular casts on immunofluorescence. Mild improvements in vision followed treatment with either idebenone or a combination supplement including coenzyme Q10, alpha-lipoic acid, and B vitamins. CONCLUSIONS Our cases expand the clinical syndromes associated with m.13513G>A to include bilateral optic neuropathy and adult-onset renal disease. This highlights that in patients with bilateral, especially sequential, optic neuropathy a broad approach to mitochondrial testing is more useful than a limited LHON panel. Mitochondrial diseases present a diagnostic challenge because of their clinical and genetic variability.
Collapse
Affiliation(s)
- Grace Swart
- Neurology Department (GS, GMH), Royal Prince Alfred Hospital, Sydney, Australia; Save Sight Institute (CLF), Faculty of Health and Medicine, University of Sydney, Sydney Australia; Pathology Department (MS), Westmead Hospital, Sydney, Australia; Radiology Department (EOT), Royal Prince Alfred Hospital, Sydney, Australia; Medical Genomics Department (AM), Royal Prince Alfred Hospital, Sydney, Australia; Ophthalmology Department (ML), Royal Prince Alfred Hospital, Sydney, Australia; Neurology Department (KA), Royal North Shore Hospital, Sydney, Australia; and Central Clinical School (GMH), Faculty of Health and Medicine, University of Sydney, Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Scarcella S, Dell'Arti L, Gagliardi D, Magri F, Govoni A, Velardo D, Mainetti C, Minorini V, Ronchi D, Piga D, Comi GP, Corti S, Meneri M. Ischemic optic neuropathy as first presentation in patient with m.3243 A > G MELAS classic mutation. BMC Neurol 2023; 23:165. [PMID: 37095452 PMCID: PMC10123965 DOI: 10.1186/s12883-023-03198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/22/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a systemic disorder in which multi-organ dysfunction may occur from mitochondrial metabolism failure. Maternally inherited mutations in the MT-TL1 gene are the most frequent causes for this disorder. Clinical manifestations may include stroke-like episodes, epilepsy, dementia, headache and myopathy. Among these, acute visual failure, usually in association with cortical blindness, can occur because of stroke-like episodes affecting the occipital cortex or the visual pathways. Vision loss due to optic neuropathy is otherwise considered a typical manifestation of other mitochondrial diseases such as Leber hereditary optic neuropathy (LHON). CASE PRESENTATION Here we describe a 55-year-old woman, sister of a previously described patient with MELAS harbouring the m.3243A > G (p.0, MT-TL1) mutation, with otherwise unremarkable medical history, that presented with subacute, painful visual impairment of one eye, accompanied by proximal muscular pain and headache. Over the next weeks, she developed severe and progressive vision loss limited to one eye. Ocular examination confirmed unilateral swelling of the optic nerve head; fluorescein angiography showed segmental perfusion delay in the optic disc and papillary leakage. Neuroimaging, blood and CSF examination and temporal artery biopsy ruled out neuroinflammatory disorders and giant cell arteritis (GCA). Mitochondrial sequencing analysis confirmed the m.3243A > G transition, and excluded the three most common LHON mutations, as well as the m.3376G > A LHON/MELAS overlap syndrome mutation. Based on the constellation of clinical symptoms and signs presented in our patient, including the muscular involvement, and the results of the investigations, the diagnosis of optic neuropathy as a stroke-like event affecting the optic disc was performed. L-arginine and ubidecarenone therapies were started with the aim to improve stroke-like episode symptoms and prevention. The visual defect remained stable with no further progression or outbreak of new symptoms. CONCLUSIONS Atypical clinical presentations must be always considered in mitochondrial disorders, even in well-described phenotypes and when mutational load in peripheral tissue is low. Mitotic segregation of mitochondrial DNA (mtDNA) does not allow to know the exact degree of heteroplasmy existent within different tissue, such as retina and optic nerve. Important therapeutic implications arise from a correct diagnosis of atypical presentation of mitochondrial disorders.
Collapse
Affiliation(s)
- Simone Scarcella
- Neuroscience Section, Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Neurology Unit, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Dell'Arti
- Ophthalmological Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Delia Gagliardi
- Neuroscience Section, Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Neurology Unit, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Magri
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Alessandra Govoni
- Neuroscience Section, Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Daniele Velardo
- Neuroscience Section, Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Claudia Mainetti
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Valeria Minorini
- Ophthalmological Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Dario Ronchi
- Neuroscience Section, Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Daniela Piga
- Neurology Unit, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Pietro Comi
- Neuroscience Section, Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Stefania Corti
- Neuroscience Section, Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Neurology Unit, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Megi Meneri
- Neuroscience Section, Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.
- Neurology Unit, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
5
|
Bridges HR, Blaza JN, Yin Z, Chung I, Pollak MN, Hirst J. Structural basis of mammalian respiratory complex I inhibition by medicinal biguanides. Science 2023; 379:351-357. [PMID: 36701435 PMCID: PMC7614227 DOI: 10.1126/science.ade3332] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/23/2022] [Indexed: 01/27/2023]
Abstract
The molecular mode of action of biguanides, including the drug metformin, which is widely used in the treatment of diabetes, is incompletely characterized. Here, we define the inhibitory drug-target interaction(s) of a model biguanide with mammalian respiratory complex I by combining cryo-electron microscopy and enzyme kinetics. We interpret these data to explain the selectivity of biguanide binding to different enzyme states. The primary inhibitory site is in an amphipathic region of the quinone-binding channel, and an additional binding site is in a pocket on the intermembrane-space side of the enzyme. An independent local chaotropic interaction, not previously described for any drug, displaces a portion of a key helix in the membrane domain. Our data provide a structural basis for biguanide action and enable the rational design of medicinal biguanides.
Collapse
Affiliation(s)
- Hannah R. Bridges
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - James N. Blaza
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
- Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, The University of York, YO10 5DD, UK
| | - Zhan Yin
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Injae Chung
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Michael N. Pollak
- Lady Davis Institute of the Jewish General Hospital and Department of Oncology, McGill University, Montreal, QC H3T 1E2, Canada
| | - Judy Hirst
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
6
|
Andreeva NA, Murakhovskaya YK, Krylova TD, Tsygankova PG, Sheremet NL. [Rare pathogenic nucleotide variants of mitochondrial DNA associated with Leber's hereditary optic neuropathy]. Vestn Oftalmol 2023; 139:166-174. [PMID: 38235644 DOI: 10.17116/oftalma2023139061166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Patients with Leber Hereditary Optic Neuropathy (LHON) in most cases have one of the three most common mutations: m.11778G>A in the ND4 gene, m.3460G>A in the ND1 gene, or m.14484T>C in the ND6 gene. According to the international Mitomap database, in addition to these three most common mutations, there are 16 other primary mutations that are even more rare. There are nucleotide substitutions that are classified as candidate or conditionally pathogenic mutations. Their involvement in the disease development is not proven due to insufficient research. Moreover, in many publications, the authors describe new primary and potential mitochondrial DNA mutations associated with LHON, which are not yet included in the genetic data bases. This makes it possible to expand the diagnostic spectrum during genetic testing in the future. The advancements in genetic diagnostic technologies allow confirmation of the clinical diagnosis of LHON. The importance of genetic verification of the disease is determined by the existing problem of differential diagnosis of hereditary optic neuropathies with optic neuropathies of a different origin.
Collapse
Affiliation(s)
- N A Andreeva
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - Yu K Murakhovskaya
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - T D Krylova
- Research Centre for Medical Genetics, Moscow, Russia
| | | | - N L Sheremet
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| |
Collapse
|
7
|
Eliseeva DD, Kalashnikova AK, Bryukhov VV, Andreeva NA, Zhorzholadze NV, Murakhovskaya YK, Krilova TD, Tsygankova PG, Zakharova MN, Sheremet NL. [Hereditary optic neuropathy associated with demyelinating diseases of the central nervous system]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:122-132. [PMID: 37560844 DOI: 10.17116/jnevro2023123072122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Demyelinating optic neuritis and hereditary optic neuropathy (HON) take a leading place among the diseases, the leading clinical syndrome of which is bilateral optic neuropathy with a simultaneous or sequential significant decrease in visual acuity. Optic neuritis can occur at the onset or be one of the syndromes within multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), and myelin oligodendrocyte glycoprotein (MOG) antibody disease (MOGAD). HON are a group of neurodegenerative diseases, among which the most common variants are Leber's hereditary optic neuropathy (LHON), associated with mitochondrial DNA (mtDNA) mutations, and autosomal recessive optic neuropathy (ARON), caused by nuclear DNA (nDNA) mutations in DNAJC30. There are phenotypes of LHON «plus», one of which is the association of HON and CNS demyelination in the same patient. In such cases, the diagnosis of each of these diseases causes significant difficulties, due to the fact that in some cases there are clinical and radiological coincidences between demyelinating and hereditary mitochondrial diseases.
Collapse
Affiliation(s)
| | - A K Kalashnikova
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - N A Andreeva
- Research Institute of Eye Diseases, Moscow, Russia
| | | | | | - T D Krilova
- Research Centre for Medical Genetics, Moscow, Russia
| | | | | | - N L Sheremet
- Research Institute of Eye Diseases, Moscow, Russia
| |
Collapse
|
8
|
Abstract
Mitochondrial optic neuropathies have a leading role in the field of mitochondrial medicine ever since 1988, when the first mutation in mitochondrial DNA was associated with Leber's hereditary optic neuropathy (LHON). Autosomal dominant optic atrophy (DOA) was subsequently associated in 2000 with mutations in the nuclear DNA affecting the OPA1 gene. LHON and DOA are both characterized by selective neurodegeneration of retinal ganglion cells (RGCs) triggered by mitochondrial dysfunction. This is centered on respiratory complex I impairment in LHON and defective mitochondrial dynamics in OPA1-related DOA, leading to distinct clinical phenotypes. LHON is a subacute, rapid, severe loss of central vision involving both eyes within weeks or months, with age of onset between 15 and 35 years old. DOA is a more slowly progressive optic neuropathy, usually apparent in early childhood. LHON is characterized by marked incomplete penetrance and a clear male predilection. The introduction of next-generation sequencing has greatly expanded the genetic causes for other rare forms of mitochondrial optic neuropathies, including recessive and X-linked, further emphasizing the exquisite sensitivity of RGCs to compromised mitochondrial function. All forms of mitochondrial optic neuropathies, including LHON and DOA, can manifest either as pure optic atrophy or as a more severe multisystemic syndrome. Mitochondrial optic neuropathies are currently at the forefront of a number of therapeutic programs, including gene therapy, with idebenone being the only approved drug for a mitochondrial disorder.
Collapse
Affiliation(s)
- Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy.
| | - Chiara La Morgia
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
9
|
Faria R, Albuquerque T, Neves AR, Sousa Â, Costa DRB. Nanotechnology to Correct Mitochondrial Disorders in Cancer Diseases. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
10
|
Vikramdeo KS, Sudan SK, Singh AP, Singh S, Dasgupta S. Mitochondrial respiratory complexes: Significance in human mitochondrial disorders and cancers. J Cell Physiol 2022; 237:4049-4078. [PMID: 36074903 DOI: 10.1002/jcp.30869] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/18/2022] [Accepted: 08/23/2022] [Indexed: 11/07/2022]
Abstract
Mitochondria are pivotal organelles that govern cellular energy production through the oxidative phosphorylation system utilizing five respiratory complexes. In addition, mitochondria also contribute to various critical signaling pathways including apoptosis, damage-associated molecular patterns, calcium homeostasis, lipid, and amino acid biosynthesis. Among these diverse functions, the energy generation program oversee by mitochondria represents an immaculate orchestration and functional coordination between the mitochondria and nuclear encoded molecules. Perturbation in this program through respiratory complexes' alteration results in the manifestation of various mitochondrial disorders and malignancy, which is alarmingly becoming evident in the recent literature. Considering the clinical relevance and importance of this emerging medical problem, this review sheds light on the timing and nature of molecular alterations in various respiratory complexes and their functional consequences observed in various mitochondrial disorders and human cancers. Finally, we discussed how this wealth of information could be exploited and tailored to develop respiratory complex targeted personalized therapeutics and biomarkers for better management of various incurable human mitochondrial disorders and cancers.
Collapse
Affiliation(s)
- Kunwar Somesh Vikramdeo
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Sarabjeet Kour Sudan
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Ajay P Singh
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Seema Singh
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Santanu Dasgupta
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
11
|
Leber’s hereditary optic neuropathy plus dystonia caused by the mitochondrial ND1 gene m.4160 T > C mutation. Neurol Sci 2022; 43:5581-5592. [DOI: 10.1007/s10072-022-06165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
|
12
|
Sundaramurthy S, SelvaKumar A, Ching J, Dharani V, Sarangapani S, Yu-Wai-Man P. Leber hereditary optic neuropathy-new insights and old challenges. Graefes Arch Clin Exp Ophthalmol 2021; 259:2461-2472. [PMID: 33185731 DOI: 10.1007/s00417-020-04993-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/16/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022] Open
Abstract
Leber hereditary optic neuropathy (LHON) is the most common primary mitochondrial DNA (mtDNA) disorder with the majority of patients harboring one of three primary mtDNA point mutations, namely, m.3460G>A (MTND1), m.11778G>A (MTND4), and m.14484T>C (MTND6). LHON is characterized by bilateral subacute loss of vision due to the preferential loss of retinal ganglion cells (RGCs) within the inner retina, resulting in optic nerve degeneration. This review describes the clinical features associated with mtDNA LHON mutations and recent insights gained into the disease mechanisms contributing to RGC loss in this mitochondrial disorder. Although treatment options remain limited, LHON research has now entered an active translational phase with ongoing clinical trials, including gene therapy to correct the underlying pathogenic mtDNA mutation.
Collapse
Affiliation(s)
- Srilekha Sundaramurthy
- 1SN Oil and Natural Gas Corporation (ONGC) Department of Genetics & Molecular Biology, Vision Research Foundation, Chennai, India.
| | - Ambika SelvaKumar
- Department of Neuro-Ophthalmology, Medical Research Foundation, Chennai, India
| | - Jared Ching
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
- John Van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Vidhya Dharani
- Department of Neuro-Ophthalmology, Medical Research Foundation, Chennai, India
| | - Sripriya Sarangapani
- 1SN Oil and Natural Gas Corporation (ONGC) Department of Genetics & Molecular Biology, Vision Research Foundation, Chennai, India
| | - Patrick Yu-Wai-Man
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
- John Van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- NIHR Biomedical Research Centre, Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
13
|
Mitochondrial Mutations in Multiple Sclerosis Patients with Atypical Optic Neuropathy. Mult Scler Relat Disord 2021; 55:103166. [PMID: 34333271 DOI: 10.1016/j.msard.2021.103166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/03/2021] [Accepted: 07/22/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Multiple sclerosis-related optic neuritis is mostly associated with good recovery. The aim of this study was to investigate the causes of progressive visual worsening in multiple sclerosis patients despite treatment. METHODS We retrospectively reviewed the medical records of multiple sclerosis patients with optic neuritis admitted to the ward of our Neurology Department between 2001 and 2020. The patients with unilateral/bilateral progressive visual loss or non-substantial recovery of visual acuity were screened for genetic testing for Leber's hereditary optic neuropathy. RESULTS Of 1014 multiple sclerosis patients, 411 (39%) reported having optic neuritis. During follow-up, 11 patients manifested atypical characteristics of multiple sclerosis-related optic neuritis (presence of one of the following clinical findings: bilateral simultaneous or sequential eye involvement, progressive visual loss, or no response to corticosteroids during hospitalization), while others presented with typical multiple sclerosis-related optic neuritis. Those multiple sclerosis patients with atypical characteristics of optic neuritis were screened for other possible etiologies of optic neuropathy. We found pathogenic mitochondrial mutations in 5 patients with multiple sclerosis in our study group. CONCLUSION In our study group, the prevalence of mitochondrial mutations among all multiple sclerosis patients with optic neuritis was 0.12%. We strongly recommend investigating Leber's hereditary optic neuropathy mutations in MS patients if they suffer from severe or bilateral visual loss without recovery during follow-up. Because Leber's hereditary optic neuropathy mitochondrial mutations indicate relatively poor visual prognosis and have important implications for genetic counseling.
Collapse
|
14
|
Wei Y, Huang Y, Yang Y, Qian M. MELAS/LS Overlap Syndrome Associated With Mitochondrial DNA Mutations: Clinical, Genetic, and Radiological Studies. Front Neurol 2021; 12:648740. [PMID: 34025555 PMCID: PMC8137909 DOI: 10.3389/fneur.2021.648740] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/25/2021] [Indexed: 11/15/2022] Open
Abstract
Introduction: Mitochondrial diseases are characterized by considerable clinical and genetic heterogeneity. Mitochondrial encephalomyopathy with lactate acidosis and stroke-like episodes (MELAS) and Leigh syndrome (LS) are both established mitochondrial syndromes; sometimes they can overlap. Methods: A retrospective observational cohort study was done to analyze the clinical manifestations, biochemical findings, neuroimaging and genetic data, and disease outcomes of 14 patients with identified MELAS/LS overlap syndrome. Results: A total of 14 patients, 9 males and 5 females, were enrolled. The median age at onset was 14 years, while the average age was 12.6 years. As for clinical features in concordance with MELAS, the top three most common symptoms were seizures, cognitive impairment, and stroke-like episodes (SLE). Brain atrophy was present in seven patients. As for the clinical hallmarks of LS, the top three most common symptoms were ataxia, spastic paraplegia, and bulbar palsy. Patients presented with individual syndrome or overlap syndromes with similar frequency, and the prognosis did not seem to be related to the initial presentation. Thirteen patients were identified with MTND mutations, among which m.13513G>A mutation in the MT-ND5 gene was the most common. Only one patient with m.8344A>G mutation of MTTK gene was found. Discussion: Our study demonstrated that MTND genes are important mutation hot spots in MELAS/LS overlap syndrome. The follow-up is very important for the final diagnosis of overlap syndrome.
Collapse
Affiliation(s)
- Yanping Wei
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Huang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingmai Yang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Qian
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Stenton SL, Sheremet NL, Catarino CB, Andreeva NA, Assouline Z, Barboni P, Barel O, Berutti R, Bychkov I, Caporali L, Capristo M, Carbonelli M, Cascavilla ML, Charbel Issa P, Freisinger P, Gerber S, Ghezzi D, Graf E, Heidler J, Hempel M, Heon E, Itkis YS, Javasky E, Kaplan J, Kopajtich R, Kornblum C, Kovacs-Nagy R, Krylova TD, Kunz WS, La Morgia C, Lamperti C, Ludwig C, Malacarne PF, Maresca A, Mayr JA, Meisterknecht J, Nevinitsyna TA, Palombo F, Pode-Shakked B, Shmelkova MS, Strom TM, Tagliavini F, Tzadok M, van der Ven AT, Vignal-Clermont C, Wagner M, Zakharova EY, Zhorzholadze NV, Rozet JM, Carelli V, Tsygankova PG, Klopstock T, Wittig I, Prokisch H. Impaired complex I repair causes recessive Leber's hereditary optic neuropathy. J Clin Invest 2021; 131:138267. [PMID: 33465056 PMCID: PMC7954600 DOI: 10.1172/jci138267] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Leber’s hereditary optic neuropathy (LHON) is the most frequent mitochondrial disease and was the first to be genetically defined by a point mutation in mitochondrial DNA (mtDNA). A molecular diagnosis is achieved in up to 95% of cases, the vast majority of which are accounted for by 3 mutations within mitochondrial complex I subunit–encoding genes in the mtDNA (mtLHON). Here, we resolve the enigma of LHON in the absence of pathogenic mtDNA mutations. We describe biallelic mutations in a nuclear encoded gene, DNAJC30, in 33 unsolved patients from 29 families and establish an autosomal recessive mode of inheritance for LHON (arLHON), which to date has been a prime example of a maternally inherited disorder. Remarkably, all hallmarks of mtLHON were recapitulated, including incomplete penetrance, male predominance, and significant idebenone responsivity. Moreover, by tracking protein turnover in patient-derived cell lines and a DNAJC30-knockout cellular model, we measured reduced turnover of specific complex I N-module subunits and a resultant impairment of complex I function. These results demonstrate that DNAJC30 is a chaperone protein needed for the efficient exchange of complex I subunits exposed to reactive oxygen species and integral to a mitochondrial complex I repair mechanism, thereby providing the first example to our knowledge of a disease resulting from impaired exchange of assembled respiratory chain subunits.
Collapse
Affiliation(s)
- Sarah L Stenton
- Institute of Human Genetics, School of Medicine, Technische Universität München, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Natalia L Sheremet
- Federal State Budgetary Institution of Science "Research Institute of Eye Diseases," Moscow, Russia
| | - Claudia B Catarino
- Department of Neurology, Friedrich-Baur-Institute, University Hospital of the Ludwig-Maximilians-Universität München, Munich, Germany
| | - Natalia A Andreeva
- Federal State Budgetary Institution of Science "Research Institute of Eye Diseases," Moscow, Russia
| | - Zahra Assouline
- Fédération de Génétique et Institut Imagine, Université Paris Descartes, Hôpital Necker Enfants Malades, Paris, France
| | | | - Ortal Barel
- Genomics Unit, Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Wohl Institute for Translational Medicine, Sheba Medical Center, Tel-Hashomer, Israel
| | - Riccardo Berutti
- Institute of Human Genetics, School of Medicine, Technische Universität München, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Igor Bychkov
- Research Centre for Medical Genetics, Moscow, Russia
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | | | | | - Peter Charbel Issa
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Peter Freisinger
- Department of Pediatrics, Klinikum am Steinenberg, Reutlingen, Germany
| | - Sylvie Gerber
- Laboratory Genetics in Ophthalmology (LGO), INSERM UMR1163 - Institute of Genetic Diseases, Imagine. Paris, France
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Elisabeth Graf
- Institute of Human Genetics, School of Medicine, Technische Universität München, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Juliana Heidler
- Functional Proteomics, Medical School, Goethe University, Frankfurt am Main, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elise Heon
- The Hospital for Sick Children, Department of Ophthalmology and Vision Sciences, The University of Toronto, Toronto, Canada
| | - Yulya S Itkis
- Research Centre for Medical Genetics, Moscow, Russia
| | - Elisheva Javasky
- Genomics Unit, Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Wohl Institute for Translational Medicine, Sheba Medical Center, Tel-Hashomer, Israel
| | - Josseline Kaplan
- Laboratory Genetics in Ophthalmology (LGO), INSERM UMR1163 - Institute of Genetic Diseases, Imagine. Paris, France
| | - Robert Kopajtich
- Institute of Human Genetics, School of Medicine, Technische Universität München, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | | | - Reka Kovacs-Nagy
- Institute of Human Genetics, School of Medicine, Technische Universität München, Munich, Germany.,Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | | - Wolfram S Kunz
- Department of Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Costanza Lamperti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technische Universität München, Munich, Germany
| | - Pedro F Malacarne
- Institute for Cardiovascular Physiology, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | | | - Johannes A Mayr
- Department of Pediatrics, Salzburger Landeskliniken and Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Jana Meisterknecht
- Functional Proteomics, Medical School, Goethe University, Frankfurt am Main, Germany
| | - Tatiana A Nevinitsyna
- Federal State Budgetary Institution of Science "Research Institute of Eye Diseases," Moscow, Russia
| | - Flavia Palombo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Ben Pode-Shakked
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Institute for Rare Diseases.,Talpiot Medical Leadership Program, and
| | - Maria S Shmelkova
- Federal State Budgetary Institution of Science "Research Institute of Eye Diseases," Moscow, Russia
| | - Tim M Strom
- Institute of Human Genetics, School of Medicine, Technische Universität München, Munich, Germany
| | | | - Michal Tzadok
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - Amelie T van der Ven
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Technische Universität München, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | | | - Nino V Zhorzholadze
- Federal State Budgetary Institution of Science "Research Institute of Eye Diseases," Moscow, Russia
| | - Jean-Michel Rozet
- Laboratory Genetics in Ophthalmology (LGO), INSERM UMR1163 - Institute of Genetic Diseases, Imagine. Paris, France
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | | | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University Hospital of the Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Ilka Wittig
- Functional Proteomics, Medical School, Goethe University, Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technische Universität München, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
16
|
Aly KA, Moutaoufik MT, Phanse S, Zhang Q, Babu M. From fuzziness to precision medicine: on the rapidly evolving proteomics with implications in mitochondrial connectivity to rare human disease. iScience 2021; 24:102030. [PMID: 33521598 PMCID: PMC7820543 DOI: 10.1016/j.isci.2020.102030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial (mt) dysfunction is linked to rare diseases (RDs) such as respiratory chain complex (RCC) deficiency, MELAS, and ARSACS. Yet, how altered mt protein networks contribute to these ailments remains understudied. In this perspective article, we identified 21 mt proteins from public repositories that associate with RCC deficiency, MELAS, or ARSACS, engaging in a relatively small number of protein-protein interactions (PPIs), underscoring the need for advanced proteomic and interactomic platforms to uncover the complete scope of mt connectivity to RDs. Accordingly, we discuss innovative untargeted label-free proteomics in identifying RD-specific mt or other macromolecular assemblies and mapping of protein networks in complex tissue, organoid, and stem cell-differentiated neurons. Furthermore, tag- and label-based proteomics, genealogical proteomics, and combinatorial affinity purification-mass spectrometry, along with advancements in detecting and integrating transient PPIs with single-cell proteomics and transcriptomics, collectively offer seminal follow-ups to enrich for RD-relevant networks, with implications in RD precision medicine.
Collapse
Affiliation(s)
- Khaled A. Aly
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | | | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Qingzhou Zhang
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| |
Collapse
|
17
|
Hayashi Y, Iwasaki Y, Yoshikura N, Yamada M, Kimura A, Inuzuka T, Miyahara H, Goto Y, Nishino I, Yoshida M, Shimohata T. Clinicopathological findings of a mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes/Leigh syndrome overlap patient with a novel m.3482A>G mutation in MT-ND1. Neuropathology 2020; 41:84-90. [PMID: 33300189 DOI: 10.1111/neup.12709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022]
Abstract
We report clinicopathological findings of a patient with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes/Leigh syndrome (MELAS/LS) associated with a novel m.3482A>G mutation in MT-ND1. A 41-year-old woman had experienced multiple stroke-like episodes since age 16. She developed akinetic mutism two months before admission to our hospital. Neurological examination revealed akinetic mutism, bilateral deafness, and muscular atrophy. Cerebrospinal fluid tests revealed elevated pyruvate and lactate levels. Fluid-attenuated inversion recovery images on magnetic resonance imaging showed hyperintense areas in the right frontal and both sides of temporal and occipital lobes, both sides of the striatum, and the midbrain. Muscle biopsy revealed strongly succinate dehydrogenase-reactive blood vessels. L-arginine therapy improved her consciousness and prevented further stroke-like episodes. However, she died from aspiration pneumonia. Postmortem autopsy revealed scattered infarct-like lesions with cavitation in the cerebral cortex and necrotic lesions in the striatum and midbrain. The patient was pathologically confirmed as having MELAS/LS based on two characteristic clinicopathological findings: presenting MELAS/LS overlap phenotype and effectiveness of L-arginine treatment.
Collapse
Affiliation(s)
- Yuichi Hayashi
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Nobuaki Yoshikura
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Megumi Yamada
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akio Kimura
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takashi Inuzuka
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Neurology, Gifu Municipal Hospital, Gifu, Japan
| | - Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Yuichi Goto
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
18
|
Shinkai A, Shinmei Y, Hirooka K, Tagawa Y, Nakamura K, Chin S, Ishida S. Optical coherence tomography as a possible tool to monitor and predict disease progression in mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes. Mitochondrion 2020; 56:47-51. [PMID: 33220496 DOI: 10.1016/j.mito.2020.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/19/2020] [Accepted: 11/02/2020] [Indexed: 10/22/2022]
Abstract
Optical coherence tomography (OCT) is an imaging technique used to obtain three-dimensional information on the retina. In this article, we evaluated the structural neuro-retinal abnormalities, especially the thickness in the ganglion cell complex (GCC), in patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). The GCC thickness in MELAS patients was significantly thinner than that in normal controls even when they had no history of transient homonymous hemianopia. There was a negative correlation between GCC thickness and disease duration. In conclusion, OCT may be an effective tool to monitor and predict disease progression in MELAS patients.
Collapse
Affiliation(s)
- Akihiro Shinkai
- Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan.
| | - Yasuhiro Shinmei
- Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan.
| | - Kiriko Hirooka
- Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan.
| | - Yoshiaki Tagawa
- Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan.
| | - Kayoko Nakamura
- Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan
| | - Shinki Chin
- Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan.
| | - Susumu Ishida
- Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan.
| |
Collapse
|
19
|
Abstract
Mitochondria play various important roles in energy production, metabolism, and apoptosis. Mitochondrial dysfunction caused by alterations in mitochondrial DNA (mtDNA) can lead to the initiation and progression of cancers and other diseases. These alterations include mutations and copy number variations. Especially, the mutations in D-loop, MT-ND1, and MT-ND5 affect mitochondrial functions and are widely detected in various cancers. Meanwhile, several other mutations have been correlated with muscular and neuronal diseases, especially MT-TL1 is deeply related. These pieces of evidence indicated mtDNA alterations in diseases show potential as a novel therapeutic target. mtDNA repair enzymes are the target for delaying or stalling the mtDNA damage-induced cancer progression and metastasis. Moreover, some mutations reveal a prognosis ability of the drug resistance. Current efforts aim to develop mitochondrial transplantation technique as a direct cure for deregulated mitochondria-associated diseases. This review summarizes the implications of mitochondrial dysfunction in cancers and other pathologies; and discusses the relevance of mitochondria-targeted therapies, along with their contribution as potential biomarkers.
Collapse
Affiliation(s)
- Ngoc Ngo Yen Nguyen
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Hwa Jo
- Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Mitochondrial disorders and the eye. Surv Ophthalmol 2019; 65:294-311. [PMID: 31783046 DOI: 10.1016/j.survophthal.2019.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 01/27/2023]
Abstract
Mitochondria are cellular organelles that play a key role in energy metabolism and oxidative phosphorylation. Malfunctioning of mitochondria has been implicated as the cause of many disorders with variable inheritance, heterogeneity of systems involved, and varied phenotype. Metabolically active tissues are more likely to be affected, causing an anatomic and physiologic disconnect in the treating physicians' mind between presentation and underlying pathophysiology. We shall focus on disorders of mitochondrial metabolism relevant to an ophthalmologist. These disorders can affect all parts of the visual pathway (crystalline lens, extraocular muscles, retina, optic nerve, and retrochiasm). After the introduction reviewing mitochondrial structure and function, each disorder is reviewed in detail, including approaches to its diagnosis and most current management guidelines.
Collapse
|
21
|
Whole-exome sequencing reveals a novel mutation of MT-ND5 gene in a mitochondrial cardiomyopathy pedigree: Patients who show biventricular hypertrophy, hyperlactacidemia, pulmonary hypertension, and decreased exercise tolerance. Anatol J Cardiol 2019; 21:18-24. [PMID: 30587702 PMCID: PMC6382902 DOI: 10.14744/anatoljcardiol.2018.53258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Objective: The aim of the present study was to determine whether pathogenic mutations were present in families with mitochondrial cardiomyopathy that presented during adolescence. Methods: The proband was a 21-year-old man who presented clinically with palpitations, chest tightness, pulmonary hypertension, and limited exercise tolerance. Cardiac magnetic resonance imaging studies showed biventricular cardiac hypertrophy. We determine whether pathogenic mutations were present by whole-exome sequencing (WES) in families. Results: Screening of the family using tandem mass spectrometry showed elevated lactic acid levels, glutaric aciduria, a mildly increased glutarylcarnitine-to-octanoylcarnitine ratio, and normal blood α-glucosidase, which was consistent with a respiratory chain complex 1 metabolic disorder. We identified a novel mutation of MT-ND5, c.1315A>G (p.Thr439Ala). Skeletal muscle biopsy histology showed predominantly ragged red fibers and few ragged blue fibers, which was consistent with mitochondrial myopathy. Conclusion: In the present study, we identified a novel mutation of MT-ND5, c.1315A>G (p.Thr439Ala), in a family pedigree using WES.
Collapse
|
22
|
Hua H, Zhang Z, Qian Y, Yuan H, Ge W, Huang S, Zhang A, Zhang Y, Jia Z, Ding G. Inhibition of the mitochondrial complex-1 protects against carbon tetrachloride-induced acute liver injury. Biomed Pharmacother 2019; 115:108948. [PMID: 31078037 DOI: 10.1016/j.biopha.2019.108948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/28/2019] [Accepted: 05/01/2019] [Indexed: 01/23/2023] Open
Abstract
Mitochondrial dysfunction has been documented to play a crucial role in the pathogenesis of liver injury. In the present study, we investigated the role of rotenone, a mitochondrial complex-1 inhibitor, in carbon tetrachloride (CCl4) -induced acute liver injury, as well as the underlying mechanisms. Before CCl4 administration, the mice were pretreated with rotenone at a dose of 250 ppm in food for three days. Then CCl4 was administered to the mice for 16 h by intraperitoneal injection. The liver injury, mitochondrial status, oxidative stress, and inflammation were examined. Strikingly, CCl4 treatment markedly induced liver injury as shown by enhanced serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) and morphological lesions (HE stating), which was significantly attenuated by rotenone treatment in line with the reduced activity of mitochondrial complex-1. Meanwhile, oxidative stress markers of malondialdehyde (MDA), 4-hydroxynonenal (HNE), and dihydroethidium (DHE) and the inflammatory markers of IL-1β, MCP-1, TNF-α, TLR-4, and IL-6 were also significantly suppressed by rotenone. More importantly, the mitochondrial abnormalities shown by the reduction of SOD2, mitochondrial transcription factor A (TFAM), mitochondrial NADH dehydrogenase subunit 1 (mtND1), and Cytb were significantly restored, indicating that rotenone protected against mitochondrial damage induced by CCl4 in liver. Moreover, rotenone treatment alone did not significantly alter liver morphology and liver enzymes ALT and AST. CYP2E1, a metabolic enzyme of CCl4, was also not significantly affected by rotenone. In conclusion, rotenone protected the liver from CCl4-induced damage possibly by inhibiting the mitochondrial oxidative stress and inflammation.
Collapse
Affiliation(s)
- Hu Hua
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, PR China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, PR China
| | - Zhenglei Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, PR China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, PR China; Department of Pediatrics, Taikang Xianlin Drum Tower Hospital, 188 Lingshan Northern Road, Nanjing, 210046, PR China
| | - Yun Qian
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, PR China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, PR China
| | - Hui Yuan
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, PR China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, PR China
| | - Wenwen Ge
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, PR China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, PR China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, PR China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, PR China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, PR China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, PR China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, PR China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, PR China.
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, PR China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, PR China.
| | - Guixia Ding
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, PR China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, PR China.
| |
Collapse
|
23
|
Zhong S, Wen S, Qiu Y, Yu Y, Xin L, He Y, Gao X, Fang H, Hong D, Zhang J. Bilateral striatal necrosis due to homoplasmic mitochondrial 3697G>A mutation presents with incomplete penetrance and sex bias. Mol Genet Genomic Med 2019; 7:e541. [PMID: 30623604 PMCID: PMC6418351 DOI: 10.1002/mgg3.541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/09/2018] [Accepted: 12/02/2018] [Indexed: 12/28/2022] Open
Abstract
Background Heteroplasmic mitochondrial 3697G>A mutation has been associated with leber hereditary optic neuropathy (LHON), mitochondrial encephalopathy, lactic acidosis and stroke‐like episodes (MELAS), and LHON/MELAS overlap syndrome. However, homoplasmic m.3697G>A mutation was only found in a family with Leigh syndrome, and the phenotype and pathogenicity of this homoplasmic mutation still need to be investigated in new patients. Methods The clinical interviews were conducted in 12 individuals from a multiple‐generation inherited family. Mutations were screened through exome next‐generation sequencing and subsequently confirmed by PCR‐restriction fragment length polymorphism. Mitochondrial complex activities and ATP production rate were measured by biochemical analysis. Results The male offspring with bilateral striatal necrosis (BSN) were characterized by severe spastic dystonia and complete penetrance, while the female offspring presented with mild symptom and low penetrance. All offspring carried homoplasmic mutation of NC_012920.1: m.3697G>A, p.(Gly131Ser). Biochemical analysis revealed an isolated defect of complex I, but the magnitude of the defect was higher in the male patients than that in the female ones. The ATP production rate also exhibited a similar pattern. However, no possible modifier genes on the X chromosome were identified. Conclusion Homoplasmic m.3697G>A mutation could be associated with BSN, which expanded the clinical spectrum of m.3697G>A. Our preliminary investigations had not found the underlying modifiers to support the double hit hypothesis, while the high level of estrogens in the female patients might exert a potential compensatory effect on mutant cell metabolism.
Collapse
Affiliation(s)
- Shanshan Zhong
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Shumeng Wen
- Key Laboratory of Laboratory Medicine, College of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Yusen Qiu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanyan Yu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ling Xin
- Department of Health, Exercise Science, and Recreation Management, University of Mississippi, University, Mississippi
| | - Yang He
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Xuguang Gao
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, College of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Daojun Hong
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Jun Zhang
- Department of Neurology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
24
|
Cruz ACP, Ferrasa A, Muotri AR, Herai RH. Frequency and association of mitochondrial genetic variants with neurological disorders. Mitochondrion 2018; 46:345-360. [PMID: 30218715 DOI: 10.1016/j.mito.2018.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/24/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022]
Abstract
Mitochondria are small cytosolic organelles and the main source of energy production for the cells, especially in the brain. This organelle has its own genome, the mitochondrial DNA (mtDNA), and genetic variants in this molecule can alter the normal energy metabolism in the brain, contributing to the development of a wide assortment of Neurological Disorders (ND), including neurodevelopmental syndromes, neurodegenerative diseases and neuropsychiatric disorders. These ND are comprised by a heterogeneous group of syndromes and diseases that encompass different cognitive phenotypes and behavioral disorders, such as autism, Asperger's syndrome, pervasive developmental disorder, attention deficit hyperactivity disorder, Huntington disease, Leigh Syndrome and bipolar disorder. In this work we carried out a Systematic Literature Review (SLR) to identify and describe the mitochondrial genetic variants associated with the occurrence of ND. Most of genetic variants found in mtDNA were associated with Single Nucleotide Polimorphisms (SNPs), ~79%, with ~15% corresponding to deletions, ~3% to Copy Number Variations (CNVs), ~2% to insertions and another 1% included mtDNA replication problems and genetic rearrangements. We also found that most of the variants were associated with coding regions of mitochondrial proteins but were also found in regulatory transcripts (tRNA and rRNA) and in the D-Loop replication region of the mtDNA. After analysis of mtDNA deletions and CNV, none of them occur in the D-Loop region. This SLR shows that all transcribed mtDNA molecules have mutations correlated with ND. Finally, we describe that all mtDNA variants found were associated with deterioration of cognitive (dementia) and intellectual functions, learning disabilities, developmental delays, and personality and behavior problems.
Collapse
Affiliation(s)
- Ana Carolina P Cruz
- Experimental Multiuser Laboratory (LEM), Graduate Program in Health Sciences (PPGCS), School of Medicine (PPGCS), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná 80215-901, Brazil
| | - Adriano Ferrasa
- Experimental Multiuser Laboratory (LEM), Graduate Program in Health Sciences (PPGCS), School of Medicine (PPGCS), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná 80215-901, Brazil; Department of Informatics (DEINFO), Universidade Estadual de Ponta Grossa (UEPG), Ponta Grossa, Paraná 84030-900, Brazil
| | - Alysson R Muotri
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, CA 92037-0695, USA
| | - Roberto H Herai
- Experimental Multiuser Laboratory (LEM), Graduate Program in Health Sciences (PPGCS), School of Medicine (PPGCS), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná 80215-901, Brazil; Lico Kaesemodel Institute (ILK), Curitiba, Paraná 80240-000, Brazil.
| |
Collapse
|
25
|
Fiedorczuk K, Sazanov LA. Mammalian Mitochondrial Complex I Structure and Disease-Causing Mutations. Trends Cell Biol 2018; 28:835-867. [PMID: 30055843 DOI: 10.1016/j.tcb.2018.06.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 06/14/2018] [Accepted: 06/22/2018] [Indexed: 12/31/2022]
Abstract
Complex I has an essential role in ATP production by coupling electron transfer from NADH to quinone with translocation of protons across the inner mitochondrial membrane. Isolated complex I deficiency is a frequent cause of mitochondrial inherited diseases. Complex I has also been implicated in cancer, ageing, and neurodegenerative conditions. Until recently, the understanding of complex I deficiency on the molecular level was limited due to the lack of high-resolution structures of the enzyme. However, due to developments in single particle cryo-electron microscopy (cryo-EM), recent studies have reported nearly atomic resolution maps and models of mitochondrial complex I. These structures significantly add to our understanding of complex I mechanism and assembly. The disease-causing mutations are discussed here in their structural context.
Collapse
Affiliation(s)
- Karol Fiedorczuk
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria; Present address: The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria.
| |
Collapse
|
26
|
Dai Y, Wang C, Nie Z, Han J, Chen T, Zhao X, Ai C, Ji Y, Gao T, Jiang P. Mutation analysis of Leber's hereditary optic neuropathy using a multi-gene panel. Biomed Rep 2017; 8:51-58. [PMID: 29387390 DOI: 10.3892/br.2017.1014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022] Open
Abstract
The present study investigates the spectrum and incidence of mitochondrial DNA (mtDNA) mutations associated with Leber's hereditary optic neuropathy (LHON) in a Han population using a multi-gene panel with 46 LHON-associated mutations among 13 mitochondrial genes. A total of 23 mutations were observed in a cohort of 275 patients and 281 control subjects using multi-gene panel analysis. The causative mutations associated with LHON were identified to be m.11778G>A, m.14484T>C, m.3460 G>A, m.3635G>A, m.3866T>C and m.3733G>A, responsible for 70.55% cases in the patient cohort. The secondary mutations in the Chinese LHON population were m.12811T>C, m.11696 G>A, m.3316G>A, m.3394T>C, m.14502T>C, m.3497C>T, m.3571C>T, m.12338T>C, m.14693A>G, m.4216T>C and m.15951A>G, with incidences of 5.09, 4.36, 4.00, 4.00, 4.00, 2.55, 1.82, 1.82, 1.45, 1.09 and 1.09%, respectively. Besides three hotspot genes, MT-ND1, MT-ND4 and MT-ND6, MT-ND5 also had a high incidence of secondary mutations. Those mutations reported as rare causative mutations in a European LHON population, m.3376G>A, m.3700G>A and m.4171C>A, m.10663T>C, m.13051G>A, m.14482C>G/A, m.14495A>G and m.14568C>T were undetected in the present study. The primary and secondary mutations associated with LHON in the present multi-gene panel will advance the current understanding of the clinical phenotype of LHON, and provide useful information for early diagnosis.
Collapse
Affiliation(s)
- Yu Dai
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Chenghui Wang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China.,Institute of Genetics, Zhejiang University, and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Zhipeng Nie
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China.,Institute of Genetics, Zhejiang University, and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Jiamin Han
- Institute of Genetics, Zhejiang University, and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Ting Chen
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Xiaoxu Zhao
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China.,Institute of Genetics, Zhejiang University, and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Cheng Ai
- Institute of Genetics, Zhejiang University, and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Yanchun Ji
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Tao Gao
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Pingping Jiang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China.,Institute of Genetics, Zhejiang University, and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
27
|
Mitochondrial tRNA genes are hotspots for mutations in a cohort of patients with exercise intolerance and mitochondrial myopathy. J Neurol Sci 2017; 379:137-143. [DOI: 10.1016/j.jns.2017.05.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/28/2017] [Accepted: 05/29/2017] [Indexed: 11/22/2022]
|
28
|
Cheng Z, Peng HL, Zhang R, Fu XM, Zhang GS. Rejuvenation of Cardiac Tissue Developed from Reprogrammed Aged Somatic Cells. Rejuvenation Res 2017; 20:389-400. [PMID: 28478705 DOI: 10.1089/rej.2017.1930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) derived via somatic cell reprogramming have been reported to reset aged somatic cells to a more youthful state, characterized by elongated telomeres, a rearranged mitochondrial network, reduced oxidative stress, and restored pluripotency. However, it is still unclear whether the reprogrammed aged somatic cells can function normally as embryonic stem cells (ESCs) during development and be rejuvenated. In the current study, we applied the aggregation technique to investigate whether iPSCs derived from aged somatic cells could develop normally and be rejuvenated. iPSCs derived from bone marrow myeloid cells of 2-month-old (2 M) and 18-month-old (18 M) C57BL/6-Tg (CAG-EGFP)1Osb/J mice were aggregated with embryos derived from wild-type ICR mice to produce chimeras (referred to as 2 M CA and 18 M CA, respectively). Our observations focused on comparing the ability of the iPSCs derived from 18 M and 2 M bone marrow cells to develop rejuvenated cardiac tissue (the heart is the most vital organ during aging). The results showed an absence of p16 and p53 upregulation, telomere length shortening, and mitochondrial gene expression and deletion in 18 M CA, whereas slight changes in mitochondrial ultrastructure, cytochrome C oxidase activity, ATP production, and reactive oxygen species production were observed in CA cardiac tissues. The data implied that all of the aging characteristics observed in the newborn cardiac tissue of 18 M CA were comparable with those of 2 M CA newborn cardiac tissue. This study provides the first direct evidence of the aging-related characteristics of cardiac tissue developed from aged iPSCs, and our observations demonstrate that partial rejuvenation can be achieved by reprogramming aged somatic cells to a pluripotent state.
Collapse
Affiliation(s)
- Zhao Cheng
- 1 Department of Hematology, Institute of Molecular Hematology, The Second Xiang-ya Hospital, Central South University , Changsha, People's Republic of China
| | - Hong-Ling Peng
- 1 Department of Hematology, Institute of Molecular Hematology, The Second Xiang-ya Hospital, Central South University , Changsha, People's Republic of China
| | - Rong Zhang
- 2 Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center , Kashiwanoha, Kashiwa, Japan
| | - Xian-Ming Fu
- 3 Department of Cardiac Surgery, The Second Xiang-ya Hospital, Central South University , Changsha, People's Republic of China
| | - Guang-Sen Zhang
- 1 Department of Hematology, Institute of Molecular Hematology, The Second Xiang-ya Hospital, Central South University , Changsha, People's Republic of China
| |
Collapse
|
29
|
A neurodegenerative perspective on mitochondrial optic neuropathies. Acta Neuropathol 2016; 132:789-806. [PMID: 27696015 PMCID: PMC5106504 DOI: 10.1007/s00401-016-1625-2] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/24/2016] [Accepted: 09/25/2016] [Indexed: 12/15/2022]
Abstract
Mitochondrial optic neuropathies constitute an important cause of chronic visual morbidity and registrable blindness in both the paediatric and adult population. It is a genetically heterogeneous group of disorders caused by both mitochondrial DNA (mtDNA) mutations and a growing list of nuclear genetic defects that invariably affect a critical component of the mitochondrial machinery. The two classical paradigms are Leber hereditary optic neuropathy (LHON), which is a primary mtDNA disorder, and autosomal dominant optic atrophy (DOA) secondary to pathogenic mutations within the nuclear gene OPA1 that encodes for a mitochondrial inner membrane protein. The defining neuropathological feature is the preferential loss of retinal ganglion cells (RGCs) within the inner retina but, rather strikingly, the smaller calibre RGCs that constitute the papillomacular bundle are particularly vulnerable, whereas melanopsin-containing RGCs are relatively spared. Although the majority of patients with LHON and DOA will present with isolated optic nerve involvement, some individuals will also develop additional neurological complications pointing towards a greater vulnerability of the central nervous system (CNS) in susceptible mutation carriers. These so-called “plus” phenotypes are mechanistically important as they put the loss of RGCs within the broader perspective of neuronal loss and mitochondrial dysfunction, highlighting common pathways that could be modulated to halt progressive neurodegeneration in other related CNS disorders. The management of patients with mitochondrial optic neuropathies still remains largely supportive, but the development of effective disease-modifying treatments is now within tantalising reach helped by major advances in drug discovery and delivery, and targeted genetic manipulation.
Collapse
|
30
|
Sallevelt SCEH, de Die-Smulders CEM, Hendrickx ATM, Hellebrekers DMEI, de Coo IFM, Alston CL, Knowles C, Taylor RW, McFarland R, Smeets HJM. De novo mtDNA point mutations are common and have a low recurrence risk. J Med Genet 2016; 54:73-83. [PMID: 27450679 PMCID: PMC5502310 DOI: 10.1136/jmedgenet-2016-103876] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/02/2016] [Accepted: 06/09/2016] [Indexed: 12/25/2022]
Abstract
Background Severe, disease-causing germline mitochondrial (mt)DNA mutations are maternally inherited or arise de novo. Strategies to prevent transmission are generally available, but depend on recurrence risks, ranging from high/unpredictable for many familial mtDNA point mutations to very low for sporadic, large-scale single mtDNA deletions. Comprehensive data are lacking for de novo mtDNA point mutations, often leading to misconceptions and incorrect counselling regarding recurrence risk and reproductive options. We aim to study the relevance and recurrence risk of apparently de novo mtDNA point mutations. Methods Systematic study of prenatal diagnosis (PND) and recurrence of mtDNA point mutations in families with de novo cases, including new and published data. ‘De novo’ based on the absence of the mutation in multiple (postmitotic) maternal tissues is preferred, but mutations absent in maternal blood only were also included. Results In our series of 105 index patients (33 children and 72 adults) with (likely) pathogenic mtDNA point mutations, the de novo frequency was 24.6%, the majority being paediatric. PND was performed in subsequent pregnancies of mothers of four de novo cases. A fifth mother opted for preimplantation genetic diagnosis because of a coexisting Mendelian genetic disorder. The mtDNA mutation was absent in all four prenatal samples and all 11 oocytes/embryos tested. A literature survey revealed 137 de novo cases, but PND was only performed for 9 (including 1 unpublished) mothers. In one, recurrence occurred in two subsequent pregnancies, presumably due to germline mosaicism. Conclusions De novo mtDNA point mutations are a common cause of mtDNA disease. Recurrence risk is low. This is relevant for genetic counselling, particularly for reproductive options. PND can be offered for reassurance.
Collapse
Affiliation(s)
- Suzanne C E H Sallevelt
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - Christine E M de Die-Smulders
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands.,Research School for Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - Alexandra T M Hendrickx
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - Debby M E I Hellebrekers
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - Irenaeus F M de Coo
- Department of Neurology, Erasmus MC-Sophia Children's Hospital Rotterdam, Rotterdam, The Netherlands
| | - Charlotte L Alston
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Charlotte Knowles
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Robert McFarland
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Hubert J M Smeets
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands.,Research School for Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands.,Research School for Cardiovascular Diseases in Maastricht, CARIM, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
31
|
Lim SC, Hroudová J, Van Bergen NJ, Lopez Sanchez MIG, Trounce IA, McKenzie M. Loss of mitochondrial DNA-encoded protein ND1 results in disruption of complex I biogenesis during early stages of assembly. FASEB J 2016; 30:2236-48. [PMID: 26929434 DOI: 10.1096/fj.201500137r] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/12/2016] [Indexed: 12/20/2022]
Abstract
Mitochondrial complex I (NADH:ubiquinone oxidoreductase) must be assembled precisely from 45 protein subunits for it to function correctly. One of its mitochondrial DNA (mtDNA) encoded subunits, ND1, is incorporated during the early stages of complex I assembly. However, little is known about how mutations in ND1 affect this assembly process. We found that in human 143B cybrid cells carrying a homoplasmic MT-ND1 mutation, ND1 protein could not be translated. As a result, the early stages of complex I assembly were disrupted, with mature complex I undetectable and complex I-linked respiration severely reduced to 2.0% of control levels. Interestingly, complex IV (ferrocytochrome c:oxygen oxidoreductase) steady-state levels were also reduced to 40.3%, possibly due to its diminished stability in the absence of respiratory supercomplex formation. This was in comparison with 143B cybrid controls (that contained wild-type mtDNA on the same nuclear background), which exhibited normal complex I, complex IV, and supercomplex assembly. We conclude that the loss of ND1 stalls complex I assembly during the early stages of its biogenesis, which not only results in the loss of mature complex I but also disrupts the stability of complex IV and the respiratory supercomplex to cause mitochondrial dysfunction.-Lim, S. C., Hroudová, J., Van Bergen, N. J., Lopez Sanchez, M. I. G., Trounce, I. A., McKenzie, M. Loss of mitochondrial DNA-encoded protein ND1 results in disruption of complex I biogenesis during early stages of assembly.
Collapse
Affiliation(s)
- Sze Chern Lim
- Centre for Genetic Diseases, Hudson Institute of Medical Research, Clayton, Melbourne, Victoria, Australia
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Nicole J Van Bergen
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia; and
| | - M Isabel G Lopez Sanchez
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia; and
| | - Ian A Trounce
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia; and
| | - Matthew McKenzie
- Centre for Genetic Diseases, Hudson Institute of Medical Research, Clayton, Melbourne, Victoria, Australia; Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
32
|
Ahmad KE, Fraser CL, Sue CM, Barton JJS. Beyond what the eye can see. Surv Ophthalmol 2016; 61:674-9. [PMID: 26921807 DOI: 10.1016/j.survophthal.2016.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 10/22/2022]
Abstract
A 45-year-old woman presented with acute sequential optic neuropathy resulting in bilateral complete blindness. No significant visual recovery occurred. Past medical history was relevant for severe preeclampsia with resultant renal failure, diabetes mellitus, and sudden bilateral hearing loss when she was 38 years old. There was a family history of diabetes mellitus in her mother. Testing for common causes of bilateral optic neuropathy did not reveal a diagnosis for her illness. The maternal and personal history of diabetes and deafness prompted testing for mitochondrial disease. The 3 primary mitochondrial DNA mutations responsible for Leber hereditary optic neuropathy were absent, but the patient was subsequently found to have a disease causing mitochondrial DNA mutation, m.13513G>A. The case illustrates the importance of early testing for mitochondrial disease and demonstrates that Leber hereditary optic neuropathy-like presentations may be missed if testing is limited to the 3 primary mutations.
Collapse
Affiliation(s)
- Kate E Ahmad
- Department of Neurology, Royal North Shore Hospital, Sydney, Australia.
| | - Clare L Fraser
- Save Sight Institute, University of Sydney, Sydney, Australia
| | - Carolyn M Sue
- Department of Neurogenetics, Kolling Institute for Medical Research, Sydney, Australia
| | - Jason J S Barton
- Department of Medicine (Neurology), University of British Columbia, Vancouver, Canada; Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada; Department of Psychology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
33
|
Kolarova H, Liskova P, Tesarova M, Kucerova Vidrova V, Forgac M, Zamecnik J, Hansikova H, Honzik T. Unique presentation of LHON/MELAS overlap syndrome caused by m.13046T>C in MTND5. Ophthalmic Genet 2016; 37:419-423. [PMID: 26894521 DOI: 10.3109/13816810.2015.1092045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Leber hereditary optic neuropathy (LHON) and mitochondrial encephalopathy, myopathy, lactic acidosis and stroke-like episodes (MELAS) syndromes are mitochondrially inherited disorders characterized by acute visual failure and variable multiorgan system presentation, respectively. MATERIALS AND METHODS A 12-year-old girl with otherwise unremarkable medical history presented with abrupt, painless loss of vision. Over the next few months, she developed moderate sensorineural hearing loss, vertigo, migraines, anhedonia and thyroiditis. Ocular examination confirmed bilateral optic nerve atrophy. Metabolic workup documented elevated cerebrospinal fluid lactate. Initial genetic analyses excluded the three most common LHON mutations. Subsequently, Sanger sequencing of the entire mitochondrial DNA (mtDNA) genome was performed. RESULTS Whole mtDNA sequencing revealed a pathogenic heteroplasmic mutation m.13046T>C in MTND5 encoding the ND5 subunit of complex I. This particular variant has previously been described in a single case report of MELAS/Leigh syndrome (subacute necrotizing encephalopathy). Based on the constellation of clinical symptoms in our patient, we diagnose the condition as LHON/MELAS overlap syndrome. CONCLUSIONS We describe a unique presentation of LHON/MELAS overlap syndrome resulting from a m.13046T>C mutation in a 12-year-old girl. In patients with sudden vision loss in which three of the most prevalent LHON mitochondrial mutations have been ruled out, molecular genetic examination should be extended to other mtDNA-encoded subunits of MTND5 complex I. Furthermore, atypical clinical presentations must be considered, even in well-described phenotypes.
Collapse
Affiliation(s)
- Hana Kolarova
- a Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine , Charles University in Prague and General University Hospital in Prague , Czech Republic
| | - Petra Liskova
- b Laboratory of the Biology and Pathology of the Eye, Institute of Inherited Metabolic Disorders, First Faculty of Medicine , Charles University in Prague and General University Hospital in Prague , Czech Republic.,c Department of Ophthalmology, First Faculty of Medicine , Charles University in Prague and General University Hospital in Prague , Czech Republic
| | - Marketa Tesarova
- a Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine , Charles University in Prague and General University Hospital in Prague , Czech Republic
| | - Vendula Kucerova Vidrova
- a Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine , Charles University in Prague and General University Hospital in Prague , Czech Republic
| | - Martin Forgac
- d Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine , Charles University in Prague and General University Hospital in Prague , Czech Republic
| | - Josef Zamecnik
- e Department of Pathology and Molecular Medicine , Second Faculty of Medicine, Charles University in Prague and University Hospital Motol in Prague , Czech Republic
| | - Hana Hansikova
- a Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine , Charles University in Prague and General University Hospital in Prague , Czech Republic
| | - Tomas Honzik
- a Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine , Charles University in Prague and General University Hospital in Prague , Czech Republic
| |
Collapse
|
34
|
Im I, Jang MJ, Park SJ, Lee SH, Choi JH, Yoo HW, Kim S, Han YM. Mitochondrial Respiratory Defect Causes Dysfunctional Lactate Turnover via AMP-activated Protein Kinase Activation in Human-induced Pluripotent Stem Cell-derived Hepatocytes. J Biol Chem 2015; 290:29493-505. [PMID: 26491018 DOI: 10.1074/jbc.m115.670364] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 01/19/2023] Open
Abstract
A defective mitochondrial respiratory chain complex (DMRC) causes various metabolic disorders in humans. However, the pathophysiology of DMRC in the liver remains unclear. To understand DMRC pathophysiology in vitro, DMRC-induced pluripotent stem cells were generated from dermal fibroblasts of a DMRC patient who had a homoplasmic mutation (m.3398T→C) in the mitochondrion-encoded NADH dehydrogenase 1 (MTND1) gene and that differentiated into hepatocytes (DMRC hepatocytes) in vitro. DMRC hepatocytes showed abnormalities in mitochondrial characteristics, the NAD(+)/NADH ratio, the glycogen storage level, the lactate turnover rate, and AMPK activity. Intriguingly, low glycogen storage and transcription of lactate turnover-related genes in DMRC hepatocytes were recovered by inhibition of AMPK activity. Thus, AMPK activation led to metabolic changes in terms of glycogen storage and lactate turnover in DMRC hepatocytes. These data demonstrate for the first time that energy depletion may lead to lactic acidosis in the DMRC patient by reduction of lactate uptake via AMPK in liver.
Collapse
Affiliation(s)
- Ilkyun Im
- From the Department of Biological Sciences, Center for Stem Cell Differentiation, and
| | - Mi-Jin Jang
- From the Department of Biological Sciences, Center for Stem Cell Differentiation, and
| | | | - Sang-Hee Lee
- BioMedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon 34141 and
| | - Jin-Ho Choi
- the Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Han-Wook Yoo
- the Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Seyun Kim
- From the Department of Biological Sciences
| | - Yong-Mahn Han
- From the Department of Biological Sciences, Center for Stem Cell Differentiation, and
| |
Collapse
|
35
|
Novel MTND1 mutations cause isolated exercise intolerance, complex I deficiency and increased assembly factor expression. Clin Sci (Lond) 2015; 128:895-904. [PMID: 25626417 PMCID: PMC4613521 DOI: 10.1042/cs20140705] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Complex I (CI) is the largest of the five multi-subunit complexes constituting the human oxidative phosphorylation (OXPHOS) system. Seven of its catalytic core subunits are encoded by mitochondrial DNA (ND (NADH dehydrogenase)1-6, ND4L (NADH dehydrogenase subunit 4L)), with mutations in all seven having been reported in association with isolated CI deficiency. We investigated two unrelated adult patients presenting with marked exercise intolerance, persistent lactic acidaemia and severe muscle-restricted isolated CI deficiency associated with sub-sarcolemmal mitochondrial accumulation. Screening of the mitochondrial genome detected novel mutations in the MTND1 (NADH dehydrogenase subunit 1) gene, encoding subunit of CI [Patient 1, m.3365T>C predicting p.(Leu20Pro); Patient 2, m.4175G>A predicting p.(Trp290*)] at high levels of mitochondrial DNA heteroplasmy in skeletal muscle. We evaluated the effect of these novel MTND1 mutations on complex assembly showing that CI assembly, although markedly reduced, was viable in the absence of detectable ND1 signal. Real-time PCR and Western blotting showed overexpression of different CI assembly factor transcripts and proteins in patient tissue. Together, our data indicate that the mechanism underlying the expression of the biochemical defect may involve a compensatory response to the novel MTND1 gene mutations, promoting assembly factor up-regulation and stabilization of respiratory chain super-complexes, resulting in partial rescue of the clinical phenotype.
Collapse
|
36
|
Fayzulin RZ, Perez M, Kozhukhar N, Spadafora D, Wilson GL, Alexeyev MF. A method for mutagenesis of mouse mtDNA and a resource of mouse mtDNA mutations for modeling human pathological conditions. Nucleic Acids Res 2015; 43:e62. [PMID: 25820427 PMCID: PMC4482060 DOI: 10.1093/nar/gkv140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/10/2015] [Indexed: 12/23/2022] Open
Abstract
Mutations in human mitochondrial DNA (mtDNA) can cause mitochondrial disease and have been associated with neurodegenerative disorders, cancer, diabetes and aging. Yet our progress toward delineating the precise contributions of mtDNA mutations to these conditions is impeded by the limited availability of faithful transmitochondrial animal models. Here, we report a method for the isolation of mutations in mouse mtDNA and its implementation for the generation of a collection of over 150 cell lines suitable for the production of transmitochondrial mice. This method is based on the limited mutagenesis of mtDNA by proofreading-deficient DNA-polymerase γ followed by segregation of the resulting highly heteroplasmic mtDNA population by means of intracellular cloning. Among generated cell lines, we identify nine which carry mutations affecting the same amino acid or nucleotide positions as in human disease, including a mutation in the ND4 gene responsible for 70% of Leber Hereditary Optic Neuropathies (LHON). Similar to their human counterparts, cybrids carrying the homoplasmic mouse LHON mutation demonstrated reduced respiration, reduced ATP content and elevated production of mitochondrial reactive oxygen species (ROS). The generated resource of mouse mtDNA mutants will be useful both in modeling human mitochondrial disease and in understanding the mechanisms of ROS production mediated by mutations in mtDNA.
Collapse
Affiliation(s)
- Rafik Z Fayzulin
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, AL 36688, USA
| | - Michael Perez
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Natalia Kozhukhar
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Domenico Spadafora
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Glenn L Wilson
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, AL 36688, USA
| | - Mikhail F Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
37
|
Martínez-Romero Í, Herrero-Martín MD, Llobet L, Emperador S, Martín-Navarro A, Narberhaus B, Ascaso FJ, López-Gallardo E, Montoya J, Ruiz-Pesini E. New MT-ND1 pathologic mutation for Leber hereditary optic neuropathy. Clin Exp Ophthalmol 2014; 42:856-64. [PMID: 24800637 DOI: 10.1111/ceo.12355] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/21/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mutations causing Leber hereditary optic neuropathy are usually homoplasmic, show incomplete penetrance, and many of the affected positions are not well conserved through evolution. A large percentage of patients harbouring these mutations have no family history of disease. Moreover, the transfer of the mutation in the cybrid model is frequently not accompanied by the transfer of the cellular, biochemical and molecular phenotype. All these features make difficult their classification as the etiologic factors for this disease. We report a patient who exhibits typical clinical features of Leber hereditary optic neuropathy but lacks all three of the most common mitochondrial DNA mutations. METHODS The diagnosis was made based on clinical studies. The mitochondrial DNA was completely sequenced, and the candidate mutation was analysed in more than 18 000 individuals around the world, its conservation index was estimated in more than 3100 species from protists to mammals, its position was modelled in the crystal structure of a bacteria ortholog subunit, and its functional consequences were studied in a cybrid model. RESULTS Genetic analysis revealed an m.3472T>C transition in the MT-ND1 gene that changes a phenylalanine to leucine at position 56. Bioinformatics, molecular-genetic analysis and functional studies suggest that this transition is the etiological factor for the disorder. CONCLUSIONS This mutation expands the spectrum of deleterious changes in mitochondrial DNA-encoded complex I polypeptides associated with this pathology and highlights the difficulties in assigning pathogenicity to new homoplasmic mutations that show incomplete penetrance in sporadic Leber hereditary optic neuropathy patients.
Collapse
Affiliation(s)
- Íñigo Martínez-Romero
- Departamento de Bioquímica, Biología Molecular y Celular and Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bhardwaj A. Investigating the role of site specific synonymous variation in disease association studies. Mitochondrion 2014; 16:83-8. [PMID: 24434286 DOI: 10.1016/j.mito.2013.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 12/15/2013] [Accepted: 12/24/2013] [Indexed: 02/05/2023]
Abstract
Synonymous codon changes may not always be neutral indicating their significance in disease association studies, which is almost always overlooked. Synonymous substitutions may affect protein-folding rates leading to protein misfolding and aggregation. Genome wide analysis of 2301 mitochondrial genomes is performed to evaluate the significance of synonymous codons in disease association studies. The analysis revealed usage of rare codons at several sites in mitochondrial genes with rare codon usage higher for hydrophobic amino acids. The analysis suggests that variation data in association studies should be analyzed using site-specific codon usage values to infer the potential phenotypic impact of synonymous changes.
Collapse
Affiliation(s)
- Anshu Bhardwaj
- Open Source Drug Discovery Unit, Council of Scientific and Industrial Research (CSIR), Delhi 110001, India.
| |
Collapse
|
39
|
Wray CD, Friederich MW, du Sart D, Pantaleo S, Smet J, Kucera C, Fenton L, Scharer G, Van Coster R, Van Hove JLK. A new mutation in MT-ND1 m.3928G>C p.V208L causes Leigh disease with infantile spasms. Mitochondrion 2013; 13:656-61. [PMID: 24063851 DOI: 10.1016/j.mito.2013.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 08/30/2013] [Accepted: 09/17/2013] [Indexed: 01/14/2023]
Abstract
New mutations in mitochondrial DNA encoded genes of complex I are rarely reported. An infant developed Leigh disease with infantile spasms. Complex I enzyme activity was deficient and response to increasing coenzyme Q concentrations was reduced. Complex I assembly was intact. A new mutation in MT-ND1 m.3928G>C p.V208L, affecting a conserved amino acid in a critical domain, part of the coenzyme Q binding pocket, was present at high heteroplasmy. The unaffected mother did not carry measurable mutant mitochondrial DNA, but concern remained for gonadal mosaicism. Prenatal testing was possible for a subsequent sibling. The ND1 p.V208L mutation causes Leigh disease.
Collapse
Affiliation(s)
- Carter D Wray
- Department of Pediatrics, University of Colorado, 13121 East 17th Avenue, Aurora, CO 80045, USA; Division of Pediatric Neurology, Oregon Health Sciences Center, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Posterior Reversible Encephalopathy Syndrome in a Leber Hereditary Optic Neuropathy Patient With Mitochondrial DNA 11778G>A Point Mutation. J Neuroophthalmol 2013; 33:276-8. [DOI: 10.1097/wno.0b013e31828f8d75] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Lin J, Zhao CB, Lu JH, Wang HJ, Zhu WH, Xi JY, Lu J, Luo SS, Ma D, Wang Y, Xiao BG, Lu CZ. Novel mutations m.3959G>A and m.3995A>G in mitochondrial gene MT-ND1 associated with MELAS. ACTA ACUST UNITED AC 2013; 25:56-62. [PMID: 23834081 DOI: 10.3109/19401736.2013.779259] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) are progressive neurodegenerative disorder associated with polygenetic, maternally inherited mutations in mitochondrial DNA. Approximately 80% of MELAS cases are caused by the mutation m.3243A>G of the mitochondrial tRNA(Leu (UUR)) gene (MT-TL1). We reported two probands with MELAS features. Muscle biopsy identified ragged-red fibers (RRF) in Gomori Trichrome staining. A respiratory chain function study showed decreased activity of mitochondrial respiratory chain complex I in both probands. Sequencing of the mitochondrial DNA revealed two novel MT-ND1 gene missense mutations, m.3959G>A and m.3995A>G, which are highly conserved among species. Protein secondary structure predictions demonstrated that these mutations may alter the peptide structure and may lead to decreased ND1 gene stability. Our findings suggest that these two novel mutations may contribute to the MELAS phenotypes of the patients in our study.
Collapse
Affiliation(s)
- Jie Lin
- Department of Neurology, Huashan Hospital
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Maresca A, la Morgia C, Caporali L, Valentino ML, Carelli V. The optic nerve: a "mito-window" on mitochondrial neurodegeneration. Mol Cell Neurosci 2013; 55:62-76. [PMID: 22960139 PMCID: PMC3629569 DOI: 10.1016/j.mcn.2012.08.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/27/2012] [Accepted: 08/06/2012] [Indexed: 01/16/2023] Open
Abstract
Retinal ganglion cells (RGCs) project their long axons, composing the optic nerve, to the brain, transmitting the visual information gathered by the retina, ultimately leading to formed vision in the visual cortex. The RGC cellular system, representing the anterior part of the visual pathway, is vulnerable to mitochondrial dysfunction and optic atrophy is a very frequent feature of mitochondrial and neurodegenerative diseases. The start of the molecular era of mitochondrial medicine, the year 1988, was marked by the identification of a maternally inherited form of optic atrophy, Leber's hereditary optic neuropathy, as the first disease due to mitochondrial DNA point mutations. The field of mitochondrial medicine has expanded enormously over the last two decades and many neurodegenerative diseases are now known to have a primary mitochondrial etiology or mitochondrial dysfunction plays a relevant role in their pathogenic mechanism. Recent technical advancements in neuro-ophthalmology, such as optical coherence tomography, prompted a still ongoing systematic re-investigation of retinal and optic nerve involvement in neurodegenerative disorders. In addition to inherited optic neuropathies, such as Leber's hereditary optic neuropathy and dominant optic atrophy, and in addition to the syndromic mitochondrial encephalomyopathies or mitochondrial neurodegenerative disorders such as some spinocerebellar ataxias or familial spastic paraparesis and other disorders, we draw attention to the involvement of the optic nerve in classic age-related neurodegenerative disorders such as Parkinson and Alzheimer disease. We here provide an overview of optic nerve pathology in these different clinical settings, and we review the possible mechanisms involved in the pathogenesis of optic atrophy. This may be a model of general value for the field of neurodegeneration. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.
Collapse
Affiliation(s)
| | | | | | | | - Valerio Carelli
- Corresponding author at: IRCCS Institute of Neurological Sciences of Bologna, Department of Neurological Sciences, University of Bologna, Via Ugo Foscolo 7, 40123 Bologna, Italy. Fax: + 39 051 2092751.
| |
Collapse
|
43
|
Cheng Z, Ito S, Nishio N, Thanasegaran S, Fang H, Isobe KI. Characteristics of cardiac aging in C57BL/6 mice. Exp Gerontol 2013; 48:341-8. [DOI: 10.1016/j.exger.2013.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/05/2012] [Accepted: 01/08/2013] [Indexed: 11/29/2022]
|
44
|
Abstract
The mitochondrial DNA (mtDNA) is a compact genome inherited through the maternal lineage. Mutations in mtDNA lead to many of the earliest identified syndromic mitochondrial diseases and display a diverse range of age of onset, symptoms, and outcomes-from isolated childhood onset vision or hearing loss to a multisystemic neurodegenerative disorder with strokes, neuropathy, ophthalmoparesis, and epilepsy beginning at any age. As a heterogeneous group, mitochondrial diseases represent one of the most common metabolic disorders in children and adults, frequently seen by both pediatric and adult specialists. Although the myriad of diseases can make diagnosis seems daunting, the need for extensive supportive care and treatment (the latter for at least a select few mitochondrial disorders) and a rapid and accurate recognition of these disorders is necessary. Here, we provide a review of the most common mitochondrial disease syndromes due to mtDNA mutations.
Collapse
Affiliation(s)
- Suzanne Debrosse
- Center for Human Genetics, University Hospitals, Case Medical Center, Cleveland, OH 44195, USA
| | | |
Collapse
|
45
|
Abstract
Leber's hereditary optic neuropathy (LHON) is a rare disease primarily affecting the retinal ganglion cells. In most cases patients with LHON develop permanent visual loss with a large central scotoma in the visual field of both eyes. The optic disc becomes partially or completely pale. At the onset of the disease many patients are considered to suffer from an optic neuritis and are treated under the diagnostic and therapeutic regimen of optic neuritis. LHON is mostly only considered when high dose cortisone therapy fails to be effective or the second eye is affected. Thereafter, molecular genetic analysis will prove LHON in these cases. Detailed anamnesis including pedigree analysis in combination with observance of the peripapillary microangiopathic alterations at the fundus will help to speed up the diagnosis of LHON, but even after exact clinical and molecular genetic diagnosis of LHON some aspects of the disease still remain a mystery today.
Collapse
Affiliation(s)
- B Leo-Kottler
- Department für Augenheilkunde, Augenklinik, Schleichstr. 12-16, 72076, Tübingen, Deutschland.
| | | |
Collapse
|
46
|
Gutiérrez Cortés N, Pertuiset C, Dumon E, Börlin M, Hebert-Chatelain E, Pierron D, Feldmann D, Jonard L, Marlin S, Letellier T, Rocher C. Novel mitochondrial DNA mutations responsible for maternally inherited nonsyndromic hearing loss. Hum Mutat 2012; 33:681-9. [PMID: 22241583 DOI: 10.1002/humu.22023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 01/04/2012] [Indexed: 11/11/2022]
Abstract
Some cases of maternally inherited isolated deafness are caused by mtDNA mutations, frequently following an exposure to aminoglycosides. Two mitochondrial genes have been clearly described as being affected by mutations responsible for this pathology: the ribosomal RNA 12S gene and the transfer RNA serine (UCN) gene. A previous study identified several candidate novel mtDNA mutations, localized in a variety of mitochondrial genes, found in patients with no previous treatment with aminoglycosides. Five of these candidate mutations are characterized in the present study. These mutations are localized in subunit ND1 of complex I of the respiratory chain (m.3388C>A [p.MT-ND1:Leu28Met]), the tRNA for Isoleucine (m.4295A>G), subunit COII of complex IV (m.8078G>A [p.MT-CO2:Val165Ile]), the tRNA of Serine 2 (AGU/C) (m.12236G>A), and Cytochrome B, subunit of complex III (m.15077G>A [p.MT-CYB:Glu111Lys]). Cybrid cell lines have been constructed for each of the studied mtDNA mutations and functional studies have been performed to assess the possible consequences of these mutations on mitochondrial bioenergetics. This study shows that a variety of mitochondrial genes, including protein-coding genes, can be responsible for nonsyndromic deafness, and that exposure to aminoglycosides is not required to develop the disease, giving new insights on the molecular bases of this pathology.
Collapse
Affiliation(s)
- Nicolás Gutiérrez Cortés
- INSERM-U688 Physiopathologie Mitochondriale, Université Victor Segalen Bordeaux 2,146 rue Léo Saignat, Bordeaux, F-33076 France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Finsterer J. Inherited Mitochondrial Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:187-213. [DOI: 10.1007/978-94-007-2869-1_8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Pätsi J, Maliniemi P, Pakanen S, Hinttala R, Uusimaa J, Majamaa K, Nyström T, Kervinen M, Hassinen IE. LHON/MELAS overlap mutation in ND1 subunit of mitochondrial complex I affects ubiquinone binding as revealed by modeling in Escherichia coli NDH-1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:312-8. [PMID: 22079202 DOI: 10.1016/j.bbabio.2011.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 10/27/2011] [Accepted: 10/28/2011] [Indexed: 10/15/2022]
Abstract
Defects in complex I due to mutations in mitochondrial DNA are associated with clinical features ranging from single organ manifestation like Leber hereditary optic neuropathy (LHON) to multiorgan disorders like mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome. Specific mutations cause overlap syndromes combining several phenotypes, but the mechanisms of their biochemical effects are largely unknown. The m.3376G>A transition leading to p.E24K substitution in ND1 with LHON/MELAS phenotype was modeled here in a homologous position (NuoH-E36K) in the Escherichia coli enzyme and it almost totally abolished complex I activity. The more conservative mutation NuoH-E36Q resulted in higher apparent K(m) for ubiquinone and diminished inhibitor sensitivity. A NuoH homolog of the m.3865A>G transition, which has been found concomitantly in the overlap syndrome patient with the m.3376G>A, had only a minor effect. Consequences of a primary LHON-mutation m.3460G>A affecting the same extramembrane loop as the m.3376G>A substitution were also studied in the E. coli model and were found to be mild. The results indicate that the overlap syndrome-associated m.3376G>A transition in MTND1 is the pathogenic mutation and m.3865A>G transition has minor, if any, effect on presentation of the disease. The kinetic effects of the NuoH-E36Q mutation suggest its proximity to the putative ubiquinone binding domain in 49kD/PSST subunits. In all, m.3376G>A perturbs ubiquinone binding, a phenomenon found in LHON, and decreases the activity of fully assembled complex I as in MELAS.
Collapse
Affiliation(s)
- Jukka Pätsi
- Department of Medical Biochemistry and Molecular Biology, University of Oulu, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Shaik NA, Lone WG, Khan IA, Vaidya S, Rao KP, Kodati VL, Hasan Q. Detection of somatic mutations and germline polymorphisms in mitochondrial DNA of uterine fibroids patients. Genet Test Mol Biomarkers 2011; 15:537-41. [PMID: 21453057 DOI: 10.1089/gtmb.2010.0255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To identify the role of mitochondrial DNA (mtDNA) mutations in uterine fibroids patients, genomic DNA isolated from paired myometrium and fibroid tissues was screened for mutations. The present study represents the first investigation to report that 10.4% of uterine fibroids cases had either mtDNA mutations or polymorphisms or both. Among the 14 mitochondrial sequence variants identified, seven are somatic mutations (A3327C, G3352A, G3376A, G3380A, G3421A, T15312G, and C15493G) and the remaining (G3316A, C3342A, C3442T, T10205A, A10188G, A10229C, and A10301T) are gene polymorphisms. Somatic mutations were both homo- and heteroplasmic in nature. Of the seven somatic mutations located in the MTND1 and MTCYB genes, five (71.42%) are nonsynonymous in nature, whereas four (57.14%) of the polymorphisms located in MTND1 and MTND3 genes are found to be nonsynonymous. Sequence variants such as G3380A, G3421A, T15312G, G3376A, and G3316A have been earlier described in different human pathologies, but the remaining are novel ones. Mitochondrial somatic mutations and polymorphisms may predispose women to an earlier onset of degenerative cellular processes, which impair oxidative phosphorylation capacity and thereby promote tumorigenesis in uterine smooth muscle cells. Detection of mtDNA sequence variations in fibroid patients raises the need for larger case-control studies to screen the whole mitochondrial genome and evaluate as a future diagnostic biomarker in fibroid patients.
Collapse
Affiliation(s)
- Noor Ahmad Shaik
- Department of Genetics and Molecular Medicine, Vasavi Medical and Research Centre, Hyderabad, India
| | | | | | | | | | | | | |
Collapse
|
50
|
Yu-Wai-Man P, Griffiths PG, Chinnery PF. Mitochondrial optic neuropathies - disease mechanisms and therapeutic strategies. Prog Retin Eye Res 2011; 30:81-114. [PMID: 21112411 PMCID: PMC3081075 DOI: 10.1016/j.preteyeres.2010.11.002] [Citation(s) in RCA: 464] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Leber hereditary optic neuropathy (LHON) and autosomal-dominant optic atrophy (DOA) are the two most common inherited optic neuropathies in the general population. Both disorders share striking pathological similarities, marked by the selective loss of retinal ganglion cells (RGCs) and the early involvement of the papillomacular bundle. Three mitochondrial DNA (mtDNA) point mutations; m.3460G>A, m.11778G>A, and m.14484T>C account for over 90% of LHON cases, and in DOA, the majority of affected families harbour mutations in the OPA1 gene, which codes for a mitochondrial inner membrane protein. Optic nerve degeneration in LHON and DOA is therefore due to disturbed mitochondrial function and a predominantly complex I respiratory chain defect has been identified using both in vitro and in vivo biochemical assays. However, the trigger for RGC loss is much more complex than a simple bioenergetic crisis and other important disease mechanisms have emerged relating to mitochondrial network dynamics, mtDNA maintenance, axonal transport, and the involvement of the cytoskeleton in maintaining a differential mitochondrial gradient at sites such as the lamina cribosa. The downstream consequences of these mitochondrial disturbances are likely to be influenced by the local cellular milieu. The vulnerability of RGCs in LHON and DOA could derive not only from tissue-specific, genetically-determined biological factors, but also from an increased susceptibility to exogenous influences such as light exposure, smoking, and pharmacological agents with putative mitochondrial toxic effects. Our concept of inherited mitochondrial optic neuropathies has evolved over the past decade, with the observation that patients with LHON and DOA can manifest a much broader phenotypic spectrum than pure optic nerve involvement. Interestingly, these phenotypes are sometimes clinically indistinguishable from other neurodegenerative disorders such as Charcot-Marie-Tooth disease, hereditary spastic paraplegia, and multiple sclerosis, where mitochondrial dysfunction is also thought to be an important pathophysiological player. A number of vertebrate and invertebrate disease models has recently been established to circumvent the lack of human tissues, and these have already provided considerable insight by allowing direct RGC experimentation. The ultimate goal is to translate these research advances into clinical practice and new treatment strategies are currently being investigated to improve the visual prognosis for patients with mitochondrial optic neuropathies.
Collapse
MESH Headings
- Animals
- DNA, Mitochondrial/genetics
- Disease Models, Animal
- Humans
- Optic Atrophy, Autosomal Dominant/pathology
- Optic Atrophy, Autosomal Dominant/physiopathology
- Optic Atrophy, Autosomal Dominant/therapy
- Optic Atrophy, Hereditary, Leber/pathology
- Optic Atrophy, Hereditary, Leber/physiopathology
- Optic Atrophy, Hereditary, Leber/therapy
- Optic Nerve/pathology
- Phenotype
- Point Mutation
- Retinal Ganglion Cells/pathology
Collapse
Affiliation(s)
- Patrick Yu-Wai-Man
- Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, UK.
| | | | | |
Collapse
|