1
|
Zhong X, Liu K, Liu Z, Li C, Chen W. Association between PAX9 or MSX1 gene polymorphism and tooth agenesis risk: A meta-analysis. Open Life Sci 2025; 20:20220987. [PMID: 40226363 PMCID: PMC11992623 DOI: 10.1515/biol-2022-0987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 04/15/2025] Open
Abstract
Tooth loss represents the most prevalent form of dental agenesis. Anterior tooth loss primarily impacts aesthetics and psychological well-being, whereas posterior tooth loss influences bone growth patterns and masticatory function. Prolonged tooth loss can significantly hinder subsequent restorative procedures. Genetic factors are among the principal contributors to tooth loss, as genes dictate the location, quantity, and morphology of teeth; mutations at specific gene loci may result in underdevelopment or even complete absence of teeth. Investigating the relationship between gene polymorphisms and tooth loss could yield novel insights for future clinical interventions aimed at addressing this issue. Consequently, this study aims to elucidate the correlation between PAX9 and MSX1 gene polymorphisms and instances of tooth loss. We searched Cochrane, PubMed, Web of Science, MEDLINE, EMBASES, and CNKI journal databases for articles up to April 1, 2024 to determine the association of PAX9 and MSX1 genes with the risk of dental development. Used STATA version 11.2 to calculate the odds ratio (OR) and 95% confidence interval (CI). Analyzed meta-regression, sensitivity, and publication bias. Used Bayesian measures of the false positive reporting probability and false discovery probability to examine the reliability of the calculation. Finally, 12 eligible reports were included in this study, including 7 reports on PAX9 rs2073247, with 873 cases of polymorphism and 812 cases of control; 5 reports on PAX9 rs2073244, with 668 cases of polymorphism and 668 cases of control; 7 reports on MSX1 rs12532, with 762 cases of polymorphism and 1,544 cases of control. The ORs and 95% CIs showed a statistically significant relationship between PAX9 rs2073247 or PAX9 rs2073244 polymorphism and tooth agenesis risk. Moreover, there was no association observed for the MSX1 rs12532 polymorphism. In further subgroup analysis of the polymorphisms (PAX9 rs2073247, PAX9 rs2073244), we found an increased risk of tooth loss in the Caucasian and Hungarian groups. This article concludes that the PAX9 rs2073247 and PAX9 rs2073244 polymorphism might help to increase the risk of tooth agenesis. Understanding the mechanisms of genetic mutations will enable clinical physicians and human geneticists to develop new strategies for future therapeutic research and preventive treatments.
Collapse
Affiliation(s)
- Xiaoyi Zhong
- Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Conservative Dentistry & Endodontics, College of Stomatology, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Kaixin Liu
- Department of Endodontics, College & Hospital of Stomatology, Guangxi Medical University,
Nanning, 530021, China
| | - Zhenmin Liu
- Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, Guangxi, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, Guangxi, China
| | - Cuiping Li
- Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, Guangxi, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, Guangxi, China
| | - Wenxia Chen
- Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Conservative Dentistry & Endodontics, College of Stomatology, Guangxi Medical University, Nanning, 530021, Guangxi, China
| |
Collapse
|
2
|
Papadopoulou CI, Athanasiou M, Gkantidis N, Kanavakis G. Palatal canine impaction is not associated with third molar agenesis. Eur J Orthod 2025; 47:cjaf008. [PMID: 40040530 PMCID: PMC11880766 DOI: 10.1093/ejo/cjaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
BACKGROUND/OBJECTIVES Third molar agenesis and palatally impacted canines (PICs) are two independent dental phenotypes with different developmental backgrounds. Isolated reports indicate a common genetic origin for both, however, current data is inconsistent. The aim of this study was to investigate the presence of third molar agenesis in individuals with PICs, compared to individuals without PICs. MATERIALS/METHODS This retrospective case-control study comprised 310 individuals (188 females and 122 males), half of whom presented with unilateral or bilateral PICs. Individuals with other dental anomalies of known genetic origin were excluded. The association between PICs and third molar agenesis was assessed using four regression models, with PIC as the dependent variable and sex, age, and third molar agenesis as predictors. One model treated PIC as a nominal variable (pattern) and the other as ordinal (severity), and both were run testing either third molar agenesis severity or third molar agenesis patterns. All statistical tests were performed assuming a type-1 error of 5%. RESULTS There was no significant association between canine impaction and third molar agenesis in any of the four regression models. Neither the severity nor the patterns of palatally impacted canines were associated with either the severity or the patterns of third molar agenesis (P > .05). LIMITATIONS Due to the common racial background of all participants, the results of this investigation might not be generalizable to the general population. CONCLUSIONS/IMPLICATIONS Palatal canine impaction is not associated to third molar agenesis, after accounting for age, sex, and various patterns of PICs and third molar agenesis. These results indicate that these two dental phenotypes do not share a common biological mechanism for their occurrence.
Collapse
Affiliation(s)
- Christianna I Papadopoulou
- Department of Orthodontics and Pediatric Dentistry, UZB-University School of Dental Medicine, University of Basel, Mattenstrasse 40, CH-4058 Basel, Switzerland
- Department of Orthodontics and Dentofacial Orthopedics, Center for Oral Health Sciences CC3, Charité-Universitätsmedizin Berlin, Assmannshauser Straße 4-6, DE-14197, Berlin, Germany
| | - Maria Athanasiou
- Department of Orthodontics and Pediatric Dentistry, UZB-University School of Dental Medicine, University of Basel, Mattenstrasse 40, CH-4058 Basel, Switzerland
| | - Nikolaos Gkantidis
- Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Freiburgstrasse 7, CH-3010 Bern, Switzerland
| | - Georgios Kanavakis
- Department of Orthodontics and Pediatric Dentistry, UZB-University School of Dental Medicine, University of Basel, Mattenstrasse 40, CH-4058 Basel, Switzerland
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, Thivon 2, GR-11527, Athens, Greece
| |
Collapse
|
3
|
Ranjan P, Das P. An inclusive study of deleterious missense PAX9 variants using user-friendly tools reveals structural, functional alterations, as well as potential therapeutic targets. Int J Biol Macromol 2023; 233:123375. [PMID: 36702222 DOI: 10.1016/j.ijbiomac.2023.123375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023]
Abstract
Mutations in the PAX9 are responsible for non-syndromic tooth agenesis in humans, although their structural and functional consequences on protein phenotype, stability, and posttranslational modifications (PTMs) have not yet been adequately investigated. This in silico study focuses on retrieving the six most deleterious mutations (L21P, R26W, R28P, G51S, I87F, and K91E) of PAX9 that has been linked to severe oligodontia. Several computational algorithm methods were used to determine the deleterious effects of PAX9 mutations. Analysis of gene ontology, protein interactions, and PTMs indicated significant functional changes caused by PAX9 mutations. The structural superimposition of the wild-type and mutant PAX9 variants revealed structural changes in locations that were present in the structures of all six variations. The conserved domain analysis revealed that the areas shared by all six variations contained unique sections that lacked DNA binding or protein-protein interaction sites, suggesting prospective drug target sites for functional restoration. The protein-protein interaction network showed KDM5B as PAX9's strongest interacting partner similar to MSX1. The PAX9 protein's structural conformations, compactness, stiffness, and function may all be impacted by changes, according to MD simulations. In addition, research on cell lines and animal models may be valuable in establishing their specific roles in functional annotations.
Collapse
Affiliation(s)
- Prashant Ranjan
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Parimal Das
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
4
|
Ren J, Gan S, Zheng S, Li M, An Y, Yuan S, Gu X, Zhang L, Hou Y, Du Q, Zhang G, Shen W. Genotype-phenotype pattern analysis of pathogenic PAX9 variants in Chinese Han families with non-syndromic oligodontia. Front Genet 2023; 14:1142776. [PMID: 37056289 PMCID: PMC10086135 DOI: 10.3389/fgene.2023.1142776] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/09/2023] [Indexed: 03/30/2023] Open
Abstract
Background: Non-syndromic oligodontia is characterized by the absence of six or more permanent teeth, excluding third molars, and can have aesthetic, masticatory, and psychological consequences. Previous studies have shown that PAX9 is associated with autosomal dominant forms of oligodontia but the precise molecular mechanisms are still unknown.Methods: Whole-exome and Sanger sequencing were performed on a cohort of approximately 28 probands with NSO, for mutation analysis. Bioinformatic analysis was performed on the potential variants. Immunofluorescence assay, western blotting, and qPCR were used to explore the preliminary functional impact of the variant PAX9 proteins. We reviewed PAX9-related NSO articles in PubMed to analyze the genotype-phenotype correlations.Results: We identified three novel PAX9 variants in Chinese Han families: c.152G>T (p.Gly51Val), c.239delC (p.Thr82Profs*3), and c.409C>T (q.Gln137Ter). In addition, two previously reported missense variants were identified: c.140G>C (p.Arg47Pro) and c.146C>T (p.Ser49Leu) (reference sequence NM_006194.4). Structural modeling revealed that all missense variants were located in the highly conserved paired domain. The other variants led to premature termination of the protein, causing structural impairment of the PAX9 protein. Immunofluorescence assay showed abnormal subcellular localizations of the missense variants (R47P, S49L, and G51V). In human dental pulp stem cells, western blotting and qPCR showed decreased expression of PAX9 variants (c.140G>C, p.R47P, and c.152G>T, p.G51V) compared with the wild-type group at both the transcription and translation levels. A review of published papers identified 64 PAX9 variants related to NSO and found that the most dominant feature was the high incidence of missing upper second molars, first molars, second premolars, and lower second molars.Conclusion: Three novel PAX9 variants were identified in Chinese Han families with NSO. These results extend the variant spectrum of PAX9 and provide a foundation for genetic diagnosis and counseling.
Collapse
Affiliation(s)
- Jiabao Ren
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Sifang Gan
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | | | - Meikang Li
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Yilin An
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Shuo Yuan
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Xiuge Gu
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Li Zhang
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Yan Hou
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Qingqing Du
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Guozhong Zhang
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Wenjing Shen
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Wenjing Shen,
| |
Collapse
|
5
|
REN J, ZHAO Y, YUAN Y, ZHANG J, DING Y, LI M, AN Y, CHEN W, ZHANG L, LIU B, ZHENG S, SHEN W. Novel PAX9 compound heterozygous variants in a Chinese family with non-syndromic oligodontia and genotype-phenotype analysis of PAX9 variants. J Appl Oral Sci 2023; 31:e20220403. [PMID: 36995881 PMCID: PMC10065762 DOI: 10.1590/1678-7757-2022-0403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/13/2023] [Indexed: 03/29/2023] Open
Abstract
OBJECTIVE Studies have reported that >91.9% of non-syndromic tooth agenesis cases are caused by seven pathogenic genes. To report novel heterozygous PAX9 variants in a Chinese family with non-syndromic oligodontia and summarize the reported genotype-phenotype relationship of PAX9 variants. METHODOLOGY We recruited 28 patients with non-syndromic oligodontia who were admitted to the Hospital of Stomatology Hebei Medical University (China) from 2018 to 2021. Peripheral blood was collected from the probands and their core family members for whole-exome sequencing (WES) and variants were verified by Sanger sequencing. Bioinformatics tools were used to predict the pathogenicity of the variants. SWISS-MODEL homology modeling was used to analyze the three-dimensional structural changes of variant proteins. We also analyzed the genotype-phenotype relationships of PAX9 variants. RESULTS We identified novel compound heterozygous PAX9 variants (reference sequence NM_001372076.1) in a Chinese family with non-syndromic oligodontia: a new missense variant c.1010C>A (p.T337K) in exon 4 and a new frameshift variant c.330_331insGT (p.D113Afs*9) in exon 2, which was identified as the pathogenic variant in this family. This discovery expands the known variant spectrum of PAX9; then, we summarized the phenotypes of non-syndromic oligodontia with PAX9 variants. CONCLUSION We found that PAX9 variants commonly lead to loss of the second molars.
Collapse
|
6
|
Liu H, Liu H, Su L, Zheng J, Feng H, Liu Y, Yu M, Han D. Four Novel PAX9 Variants and the PAX9-Related Non-Syndromic Tooth Agenesis Patterns. Int J Mol Sci 2022; 23:ijms23158142. [PMID: 35897718 PMCID: PMC9331840 DOI: 10.3390/ijms23158142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/26/2022] Open
Abstract
The purpose of this research was to investigate and identify PAX9 gene variants in four Chinese families with non-syndromic tooth agenesis. We identified pathogenic gene variants by whole-exome sequencing (WES) and Sanger sequencing and then studied the effects of these variants on function by bioinformatics analysis and in vitro experiments. Four novel PAX9 heterozygous variants were identified: two missense variants (c.191G > T (p.G64V) and c.350T > G (p.V117G)) and two frameshift variants (c.352delC (p.S119Pfs*2) and c.648_649insC(p.Y217Lfs*100)). The bioinformatics analysis showed that these variants might be pathogenic. The tertiary structure analysis showed that these four variants could cause structural damage to PAX9 proteins. In vitro functional studies demonstrated that (1) the p.Y217Lfs*100 variant greatly affects mRNA stability, thereby affecting endogenous expression; (2) the p. S119Pfs* 2 variant impairs the subcellular localization of the nuclear expression of the wild-type PAX9 protein; and (3) the four variants (p.G64V, p.V117G, p.S119Pfs*2, and p.Y217Lfs*100) all significantly affect the downstream transcriptional activity of the BMP4 gene. In addition, we summarized and analyzed tooth missing positions caused by PAX9 variants and found that the maxillary second molar (84.11%) and mandibular second molar (84.11%) were the most affected tooth positions by summarizing and analyzing the PAX9-related non-syndromic tooth agenesis positions. Our results broaden the variant spectrum of the PAX9 gene related to non-syndromic tooth agenesis and provide useful information for future genetic counseling.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Miao Yu
- Correspondence: (M.Y.); (D.H.); Fax: +86-10-8210-5259 (M.Y.); +86-10-6217-3402 (D.H.)
| | - Dong Han
- Correspondence: (M.Y.); (D.H.); Fax: +86-10-8210-5259 (M.Y.); +86-10-6217-3402 (D.H.)
| |
Collapse
|
7
|
Sun R, Li S, Xia B, Zhu J. Detection of Novel Variant and Functional Study in a Chinese Family with Non-syndromic Oligodontia. Oral Dis 2022. [PMID: 35596231 DOI: 10.1111/odi.14259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To investigate the pathogenic gene of a patient with non-syndromic oligodontia, and analyze its possible pathogenic mechanism. SUBJECTS AND METHODS The variant was detected by whole exome sequencing (WES) and Sanger sequencing in a family with oligodontia. Bioinformatic and structural analyses were used to analyze variant. Functional studies including western blotting and immunofluorescent analyses and luciferase reporter assay were conducted to explore the functional effects. RESULTS We identified a novel frameshift variant of PAX9 (c.491-510delGCCCT-ATCACGGCGGCGGCC, p.P165Qfs*145) outside the DNA-binding domain causing an autosomal-dominant non-syndromic oligodontia in a Chinese family. Bioinformatic and structural analyses revealed that the variant is pathogenic and conserved evolutionarily, and the changes might affect protein stability or folding. Functional studies demonstrate dramatically reduced ability in activating transcription activity of BMP4 promoter and a marked decrease in protein production, as evaluated by western blotting and immunofluorescent analyses. CONCLUSIONS We found a novel frameshift variant of PAX9 causing non-syndromic oligodontia in a Chinese family. Our findings indicate that frameshift variants cause loss of function of PAX9 protein during the patterning of the dentition and the subsequent tooth agenesis, providing new molecular insights into the role of frameshift variant of PAX9 and broaden the pathogenic spectrum of PAX9 variants.
Collapse
Affiliation(s)
- Ruiqing Sun
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Research Center of Engineering and Technology for Digital Dentistry of Ministry of Health & Beijing Key Laboratory of Digital Stomatology & National Clinical Research Center for Oral Diseases, Beijing 100081, China
| | - Shuangying Li
- Department of Pediatric Dentistry, Yinchuan Stomatology Hospital, Ningxia 750001, China
| | - Bin Xia
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Research Center of Engineering and Technology for Digital Dentistry of Ministry of Health & Beijing Key Laboratory of Digital Stomatology & National Clinical Research Center for Oral Diseases, Beijing 100081, China
| | - Junxia Zhu
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Research Center of Engineering and Technology for Digital Dentistry of Ministry of Health & Beijing Key Laboratory of Digital Stomatology & National Clinical Research Center for Oral Diseases, Beijing 100081, China
| |
Collapse
|
8
|
Pak B, Schmitt CE, Oh S, Kim JD, Choi W, Han O, Kim M, Kim MJ, Ham HJ, Kim S, Huh TL, Kim JI, Jin SW. Pax9 is essential for granulopoiesis but dispensable for erythropoiesis in zebrafish. Biochem Biophys Res Commun 2020; 534:359-366. [PMID: 33256983 DOI: 10.1016/j.bbrc.2020.11.077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 11/26/2022]
Abstract
Paired Box (Pax) gene family, a group of transcription regulators have been implicated in diverse physiological processes. However, their role during hematopoiesis which generate a plethora of blood cells remains largely unknown. Using a previously reported single cell transcriptomics data, we analyzed the expression of individual Pax family members in hematopoietic cells in zebrafish. We have identified that Pax9, which is an essential regulator for odontogenesis and palatogenesis, is selectively localized within a single cluster of the hematopoietic lineage. To further analyze the function of Pax9 in hematopoiesis, we generated two independent pax9 knock-out mutants using the CRISPR-Cas9 technique. We found that Pax9 appears to be an essential regulator for granulopoiesis but dispensable for erythropoiesis during development, as lack of pax9 selectively decreased the number of neutrophils with a concomitant decrease in the expression level of neutrophil markers. In addition, embryos, where pax9 was functionally disrupted by injecting morpholinos, failed to increase the number of neutrophils in response to pathogenic bacteria, suggesting that Pax9 is not only essential for developmental granulopoiesis but also emergency granulopoiesis. Due to the inability to initiate emergency granulopoiesis, innate immune responses were severely compromised in pax9 morpholino-mediated embryos, increasing their susceptibility and mortality. Taken together, our data indicate that Pax9 is essential for granulopoiesis and promotes innate immunity in zebrafish larvae.
Collapse
Affiliation(s)
- Boryeong Pak
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Chris E Schmitt
- Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Dept. of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sera Oh
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jun-Dae Kim
- Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Dept. of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA; Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX, USA
| | - Woosoung Choi
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Orjin Han
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Minjung Kim
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Myoung-Jin Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Hyung-Jin Ham
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Shanghyeon Kim
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Tae-Lin Huh
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Il Kim
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Suk-Won Jin
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea; Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Dept. of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
9
|
Abu-Siniyeh A, Khabour OF, Owais AI. The role of PAX9 promoter gene polymorphisms in causing hypodontia: a study in the Jordanian population. APPLICATION OF CLINICAL GENETICS 2018; 11:145-149. [PMID: 30538524 PMCID: PMC6254497 DOI: 10.2147/tacg.s183212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background The congenital absence of one or few teeth, hypodontia, is considered one of the utmost dental ageneses in human beings. Several genes have been shown to be involved in the development of hypodontia such as paired box gene 9 (PAX9). The expression of PAX9 is controlled by several polymorphic elements in the promoter region of the gene on 14q13.3 locus. The aim of this study was to find any association between PAX9 c.-912T>C (rs2073247) and c.-1031G>A (rs2073244) promoter polymorphisms and the development of hypodontia among the Jordanian population. Methods Genotyping of the polymorphisms in 72 unrelated subjects with hypodontia was performed using PCR-restriction fragment length polymorphism (RFLP) technique and compared with that of 72 normal healthy unrelated control individuals. Results The hypodontia group had a significantly higher -1031GG genotype (P<0.01) and a significantly lower -912TC genotype (P<0.01) compared with the control group. The results suggest that the transcriptional activity of PAX9 gene is affected by polymorphisms in the promoter region of this gene and is associated with hypodontia phenotype. Conclusion The rs2073247) and rs2073244 promoter polymorphisms of PAX9 might play a role in the development of hypodontia in the Jordanian population.
Collapse
Affiliation(s)
- Ahmed Abu-Siniyeh
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan,
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan,
| | - Arwa I Owais
- Department of Applied Dental Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
10
|
Fauzi NH, Ardini YD, Zainuddin Z, Lestari W. A review on non-syndromic tooth agenesis associated with PAX9 mutations. JAPANESE DENTAL SCIENCE REVIEW 2018; 54:30-36. [PMID: 29628999 PMCID: PMC5884223 DOI: 10.1016/j.jdsr.2017.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/07/2017] [Accepted: 08/23/2017] [Indexed: 12/14/2022] Open
Abstract
Tooth agenesis in the reduction of tooth number which includes hypodontia, oligodontia and anodontia is caused by disturbances and gene mutations that occur during odontogenesis. To date, several genetic mutations that unlock the causes of non-syndromic tooth agenesis are being discovered; these have been associated with certain illnesses because tooth development involves the interaction of several genes for tooth epithelium and mesenchyme odontogenesis. Mutation of candidate genes PAX9 and MSX1 have been identified as the main causes of hypodontia and oligodontia; meanwhile, AXIN2 mutation is associated with anodontia. Previous study using animal models reported that PAX9-deficient knockout mice exhibit missing molars due to an arrest of tooth development at the bud stage. PAX9 frameshift, missense and nonsense mutations are reported to be responsible; however, the most severe condition showed by the phenotype is caused by haploinsufficiency. This suggests that PAX9 is dosage-sensitive. Understanding the mechanism of genetic mutations will benefit clinicians and human geneticists in future alternative treatment investigations.
Collapse
Affiliation(s)
- Nurul Hasyiqin Fauzi
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Malaysia
| | - Yunita Dewi Ardini
- Department of Pediatric Dentistry, Kulliyyah of Dentistry, International Islamic University Malaysia, Malaysia
| | - Zarina Zainuddin
- Department of Plant Science, Kulliyyah of Science, International Islamic University Malaysia, Malaysia
| | - Widya Lestari
- Department of Oral Biology, Kulliyyah of Dentistry, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
| |
Collapse
|
11
|
Bonczek O, Balcar V, Šerý O. PAX9
gene mutations and tooth agenesis: A review. Clin Genet 2017; 92:467-476. [DOI: 10.1111/cge.12986] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/30/2017] [Accepted: 01/30/2017] [Indexed: 11/27/2022]
Affiliation(s)
- O. Bonczek
- Laboratory of DNA Diagnostics, Department of Biochemistry, Faculty of Science; Masaryk University; Brno Czech Republic
- Laboratory of Animal Embryology, Institute of Animal Physiology and Genetics; The Academy of Sciences of the Czech Republic; Brno Czech Republic
| | - V.J. Balcar
- Laboratory of Neurochemistry, Bosch Institute and Discipline of Anatomy and Histology, School of medical sciences, Sydney Medical School; The University of Sydney; Sydney NSW Australia
| | - O. Šerý
- Laboratory of DNA Diagnostics, Department of Biochemistry, Faculty of Science; Masaryk University; Brno Czech Republic
- Laboratory of Animal Embryology, Institute of Animal Physiology and Genetics; The Academy of Sciences of the Czech Republic; Brno Czech Republic
| |
Collapse
|
12
|
Haddaji Mastouri M, De Coster P, Zaghabani A, Trabelsi S, May Y, Saad A, Coucke P, H’mida Ben Brahim D. Characterization of a novel mutation in PAX9 gene in a family with non-syndromic dental agenesis. Arch Oral Biol 2016; 71:110-116. [DOI: 10.1016/j.archoralbio.2016.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
|
13
|
A novel initiation codon mutation of PAX9 in a family with oligodontia. Arch Oral Biol 2016; 61:144-8. [DOI: 10.1016/j.archoralbio.2015.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 10/21/2015] [Accepted: 10/25/2015] [Indexed: 11/18/2022]
|
14
|
Sethuram AK, Arora V, Kumar Pal A, Singh Sandhu H, Sahoo NK, Guruprasada BS. Prosthodontic Rehabilitation with a Telescopic Prosthesis of a Nonsyndromic Oligodontia Patient. J Prosthodont 2015; 25:247-51. [PMID: 26032146 DOI: 10.1111/jopr.12297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2014] [Indexed: 11/29/2022] Open
Abstract
Oligodontia is the congenital absence of six or more permanent teeth, excluding the third molars. Oligodontia of permanent dentition is a rare occurrence. Preservation of the remaining deciduous dentition in such situations is important for both functional and esthetic rehabilitation of the patient. This clinical report describes the rehabilitation of a 16-year-old male with oligodontia of permanent teeth treated by an interdisciplinary team of prosthodontist, pedodontist, and orthodontist. The remaining deciduous dentition was endodontically treated. Occlusal vertical dimension (OVD) of the deciduous dentition was assessed. A full-mouth single piece porcelain-fused-to-metal telescopic prosthesis for the maxillary and mandibular arches was planned with a minimal increase in OVD. The telescopic prosthesis provided excellent retention, stability, esthetics, and stress equalization on the remaining deciduous dentition. Maintenance of oral hygiene procedures was simplified for the adolescent with the telescopic prosthesis. Preservation of remaining deciduous dentition and fabrication of a telescopic prosthesis in this patient provided an effective esthetic and functional rehabilitation.
Collapse
Affiliation(s)
- Anil Kumar Sethuram
- Department of Prosthodontics, Command Military Dental Centre Lucknow, Lucknow, India
| | - Vimal Arora
- Department of Prosthodontics, O/o DGDS, Integrated AHQ, Delhi, India
| | - Arup Kumar Pal
- Department of Oral and Maxillofacial Surgery, Command Military Dental Centre Lucknow, Lucknow, India
| | | | | | - B S Guruprasada
- Department of Prosthodontics, Command Military Dental Centre Chandigarh, Chandigarh, India
| |
Collapse
|
15
|
Thimmegowda U, Prasanna P, Athimuthu A, Bhat PK, Puttashamachari Y. A Nonsyndromic Autosomal Dominant Oligodontia with A Novel Mutation of PAX9-A Clinical and Genetic Report. J Clin Diagn Res 2015; 9:ZD08-10. [PMID: 26266225 DOI: 10.7860/jcdr/2015/13173.6049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/30/2015] [Indexed: 11/24/2022]
Abstract
Oligodontia is congenital absence of one or more teeth which has familial abnormality and attributable to various mutations or polymorphisms of genes often associated with malformative syndromes. The present case reports a rare case of non syndromic oligodontia in an 8-year-old girl with missing 14 permanent teeth excluding third molars in mixed dentition. It is a rare finding which has not been frequently documented in Indian children. Mutations in MSX1 and PAX9 have been described in families in which inherited oligodontia characteristically involves permanent incisors, lateral incisors, premolars and molars. Our study analysed one large family with dominantly inherited oligodontia clinically and genetically. This phonotype is distinct from oligodontia phenotypes associated with mutations in PAX9. Sequencing of the PAX9 revealed a novel mutation in the paired domain of the molecule. The multiple sequence alignment and SNP analysis of the PAX9 exon 2 revealed two mutations.
Collapse
Affiliation(s)
- Umapathy Thimmegowda
- Reader, Department of Pedodontics & Preventive Dentistry, Rajarajeswari Dental College and Hospital , #14 Ramohallicross Kumbalgodu, Mysore Road, Bangalore, Karnataka, India
| | - Praveen Prasanna
- Professor, Department of Pedodontics & Preventive Dentistry, DA Pandu Memorial R V Dental College and Hospital , Bangalore, Karnataka, India
| | - Anantharaj Athimuthu
- Professor and Head, Department of Pedodontics & Preventive Dentistry, DA Pandu Memorial R V Dental College and Hospital , Bangalore, Karnataka, India
| | - Prasanna Kumar Bhat
- Senior Lecturer, Department of Pedodontics & Preventive Dentistry, Rajarajeswari Dental College and Hospital , #14 Ramohallicross Kumbalgodu, Mysore Road, Bangalore, Karnataka, India
| | - Yogish Puttashamachari
- Senior Lecturer, Department of Oral Pathology & Microbiology, Sharavathi Dental College and Hospital , Shimoga, Karnataka, India
| |
Collapse
|
16
|
Tallón-Walton V, Manzanares-Céspedes MC, Carvalho-Lobato P, Valdivia-Gandur I, Arte S, Nieminen P. Exclusion of PAX9 and MSX1 mutation in six families affected by tooth agenesis. A genetic study and literature review. Med Oral Patol Oral Cir Bucal 2014; 19:e248-54. [PMID: 24316698 PMCID: PMC4048113 DOI: 10.4317/medoral.19173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/07/2013] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE In the present study, it is describe the phenotypical analysis and the mutational screening, for genes PAX9 and MSX1, of six families affected by severe forms of tooth agenesis associated with other dental anomalies and systemic entities. STUDY DESIGN Six families affected by severe tooth agenesis associated with other dental anomalies and systemic entities were included. Oral exploration, radiological examination, medical antecedents consideration and mutational screening for PAX9 and MSX1 were carried out. RESULTS No mutations were discovered despite the fact that numerous teeth were missing. An important phenotypical variability was observed within the probands, not being possible to establish a parallelism with the patterns associated to previously described PAX9 and MSX1 mutations. CONCLUSIONS; These results bring us to conclude that probably other genes can determine phenotypical patterns of dental agenesis in the families studied, different than the ones described in the mutations of PAX9 and MSX1. Moreover, epigenetic factors can be involved, as those that can reduce gene dosage and other post-transcriptional modulation agents, causing dental agenesis associated or not with systemic anomalies.
Collapse
Affiliation(s)
- Victoria Tallón-Walton
- Human Anatomy and Embryology Unit, Campus de Bellvitge, Barcelona University, 5305, Pavelló de Govern, 5a planta, Feixa Llarga, s/n, 08907 L'Hospitalet del Llobregat, Barcelona, Spain,
| | | | | | | | | | | |
Collapse
|
17
|
Blake JA, Ziman MR. Pax genes: regulators of lineage specification and progenitor cell maintenance. Development 2014; 141:737-51. [PMID: 24496612 DOI: 10.1242/dev.091785] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pax genes encode a family of transcription factors that orchestrate complex processes of lineage determination in the developing embryo. Their key role is to specify and maintain progenitor cells through use of complex molecular mechanisms such as alternate RNA splice forms and gene activation or inhibition in conjunction with protein co-factors. The significance of Pax genes in development is highlighted by abnormalities that arise from the expression of mutant Pax genes. Here, we review the molecular functions of Pax genes during development and detail the regulatory mechanisms by which they specify and maintain progenitor cells across various tissue lineages. We also discuss mechanistic insights into the roles of Pax genes in regeneration and in adult diseases, including cancer.
Collapse
Affiliation(s)
- Judith A Blake
- School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | | |
Collapse
|
18
|
Klein OD, Oberoi S, Huysseune A, Hovorakova M, Peterka M, Peterkova R. Developmental disorders of the dentition: an update. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2013; 163C:318-32. [PMID: 24124058 DOI: 10.1002/ajmg.c.31382] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dental anomalies are common congenital malformations that can occur either as isolated findings or as part of a syndrome. This review focuses on genetic causes of abnormal tooth development and the implications of these abnormalities for clinical care. As an introduction, we describe general insights into the genetics of tooth development obtained from mouse and zebrafish models. This is followed by a discussion of isolated as well as syndromic tooth agenesis, including Van der Woude syndrome (VWS), ectodermal dysplasias (EDs), oral-facial-digital (OFD) syndrome type I, Rieger syndrome, holoprosencephaly, and tooth anomalies associated with cleft lip and palate. Next, we review delayed formation and eruption of teeth, as well as abnormalities in tooth size, shape, and form. Finally, isolated and syndromic causes of supernumerary teeth are considered, including cleidocranial dysplasia and Gardner syndrome.
Collapse
|
19
|
Mostowska A, Zadurska M, Rakowska A, Lianeri M, Jagodziński PP. NovelPAX9mutation associated with syndromic tooth agenesis. Eur J Oral Sci 2013; 121:403-11. [DOI: 10.1111/eos.12071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Adrianna Mostowska
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan; Poland
| | - Małgorzata Zadurska
- Department of Orthodontics, Institute of Dentistry; The Medical University of Warsaw; Warsaw; Poland
| | - Adriana Rakowska
- Department of Dermatology; Central Clinical Hospital of Ministry of Internal Affaires; Warsaw; Poland
| | - Margarita Lianeri
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan; Poland
| | - Paweł P. Jagodziński
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan; Poland
| |
Collapse
|
20
|
Ruf S, Klimas D, Hönemann M, Jabir S. Genetic background of nonsyndromic oligodontia: a systematic review and meta-analysis. J Orofac Orthop 2013; 74:295-308. [PMID: 23828301 DOI: 10.1007/s00056-013-0138-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 11/02/2012] [Indexed: 12/28/2022]
Abstract
OBJECTIVES The goal of this work was to identify all known gene mutations that have been associated with the development of nonsyndromic oligodontia. METHODS A systematic literature search was performed electronically in two databases (PubMed, Medpilot) supplemented by a hand search. Articles published up to March 2012 were considered. Search terms were combined as follows: oligodontia and genes, oligodontia and mutations, tooth agenesis and genes, and tooth agenesis and mutations. A meta-analysis of the data was conducted based on the Tooth Agenesis Code (TAC). RESULTS Seven genes are currently known to have a potential for causing nonsyndromic oligodontia. All these genes vary both in terms of number of identified mutations and in terms of number of documented patients: 33 mutations and 93 patients are on record for PAX9, 10 mutations and 51 patients for EDA, 12 mutations and 33 patients for MSX1, 6 mutations and 17 patients for AXIN2, and 1 mutation in 1 patient for EDARADD, NEMO, and KRT17 each. A total TAC score of 250 was found to have cutoff properties, as 100% of MSX1 and 80% of EDA patients exhibited TAC ≤ 250, whereas 96.9% of PAX9 and 90% of AXIN2 patients exhibited TAC >250. Furthermore, 94.3% of EDA patients but only 28.6% of MSX1 patients exhibited odd-numbered TAC scores in at least one quadrant, and 72.7% of PAX9 but none of the AXIN2 patients were found to show TAC scores of 112 in at least one quadrant. CONCLUSION In order of decreasing frequency, PAX9, EDA, MSX1, AXIN2, EDARADD, NEMO, and KRT17 are the seven genes currently known to have a potential for causing nonsyndromic oligodontia. TAC scores enabled us to identify an association between oligodontia phenotypes and genotypes in the patients covered by this meta-analysis.
Collapse
Affiliation(s)
- Sabine Ruf
- Department of Orthodontics, Medical Center for Dental and Oral Medicine, Justus-Liebig-Universität Gießen, Germany.
| | | | | | | |
Collapse
|
21
|
Boeira Junior BR, Echeverrigaray S. Novel missense mutation in PAX9 gene associated with familial tooth agenesis. J Oral Pathol Med 2012; 42:99-105. [DOI: 10.1111/j.1600-0714.2012.01193.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Boeira Junior BR, Echeverrigaray S. Polymorphism in the MSX1 gene in a family with upper lateral incisor agenesis. Arch Oral Biol 2012; 57:1423-8. [PMID: 22591773 DOI: 10.1016/j.archoralbio.2012.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 04/06/2012] [Accepted: 04/22/2012] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The MSX1 gene plays a key role in odontogenesis regulation, particularly during early stages. Since only a few genetic variants have thus far been associated with non-syndromic tooth agenesis, we screened for mutations in this gene, aiming to detect a relationship between genotype and phenotype. DESIGN The sample consisted of one proband with non-syndromic hypodontia involving upper lateral incisors, three relatives and ten unaffected controls. The proband and two affected relatives showed the same phenotype. DNA was extracted from buccal epithelial cells, and direct sequencing was performed. The two exons of MSX1 were first sequenced in the proband. When an alteration was detected, his relatives were investigated by the same method. RESULTS We identified the known polymorphism *6C>T in the homozygous state in all three affected family members. The unaffected father was heterozygous and ten control samples were negative for the *6C>T polymorphism. CONCLUSIONS The *6C>T polymorphism, when homozygous, may contribute to agenesis of upper lateral incisors. However, since the *6C>T polymorphism is quite common, additional genes must be involved in this phenotype.
Collapse
Affiliation(s)
- B R Boeira Junior
- Institute of Biotechnology, Biological Sciences Center, University of Caxias do Sul, Caxias do Sul, Brazil.
| | | |
Collapse
|
23
|
Liang J, Song G, Li Q, Bian Z. Novel missense mutations in PAX9 causing oligodontia. Arch Oral Biol 2012; 57:784-9. [PMID: 22277187 DOI: 10.1016/j.archoralbio.2011.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/12/2011] [Accepted: 12/18/2011] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We investigated the disease-causing gene of oligodontia in Chinese families and analysed the pathogenesis of mutations of this gene that results in oligodontia. METHODS Two families with oligodontia, but of different descent and 100 unrelated healthy controls were enrolled in our study. Genomic DNA was isolated from blood samples. Mutation analysis was performed by amplifying MSX1 and PAX9 exons and sequencing the products. After identifying the mutations, we performed site-directed mutagenesis to generate mutated vectors. The wild-type and mutated PAX9 vectors were then transfected separately to NIH3T3 cells. Immunolocalization, electrophoretic mobility shift assay (EMSA) and luciferase reporter assay were performed to analyse the effects of mutations on protein function. RESULTS We identified two novel missense mutations, Leu27Pro (L27P) and Ile29Thr (I29T) in the paired-domain of PAX9. Analysis of homologous PAX proteins indicated that these two substitutions may affect the function of the PAX9 protein. Results of immunofluorescence and western blot showed that the mutations did not alter the nuclear localization of PAX9. EMSA and luciferase reporter assays indicated that both the mutated proteins could not bind DNA or transactivate the BMP4 promoter. CONCLUSIONS Two novel missense mutations in PAX9 have been indentified in Chinese families causing oligodontia.
Collapse
Affiliation(s)
- Jia Liang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China
| | | | | | | |
Collapse
|
24
|
Zhu J, Yang X, Zhang C, Ge L, Zheng S. A novel nonsense mutation in PAX9 is associated with sporadic hypodontia. Mutagenesis 2011; 27:313-7. [PMID: 22058014 DOI: 10.1093/mutage/ger080] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The most important events during the regulation of tooth development were inductive interactions between the epithelial and mesenchymal tissues. The expression of Pax9 had been shown to specifically mark the mesenchymal regions at the prospective sites of all teeth prior to any morphological manifestations. Here, we investigated the PAX9 gene as a candidate gene for hypodontia in five unrelated Chinese patients with tooth agenesis. Direct sequencing and restriction enzyme analysis revealed a novel heterozygous mutation c.480C>G (p.160Tyr>X, Y160X) in a patient who was missing 20 permanent teeth (the third molars excluded) and 6 primary teeth. The mutation was a nonsense mutation, leading to a premature stop codon in exon 2 of PAX9 gene. PCR analysis of complementary DNA from cultured lymphocytes of the affected individual could not indicate the complete degradation of the mutated transcript. Promoter reporter assays revealed reduced transcriptional activity of the mutated PAX9 protein suggesting that the severe phenotype may result from haploinsufficiency of PAX9. In another patient with 15 missing permanent teeth (the third molars excluded), we found the c.219insG mutation previously reported by Stockton.
Collapse
Affiliation(s)
- Junxia Zhu
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
| | | | | | | | | |
Collapse
|
25
|
Londhe SM, Viswambaran M, Kumar P. Multidisciplinary Management of Oligodontia. Med J Armed Forces India 2011; 64:67-9. [PMID: 27408085 DOI: 10.1016/s0377-1237(08)80153-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 08/25/2007] [Indexed: 02/01/2023] Open
Affiliation(s)
| | - M Viswambaran
- Graded Specialist (Prosthodontics), MDC Base Hospital, Delhi Cantt
| | - P Kumar
- Graded Specialist (Orthodontics), IMTRAT, C/o 99APO
| |
Collapse
|
26
|
Wang J, Jian F, Chen J, Wang H, Lin Y, Yang Z, Pan X, Lai W. Sequence analysis of PAX9, MSX1 and AXIN2 genes in a Chinese oligodontia family. Arch Oral Biol 2011; 56:1027-34. [PMID: 21530942 DOI: 10.1016/j.archoralbio.2011.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 02/25/2011] [Accepted: 03/30/2011] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The goal of our research was to look into the clinical traits and genetic mutations in nonsyndromic oligodontia in a Chinese family and to gain insight into the role of mutations of PAX9, MSX1 and AXIN2 in oligodontia phenotypes. MATERIALS AND METHODS 6 subjects from a family underwent complete oral examination, including panoramic radiographs. Retrospective data were reviewed and blood samples were collected. PCR primers for PAX9, MSX1, and AXIN2 were designed through the Oligo Primer Analysis Software. PCR products were purified and sequenced using the BigDye Terminator Kit and analysed by the 3730 DNA Analyzer. RESULTS The proband missed 4 permanent canines, 2 permanent maxillary lateral incisors, 2 permanent mandibular lateral incisors, and 2 permanent mandibular central incisors, whilst his maternal grandfather lacked only 2 permanent mandibular central incisors. Moreover, the size of some permanent teeth appeared smaller than normal values of crown width of Chinese people. Oligodontia and abnormalities of teeth were not present in other family members. Radiographic examination showed that the proband and the rest of family members retained all germs of the third molars. There was one known mutation A240P (rs4904210) of PAX9 in the coding region in the proband and the maternal family members (II-2, II-3, and II-4), which possibly contributed to structural and functional changes of proteins. No mutations were identified in MSX1 and AXIN2. CONCLUSIONS Our findings may imply that the PAX9 A240P mutation is a risk factor for oligodontia in the Chinese population. A240P is likely to be a genetic cause of oligodontia though previous literature suggested it as a polymorphism only.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China College of Stomatology, Sichuan University, Chengdu, Sichuan Province, PR China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kubicki W, Walczak R, Dziuban JA. Miniature instrument for lab-on-a-chip capillary gel electrophoresis of DNA utilizing temperature control technique. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.proeng.2011.12.305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
Mendoza-Fandino GA, Gee JM, Ben-Dor S, Gonzalez-Quevedo C, Lee K, Kobayashi Y, Hartiala J, Myers RM, Leal SM, Allayee H, Patel PI. A novel g.-1258G>A mutation in a conserved putative regulatory element of PAX9 is associated with autosomal dominant molar hypodontia. Clin Genet 2010; 80:265-72. [PMID: 21443745 DOI: 10.1111/j.1399-0004.2010.01529.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations in the transcription factor PAX9 which plays a critical role in the switching of odontogenic potential from the epithelium to the mesenchyme during tooth development cause autosomal dominant non-syndromic hypodontia primarily affecting molars. Linkage analysis on a family segregating autosomal dominant molar hypodontia with markers flanking and within PAX9 yielded a maximum multipoint LOD score of 3.6. No sequence variants were detected in the coding or 5'- and 3'-untranslated regions (UTRs) of PAX9. However, we identified a novel g.-1258G>A sequence variant in all affected individuals of the family but not in the unaffected family members or in 3088 control chromosomes. This mutation is within a putative 5'-regulatory sequence upstream of PAX9 highly conserved in primates, somewhat conserved in ungulates and carnivores but not conserved in rodents. Bioinformatics analysis of the sequence determined that there was no abolition or creation of a putative binding site for known transcription factors. Based on our previous findings that haploinsufficiency for PAX9 leads to hypodontia, we postulate that the g.-1258G>A variant reduces the expression of PAX9 which underlies the hypodontia phenotype in this family.
Collapse
Affiliation(s)
- G A Mendoza-Fandino
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nieminen P. Genetic basis of tooth agenesis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312B:320-42. [PMID: 19219933 DOI: 10.1002/jez.b.21277] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tooth agenesis or hypodontia, failure to develop all normally developing teeth, is one of the most common developmental anomalies in man. Common forms, including third molar agenesis and hypodontia of one or more of the incisors and premolars, constitute the great majority of cases. They typically affect those teeth that develop latest in each tooth class and these teeth are also most commonly affected in more severe and rare types of tooth agenesis. Specific vulnerability of the last developing teeth suggests that agenesis reflects quantitative defects during dental development. So far molecular genetics has revealed the genetic background of only rare forms of tooth agenesis. Mutations in MSX1, PAX9, AXIN2 and EDA have been identified in familial severe agenesis (oligodontia) and mutations in many other genes have been identified in syndromes in which tooth agenesis is a regular feature. Heterozygous loss of function mutations in many genes reduce the gene dose, whereas e.g. in hypohidrotic ectodermal dysplasia (EDA) the complete inactivation of the partially redundant signaling pathway reduces the signaling centers. Although these mechanisms involve quantitative disturbances, the phenotypes associated with mutations in different genes indicate that in addition to an overall reduction of odontogenic potential, tooth class-specific and more complex mechanisms are also involved. Although several of the genes so far identified in rare forms of tooth agenesis are being studied as candidate genes of common third molar agenesis and incisor and premolar hypodontia, it is plausible that novel genes that contribute to these phenotypes will also become identified.
Collapse
Affiliation(s)
- Pekka Nieminen
- Institute of Dentistry, Biomedicum, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
30
|
Wang Y, Groppe JC, Wu J, Ogawa T, Mues G, D'Souza RN, Kapadia H. Pathogenic mechanisms of tooth agenesis linked to paired domain mutations in human PAX9. Hum Mol Genet 2009; 18:2863-74. [PMID: 19429910 DOI: 10.1093/hmg/ddp221] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mutations in the paired-domain transcription factor PAX9 are associated with non-syndromic tooth agenesis that preferentially affects posterior dentition. Of the 18 mutations identified to date, eight are phenotypically well-characterized missense mutations within the DNA-binding paired domain. We determined the structural and functional consequences of these paired domain missense mutations and correlated our findings with the associated dental phenotype variations. In vitro testing included subcellular localization, protein-protein interactions between MSX1 and mutant PAX9 proteins, binding of PAX9 mutants to a DNA consensus site and transcriptional activation from the Pax9 effector promoters Bmp4 and Msx1 with and without MSX1 as co-activator. All mutant PAX9 proteins were localized in the nucleus of transfected cells and physically interacted with MSX1 protein. Three of the mutants retained the ability to bind the consensus paired domain recognition sequence; the others were unable or only partly able to interact with this DNA fragment and also showed a similarly impaired capability for activation of transcription from the Msx1 and Bmp4 promoters. For seven of the eight mutants, the degree of loss of DNA-binding and promoter activation correlated quite well with the severity of the tooth agenesis pattern seen in vivo. One of the mutants however showed neither reduction in DNA-binding nor decrease in transactivation; instead, a loss of responsiveness to synergism with MSX1 in target promoter activation and a dominant negative effect when expressed together with wild-type PAX9 could be observed. Our structure-based studies, which modeled DNA binding and subdomain stability, were able to predict functional consequences quite reliably.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biomedical Sciences, Texas A&M University Health Science Center, Baylor College of Dentistry, Dallas, TX 75246, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Guala A, Falco V, Breedveld G, De Filippi P, Danesino C. Deletion of PAX9 and oligodontia: a third family and review of the literature. Int J Paediatr Dent 2008; 18:441-5. [PMID: 18445003 DOI: 10.1111/j.1365-263x.2008.00915.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This study was conducted to report a family affected by benign hereditary chorea in which a large deletion including TTF1, PAX9, and other genes was identified and results in oligodontia. METHODS Clinical and radiological studies of the two affected members (mother and daughter) were used to describe the oligodontia present in both of them. RESULTS The missing teeth in both patients are described in detail, and these data are compared with the dental anomalies observed in the only two other families with deletions of PAX9 and with the data available for 12 previously reported families carrying different types of PAX9 mutations. CONCLUSIONS There is a clinical relevance for recognizing such families, and offering available therapies since childhood is stressed. Some genotype-phenotype correlations between PAX9 mutations and dental anomalies can be drawn.
Collapse
Affiliation(s)
- Andrea Guala
- SOC Pediatria, Ospedale Castelli, Verbania, Italy
| | | | | | | | | |
Collapse
|
32
|
Wang Y, Wu H, Wu J, Zhao H, Zhang X, Mues G, D'Souza RN, Feng H, Kapadia H. Identification and functional analysis of two novel PAX9 mutations. Cells Tissues Organs 2008; 189:80-7. [PMID: 18701815 DOI: 10.1159/000151448] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The paired-domain transcription factor PAX9 plays a critical role in tooth development, as heterozygous mutations in PAX9 have been shown to be associated with human tooth agenesis. In this study, we report 2 novel missense mutations, gly6arg (G6R) and ser43lys (S43K), in the paired domain of PAX9 in Chinese patients with varying degrees of nonsyndromic tooth agenesis. Excluding third molars, the individual with the G6R mutation was missing 2 mandibular incisors and a maxillary premolar, while the phenotype of individuals with the S43K mutation consisted of peg-shaped upper lateral incisors and missing molars, premolars and canines. As these 2 mutations occur at highly conserved amino acids in the PAX gene family and between different species, we further analyzed the effects of the mutations on the function of the resulting proteins. Immunofluorescence and immunoblotting studies showed that the mutations did not alter nuclear localization in mammalian cells. Gel shift and super shift assays indicate that both mutant proteins bound DNA at a lower level than the normal protein, with G6R having a greater affinity for DNA than S43K. Likewise, the G6R protein was able to transcriptionally activate a Bmp4 promoter construct to a greater extent than S43K. Our finding that the severity of tooth agenesis in the patients was correlated to the DNA-binding capacity of the mutated PAX9 9proteins supports the hypothesis that DNA binding is responsible for the genetic defect.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University System Health Science Center, Dallas, Tex., USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pan Y, Wang L, Ma J, Zhang W, Wang M, Zhong W, Huang Y. PAX9 polymorphisms and susceptibility to sporadic tooth agenesis: a case-control study in southeast China. Eur J Oral Sci 2008; 116:98-103. [PMID: 18353002 DOI: 10.1111/j.1600-0722.2007.00517.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tooth agenesis is one of the most common developmental disorders in humans. The PAX9 gene, which plays an important role in odontogenesis, is associated with familial and sporadic tooth agenesis. A case-control study was performed in 102 subjects with tooth agenesis (cases) and 116 healthy controls. We genotyped four PAX9 gene polymorphisms using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. The allele and genotype frequencies of the four polymorphisms were not significantly different between the controls and the subjects with tooth agenesis. Similar results were observed in a subgroup analysis of test subjects only with mandibular incisor agenesis. Further analysis showed no significant difference in the haplotype distribution between the controls and the subjects with tooth agenesis or mandibular incisor agenesis. However, we found that the AGGC haplotype was associated with a decreased risk of tooth agenesis, compared with the most common haplotype, AGCC (odds ratio, 0.14; 95% confidence interval: 0.00-0.95). These results suggest that the four PAX9 polymorphisms alone have a non-significant main effect on the risk of tooth agenesis but that the AGGC haplotype may have a protective effect associated with a decreased risk of tooth agenesis.
Collapse
Affiliation(s)
- Yongchu Pan
- Dental Research Institute, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Xuan K, Jin F, Liu YL, Yuan LT, Wen LY, Yang FS, Wang XJ, Wang GH, Jin Y. Identification of a novel missense mutation of MSX1 gene in Chinese family with autosomal-dominant oligodontia. Arch Oral Biol 2008; 53:773-9. [PMID: 18374898 DOI: 10.1016/j.archoralbio.2008.02.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 02/07/2008] [Accepted: 02/16/2008] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Oligodontia is defined as the congenital absence of 6 or more permanent teeth excluding the third molar. The occurrence of non-syndromic still remains poorly understood, but in recent years some cases have been reported where mutations or polymorphisms of PAX9 and MSX1 had been associated with non-syndromic oligodontia. The objective of the present work was to study the phenotype and genotype of three generations of a Han Chinese family affected by non-syndromic autosomal-dominant oligodontia. DESIGN We examined all individuals of the oligodontia family by clinical and radiographic examinations. Based on clinical manifestations, candidate genes MSX1 and PAX9 were picked up to analyse and screen mutations. RESULTS Dental evaluation showed that the most commonly missing teeth are the mandibular second premolars, followed by the maxillary second premolars and maxillary lateral incisors, and subsequently the maxillary first premolars. The probability of missing a particular type of tooth is not always bilaterally symmetrical, and differences exist between maxilla and mandible. PCR-SSCP analysis and DNA sequencing revealed a novel missense mutation c.662C>A in a highly conserved homeobox sequence of MSX1 and a known polymorphisms c.347C>G. CONCLUSION Our finding suggests the missense transversion (c.662C>A) and the polymorphisms (c.347C>G) may be responsible for oligodontia phenotype in this Chinese family.
Collapse
Affiliation(s)
- Kun Xuan
- Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, 145 West Changle Road, Xi'an 710032, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hansen L, Kreiborg S, Jarlov H, Niebuhr E, Eiberg H. A novel nonsense mutation in PAX9 is associated with marked variability in number of missing teeth. Eur J Oral Sci 2007; 115:330-3. [PMID: 17697174 DOI: 10.1111/j.1600-0722.2007.00457.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tooth development is under strict genetic control. During the last decade, studies in molecular genetics have led to the identification of gene defects causing the congenital absence of permanent teeth. Analyses of PAX9 and MSX1 in nine families with hypodontia and oligodontia revealed one new PAX9 mutation. A LOD score of Z = 1.8 (theta = 0.0) was obtained for D14S75 close to PAX9 in one three-generation family, and sequencing of the gene identified the nonsense mutation c.433C>T. The mutation results in a truncated PAX9 protein containing the paired domain region as a result of the Q145X stop mutation. The family showed a marked phenotypic variability in the number of missing teeth, ranging from 2 to 15 missing teeth. The highest frequency of missing teeth was found for second molars followed by second premolars.
Collapse
Affiliation(s)
- Lars Hansen
- Department of Cellular and Molecular Medicine and The Wilhelm Johannsen Center for Functional Genome Research, The Panum Insitute, University of Copenhagen, Blegdamsvej 3b, DK 2200 Copenhagen N, Denmark.
| | | | | | | | | |
Collapse
|
36
|
Abstract
The congenital absence of teeth is one of the commonest developmental abnormalities seen in human populations. Familial hypodontia or oligodontia represents an absence of varying numbers of primary and/or secondary teeth as an isolated trait. While much progress has been made in understanding the developmental basis of tooth formation, knowledge of the aetiological basis of inherited tooth loss remains poor. The study of mouse genetics has uncovered a large number of candidate genes for this condition, but mutations in only three have been identified in human pedigrees with familial hypodontia or oligodontia: MSX1, PAX9 and AXIN2. This suggests that these conditions may represent a more complex multifactorial trait, influenced by a combination of gene function, environmental interaction and developmental timing. Completion of the human genome project has made available the DNA sequence of the collected human chromosomes, allowing the localisation of all human genes and, ultimately, determination of their function. Therefore it is likely that our understanding of this complex developmental process will continue to improve, not only during normal development but also when things go wrong.
Collapse
Affiliation(s)
- M T Cobourne
- Department of Orthodontics and Craniofacial Development, King's Dental Institute, Guy's Hospital, London, UK.
| |
Collapse
|
37
|
Gerits A, Nieminen P, De Muynck S, Carels C. Exclusion of coding region mutations in MSX1, PAX9 and AXIN2 in eight patients with severe oligodontia phenotype. Orthod Craniofac Res 2006; 9:129-36. [PMID: 16918677 DOI: 10.1111/j.1601-6343.2006.00367.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE This paper describes the screening of eight patients with severe oligodontia for PAX9 and AXIN2 mutations. SUBJECTS AND METHODS Anamnestic data and a panoramic radiograph were collected to study the phenotype of eight patients with oligodontia and their first-degree relatives. A blood sample was taken for a mutational screening for PAX9 and AXIN2 mutations. RESULTS No mutations were discovered, but a unique nucleotide change in a conserved 5' flanking region of PAX9 was revealed. Earlier screening of the same patients for MSX1 mutations also had a negative outcome. CONCLUSIONS Considering the discrepancy between the high incidence rate of agenesis and the relatively small number of reported causative mutations in PAX9, MSX1 and AXIN2 genes, the genetic contribution to oligodontia probably is much more heterogeneous than expected so far. Therefore negative results, like the present exclusion data, should be published more often in order to get a better appreciation of the relative contribution of these specific mutations causing oligodontia. In this context the exact number of tested probands also should be mentioned at all cases. Recent evidence of PAX9-MSX1 protein interactions in odontogenesis as well as other genes and developmental factors should receive more attention.
Collapse
Affiliation(s)
- A Gerits
- Department of Orthodontics, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
38
|
Mostowska A, Biedziak B, Trzeciak WH. A novel c.581C>T transition localized in a highly conserved homeobox sequence of MSX1: is it responsible for oligodontia? J Appl Genet 2006; 47:159-64. [PMID: 16682758 DOI: 10.1007/bf03194616] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Even though selective tooth agenesis is the most common developmental anomaly of human dentition, its genetic background still remains poorly understood. To date, familial as well as sporadic forms of both hypodontia and oligodontia have been associated with mutations or polymorphisms of MSX1, PAX9, AXIN2 and TGFa, whose protein products play a crucial role in odontogenesis. In the present report we described a novel mutation of MSX1, which might be responsible for the lack of 14 permanent teeth in our proband. However, this c.581C>T transition, localized in a highly conserved homeobox sequence of MSX1, was identified also in 2 healthy individuals from the proband's family. Our finding suggests that this transition might be the first described mutation of MSX1 that might be responsible for oligodontia and showing incomplete penetrance. It may also support the view that this common anomaly of human dentition might be an oligogenic trait caused by simultaneous mutations of different genes.
Collapse
Affiliation(s)
- Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, University of Medical Sciences, Swiecickiego 6, 60-781 Poznań, Poland.
| | | | | |
Collapse
|