1
|
Biswal SR, Kumar A, Muthuswamy S, Kumar S. Genetic components of microdeletion syndromes and their role in determining schizophrenia traits. Mol Biol Rep 2024; 51:804. [PMID: 39001960 DOI: 10.1007/s11033-024-09731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/17/2024] [Indexed: 07/15/2024]
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by various symptoms such as hallucinations, delusions, and disordered thinking. The etiology of this disease is unknown; however, it has been linked to many microdeletion syndromes that are likely to contribute to the pathology of schizophrenia. In this review we have comprehensively analyzed the role of various microdeletion syndromes, like 3q29, 15q13.3, and 22q11.2, which are known to be involved with schizophrenia. A variety of factors lead to schizophrenia phenotypes, but copy number variants that disrupt gene regulation and impair brain function and cognition are one of the causes that have been identified. Multiple case studies have shown that loss of one or more genes in the microdeletion regions lead to brain activity defects. In this article, we present a coherent paradigm that connects copy number variations (CNVs) to numerous neurological and behavioral abnormalities associated with schizophrenia. It would be helpful in understanding the different aspects of the microdeletions and how they contribute in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Smruti Rekha Biswal
- Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Srinivasan Muthuswamy
- Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India.
| | - Santosh Kumar
- Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India.
| |
Collapse
|
2
|
Clinical and molecular cytogenetic description of a female patient with de novo 18q inversion duplication/deletion. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Larroya M, Tortajada M, Mensión E, Pauta M, Rodriguez-Revenga L, Borrell A. Have maternal or paternal ages any impact on the prenatal incidence of genomic copy number variants associated with fetal structural anomalies? PLoS One 2021; 16:e0253866. [PMID: 34242293 PMCID: PMC8270131 DOI: 10.1371/journal.pone.0253866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to determine whether maternal or paternal ages have any impact on the prenatal incidence of genomic copy number variants (CNV) in fetuses with structural anomalies. We conducted a non-paired case-control study (1:2 ratio) among pregnancies undergoing chromosomal microarray analysis (CMA) because of fetal ultrasound anomalies, from December 2012 to May 2020. Pregnancies with any pathogenic copy number variant (CNV), either microdeletion or microduplication, were defined as cases. Controls were selected as the next two pregnancies with the same indication for CMA but with a normal result. Logistic regression was used, adjusting by use of assisted reproductive technology (ART) and parental smoking. Stratified analysis was performed according to CNV type (de novo/inherited and recurrent/non-recurrent). The study included 189 pregnancies: 63 cases and 126 controls. Mean maternal age in cases was 33.1 (SD 4.6) years and 33.9 (SD 6.0) years in controls. Mean paternal mean age was 34.5 (SD 4.8) years in cases and 35.8 (SD 5.8) years in controls. No significant differences in maternal or paternal age were observed, neither in stratified analysis according to the CNV type. Moreover, the proportion of cases were not significantly different between non-advanced and advanced ages, either considering paternal or maternal ages. The presence of pathogenic CNV at CMA in fetuses with structural anomalies was not found to be associated with advanced paternal or maternal age.
Collapse
Affiliation(s)
- Marta Larroya
- BCNatal—Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatologia, IDIBAPS, Fetal i+D Fetal Medicine Research and Centre for Biomedical Research on Rare Diseases (CIBER-ER), University of Barcelona, Barcelona, Catalonia, Spain
- * E-mail: (ML); (AB)
| | - Marta Tortajada
- BCNatal—Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatologia, IDIBAPS, Fetal i+D Fetal Medicine Research and Centre for Biomedical Research on Rare Diseases (CIBER-ER), University of Barcelona, Barcelona, Catalonia, Spain
| | - Eduard Mensión
- BCNatal—Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatologia, IDIBAPS, Fetal i+D Fetal Medicine Research and Centre for Biomedical Research on Rare Diseases (CIBER-ER), University of Barcelona, Barcelona, Catalonia, Spain
| | - Montse Pauta
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Laia Rodriguez-Revenga
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Barcelona, Catalonia, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Borrell
- BCNatal—Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatologia, IDIBAPS, Fetal i+D Fetal Medicine Research and Centre for Biomedical Research on Rare Diseases (CIBER-ER), University of Barcelona, Barcelona, Catalonia, Spain
- * E-mail: (ML); (AB)
| |
Collapse
|
4
|
Mosley TJ, Johnston HR, Cutler DJ, Zwick ME, Mulle JG. Sex-specific recombination patterns predict parent of origin for recurrent genomic disorders. BMC Med Genomics 2021; 14:154. [PMID: 34107974 PMCID: PMC8190997 DOI: 10.1186/s12920-021-00999-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 06/02/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Structural rearrangements of the genome, which generally occur during meiosis and result in large-scale (> 1 kb) copy number variants (CNV; deletions or duplications ≥ 1 kb), underlie genomic disorders. Recurrent pathogenic CNVs harbor similar breakpoints in multiple unrelated individuals and are primarily formed via non-allelic homologous recombination (NAHR). Several pathogenic NAHR-mediated recurrent CNV loci demonstrate biases for parental origin of de novo CNVs. However, the mechanism underlying these biases is not well understood. METHODS We performed a systematic, comprehensive literature search to curate parent of origin data for multiple pathogenic CNV loci. Using a regression framework, we assessed the relationship between parental CNV origin and the male to female recombination rate ratio. RESULTS We demonstrate significant association between sex-specific differences in meiotic recombination and parental origin biases at these loci (p = 1.07 × 10-14). CONCLUSIONS Our results suggest that parental origin of CNVs is largely influenced by sex-specific recombination rates and highlight the need to consider these differences when investigating mechanisms that cause structural variation.
Collapse
Affiliation(s)
- Trenell J Mosley
- Graduate Program in Genetics and Molecular Biology, Laney Graduate School, Emory University, 201 Dowman Drive, Atlanta, GA, 30322, USA
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Whitehead Building Suite 300, Atlanta, GA, 30322, USA
| | - H Richard Johnston
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Whitehead Building Suite 300, Atlanta, GA, 30322, USA
- Emory Integrated Computational Core, Emory University, 101 Woodruff Circle, Atlanta, GA, 30322, USA
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Whitehead Building Suite 300, Atlanta, GA, 30322, USA
| | - Michael E Zwick
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Whitehead Building Suite 300, Atlanta, GA, 30322, USA
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Drive, Atlanta, GA, 30322, USA
| | - Jennifer G Mulle
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Whitehead Building Suite 300, Atlanta, GA, 30322, USA.
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, 30322, USA.
| |
Collapse
|
5
|
Optical mapping of the 22q11.2DS region reveals complex repeat structures and preferred locations for non-allelic homologous recombination (NAHR). Sci Rep 2020; 10:12235. [PMID: 32699385 PMCID: PMC7376033 DOI: 10.1038/s41598-020-69134-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/03/2020] [Indexed: 12/27/2022] Open
Abstract
The most prevalent microdeletion in humans occurs at 22q11.2, a region rich in chromosome-specific low copy repeats (LCR22s). The structure of this region has defied elucidation due to its size, regional complexity, and haplotype diversity, and is not well represented in the human genome reference. Most individuals with 22q11.2 deletion syndrome (22q11.2DS) carry a de novo hemizygous deletion of ~ 3 Mbp occurring by non-allelic homologous recombination (NAHR) mediated by LCR22s. In this study, optical mapping has been used to elucidate LCR22 structure and variation in 88 individuals in thirty 22q11.2DS families to uncover potential risk factors for germline rearrangements leading to 22q11.2DS offspring. Families were optically mapped to characterize LCR22 structures, NAHR locations, and genomic signatures associated with the deletion. Bioinformatics analyses revealed clear delineations between LCR22 structures in normal and deletion-containing haplotypes. Despite no explicit whole-haplotype predisposing configurations being identified, all NAHR events contain a segmental duplication encompassing FAM230 gene members suggesting preferred recombination sequences. Analysis of deletion breakpoints indicates that preferred recombinations occur between FAM230 and specific segmental duplication orientations within LCR22A and LCR22D, ultimately leading to NAHR. This work represents the most comprehensive analysis of 22q11.2DS NAHR events demonstrating completely contiguous LCR22 structures surrounding and within deletion breakpoints.
Collapse
|
6
|
Xu M, Ji Y, Zhang T, Jiang X, Fan Y, Geng J, Li F. Clinical Application of Chromosome Microarray Analysis in Han Chinese Children with Neurodevelopmental Disorders. Neurosci Bull 2018; 34:981-991. [PMID: 29948840 DOI: 10.1007/s12264-018-0238-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/05/2018] [Indexed: 02/04/2023] Open
Abstract
Chromosome microarray analysis (CMA) is a cost-effective molecular cytogenetic technique that has been used as a first-line diagnostic test in neurodevelopmental disorders in the USA since 2011. The impact of CMA results on clinical practice in China is not yet well studied, so we aimed to better evaluate this phenomenon. We analyzed the CMA results from 434 patients in our clinic, and characterized their molecular diagnoses, clinical features, and follow-up clinical actions based on these results. The overall diagnostic yield for our patients was 13.6% (59 out of 434). This gave a detection rate of 14.7% for developmental delay/intellectual disability (DD/ID, 38/259) and 12% for autism spectrum disorders (ASDs, 21/175). Thirty-three recurrent (n ≥ 2) variants were found, distributed at six chromosomal loci involving known chromosome syndromes (such as DiGeorge, Williams Beuren, and Angelman/Prader-Willi syndromes). The spectrum of positive copy number variants in our study was comparable to that reported in Caucasian populations, but with specific characteristics. Parental origin tests indicated an effect involving a significant maternal transmission bias to sons. The majority of patients with positive results (94.9%) had benefits, allowing earlier diagnosis (36/59), prioritized full clinical management (28/59), medication changes (7/59), a changed prognosis (30/59), and prenatal genetic counseling (15/59). Our results provide information on de novo mutations in Chinese children with DD/ID and/or ASDs. Our data showed that microarray testing provides immediate clinical utility for patients. It is expected that the personalized medical care of children with developmental disabilities will lead to improved outcomes in long-term developmental potential. We advocate using the diagnostic yield of clinically actionable results to evaluate CMA as it provides information of both clinical validity and clinical utility.
Collapse
Affiliation(s)
- Mingyu Xu
- Developmental and Behavioral Pediatric & Child Primary Care Department, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yiting Ji
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ting Zhang
- Developmental and Behavioral Pediatric & Child Primary Care Department, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaodong Jiang
- Developmental and Behavioral Pediatric & Child Primary Care Department, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Yun Fan
- Developmental and Behavioral Pediatric & Child Primary Care Department, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Juan Geng
- Hangzhou Joingenome Diagnostics, Hangzhou, 311188, China.
| | - Fei Li
- Developmental and Behavioral Pediatric & Child Primary Care Department, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China. .,Shanghai Institute of Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
7
|
Pronounced maternal parent-of-origin bias for type-1 NF1 microdeletions. Hum Genet 2018; 137:365-373. [PMID: 29730711 DOI: 10.1007/s00439-018-1888-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/24/2018] [Indexed: 01/02/2023]
Abstract
Neurofibromatosis type 1 (NF1) is caused, in 4.7-11% of cases, by large deletions encompassing the NF1 gene and its flanking regions within 17q11.2. Different types of large NF1 deletion occur which are distinguishable by their breakpoint location and underlying mutational mechanism. Most common are the type-1 NF1 deletions of 1.4 Mb which exhibit recurrent breakpoints caused by nonallelic homologous recombination (NAHR), also termed unequal crossover. Here, we analyzed 37 unrelated families of patients with de novo type-1 NF1 deletions by means of short tandem repeat (STR) profiling to determine the parental origin of the deletions. We observed that 33 of the 37 type-1 deletions were of maternal origin (89.2% of cases; p < 0.0001). Analysis of the patients' siblings indicated that, in 14 informative cases, ten (71.4%) deletions resulted from interchromosomal unequal crossover during meiosis I. Our findings indicate a strong maternal parent-of-origin bias for type-1 NF1 deletions. A similarly pronounced maternal transmission bias has been reported for recurrent copy number variants (CNVs) within 16p11.2 associated with autism, but not so far for any other NAHR-mediated pathogenic CNVs. Region-specific genomic features are likely to be responsible for the maternal bias in the origin of both the 16p11.2 CNVs and type-1 NF1 deletions.
Collapse
|
8
|
Kovaleva NV, Cotter PD. Mosaicism for structural non-centromeric autosomal rearrangements in disease-defined carriers: sex differences in the rearrangements profile and maternal age distributions. Mol Cytogenet 2017; 10:18. [PMID: 28533817 PMCID: PMC5438540 DOI: 10.1186/s13039-017-0321-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/13/2017] [Indexed: 02/08/2023] Open
Abstract
Background Mosaicism for an autosomal structural rearrangement (Rea) associated with clinical manifestation of chromosomal imbalance is rare. Consequently, there is a lack of basic epidemiological characterization of this kind of mosaicism, such as population rate, cytogenetic profile of Reas involved, maternal age distribution, and sex (male to female) ratio among Rea carriers. The objectives of the present study were: (i) determination of the Rea profile in clinically affected individuals, (ii) comparative analysis of the cytogenetic profile and involvement of single chromosomes to rearrangements in affected and previously reported asymptomatic carriers, (iii) analysis of the male/female ratio in carriers of various types of Rea, and, (iv) examination of parental ages distributions according to carriers’ sex. Results Two hundred and forty six disease-defined cases of mosaicism for autosomal non-centromeric Rea with a normal cell line of known sex were identified from the literature. There was a significant difference in single chromosome involvements compared to structural rearrangements between affected and asymptomatic carriers of unbalanced Rea, p =0.0030. In affected carriers, chromosome 18 was most frequently involved in structural rearrangements (12.6% of 246 instances). The least frequently rearranged were chromosomes 16 and 21 (0.8% and 1.2%, respectively). In asymptomatic carriers, the most frequently rearranged were chromosomes 5 and 21 (13% of 51 instances each). Among carriers of “loss” or “gain/loss” of genomic material, a female predominance was observed (50 M/89 F, different from population ratio of 1.06 at p = 0.0002). Carriers of either “gain” or balanced Rea demonstrated typical male predominance (41 M/30 F and 18 M/16 F), not different from 1.06. Maternal and paternal ages were reported in 129 and in 109 cases, respectively. There was a significant difference in maternal age distribution between male and female carriers, with mean maternal age of 25.2 years vs 28.3 years (p = 0.032). However, there was no difference in paternal age, with mean paternal age of 29.4 in both groups. Conclusion The data suggested that structural rearrangements of certain chromosomes involved in mosaicism may not be tolerated by the embryo, while others have higher survival prospects. Maternal age appears to be a risk factor for somatic mosaicism of structural Rea in female offspring or might cause an adverse effect on male embryo viability. Electronic supplementary material The online version of this article (doi:10.1186/s13039-017-0321-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natalia V Kovaleva
- Academy of Molecular Medicine, Mytniskaya str. 12/44, St. Petersburg, 191144 Russian Federation
| | - Philip D Cotter
- Department of Pediatrics, University of California San Francisco, San Francisco, CA USA.,ResearchDx Inc., Irvine, CA USA
| |
Collapse
|
9
|
Ma R, Deng L, Xia Y, Wei X, Cao Y, Guo R, Zhang R, Guo J, Liang D, Wu L. A clear bias in parental origin of de novo pathogenic CNVs related to intellectual disability, developmental delay and multiple congenital anomalies. Sci Rep 2017; 7:44446. [PMID: 28322228 PMCID: PMC5359547 DOI: 10.1038/srep44446] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/08/2017] [Indexed: 12/28/2022] Open
Abstract
Copy number variation (CNV) is of great significance in human evolution and disorders. Through tracing the parent-of-origin of de novo pathogenic CNVs, we are expected to investigate the relative contributions of germline genomic stability on reproductive health. In our study, short tandem repeat (STR) and single nucleotide polymorphism (SNP) were used to determine the parent-of-origin of 87 de novo pathogenic CNVs found in unrelated patients with intellectual disability (ID), developmental delay (DD) and multiple congenital anomalies (MCA). The results shown that there was a significant difference on the distribution of the parent-of-origin for different CNVs types (Chi-square test, p = 4.914 × 10−3). An apparently paternal bias existed in deletion CNVs and a maternal bias in duplication CNVs, indicating that the relative contribution of paternal germline variations is greater than that of maternal to the origin of deletions, and vice versa to the origin of duplications. By analyzing the sequences flanking the breakpoints, we also confirmed that non-allelic homologous recombination (NAHR) served as the major mechanism for the formation of recurrent CNVs whereas non-SDs-based mechanisms played a part in generating rare non-recurrent CNVs and might relate to the paternal germline bias in deletion CNVs.
Collapse
Affiliation(s)
- Ruiyu Ma
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, P.R. China
| | - Linbei Deng
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yan Xia
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, P.R. China
| | - Xianda Wei
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yingxi Cao
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, P.R. China
| | - Ruolan Guo
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, P.R. China
| | - Rui Zhang
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, P.R. China
| | - Jing Guo
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, P.R. China
| | - Desheng Liang
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, P.R. China
| | - Lingqian Wu
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
10
|
Vianna GS, Freitas ML, Oliveira VTD, Pietra RX, Gonçalves MDS, Rocha PPO, Monteiro RAC, Ferreira LCA, Xavier RR, Carvalho AM, Lima PRDM, Monteiro MANP, Mateo EC, Giannetti JG, César GDC, Lima JDS, Medeiros PFV, Jehee FS. Identifying CNVs in 15q11q13 and 16p11.2 of Patients with Seizures Increases the Rates of Detecting Pathogenic Changes. Mol Syndromol 2016; 7:329-336. [PMID: 27920636 DOI: 10.1159/000450631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2016] [Indexed: 11/19/2022] Open
Abstract
Chromosomal changes are frequently observed in patients with syndromic seizures. Understanding the genetic etiology of this pathology is crucial for the guidance and genetic counseling of families as well as for the establishment of appropriate treatment. A combination of MLPA kits was used to identify pathogenic CNVs in a group of 70 syndromic patients with seizures. Initially, a screening was performed for subtelomeric changes (MLPA P036 and P070 kits) and for the regions most frequently related to microdeletion/microduplication syndromes (MLPA P064). Subsequently, the MLPA P343 was used to identify alterations in the 15q11q13, 16p11.2, and 22q13 regions. Screening with MLPA P343 allowed a 10-15.7% increase in the detection rate of CNVs reinforcing the importance of investigating changes in 15q11q13 and 16p11.2 in syndromic patients with seizures. We also demonstrated that the MLPA technique is an alternative with a great diagnostic potential, and we proposed its use as part of the initial assessment of syndromic patients with seizures.
Collapse
Affiliation(s)
- Gabrielle S Vianna
- Laboratório de Genética Humana, Instituto de Ensino e Pesquisa da Santa Casa, Belo Horizonte, Brazil
| | - Mariana L Freitas
- Laboratório de Genética Humana, Instituto de Ensino e Pesquisa da Santa Casa, Belo Horizonte, Brazil
| | - Valdirene T de Oliveira
- Laboratório de Genética Humana, Instituto de Ensino e Pesquisa da Santa Casa, Belo Horizonte, Brazil
| | - Rafaella X Pietra
- Laboratório de Genética Humana, Instituto de Ensino e Pesquisa da Santa Casa, Belo Horizonte, Brazil
| | - Michele da S Gonçalves
- Setor de Pesquisa & Desenvolvimento (P&D) do Instituto Hermes Pardini, Vespasiano, Campina Grande, Brazil
| | - Patrícia P O Rocha
- Laboratório de Genética Humana, Instituto de Ensino e Pesquisa da Santa Casa, Belo Horizonte, Brazil
| | - Rejane A C Monteiro
- Laboratório de Genética Humana, Instituto de Ensino e Pesquisa da Santa Casa, Belo Horizonte, Brazil
| | - Luana C A Ferreira
- Laboratório de Genética Humana, Instituto de Ensino e Pesquisa da Santa Casa, Belo Horizonte, Brazil
| | - Rosana R Xavier
- Escola Especializada Joana Martins APAE, Santa Luzia, Campina Grande, Brazil
| | - Andréia M Carvalho
- Escola Especializada Joana Martins APAE, Santa Luzia, Campina Grande, Brazil
| | | | | | - Elvis C Mateo
- Setor de Pesquisa & Desenvolvimento (P&D) do Instituto Hermes Pardini, Vespasiano, Campina Grande, Brazil
| | - Juliana G Giannetti
- Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Campina Grande, Brazil
| | | | | | | | - Fernanda S Jehee
- Laboratório de Genética Humana, Instituto de Ensino e Pesquisa da Santa Casa, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Chromosomal microarray analysis in clinical evaluation of neurodevelopmental disorders-reporting a novel deletion of SETDB1 and illustration of counseling challenge. Pediatr Res 2016; 80:371-81. [PMID: 27119313 PMCID: PMC5382808 DOI: 10.1038/pr.2016.101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/28/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND The pathogenicity of copy number variations (CNV) in neurodevelopmental disorders is supported by research literature. However, few studies have evaluated the utility and counseling challenges of CNV analysis in clinic. METHODS We analyzed the findings of CNV studies from a cohort referred for genetics evaluation of autism spectrum disorders (ASD), developmental disability (DD), and intellectual disability (ID). RESULTS Twenty-two CNV in 21 out of 115 probands are considered to be pathogenic (18.3%). Five CNV are likely pathogenic and 22 CNV are variants of unknown significance (VUS). We have found seven cases with more than two CNV and two with a complex rearrangement of the 22q13.3 Phelan-McDermid syndrome region. We identified a new and de novo 1q21.3 deletion that encompasses SETDB1, a gene encoding methylates histone H3 on lysine-9 (H3K9) methyltransferase, in a case with ASD. CONCLUSION We provide evidence to support the value of CNV analysis in etiological evaluation of neurodevelopmental disorders in autism genetics clinic. However, interpretation of the clinical significance and counseling families are still challenging because of the variable penetrance and pleotropic expressivity of CNV. In addition, the identification of a 1q21.3 deletion encompassing SETDB1 provides further support for the role of chromatin modifiers in the etiology of ASD.
Collapse
|
12
|
Vergaelen E, Swillen A, Van Esch H, Claes S, Van Goethem G, Devriendt K. 3 generation pedigree with paternal transmission of the 22q11.2 deletion syndrome: Intrafamilial phenotypic variability. Eur J Med Genet 2015; 58:244-8. [PMID: 25655469 DOI: 10.1016/j.ejmg.2015.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/20/2015] [Indexed: 12/31/2022]
Abstract
In this case report, we present a paternal transmission of a classic 3 Mb 22q11.2 deletion syndrome (22q11.2 DS) in a 3 generation family. In this family a young girl, her father, her uncle and her grandfather were diagnosed with this disorder. All carriers showed phenotypic expression, there were no unaffected siblings in the second or third generation. Presenting symptoms in the patient in first generation (grandfather) were psoriatic arthritis, thrombocytopenia and a right aortic arch. There was no intellectual disability. The second generation uncle was known with a severe intellectual disability, mild facial characteristics, a septal defect and a clubfoot, whereas the second generation father had a tetralogy of Fallot, no intellectual disability and minimal facial characteristics. The third generation daughter had a moderate intellectual disability, hypernasal speech, triphalangeal thumb, severe speech and language development delay, pronounced facial characteristics and a diagnosis of ADHD. It was notable that the expression in the two brothers of the second generation gives two very different clinical phenotypes with a severe intellectual disability in the oldest brother. This report describes a pronounced clinical variability in a 3 generation familial 22q11.2 deletion with paternal transmission. We can assume that several mechanisms play an important role in the heterogeneity and part of the answer should be found in the genetic background underlying the 22q11.2 deletion. In addition in this family the neuropsychiatric phenotype and intellectual disability seem to be associated with a lower level of social and occupational functioning while a congenital heart disease does not. This clinical report illustrates that a detailed description of these patients can be very informative and still increase the knowledge on this heterogeneous syndrome. For the clinicians working with these patients it emphasizes the need for a multidisciplinary approach that takes into account the individual needs.
Collapse
Affiliation(s)
- Elfi Vergaelen
- Centre of Human Genetics, University Hospitals Leuven, Belgium & Department of Human Genetics, KU Leuven, Belgium; Department of Adult Psychiatry, University Psychiatric Centre, KU Leuven, Belgium.
| | - Ann Swillen
- Centre of Human Genetics, University Hospitals Leuven, Belgium & Department of Human Genetics, KU Leuven, Belgium; Department of Kinesiology and Rehabilitation Sciences, KU Leuven, Belgium
| | - Hilde Van Esch
- Centre of Human Genetics, University Hospitals Leuven, Belgium & Department of Human Genetics, KU Leuven, Belgium
| | - Stephan Claes
- Department of Adult Psychiatry, University Psychiatric Centre, KU Leuven, Belgium
| | - Gert Van Goethem
- Het GielsBos, Gierle, Belgium and Department of Neurology, University Hospital of Antwerpen (UZA), Antwerpen, Belgium
| | - Koenraad Devriendt
- Centre of Human Genetics, University Hospitals Leuven, Belgium & Department of Human Genetics, KU Leuven, Belgium
| |
Collapse
|
13
|
Vergés L, Molina O, Geán E, Vidal F, Blanco J. Deletions and duplications of the 22q11.2 region in spermatozoa from DiGeorge/velocardiofacial fathers. Mol Cytogenet 2014; 7:86. [PMID: 25435913 PMCID: PMC4247602 DOI: 10.1186/s13039-014-0086-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/04/2014] [Indexed: 11/12/2022] Open
Abstract
Background DiGeorge/velocardiofacial syndrome (DGS/VCFS) is the most common deletion syndrome in humans. Low copy repeats flanking the 22q11.2 region confer a substrate for non-allelic homologous recombination (NAHR) events leading to rearrangements. This study sought to identify DGS/VCFS fathers with increased susceptibility to deletions and duplications at the 22q11.2 region in spermatozoa and to assess the particular contribution of intra-chromatid and/or inter-chromatid NAHR. Semen samples from nine DGS/VCFS fathers were analyzed by triple-color FISH using a probe combination that discriminated between normal, deleted and duplicated genotypes. Microsatellite analysis were performed in the parents and the affected children to determine the parental origin of the deleted chromosome 22. Results A significant increase in 22q11.2 deletions was observed in the sperm of two out of nine DGS/VCFS fathers (odds ratio 2.03-fold, P < 0.01), and in both cases the deletion in the offspring was transmitted by the father. Patients with significant increases in sperm anomalies presented a disturbed deletion:duplication 1:1 ratio (P < 0.01). Conclusions Altogether, results support that intra-chromatid NAHR is the mechanism responsible for the higher rate of sperm deletions, which is directly related to the transmission of the deleted chromosome 22 to offspring. Accordingly, the screening of sperm anomalies in the 22q11.2 region should be taken into account in the genetic counseling of DGS/VCFS families.
Collapse
Affiliation(s)
- Laia Vergés
- Unitat de Biologia Cellular (Facultat de Biociències). Universitat Autònoma de Barcelona, 08193-Bellaterra, Cerdanyola del Vallès, Spain
| | - Oscar Molina
- Unitat de Biologia Cellular (Facultat de Biociències). Universitat Autònoma de Barcelona, 08193-Bellaterra, Cerdanyola del Vallès, Spain ; Current address: Wellcome Trust Center for Cell Biology, University of Edinburgh, Edinburgh, Scotland United Kingdom
| | - Esther Geán
- Secció de Genètica Clínica. Hospital Universitari Sant Joan de Déu, 08950-Esplugues de Llobregat, Barcelona, Spain
| | - Francesca Vidal
- Unitat de Biologia Cellular (Facultat de Biociències). Universitat Autònoma de Barcelona, 08193-Bellaterra, Cerdanyola del Vallès, Spain
| | - Joan Blanco
- Unitat de Biologia Cellular (Facultat de Biociències). Universitat Autònoma de Barcelona, 08193-Bellaterra, Cerdanyola del Vallès, Spain
| |
Collapse
|
14
|
Jiang YH, Wang Y, Xiu X, Choy KW, Pursley AN, Cheung SW. Genetic diagnosis of autism spectrum disorders: the opportunity and challenge in the genomics era. Crit Rev Clin Lab Sci 2014; 51:249-62. [PMID: 24878448 PMCID: PMC5937018 DOI: 10.3109/10408363.2014.910747] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A genetic etiology for autism spectrum disorders (ASDs) was first suggested from twin studies reported in the 1970s. The identification of gene mutations in syndromic ASDs provided evidence to support a genetic cause of ASDs. More recently, genome-wide copy number variant and sequence analyses have uncovered a list of rare and highly penetrant copy number variants (CNVs) or single nucleotide variants (SNVs) associated with ASDs, which has strengthened the claim of a genetic etiology for ASDs. Findings from research studies in the genetics of ASD now support an important role for molecular diagnostics in the clinical genetics evaluation of ASDs. Various molecular diagnostic assays including single gene tests, targeted multiple gene panels and copy number analysis should all be considered in the clinical genetics evaluation of ASDs. Whole exome sequencing could also be considered in selected clinical cases. However, the challenge that remains is to determine the causal role of genetic variants identified through molecular testing. Variable expressivity, pleiotropic effects and incomplete penetrance associated with CNVs and SNVs also present significant challenges for genetic counseling and prenatal diagnosis.
Collapse
Affiliation(s)
- Yong-Hui Jiang
- Department of Pediatrics and Neurobiology, Duke University School of Medicine, Durham, NC, USA
- Division of Neurology, The Children’s Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Yi Wang
- Division of Neurology, The Children’s Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Xu Xiu
- Division of Child Development and Health, The Children’s Hospital of Fudan University Shanghai, People’s Republic of China
| | - Kwong Wai Choy
- Department of Obstetrics and Gynecology, and Joint Centre with Utrecht University Genetic core, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, People’s Republic of China
| | - Amber Nolen Pursley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sau W. Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
15
|
Increased paternal age and the influence on burden of genomic copy number variation in the general population. Hum Genet 2013; 132:443-50. [DOI: 10.1007/s00439-012-1261-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 12/24/2012] [Indexed: 01/07/2023]
|
16
|
Evaluation of PRDM9 variation as a risk factor for recurrent genomic disorders and chromosomal non-disjunction. Hum Genet 2012; 131:1519-24. [PMID: 22643917 DOI: 10.1007/s00439-012-1180-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 05/15/2012] [Indexed: 01/07/2023]
Abstract
Recent studies have identified PRDM9, a zinc finger (ZF) protein, as a key regulator of meiotic recombination. As both recurrent genomic disorders and chromosomal non-disjunction are known to be associated with specific unusual patterns of recombination, we hypothesized a possible link between PRDM9 ZF variation and susceptibility to microdeletion syndromes and/or trisomy. We sequenced the PRDM9 ZF domain in 271 parents of patients with de novo microdeletions of known parental origin (velocardiofacial syndrome, the 17q21.31 microdeletion syndrome, Prader-Willi/Angelman syndrome and Williams-Beuren syndrome), and in 61 parents of individuals with a supernumerary X chromosome. We compared PRDM9 ZF genotype frequencies between parents in whose germ line the de novo rearrangement occurred and their spouses. We observed a significantly increased frequency (p = 0.006) of PRDM9 variants in parents who transmitted de novo 7q11.23 deletions to their offspring. These data suggest that certain PRDM9 alleles may be associated with an increased susceptibility to recurrent 7q11.23 microdeletions that cause Williams-Beuren syndrome. However, as the majority of parents who transmitted a de novo microdeletion/supernumerary X chromosome to their offspring have the common AA genotype, we conclude that none of the rearrangements we have studied are dependent on specific non-A PRDM9 alleles.
Collapse
|
17
|
Höckner M, Spreiz A, Frühmesser A, Tzschach A, Dufke A, Rittinger O, Kalscheuer V, Singer S, Erdel M, Fauth C, Grossmann V, Utermann G, Zschocke J, Kotzot D. Parental origin of de novo cytogenetically balanced reciprocal non-Robertsonian translocations. Cytogenet Genome Res 2012; 136:242-5. [PMID: 22516930 DOI: 10.1159/000337923] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2012] [Indexed: 11/19/2022] Open
Abstract
De novo cytogenetically balanced reciprocal non-Robertsonian translocations are rare findings in clinical cytogenetics and might be associated with an abnormal phenotype. Knowledge of the parental origin and mechanisms of formation is still limited. By microdissection of the derivative chromosomes and their normal homologs from metaphases followed by microsatellite-mediated marker analysis we identified 7 cases of paternal and 3 cases of maternal origin in a cohort of 10 patients with de novo cytogenetically balanced reciprocal non-Robertsonian translocations. Neither in the maternal nor in the paternal group of our study parental age seems to be increased. Together with the data from the literature our results confirm that the majority of de novo cytogenetically balanced reciprocal translocations are of paternal origin, but the preponderance does not appear to be as distinct as previously thought and the paternal age does not seem to be necessarily a major contributing factor.
Collapse
Affiliation(s)
- M Höckner
- Division of Human Genetics, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Dixit A, McKee S, Mansour S, Mehta SG, Tanteles GA, Anastasiadou V, Patsalis PC, Martin K, McCullough S, Suri M, Sarkar A. 7q11.23 Microduplication: a recognizable phenotype. Clin Genet 2012; 83:155-61. [PMID: 22369319 DOI: 10.1111/j.1399-0004.2012.01862.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Williams-Beuren syndrome is a well-known microdeletion syndrome with a recognizable clinical phenotype. The subtle phenotype of the reciprocal microduplication of the Williams-Beuren critical region has been described recently. We report seven further patients, and a transmitting parent, with 7q11.23 microduplication. All our patients had speech delay, autistic features and facial dysmorphism consistent with the published literature. We conclude that the presence of specific dysmorphic features, including straight, neat eyebrows, thin lips and a short philtrum, in our patients with speech delay and autistic features provides further evidence that the children with 7q11.23 microduplication have a recognizable phenotype.
Collapse
Affiliation(s)
- A Dixit
- Department of Clinical Genetics, Nottingham City Hospital, Nottingham, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Phelan K, McDermid HE. The 22q13.3 Deletion Syndrome (Phelan-McDermid Syndrome). Mol Syndromol 2011; 2:186-201. [PMID: 22670140 DOI: 10.1159/000334260] [Citation(s) in RCA: 283] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The 22q13.3 deletion syndrome, also known as Phelan-McDermid syndrome, is a contiguous gene disorder resulting from deletion of the distal long arm of chromosome 22. In addition to normal growth and a constellation of minor dysmorphic features, this syndrome is characterized by neurological deficits which include global developmental delay, moderate to severe intellectual impairment, absent or severely delayed speech, and neonatal hypotonia. In addition, more than 50% of patients show autism or autistic-like behavior, and therefore it can be classified as a syndromic form of autism spectrum disorders (ASD). The differential diagnosis includes Angelman syndrome, velocardiofacial syndrome, fragile X syndrome, and FG syndrome. Over 600 cases of 22q13.3 deletion syndrome have been documented. Most are terminal deletions of ∼100 kb to >9 Mb, resulting from simple deletions, ring chromosomes, and unbalanced translocations. Almost all of these deletions include the gene SHANK3 which encodes a scaffold protein in the postsynaptic densities of excitatory synapses, connecting membrane-bound receptors to the actin cytoskeleton. Two mouse knockout models and cell culture experiments show that SHANK3 is involved in the structure and function of synapses and support the hypothesis that the majority of 22q13.3 deletion syndrome neurological defects are due to haploinsufficiency of SHANK3, although other genes in the region may also play a role in the syndrome. The molecular connection to ASD suggests that potential future treatments may involve modulation of metabotropic glutamate receptors.
Collapse
Affiliation(s)
- K Phelan
- Hayward Genetics Center and Department of Pediatrics, Tulane University School of Medicine, New Orleans, La., USA
| | | |
Collapse
|
20
|
De novo deletions and duplications detected by array CGH: a study of parental origin in relation to mechanisms of formation and size of imbalance. Eur J Hum Genet 2011; 20:155-60. [PMID: 21952720 DOI: 10.1038/ejhg.2011.182] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We report a large series of 173 patients with physical and/or neurological abnormalities and a de novo imbalance identified by array CGH. Breakpoint intervals were screened for the presence of low copy repeats (LCRs) to distinguish between rearrangements formed by non-allelic homologous recombination (NAHR) and rearrangements formed by other mechanisms. We identified significant differences in size and parental origin between the LCR-mediated and non-LCR groups. Non-LCR imbalances were evenly distributed among the four size intervals we defined, whereas LCR-mediated rearrangements had a narrow size distribution, predominantly between 1 and 5 Mb (P = 0.001). Among the LCR-mediated rearrangements there were equal numbers of maternally and paternally derived cases. In contrast, for the non-LCR rearrangements there was a significant excess of paternal cases (P = 0.024) over a wide size range including below 1 Mb. Our results provide novel evidence that unbalanced chromosome rearrangements are not only more frequent in males, but may also arise through different mechanisms than those seen in females. Although the paternal imbalances identified in our study are evenly distributed throughout the four size groups, there are very few maternal imbalances either <1 Mb or >10 Mb. Furthermore, a lower proportion of paternal imbalances are LCR mediated (13/71) compared with the maternal imbalances (12/30). We hypothesise that imbalances of maternal origin arise predominantly through NAHR during meiosis, while the majority of imbalances of paternal origin arise through male-specific mechanisms other than NAHR. Our data suggest that mitotic mechanisms could be important for the formation of chromosome imbalances; however, we found no association with increased paternal age.
Collapse
|
21
|
Roehl AC, Vogt J, Mussotter T, Zickler AN, Spöti H, Högel J, Chuzhanova NA, Wimmer K, Kluwe L, Mautner VF, Cooper DN, Kehrer-Sawatzki H. Intrachromosomal mitotic nonallelic homologous recombination is the major molecular mechanism underlying type-2 NF1 deletions. Hum Mutat 2011; 31:1163-73. [PMID: 20725927 DOI: 10.1002/humu.21340] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nonallelic homologous recombination (NAHR) is responsible for the recurrent rearrangements that give rise to genomic disorders. Although meiotic NAHR has been investigated in multiple contexts, much less is known about mitotic NAHR despite its importance for tumorigenesis. Because type-2 NF1 microdeletions frequently result from mitotic NAHR, they represent a good model in which to investigate the features of mitotic NAHR. We have used microsatellite analysis and SNP arrays to distinguish between the various alternative recombinational possibilities, thereby ascertaining that 17 of 18 type-2 NF1 deletions, with breakpoints in the SUZ12 gene and its highly homologous pseudogene, originated via intrachromosomal recombination. This high proportion of intrachromosomal NAHR causing somatic type-2 NF1 deletions contrasts with the interchromosomal origin of germline type-1 NF1 microdeletions, whose breakpoints are located within the NF1-REPs (low-copy repeats located adjacent to the SUZ12 sequences). Further, meiotic NAHR causing type-1 NF1 deletions occurs within recombination hotspots characterized by high GC-content and DNA duplex stability, whereas the type-2 breakpoints associated with the mitotic NAHR events investigated here do not cluster within hotspots and are located within regions of significantly lower GC-content and DNA stability. Our findings therefore point to fundamental mechanistic differences between the determinants of mitotic and meiotic NAHR.
Collapse
|
22
|
Dutra RL, Pieri PDC, Teixeira ACD, Honjo RS, Bertola DR, Kim CA. Detection of deletions at 7q11.23 in Williams-Beuren syndrome by polymorphic markers. Clinics (Sao Paulo) 2011; 66:959-64. [PMID: 21808859 PMCID: PMC3129970 DOI: 10.1590/s1807-59322011000600007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 02/28/2011] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Williams-Beuren syndrome (WBS; OMIM 194050) is caused by a hemizygous contiguous gene microdeletion at 7q11.23. Supravalvular aortic stenosis, mental retardation, overfriendliness, and ocular and renal abnormalities comprise typical symptoms in WBS. Although fluorescence in situ hybridization is widely used for diagnostic confirmation, microsatellite DNA markers are considered highly informative and easily manageable. OBJECTIVES This study aimed to test the microsatellite markers for the diagnosis of Williams-Beuren syndrome, to determine the size and parental origin of microdeletion, compare the clinical characteristics between patients with different sizes of the deletion and parental origin. METHODS We studied 97 patients with clinical diagnosis of Williams-Beuren syndrome using five microsatellite markers: D7S1870, D7S489, D7S613, D7S2476 and D7S489_A. RESULTS AND DISCUSSION Using five markers together, the result was informative in all patients. The most informative marker was D7S1870 (78.4%), followed by D7S613 (75.3%), D7S489 (70.1%) and D7S2476 (62.9%). The microdeletion was present in 84 (86.6%) patients and absent in 13 (13.4%) patients. Maternal deletions were found in 52.4% of patients and paternal deletions in 47.6% of patients. The observed size of deletions was 1.55 Mb in 76/ 84 patients (90.5%) and 1.84 Mb in 8/84 patients (9.5%). SVAS as well as ocular and urinary abnormalities were more frequent in the patients with a deletion. There were no clinical differences in relation to either the size or parental origin of the deletion. CONCLUSION Using these five selected microsatellite markers was informative in all patients, thus can be considered an alternative method for molecular diagnosis in Williams-Beuren syndrome.
Collapse
Affiliation(s)
- Roberta Lelis Dutra
- Instituto da Criança, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
23
|
Sbruzzi IC, Pereira AC, Vasconcelos B, Honjo RS, Krieger JE, Kim CA. Williams-Beuren syndrome: diagnosis by polymorphic markers. Genet Test Mol Biomarkers 2010; 14:209-14. [PMID: 20136526 DOI: 10.1089/gtmb.2009.0120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Williams-Beuren syndrome (WBS) is caused by a 1-2 Mb microdeletion in the region 7q11.23. The clinical presentation may vary and most of the connective tissue abnormalities can be explained by the haploinsufficiency of the ELN gene in this region. The purpose of this study was to determine the value of a polymerase chain reaction assay that uses three polymorphic markers to detect the microdeletion and compare the clinical features. Thirty-two patients with WBS were ascertained accordingly to clinical diagnostic criteria. The markers D7S1870, ELN 17/exon 18, and Hei 1.3/1.4 were designed to detect the heterozygosity in the region 7q11.23. The three markers were informative in 78% and uninformative in 22% of the cases. The most informative marker (69%) was D7S1870, followed by Hei (55%) and ELN 17/exon 18 (44%). The microdeletion was present in 56% and absent in 22% of patients. The craniofacial and cardiovascular abnormalities did not have significant statistical differences in the cases with and without microdeletion. Two of the syndrome characteristics (an overfriendly personality and hyperacusis) were more frequent in the microdeletion group and these differences were statistically significant (p = 0.006 and p = 0.02, respectively). Polymorphic markers might be a good alternative for the molecular diagnosis of WBS in centers where fluorescence in situ hybridization analysis is not available.
Collapse
Affiliation(s)
- Ivanete C Sbruzzi
- Instituto da Criança, FMUSP, Unidade de Genética Clínica, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
24
|
Hobart HH, Morris CA, Mervis CB, Pani AM, Kistler DJ, Rios CM, Kimberley KW, Gregg RG, Bray-Ward P. Inversion of the Williams syndrome region is a common polymorphism found more frequently in parents of children with Williams syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2010; 154C:220-8. [PMID: 20425783 PMCID: PMC2946898 DOI: 10.1002/ajmg.c.30258] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Williams syndrome (WS) is a multisystem disorder caused by deletion of about 1.55 Mb of DNA (including 26 genes) on chromosome 7q11.23, a region predisposed to recombination due to its genomic structure. Deletion of the Williams syndrome chromosome region (WSCR) occurs sporadically. To better define chance for familial recurrence and to investigate the prevalence of genomic rearrangements of the region, 257 children with WS and their parents were studied. We determined deletion size in probands by metaphase FISH, parent-of-origin of the deleted chromosome by molecular genetic methods, and inversion status of the WSCR in both parents by interphase FISH. The frequency of WSCR inversion in the transmitting parent group was 24.9%. In contrast, the rate of inversion in the non-transmitting parent group (a reasonable estimate of the rate in the general population) was 5.8%. There were no significant gender differences with respect to parent-of-origin for the deleted chromosome or the incidence of the inversion polymorphism. There was no difference in the rate of spontaneous abortion for mothers heterozygous for the WSCR inversion relative to mothers without the inversion. We calculate that for a parent heterozygous for a WSCR inversion, the chance to have a child with WS is about 1 in 1,750, in contrast to the 1 in 9,500 chance for a parent without an inversion.
Collapse
Affiliation(s)
- Holly H. Hobart
- Department of Pediatrics, University of Nevada School of Medicine, Las Vegas, NV
| | - Colleen A. Morris
- Department of Pediatrics, University of Nevada School of Medicine, Las Vegas, NV
| | - Carolyn B. Mervis
- Department of Psychological & Brain Sciences, University of Louisville, Louisville, KY
| | - Ariel M. Pani
- Department of Biochemistry, University of Louisville, Louisville, KY
| | - Doris J. Kistler
- Department of Psychological & Brain Sciences, University of Louisville, Louisville, KY
| | - Cecilia M. Rios
- Department of Pediatrics, University of Nevada School of Medicine, Las Vegas, NV
| | - Kendra W. Kimberley
- Department of Pediatrics, University of Nevada School of Medicine, Las Vegas, NV
| | - Ronald G. Gregg
- Department of Biochemistry, University of Louisville, Louisville, KY
| | - Patricia Bray-Ward
- Department of Pediatrics, University of Nevada School of Medicine, Las Vegas, NV
| |
Collapse
|
25
|
Misceo D, Ãrstavik KH, Lybæk H, Sandvig I, Ormerod E, Houge G, Frengen E. Inheritance of a terminal 7.1âMb 18p deletion flanked by a 2.3âMb duplication from a physically normal mother. Am J Med Genet A 2009; 149A:2877-81. [DOI: 10.1002/ajmg.a.33106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Depienne C, Heron D, Betancur C, Benyahia B, Trouillard O, Bouteiller D, Verloes A, Leguern E, Leboyer M, Brice A. Autism, language delay and mental retardation in a patient with 7q11 duplication. BMJ Case Rep 2009; 2009:bcr05.2009.1911. [PMID: 21686962 DOI: 10.1136/bcr.05.2009.1911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chromosomal rearrangements are found in a subset of patients with autism. Duplications involving loci associated with behavioural disturbances constitute an especially good candidate mechanism. The Williams-Beuren critical region (WBCR), located at 7q11.23, is commonly deleted in Williams-Beuren microdeletion syndrome (WBS). However, only four patients with a duplication of the WBCR have been reported to date. Here, 206 patients with autism spectrum disorders were screened for the WBCR duplication by quantitative microsatellite analysis and multiple ligation-dependent probe amplification. One male patient with a de novo interstitial duplication of the entire WBCR of paternal origin was identified. The patient had autistic disorder, severe language delay and mental retardation, with mild dysmorphism. The present report concerns the first patient with autistic disorder and a WBCR duplication. This observation indicates that the 7q11.23 duplication could be involved in complex clinical phenotypes, ranging from developmental or language delay to mental retardation and autism.
Collapse
Affiliation(s)
- C Depienne
- INSERM U679 (formerly U289), Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fourteen new cases contribute to the characterization of the 7q11.23 microduplication syndrome. Eur J Med Genet 2009; 52:94-100. [DOI: 10.1016/j.ejmg.2009.02.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 02/16/2009] [Indexed: 12/11/2022]
|
28
|
Bassett AS, Marshall CR, Lionel AC, Chow EWC, Scherer SW. Copy number variations and risk for schizophrenia in 22q11.2 deletion syndrome. Hum Mol Genet 2008; 17:4045-53. [PMID: 18806272 PMCID: PMC2638574 DOI: 10.1093/hmg/ddn307] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
22q11.2 Deletion Syndrome (22q11.2DS) is a common microdeletion syndrome with congenital and late-onset features. Testing for the genomic content of copy number variations (CNVs) may help elucidate the 22q11.2 deletion mechanism and the variable clinical expression of the syndrome including the high (25%) risk for schizophrenia. We used genome-wide microarrays to assess CNV content and the parental origin of 22q11.2 deletions in a cohort of 100 adults with 22q11.2DS (44 with schizophrenia) and controls. 22q11.2DS subjects with schizophrenia failed to exhibit de novo CNVs or any excess of novel inherited CNVs outside the 22q11.2 region. There were no significant effects of parental origin of the 22q11.2 deletion, deletion length, parental age or family history on expression of schizophrenia. There was no evidence for a general increase of de novo CNVs in 22q11.2DS. A novel finding was the relative paucity of males with de novo 22q11.2 deletions of paternal origin (P = 0.019). The Y chromosome may play a mediating role in the mechanism of 22q11.2 deletion events during spermatogenesis, resulting in the previously observed excess of maternal de novo 22q11.2 deletions. Hemizygosity of the 22q11.2 region appears to be the major CNV-related risk factor for schizophrenia in 22q11.2DS. The results reinforce the need for further efforts to identify specific molecular mechanisms underlying this expression and to identify the 1% of patients with schizophrenia who carry 22q11.2 deletions.
Collapse
Affiliation(s)
- Anne S Bassett
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, Ontario M6J 1H4, Canada.
| | | | | | | | | |
Collapse
|
29
|
Turner DJ, Miretti M, Rajan D, Fiegler H, Carter NP, Blayney ML, Beck S, Hurles ME. Germline rates of de novo meiotic deletions and duplications causing several genomic disorders. Nat Genet 2008; 40:90-5. [PMID: 18059269 PMCID: PMC2669897 DOI: 10.1038/ng.2007.40] [Citation(s) in RCA: 247] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 10/03/2007] [Indexed: 01/06/2023]
Abstract
Meiotic recombination between highly similar duplicated sequences (nonallelic homologous recombination, NAHR) generates deletions, duplications, inversions and translocations, and it is responsible for genetic diseases known as 'genomic disorders', most of which are caused by altered copy number of dosage-sensitive genes. NAHR hot spots have been identified within some duplicated sequences. We have developed sperm-based assays to measure the de novo rate of reciprocal deletions and duplications at four NAHR hot spots. We used these assays to dissect the relative rates of NAHR between different pairs of duplicated sequences. We show that (i) these NAHR hot spots are specific to meiosis, (ii) deletions are generated at a higher rate than their reciprocal duplications in the male germline and (iii) some of these genomic disorders are likely to have been underascertained clinically, most notably that resulting from the duplication of 7q11, the reciprocal of the deletion causing Williams-Beuren syndrome.
Collapse
Affiliation(s)
- Daniel J Turner
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Emanuel BS, Saitta SC. From microscopes to microarrays: dissecting recurrent chromosomal rearrangements. Nat Rev Genet 2007; 8:869-83. [PMID: 17943194 PMCID: PMC2858421 DOI: 10.1038/nrg2136] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Submicroscopic chromosomal rearrangements that lead to copy-number changes have been shown to underlie distinctive and recognizable clinical phenotypes. The sensitivity to detect copy-number variation has escalated with the advent of array comparative genomic hybridization (CGH), including BAC and oligonucleotide-based platforms. Coupled with improved assemblies and annotation of genome sequence data, these technologies are facilitating the identification of new syndromes that are associated with submicroscopic genomic changes. Their characterization reveals the role of genome architecture in the aetiology of many clinical disorders. We review a group of genomic disorders that are mediated by segmental duplications, emphasizing the impact that high-throughput detection methods and the availability of the human genome sequence have had on their dissection and diagnosis.
Collapse
Affiliation(s)
- Beverly S Emanuel
- Division of Human Genetics, The Children's Hospital of Philadelphia, Abramson Research Center, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Philadelphia 19104-4318, USA.
| | | |
Collapse
|
31
|
Nogueira SI, Hacker AM, Bellucco FT, Kulikowski LD, Christofolini DM, Cernach MC, Melaragno MI, Emanuel BS. Deletion 22q11.2: report of a complex meiotic mechanism of origin. Am J Med Genet A 2007; 143A:1778-81. [PMID: 17603802 PMCID: PMC2810960 DOI: 10.1002/ajmg.a.31834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report on the case of a patient with a typical de novo 3 Mb 22q11.2 deletion. Haplotype reconstruction of the family, using polymorphic markers flanking the deleted region, demonstrated a complex mechanism of origin of the deletion, involving one intrachromosomal and two interchromosomal events.
Collapse
Affiliation(s)
- Sintia Iole Nogueira
- Disciplina de Genética, Departamento de Morfologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - April M. Hacker
- Department of Pediatrics, Division of Human Genetics, The Children’s Hospital of Philadelphia and The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Fernanda T.S. Bellucco
- Disciplina de Genética, Departamento de Morfologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Leslie Domenici Kulikowski
- Disciplina de Genética, Departamento de Morfologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Denise Maria Christofolini
- Disciplina de Genética, Departamento de Morfologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Mirlene C. Cernach
- Centro de Genética Médica, Departamento de Morfologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Maria Isabel Melaragno
- Disciplina de Genética, Departamento de Morfologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Beverly S. Emanuel
- Department of Pediatrics, Division of Human Genetics, The Children’s Hospital of Philadelphia and The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
32
|
Depienne C, Heron D, Betancur C, Benyahia B, Trouillard O, Bouteiller D, Verloes A, LeGuern E, Leboyer M, Brice A. Autism, language delay and mental retardation in a patient with 7q11 duplication. J Med Genet 2007; 44:452-8. [PMID: 17400790 PMCID: PMC1994965 DOI: 10.1136/jmg.2006.047092] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Chromosomal rearrangements, arising from unequal recombination between repeated sequences, are found in a subset of patients with autism. Duplications involving loci associated with behavioural disturbances constitute an especially good candidate mechanism. The Williams-Beuren critical region (WBCR), located at 7q11.23, is commonly deleted in Williams-Beuren microdeletion syndrome (WBS). However, only four patients with a duplication of the WBCR have been reported to date: one with severe language delay and the three others with variable developmental, psychomotor and language delay. OBJECTIVE AND METHODS In this study, we screened 206 patients with autism spectrum disorders for the WBCR duplication by quantitative microsatellite analysis and multiple ligation-dependent probe amplification. RESULTS We identified one male patient with a de novo interstitial duplication of the entire WBCR of paternal origin. The patient had autistic disorder, severe language delay and mental retardation, with very mild dysmorphic features. CONCLUSION We report the first patient with autistic disorder and a WBCR duplication. This observation indicates that the 7q11.23 duplication could be involved in complex clinical phenotypes, ranging from developmental or language delay to mental retardation and autism, and extends the phenotype initially reported. These findings also support the existence of one or several genes in 7q11.23 sensitive to gene dosage and involved in the development of language and social interaction.
Collapse
|