1
|
Salari M, Hojjatipour F, Etemadifar M, Soleimani S. Review of the Genetic Spectrum of Hereditary Spastic Paraplegias in the Middle East and North Africa Regions. Neurol Genet 2025; 11:e200250. [PMID: 40041249 PMCID: PMC11876988 DOI: 10.1212/nxg.0000000000200250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/23/2024] [Indexed: 03/06/2025]
Abstract
Background and Objectives Hereditary spastic paraplegias (HSPs) are inherited neurodegenerative disorders, and their classification is based on inheritance mode, allelic variants, and clinical presentation. Despite global occurrence, research, especially in the Middle East and North Africa (MENA) regions, is lacking, underscoring the need for further investigation. The objective of this study was to improve the regions' clinical practice and public health, and this study aims to gather data on HSP prevalence, pathogenic variants, and patient characteristics in MENA countries. Methods A systematic literature review encompassing PubMed, MEDLINE, and Google Scholar was conducted. Quality assessment was performed on the included studies. Data extraction and analysis provided insights into HSP's current status in the region. Results Iran had the highest number of patients with HSP, followed by Tunisia. SPG11 (19.8%), FA2H (8.5%), and ZFYVE26 (7.7%) were the most frequently found genes in the cases. Autosomal recessive HSP with thin corpus callosum was common among the affected patients, with SPG11 identified as the primary cause. Discussion Our analysis highlights genetic diversity and regional prevalence variations. Despite limited research in MENA countries, we stress the importance of further investigation to address gaps in understanding and improve patient care and public health initiatives.
Collapse
Affiliation(s)
- Mehri Salari
- Physical Medicine & Rehabilitation Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Hojjatipour
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; and
| | | | - Sevim Soleimani
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; and
| |
Collapse
|
2
|
Phenotypic and Genetic Heterogeneity of Adult Patients with Hereditary Spastic Paraplegia from Serbia. Cells 2022; 11:cells11182804. [PMID: 36139378 PMCID: PMC9497238 DOI: 10.3390/cells11182804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is among the most genetically diverse of all monogenic diseases. The aim was to analyze the genetic causes of HSP among adult Serbian patients. The study comprised 74 patients from 65 families clinically diagnosed with HSP during a nine-year prospective period. A panel of thirteen genes was analyzed: L1CAM (SPG1), PLP1 (SPG2), ATL1 (SPG3A), SPAST (SPG4), CYP7B1 (SPG5A), SPG7 (SPG7), KIF5A (SPG10), SPG11 (SPG11), ZYFVE26 (SPG15), REEP1 (SPG31), ATP13A2 (SPG78), DYNC1H1, and BICD2 using a next generation sequencing-based technique. A copy number variation (CNV) test for SPAST, SPG7, and SPG11 was also performed. Twenty-three patients from 19 families (29.2%) had conclusive genetic findings, including 75.0% of families with autosomal dominant and 25.0% with autosomal recessive inheritance, and 15.7% of sporadic cases. Twelve families had mutations in the SPAST gene, usually with a pure HSP phenotype. Three sporadic patients had conclusive findings in the SPG11 gene. Two unrelated patients carried a homozygous pathogenic mutation c.233T>A (p.L78*) in SPG7 that is a founder Roma mutation. One patient had a heterozygous de novo variant in the KIF5A gene, and one had a compound heterozygous mutation in the ZYFVE26 gene. The combined genetic yield of our gene panel and CNV analysis for HSP was around 30%. Our findings broaden the knowledge on the genetic epidemiology of HSP, with implications for molecular diagnostics in this region.
Collapse
|
3
|
Varghaei P, Estiar MA, Ashtiani S, Veyron S, Mufti K, Leveille E, Yu E, Spiegelman D, Rioux MF, Yoon G, Tarnopolsky M, Boycott KM, Dupre N, Suchowersky O, Trempe JF, Rouleau GA, Gan-Or Z. Genetic, structural and clinical analysis of spastic paraplegia 4. Parkinsonism Relat Disord 2022; 98:62-69. [PMID: 35487127 DOI: 10.1016/j.parkreldis.2022.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Spastic paraplegia type 4 (SPG4), resulting from heterozygous mutations in the SPAST gene, is the most common form among the heterogeneous group of hereditary spastic paraplegias (HSPs). We aimed to study genetic and clinical characteristics of SPG4 across Canada. METHODS The SPAST gene was analyzed in a total of 696 HSP patients from 431 families by either HSP-gene panel sequencing or whole exome sequencing (WES). We used Multiplex ligation-dependent probe amplification to analyze copy number variations (CNVs), and performed in silico structural analysis of selected mutations. Clinical characteristics of patients were assessed, and long-term follow-up was done to study genotype-phenotype correlations. RESULTS We identified 157 SPG4 patients from 65 families who carried 41 different SPAST mutations, six of which are novel and six are CNVs. We report novel aspects of mutations occurring in Arg499, a case with homozygous mutation, a family with probable compound heterozygous mutations, three patients with de novo mutations, three cases with pathogenic synonymous mutation, co-occurrence of SPG4 and clinically isolated syndrome, and novel or rarely reported signs and symptoms seen in SPG4 patients. CONCLUSION Our study demonstrates that SPG4 is a heterogeneous type of HSP, with diverse genetic features and clinical manifestations. In rare cases, biallelic inheritance, de novo mutation, pathogenic synonymous mutations and CNVs should be considered.
Collapse
Affiliation(s)
- Parizad Varghaei
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada; The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
| | - Mehrdad A Estiar
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Setareh Ashtiani
- Alberta Children's Hospital, Medical Genetics, Calgary, Alberta, Canada
| | - Simon Veyron
- Department of Pharmacology & Therapeutics and Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montréal, Canada
| | - Kheireddin Mufti
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | | | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Dan Spiegelman
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada
| | - Marie-France Rioux
- Department of Neurology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Grace Yoon
- Divisions of Neurology and Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mark Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Nicolas Dupre
- Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Quebec, Canada; Neuroscience Axis, CHU de Québec-Université Laval, Québec City, Québec, Canada
| | - Oksana Suchowersky
- Alberta Children's Hospital, Medical Genetics, Calgary, Alberta, Canada; Departments of Medicine (Neurology) and Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Jean-François Trempe
- Department of Pharmacology & Therapeutics and Centre de Recherche en Biologie Structurale - FRQS, McGill University, Montréal, Canada
| | - Guy A Rouleau
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Québec, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada.
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Québec, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
4
|
Mahungu AC, Monnakgotla N, Nel M, Heckmann JM. A review of the genetic spectrum of hereditary spastic paraplegias, inherited neuropathies and spinal muscular atrophies in Africans. Orphanet J Rare Dis 2022; 17:133. [PMID: 35331287 PMCID: PMC8944057 DOI: 10.1186/s13023-022-02280-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Genetic investigations of inherited neuromuscular disorders in Africans, have been neglected. We aimed to summarise the published data and comment on the genetic evidence related to inherited neuropathies (Charcot-Marie-Tooth disease (CMT)), hereditary spastic paraplegias (HSP) and spinal muscular atrophy (SMA) in Africans. Methods PubMed was searched for relevant articles and manual checking of references and review publications were performed for African-ancestry participants with relevant phenotypes and identified genetic variants. For each case report we extracted phenotype information, inheritance pattern, variant segregation and variant frequency in population controls (including up to date frequencies from the gnomAD database). Results For HSP, 23 reports were found spanning the years 2000–2019 of which 19 related to North Africans, with high consanguinity, and six included sub-Saharan Africans. For CMT, 19 reports spanning years 2002–2021, of which 16 related to North Africans and 3 to sub-Saharan Africans. Most genetic variants had not been previously reported. There were 12 reports spanning years 1999–2020 related to SMN1-SMA caused by homozygous exon 7 ± 8 deletion. Interestingly, the population frequency of heterozygous SMN1-exon 7 deletion mutations appeared 2 × lower in Africans compared to Europeans, in addition to differences in the architecture of the SMN2 locus which may impact SMN1-SMA prognosis. Conclusions Overall, genetic data on inherited neuromuscular diseases in sub-Saharan Africa, are sparse. If African patients with rare neuromuscular diseases are to benefit from the expansion in genomics capabilities and therapeutic advancements, then it is critical to document the mutational spectrum of inherited neuromuscular disease in Africa. Highlights Review of genetic variants reported in hereditary spastic paraplegia in Africans Review of genetic variants reported in genetic neuropathies in Africans Review of genetic underpinnings of spinal muscular atrophies in Africans Assessment of pathogenic evidence for candidate variants
Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02280-2.
Collapse
Affiliation(s)
- Amokelani C Mahungu
- Neurology Research Group, University of Cape Town Neuroscience Institute, Cape Town, South Africa
| | | | - Melissa Nel
- Neurology Research Group, University of Cape Town Neuroscience Institute, Cape Town, South Africa
| | - Jeannine M Heckmann
- E8-74 Neurology, Department of Medicine, Groote Schuur Hospital and the University of Cape Town Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
5
|
A Chinese Patient with Spastic Paraplegia Type 4 with a De Novo Mutation in the SPAST Gene. Case Rep Genet 2021; 2021:6636855. [PMID: 34950521 PMCID: PMC8692052 DOI: 10.1155/2021/6636855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/18/2021] [Accepted: 03/26/2021] [Indexed: 11/17/2022] Open
Abstract
Background Spastic paraplegia type 4 (SPG4) is the most common type of hereditary spastic paraplegia (HSP) caused by mutations in the SPAST gene. Case Presentation. We report the case of a 27-year-old pregnant Chinese woman with HSP in whom we identified a missense mutation in the SPAST gene (c.1496G>A, p.Arg499His) and a nonsense mutation in the NEFH gene (c.289G>T, p.Glu97 ∗ ) via whole-exome sequencing; this finding corroborated that of Sanger sequencing. The patient exhibited the pure SPG4 phenotype with onset during childhood. The SPAST mutation was absent in the parents and paternal relatives. However, the NEFH mutation was identified in five people with no clinical phenotype. Based on theoretical conjecture and the family gene segregation information, we concluded that the SPAST mutation, but not the NEFH mutation, accounted for the proband's phenotype. Eventually, the woman gave birth to a healthy baby girl with the NEFH mutation. Conclusion In this report, we identified a missense mutation in the SPAST gene (p.Arg499His) in a 27-year-old pregnant Chinese woman with HSP. We believe that this study expands the knowledge about the clinical parameters and mutation spectrum of SPG4.
Collapse
|
6
|
Erfanian Omidvar M, Torkamandi S, Rezaei S, Alipoor B, Omrani MD, Darvish H, Ghaedi H. Genotype-phenotype associations in hereditary spastic paraplegia: a systematic review and meta-analysis on 13,570 patients. J Neurol 2021; 268:2065-2082. [PMID: 31745725 DOI: 10.1007/s00415-019-09633-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 12/13/2022]
Abstract
AIMS The hereditary spastic paraplegias (HSPs) are a heterogeneous group of inherited neurodegenerative disorders. Although, several genotype-phenotype studies have carried out on HSPs, the association between genotypes and clinical phenotypes remain incomplete since most studies are small in size or restricted to a few genes. Accordingly, this study provides the systematic meta-analysis of genotype-phenotype associations in HSP. METHODS AND RESULTS We retrieved literature on genotype-phenotype associations in patients with HSP and mutated SPAST, REEP1, ATL1, SPG11, SPG15, SPG7, SPG35, SPG54, SPG5. In total, 147 studies with 13,570 HSP patients were included in our meta-analysis. The frequency of mutations in SPAST (25%) was higher than REEP1 (3%), as well as ATL1 (5%) in AD-HSP patients. As for AR-HSP patients, the rates of mutations in SPG11 (18%), SPG15 (7%) and SPG7 (13%) were higher than SPG5 (5%), as well as SPG35 (8%) and SPG54 (7%). The mean age of AD-HSP onset for ATL1 mutation-positive patients was earlier than patients with SPAST, REEP1 mutations. Also, the tendency toward younger age at AR-HSP onset for SPG35 was higher than other mutated genes. It is noteworthy that the mean age at HSP onset ranged from infancy to adulthood. As for the gender distribution, the male proportion in SPG7-HSP (90%) and REEP1-HSP (78%) was markedly high. The frequency of symptoms was varied among patients with different mutated genes. The rates of LL weakness, superficial sensory abnormalities, neuropathy, and deep sensory impairment were noticeably high in REEP1 mutations carriers. Also, in AR-HSP patients with SPG11 mutations, the presentation of symptoms including pes cavus, Neuropathy, and UL spasticity was higher. CONCLUSION Our comprehensive genotype-phenotype assessment of available data displays that the mean age at disease onset and particular sub-phenotypes are associated with specific mutated genes which might be beneficial for a diagnostic procedure and differentiation of the specific mutated genes phenotype among diverse forms of HSP.
Collapse
Affiliation(s)
- Maryam Erfanian Omidvar
- Department of Medical Laboratory Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Torkamandi
- Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Somaye Rezaei
- Department of Neurology, Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran
| | - Behnam Alipoor
- Department of Laboratory Sciences, Faculty of Parmedicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak St., Shahid Chamran Highway, Tehran, IR, Iran
| | - Hossein Darvish
- Department of Medical Genetics, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid Ghaedi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak St., Shahid Chamran Highway, Tehran, IR, Iran.
| |
Collapse
|
7
|
Schieving JH, de Bot ST, van de Pol LA, Wolf NI, Brilstra EH, Frints SG, van Gaalen J, Misra-Isrie M, Pennings M, Verschuuren-Bemelmans CC, Kamsteeg EJ, van de Warrenburg BP, Willemsen MA. De novo SPAST mutations may cause a complex SPG4 phenotype. Brain 2020; 142:e31. [PMID: 31157359 DOI: 10.1093/brain/awz140] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Jolanda H Schieving
- Radboud University Medical Center, Amalia Children's Hospital and Donders Institute for Brain, Cognition and Behavior, Department of Pediatric Neurology, Nijmegen, The Netherlands
| | - Susanne T de Bot
- Leiden University Medical Center, Department of Neurology, Leiden, The Netherlands
| | - Laura A van de Pol
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, The Netherlands
| | - Nicole I Wolf
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, The Netherlands.,Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Eva H Brilstra
- University Medical Center Utrecht, Department of Medical Genetics, Utrecht, The Netherlands
| | - Suzanna G Frints
- Maastricht University Medical Center+, Department of Clinical Genetics, Maastricht, The Netherlands.,Department of Genetics and Cell Biology, GROW, School for Oncology, FHML, Maastricht University, The Netherlands
| | - Judith van Gaalen
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center and Nijmegen, The Netherlands
| | - Mala Misra-Isrie
- Amsterdam University Medical Center, Department of Clinical Genetics, Amsterdam, The Netherlands
| | - Maartje Pennings
- Radboud University Medical Center, Department of Human Genetics, Nijmegen, The Netherlands
| | | | - Erik-Jan Kamsteeg
- Radboud University Medical Center, Department of Human Genetics, Nijmegen, The Netherlands
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center and Nijmegen, The Netherlands
| | - Michèl A Willemsen
- Radboud University Medical Center, Amalia Children's Hospital and Donders Institute for Brain, Cognition and Behavior, Department of Pediatric Neurology, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Parodi L, Fenu S, Barbier M, Banneau G, Duyckaerts C, Tezenas du Montcel S, Monin ML, Ait Said S, Guegan J, Tallaksen CME, Sablonniere B, Brice A, Stevanin G, Depienne C, Durr A. Spastic paraplegia due to SPAST mutations is modified by the underlying mutation and sex. Brain 2019; 141:3331-3342. [PMID: 30476002 DOI: 10.1093/brain/awy285] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/28/2018] [Indexed: 12/15/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs) are rare neurological disorders caused by progressive distal degeneration of the corticospinal tracts. Among the 79 loci and 65 spastic paraplegia genes (SPGs) involved in HSPs, mutations in SPAST, which encodes spastin, responsible for SPG4, are the most frequent cause of both familial and sporadic HSP. SPG4 is characterized by a clinically pure phenotype associated with restricted involvement of the corticospinal tracts and posterior columns of the spinal cord. It is rarely associated with additional neurological signs. However, both age of onset and severity of the disorder are extremely variable. Such variability is both intra- and inter-familial and may suggest incomplete penetrance, with some patients carrying mutations remaining asymptomatic for their entire life. We analysed a cohort of 842 patients with SPG4-HSP to assess genotype-phenotype correlations. Most patients were French (89%) and had a family history of SPG4-HSP (75%). Age at onset was characterized by a bimodal distribution, with high inter-familial and intra-familial variability, especially concerning first-degree relatives. Penetrance of the disorder was 0.9, complete after 70 years of age. Penetrance was lower in females (0.88 versus 0.94 in males, P = 0.01), despite a more diffuse phenotype with more frequent upper limb involvement. Seventy-seven per cent of pathogenic mutations (missense, frameshift, splice site, nonsense, and deletions) were located in the AAA cassette of spastin, impairing its microtubule-severing activity. A comparison of the missense and truncating mutations revealed a significantly lower age at onset for patients carrying missense mutations than those carrying truncating mutations, explaining the bimodal distribution of the age at onset. The age at onset for patients carrying missense mutations was often before 10 years, sometimes associated with intellectual deficiency. Neuropathological examination of a single case showed degeneration of the spinocerebellar and spinocortical tracts, as well as the posterior columns. However, there were numerous small-diameter processes among unusually large myelinated fibres in the corticospinal tract, suggesting marked regeneration. In conclusion, this large cohort of 842 individuals allowed us to identify a significantly younger age at onset in missense mutation carriers and lower penetrance in females, despite a more severe disorder. Neuropathology in one case showed numerous small fibres suggesting regeneration.
Collapse
Affiliation(s)
- Livia Parodi
- Institut du Cerveau et de la Moelle épinière (ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France
| | - Silvia Fenu
- Institut du Cerveau et de la Moelle épinière (ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France
| | - Mathieu Barbier
- Institut du Cerveau et de la Moelle épinière (ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France
| | - Guillaume Banneau
- Institut du Cerveau et de la Moelle épinière (ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France
| | - Charles Duyckaerts
- Institut du Cerveau et de la Moelle épinière (ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,Raymond Escourolle Department of Neuropathology, Pitié-Salpêtrière University Hospital, Paris, France
| | - Sophie Tezenas du Montcel
- Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière University Hospital, Biostatistics and Medical Informatics Unit and Clinical Research Unit, Paris, France.,Sorbonne Universités, UMR S1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Paris, France
| | - Marie-Lorraine Monin
- Institut du Cerveau et de la Moelle épinière (ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France
| | - Samia Ait Said
- Institut du Cerveau et de la Moelle épinière (ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France
| | - Justine Guegan
- Institut du Cerveau et de la Moelle épinière (ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France
| | - Chantal M E Tallaksen
- Institut du Cerveau et de la Moelle épinière (ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bertrand Sablonniere
- Lille University, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France.,CHU Lille, Institut de Biochimie et Biologie Moléculaire, Centre de Biologie Pathologie et Génétique, Lille, France
| | - Alexis Brice
- Institut du Cerveau et de la Moelle épinière (ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France
| | - Giovanni Stevanin
- Institut du Cerveau et de la Moelle épinière (ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences et Lettres (PSL) Research Univeristy, Neurogenetics Group, Paris, France
| | - Christel Depienne
- Institut du Cerveau et de la Moelle épinière (ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,Institut für Humangenetik, Universitätsklinikum Essen, Essen, Germany
| | - Alexandra Durr
- Institut du Cerveau et de la Moelle épinière (ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France
| | | |
Collapse
|
9
|
Kadnikova VA, Ryzhkova OP, Rudenskaya GE, Polyakov AV. Molecular Genetic Diversity and DNA Diagnostics of Hereditary Spastic Paraplegia. ACTA ACUST UNITED AC 2019. [DOI: 10.1134/s2079086419020063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Boutry M, Morais S, Stevanin G. Update on the Genetics of Spastic Paraplegias. Curr Neurol Neurosci Rep 2019; 19:18. [DOI: 10.1007/s11910-019-0930-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Rudenskaya GE, Kadnikova VA, Sidorova OP, Beetz C, Illarioshkin SN, Dadaly EL, Proskokova TN, Ryzhkova OP. Hereditary spastic paraplegia type 4 (SPG4) in Russian patients. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:11-20. [DOI: 10.17116/jnevro201911911111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Finsterer J. Pure or Complex Hereditary Spastic Paraplegia Type 4? J Clin Neurol 2019; 15:265-266. [PMID: 30877703 PMCID: PMC6444139 DOI: 10.3988/jcn.2019.15.2.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 11/17/2022] Open
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Veterinary University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Gillespie MK, Humphreys P, McMillan HJ, Boycott KM. Association of Early-Onset Spasticity and Risk for Cognitive Impairment With Mutations at Amino Acid 499 in SPAST. J Child Neurol 2018; 33:329-332. [PMID: 29421991 DOI: 10.1177/0883073818756680] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hereditary spastic paraplegia is a phenotypically and genetically heterogeneous group of neurodegenerative disorders characterized by lower extremity weakness and spasticity. Spastic paraplegia 4 (SPG4), caused by heterozygous mutations in the gene SPAST, typically causes a late-onset, uncomplicated form of hereditary spastic paraplegia in affected individuals. Additional clinical features in SPG4 have been reported on occasion, but no genotype-phenotype correlation has been established. Through targeted clinical testing, we identified 2 unrelated female patients with the same de novo p.Arg499His mutation in SPAST. Both patients presented with early-onset spasticity resulting in delayed motor milestones, which led to a diagnosis of cerebral palsy in one child and tethered cord in the other. Review of the literature identified several patients with mutations at amino acid 499 and early-onset symptoms associated with a risk of cognitive impairment. Early and accurate diagnosis of children with early-onset spasticity is important for informed prognosis and genetic counselling.
Collapse
Affiliation(s)
- Meredith K Gillespie
- 1 Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Peter Humphreys
- 1 Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- 2 Division of Neurology, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Hugh J McMillan
- 1 Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- 2 Division of Neurology, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Kym M Boycott
- 1 Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- 3 Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| |
Collapse
|
14
|
Parodi L, Fenu S, Stevanin G, Durr A. Hereditary spastic paraplegia: More than an upper motor neuron disease. Rev Neurol (Paris) 2017; 173:352-360. [DOI: 10.1016/j.neurol.2017.03.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/31/2017] [Indexed: 12/11/2022]
|
15
|
Faber I, Branco LMT, França Júnior MC. Cognitive dysfunction in hereditary spastic paraplegias and other motor neuron disorders. Dement Neuropsychol 2016; 10:276-279. [PMID: 29213469 PMCID: PMC5619265 DOI: 10.1590/s1980-5764-2016dn1004004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is a diverse group of single-gene disorders that share the predominant clinical feature of progressive lower limb spasticity and weakness. More than 70 different genetic subtypes have been described and all modes of inheritance are possible. Intellectual dysfunction in HSP is frequent in recessive forms but rare in dominant families. It may manifest by either mental retardation and/or cognitive decline. The latter may be subtle, restricted to executive dysfunction or may evolve to severe dementia. The cognitive profile is thought to depend largely on the genetic subtype of HSP, although wide phenotypic variability within the same genetic subtype and also within the same family can be found.
Collapse
Affiliation(s)
- Ingrid Faber
- Department of Neurology, School of Medical Sciences,
University of Campinas – UNICAMP, Campinas, SP, Brazil
| | - Lucas Melo T. Branco
- Department of Neurology, School of Medical Sciences,
University of Campinas – UNICAMP, Campinas, SP, Brazil
| | | |
Collapse
|
16
|
Cognitive Impairment Involving Social Cognition in SPG4 Hereditary Spastic Paraplegia. Behav Neurol 2016; 2016:6423461. [PMID: 27688599 PMCID: PMC5027053 DOI: 10.1155/2016/6423461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/20/2016] [Accepted: 08/01/2016] [Indexed: 12/13/2022] Open
Abstract
Objectives. To describe cognitive assessment including social cognition in SPG4 patients. Methods. We reported a series of nine patients with SPG4 mutation with an extensive neuropsychological examination including social cognition assessment. Results. None of our patients presented with mental retardation or dementia. All presented with mild cognitive impairment with a high frequency of attention deficit (100%), executive disorders (89%), and social cognition impairment (78%). An asymptomatic patient for motor skills presented with the same cognitive profile. No correlation was found in this small sample between cognitive impairment and motor impairment, age at disease onset, or disease duration. Conclusions. SPG4 phenotypes share some cognitive features of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Cognitive disorders including executive disorders and social cognition impairment are frequent in SPG4 patients and might sometimes occur before motor disorders. Therefore, cognitive functions including social cognition should be systematically assessed in order to improve the clinical management of this population.
Collapse
|
17
|
Coignion C, Banneau G, Goizet C. Paraplegie spastiche ereditarie. Neurologia 2016. [DOI: 10.1016/s1634-7072(16)77572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
18
|
Boone PM, Yuan B, Campbell IM, Scull JC, Withers MA, Baggett BC, Beck CR, Shaw CJ, Stankiewicz P, Moretti P, Goodwin WE, Hein N, Fink JK, Seong MW, Seo SH, Park SS, Karbassi ID, Batish SD, Ordóñez-Ugalde A, Quintáns B, Sobrido MJ, Stemmler S, Lupski JR. The Alu-rich genomic architecture of SPAST predisposes to diverse and functionally distinct disease-associated CNV alleles. Am J Hum Genet 2014; 95:143-61. [PMID: 25065914 PMCID: PMC4129405 DOI: 10.1016/j.ajhg.2014.06.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/30/2014] [Indexed: 01/27/2023] Open
Abstract
Intragenic copy-number variants (CNVs) contribute to the allelic spectrum of both Mendelian and complex disorders. Although pathogenic deletions and duplications in SPAST (mutations in which cause autosomal-dominant spastic paraplegia 4 [SPG4]) have been described, their origins and molecular consequences remain obscure. We mapped breakpoint junctions of 54 SPAST CNVs at nucleotide resolution. Diverse combinations of exons are deleted or duplicated, highlighting the importance of particular exons for spastin function. Of the 54 CNVs, 38 (70%) appear to be mediated by an Alu-based mechanism, suggesting that the Alu-rich genomic architecture of SPAST renders this locus susceptible to various genome rearrangements. Analysis of breakpoint Alus further informs a model of Alu-mediated CNV formation characterized by small CNV size and potential involvement of mechanisms other than homologous recombination. Twelve deletions (22%) overlap part of SPAST and a portion of a nearby, directly oriented gene, predicting novel chimeric genes in these subjects' genomes. cDNA from a subject with a SPAST final exon deletion contained multiple SPAST:SLC30A6 fusion transcripts, indicating that SPAST CNVs can have transcriptional effects beyond the gene itself. SLC30A6 has been implicated in Alzheimer disease, so these fusion gene data could explain a report of spastic paraplegia and dementia cosegregating in a family with deletion of the final exon of SPAST. Our findings provide evidence that the Alu genomic architecture of SPAST predisposes to diverse CNV alleles with distinct transcriptional--and possibly phenotypic--consequences. Moreover, we provide further mechanistic insights into Alu-mediated copy-number change that are extendable to other loci.
Collapse
Affiliation(s)
- Philip M Boone
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ian M Campbell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer C Scull
- Medical Genetics Laboratories, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marjorie A Withers
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brett C Baggett
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christine R Beck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christine J Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Medical Genetics Laboratories, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paolo Moretti
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| | | | - Nichole Hein
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - John K Fink
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Geriatrics Research Education and Clinical Center, Ann Arbor, MI 48105, USA; Veterans Affairs Medical Center, Ann Arbor, MI 48015, USA
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul 110-799, Korea
| | - Soo Hyun Seo
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul 110-799, Korea
| | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul 110-799, Korea
| | | | - Sat Dev Batish
- Quest Diagnostics, Athena Diagnostics, Worcester, MA 01605, USA
| | - Andrés Ordóñez-Ugalde
- Fundación Pública Galega de Medicina Xenómica-SERGAS, IDIS, CIBERER, Santiago de Compostela 15706, Spain
| | - Beatriz Quintáns
- Fundación Pública Galega de Medicina Xenómica-SERGAS, IDIS, CIBERER, Santiago de Compostela 15706, Spain
| | - María-Jesús Sobrido
- Fundación Pública Galega de Medicina Xenómica-SERGAS, IDIS, CIBERER, Santiago de Compostela 15706, Spain
| | - Susanne Stemmler
- Department of Human Genetics, Ruhr University, Bochum 44801, Germany
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Medical Genetics Laboratories, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Lo Giudice T, Lombardi F, Santorelli FM, Kawarai T, Orlacchio A. Hereditary spastic paraplegia: clinical-genetic characteristics and evolving molecular mechanisms. Exp Neurol 2014; 261:518-39. [PMID: 24954637 DOI: 10.1016/j.expneurol.2014.06.011] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/07/2014] [Accepted: 06/12/2014] [Indexed: 12/12/2022]
Abstract
Hereditary spastic paraplegia (HSP) is a group of clinically and genetically heterogeneous neurological disorders characterized by pathophysiologic hallmark of length-dependent distal axonal degeneration of the corticospinal tracts. The prominent features of this pathological condition are progressive spasticity and weakness of the lower limbs. To date, 72 spastic gait disease-loci and 55 spastic paraplegia genes (SPGs) have been identified. All modes of inheritance (autosomal dominant, autosomal recessive, and X-linked) have been described. Recently, a late onset spastic gait disorder with maternal trait of inheritance has been reported, as well as mutations in genes not yet classified as spastic gait disease. Several cellular processes are involved in its pathogenesis, such as membrane and axonal transport, endoplasmic reticulum membrane modeling and shaping, mitochondrial function, DNA repair, autophagy, and abnormalities in lipid metabolism and myelination processes. Moreover, recent evidences have been found about the impairment of endosome membrane trafficking in vesicle formation and about the involvement of oxidative stress and mtDNA polymorphisms in the onset of the disease. Interactome networks have been postulated by bioinformatics and biological analyses of spastic paraplegia genes, which would contribute to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Temistocle Lo Giudice
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy; Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| | - Federica Lombardi
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy
| | - Filippo Maria Santorelli
- Unità Operativa Complessa di Medicina Molecolare, Neurogenetica e Malattie Neurodegenerative, IRCCS Stella Maris, Pisa, Italy
| | - Toshitaka Kawarai
- Department of Clinical Neuroscience, Institute of Health Biosciences, Graduate School of Medicine, University of Tokushima, Tokushima, Japan
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy; Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy.
| |
Collapse
|
20
|
Liu L, Lei J, Sanders SJ, Willsey AJ, Kou Y, Cicek AE, Klei L, Lu C, He X, Li M, Muhle RA, Ma’ayan A, Noonan JP, Šestan N, McFadden KA, State MW, Buxbaum JD, Devlin B, Roeder K. DAWN: a framework to identify autism genes and subnetworks using gene expression and genetics. Mol Autism 2014; 5:22. [PMID: 24602502 PMCID: PMC4016412 DOI: 10.1186/2040-2392-5-22] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 02/03/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND De novo loss-of-function (dnLoF) mutations are found twofold more often in autism spectrum disorder (ASD) probands than their unaffected siblings. Multiple independent dnLoF mutations in the same gene implicate the gene in risk and hence provide a systematic, albeit arduous, path forward for ASD genetics. It is likely that using additional non-genetic data will enhance the ability to identify ASD genes. METHODS To accelerate the search for ASD genes, we developed a novel algorithm, DAWN, to model two kinds of data: rare variations from exome sequencing and gene co-expression in the mid-fetal prefrontal and motor-somatosensory neocortex, a critical nexus for risk. The algorithm casts the ensemble data as a hidden Markov random field in which the graph structure is determined by gene co-expression and it combines these interrelationships with node-specific observations, namely gene identity, expression, genetic data and the estimated effect on risk. RESULTS Using currently available genetic data and a specific developmental time period for gene co-expression, DAWN identified 127 genes that plausibly affect risk, and a set of likely ASD subnetworks. Validation experiments making use of published targeted resequencing results demonstrate its efficacy in reliably predicting ASD genes. DAWN also successfully predicts known ASD genes, not included in the genetic data used to create the model. CONCLUSIONS Validation studies demonstrate that DAWN is effective in predicting ASD genes and subnetworks by leveraging genetic and gene expression data. The findings reported here implicate neurite extension and neuronal arborization as risks for ASD. Using DAWN on emerging ASD sequence data and gene expression data from other brain regions and tissues would likely identify novel ASD genes. DAWN can also be used for other complex disorders to identify genes and subnetworks in those disorders.
Collapse
Affiliation(s)
- Li Liu
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jing Lei
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Stephan J Sanders
- Department of Psychiatry, University of California, San Francisco, CA, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Arthur Jeremy Willsey
- Department of Psychiatry, University of California, San Francisco, CA, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Yan Kou
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacology and Systems Therapeutics and Systems Biology Center New York, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Abdullah Ercument Cicek
- Ray and Stephanie Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lambertus Klei
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cong Lu
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Xin He
- Ray and Stephanie Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Mingfeng Li
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale School of Medicine, New Haven, CT, USA
| | - Rebecca A Muhle
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Avi Ma’ayan
- Department of Pharmacology and Systems Therapeutics and Systems Biology Center New York, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Nenad Šestan
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale School of Medicine, New Haven, CT, USA
| | - Kathryn A McFadden
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew W State
- Department of Psychiatry, University of California, San Francisco, CA, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale School of Medicine, New Haven, CT, USA
- Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departments of Psychiatry, Neuroscience, and Genetics and Genomic Sciences, Friedman Brain Institute and Mindisch Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kathryn Roeder
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA
- Ray and Stephanie Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Denora PS, Santorelli FM, Bertini E. Hereditary spastic paraplegias: one disease for many genes, and still counting. HANDBOOK OF CLINICAL NEUROLOGY 2013; 113:1899-912. [PMID: 23622413 DOI: 10.1016/b978-0-444-59565-2.00060-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are genetically heterogeneous Mendelian disorders characterized by spastic gait with stiffness and weakness in the legs and an associated plethora of neurological or extraneurological signs in "complicated" forms. Major advances have been made during the past two decades in our understanding of their molecular bases with the identification of a large number of gene loci and the cloning of a set of them. The combined genetic and clinical information obtained has permitted a new, molecularly-driven classification and an improved diagnosis of these conditions. This represents a prerequisite for better counseling in families and more appropriate therapeutic options. However, further heterogeneity is expected and new insight into the possible mechanisms anticipated.
Collapse
Affiliation(s)
- Paola S Denora
- Molecular Medicine and Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS-Children's Hospital Bambino Gesù, Rome, Italy
| | | | | |
Collapse
|
22
|
Bettencourt C, Quintáns B, Ros R, Ampuero I, Yáñez Z, Pascual SI, de Yébenes JG, Sobrido MJ. Revisiting genotype-phenotype overlap in neurogenetics: Triplet-repeat expansions mimicking spastic paraplegias. Hum Mutat 2012; 33:1315-23. [DOI: 10.1002/humu.22148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/06/2012] [Indexed: 01/12/2023]
|
23
|
A high-throughput resequencing microarray for autosomal dominant spastic paraplegia genes. Neurogenetics 2012; 13:215-27. [PMID: 22552817 DOI: 10.1007/s10048-012-0329-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 04/11/2012] [Indexed: 12/24/2022]
Abstract
Hereditary spastic paraplegias (HSP) are a heterogeneous group of neurological disorders. Insidiously progressive spastic weakness of the lower extremities is the common criterion in all forms described. Clinically, HSP is differentiated into pure (uncomplicated) and complex (complicated) forms. While pure HSP is predominantly characterized by signs and symptoms of pyramidal tract dysfunction, additional neurological and non-neurological symptoms occur in complicated forms. Autosomal dominant, autosomal recessive, and X-linked modes of inheritance have been described and at least 48 subtypes, termed SPG1-48, have been genetically defined. Although in autosomal dominant HSP families 50-60% of etiologies can be established by genetic testing, genotype predictions based on the phenotype are limited. In order to realize high-throughput genotyping for dominant HSP, we designed a resequencing microarray for six autosomal dominant genes on the Affymetrix CustomSEQ array platform. For validation purposes, 10 previously Sanger sequenced patients with autosomal dominant HSP and 40 positive controls with known mutations in ATL1, SPAST, NIPA1, KIF5A, and BSCL2 (32 base exchanges, eight small indels) were resequenced on this array. DNA samples of 45 additional patients with AD spastic paraplegia were included in the study. With two different sequencing analysis software modules (GSEQ, SeqC), all missense/nonsense mutations in the positive controls were identified while indels had a detection rate of only 50%. In total, 244 common synonymous single-nucleotide polymorphisms (SNPs) annotated in dbSNP (build 132) corresponding to 22 distinct sequence variations were found in the 53 analyzed patients. Among the 22 different sequence variations (SPAST n = 15, ATL1 n = 3, KIF5A n = 2, HSPD1 n = 1, BSCL2 n = 1, NIPA1 n = 0), 12 were rare variants that have not been previously described and whose clinical significance is unknown. In SPAST-negative cases, a genetic diagnosis could be established in 11% by resequencing. Resequencing microarray technology can therefore efficiently be used to study genotypes and mutations in large patient cohorts.
Collapse
|
24
|
Finsterer J, Löscher W, Quasthoff S, Wanschitz J, Auer-Grumbach M, Stevanin G. Hereditary spastic paraplegias with autosomal dominant, recessive, X-linked, or maternal trait of inheritance. J Neurol Sci 2012; 318:1-18. [PMID: 22554690 DOI: 10.1016/j.jns.2012.03.025] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/25/2012] [Accepted: 03/29/2012] [Indexed: 12/12/2022]
Abstract
Hereditary spastic paraplegia (SPG) is a clinically and genetically heterogeneous group of neurodegenerative disorders that are clinically characterised by progressive spasticity and weakness of the lower-limbs (pure SPG) and, majoritorian, additional more extensive neurological or non-neurological manifestations (complex or complicated SPG). Pure SPG is characterised by progressive spasticity and weakness of the lower-limbs, and occasionally sensory disturbances or bladder dysfunction. Complex SPGs additionally include cognitive impairment, dementia, epilepsy, extrapyramidal disturbances, cerebellar involvement, retinopathy, optic atrophy, deafness, polyneuropathy, or skin lesions in the absence of coexisting disorders. Nineteen SPGs follow an autosomal-dominant (AD-SPG), 27 an autosomal-recessive (AR-SPG), 5 X-linked (XL-SPG), and one a maternal trait of inheritance. SPGs are due to mutations in genes encoding for proteins involved in the maintenance of corticospinal tract neurons. Among the AD-SPGs, 40-45% of patients carry mutations in the SPAST-gene (SPG4) and 10% in the ATL1-gene (SPG3), while the other 9 genes are more rarely involved (NIPA1 (SPG6), KIAA0196 (SPG8), KIF5A (SPG10), RNT2 (SPG12), SPGD1 (SPG13), BSCL2 (SPG17), REEP1 (SPG31), ZFYVE27 (SPG33, debated), and SLC33A1 (SPG42, debated)). Among the AR-SPGs, ~20% of the patients carry mutations in the KIAA1840 (SPG11) gene whereas the 15 other genes are rarely mutated and account for SPGs in single families yet (CYP7B1 (SPG5), SPG7 (SPG7), ZFYVE26 (SPG15), ERLIN2 (SPG18), SPG20 (SPG20), ACP33 (SPG21), KIF1A (SPG30), FA2H (SPG35), NTE (SPG39), GJA12/GJC2 (SPG44), KIAA0415 (SPG48) and 4 genes encoding for the AP4-complex (SPG47)). Among the XL-SPGs, 3 causative genes have been identified (L1CAM (SPG1), PLP1 (SPG2), and SLC16A2 (SPG22)). The diagnosis of SPGs is based on clinical, instrumental and genetic investigations. Treatment is exclusively symptomatic.
Collapse
|
25
|
Partial SPAST and DPY30 deletions in a Japanese spastic paraplegia type 4 family. Neurogenetics 2010; 12:25-31. [PMID: 20857310 DOI: 10.1007/s10048-010-0260-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 09/01/2010] [Indexed: 01/28/2023]
Abstract
Spastic paraplegia type 4 (SPG4) is the most common autosomal dominant hereditary SPG caused by mutations in the SPAST gene. We studied the four-generation pedigree of a Japanese family with autosomal dominant hereditary SPG both clinically and genetically. Twelve available family members (ten affected; two unaffected) and two spouses were enrolled in the study. The clinical features were hyperreflexia in all four limbs, spasticity of the lower extremities, impaired vibration sense, mild cognitive impairment confirmed by the Wechsler Adult Intelligence Scale-Third Edition, and peripheral neuropathy confirmed by neurophysiological examinations. All four female patients experienced miscarriages. The cerebrospinal fluid tau levels were mildly increased in two of three patients examined. Linkage analyses revealed the highest logarithm of odds score of 2.64 at 2p23-p21 where the SPAST gene is located. Mutation scanning of the entire exonic regions of the SPAST gene by direct sequencing revealed no mutations. Exonic copy number analysis by real-time quantitative polymerase chain reaction revealed heterozygous deletion of exons 1 to 4 of the SPAST gene. Breakpoint analysis showed that the centromeric breakpoint was located within intron 4 of SPAST while the telomeric breakpoint was located within intron 3 of the neighboring DPY30 gene, causing a deletion of approximately 70 kb ranging from exons 1 to 3 of DPY30 to exons 1 to 4 of SPAST. To our knowledge, this is the first report of SPG4 associated with partial deletions of both the SPAST and DPY30 genes. The partial heterozygous deletion of DPY30 could modify the phenotypic expression of SPG4 patients with this pedigree.
Collapse
|
26
|
Magariello A, Muglia M, Patitucci A, Ungaro C, Mazzei R, Gabriele AL, Sprovieri T, Citrigno L, Conforti FL, Liguori M, Gambardella A, Bono F, Piccoli T, Patti F, Zappia M, Mancuso M, Iemolo F, Quattrone A. Mutation analysis of the SPG4 gene in Italian patients with pure and complicated forms of spastic paraplegia. J Neurol Sci 2010; 288:96-100. [DOI: 10.1016/j.jns.2009.09.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 09/22/2009] [Accepted: 09/23/2009] [Indexed: 10/20/2022]
|
27
|
|