1
|
Luo J, Bian J, Murillo M, Hau PT, Feng Y, Chau ECT, Yan Y, Ng LC, Parsha ASK, Siu GKH, Chow FWN, Xiong Q. High-quality genome assembly and comparative analysis reveal extensive genomic variation in Talaromyces marneffei. Microb Genom 2025; 11:001400. [PMID: 40294122 PMCID: PMC12037069 DOI: 10.1099/mgen.0.001400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
Talaromyces marneffei is a dimorphic fungus that transitions from a filamentous form at 25 °C to a pathogenic yeast form at 37 °C, demonstrating pathogenicity mostly in immunocompromised individuals, such as those with human immunodeficiency virus/AIDS. Though it is one of the most severe infectious fungi in Southeast Asia, the lack of comprehensive genomic analysis has hindered advancement in strain differentiation, diagnosis and treatment. In this study, we assembled a high-quality genome of T. marneffei ATCC 18224, resulting in a 28.9 Mb genome distributed across 11 contigs, using third-generation Oxford Nanopore Technologies sequencing reads. Notably, we identified a strain-specific 740-kb segmental duplication in strain ATCC 18224, potentially mediated by inserting a Ty1/Copia long terminal repeat (LTR) retrotransposon. This segmental duplication includes various functional genes, with 75 differentially expressed during its dimorphic transition. Comparative genomic analysis revealed large-scale rearrangements in strains PM1 and 11CN-20-091, which were inconsistent with the phylogenomic trees of six T. marneffei strains and required further investigation. Additionally, we observed substantial genetic structural variations in LTR retrotransposons, particularly within the Ty1/Copia family, including two significant recent expansions in strain ATCC 18224. In summary, the identification and characterization of these extensive genomic structural variations in T. marneffei contribute to a deep understanding of its genetic diversity and will facilitate improvements in genotyping, classification and genomic surveillance.
Collapse
Affiliation(s)
- Jinxia Luo
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Jingyuan Bian
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Michaela Murillo
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Pak-Ting Hau
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Yi Feng
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Eddie Chung-Ting Chau
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Yuyao Yan
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Laam-Ching Ng
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Ayesha S. K. Parsha
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Gilman Kit-Hang Siu
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Franklin Wang-Ngai Chow
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Qing Xiong
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| |
Collapse
|
2
|
Meneu L, Chapard C, Serizay J, Westbrook A, Routhier E, Ruault M, Perrot M, Minakakis A, Girard F, Bignaud A, Even A, Gourgues G, Libri D, Lartigue C, Piazza A, Thierry A, Taddei A, Beckouët F, Mozziconacci J, Koszul R. Sequence-dependent activity and compartmentalization of foreign DNA in a eukaryotic nucleus. Science 2025; 387:eadm9466. [PMID: 39913590 DOI: 10.1126/science.adm9466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 09/26/2024] [Accepted: 11/21/2024] [Indexed: 04/23/2025]
Abstract
In eukaryotes, DNA-associated protein complexes coevolve with genomic sequences to orchestrate chromatin folding. We investigate the relationship between DNA sequence and the spontaneous loading and activity of chromatin components in the absence of coevolution. Using bacterial genomes integrated into Saccharomyces cerevisiae, which diverged from yeast more than 2 billion years ago, we show that nucleosomes, cohesins, and associated transcriptional machinery can lead to the formation of two different chromatin archetypes, one transcribed and the other silent, independently of heterochromatin formation. These two archetypes also form on eukaryotic exogenous sequences, depend on sequence composition, and can be predicted using neural networks trained on the native genome. They do not mix in the nucleus, leading to a bipartite nuclear compartmentalization, reminiscent of the organization of vertebrate nuclei.
Collapse
Affiliation(s)
- Léa Meneu
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
- Sorbonne Université, College Doctoral
| | - Christophe Chapard
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Jacques Serizay
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Alex Westbrook
- Sorbonne Université, College Doctoral
- Laboratoire Structure et Instabilité des génomes, UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
| | - Etienne Routhier
- Sorbonne Université, College Doctoral
- Laboratoire Structure et Instabilité des génomes, UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS, Paris, France
| | - Myriam Ruault
- Institut Curie, PSL University, Sorbonne Université, CNRS UMR 3664 Nuclear Dynamics, Paris, France
| | - Manon Perrot
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
- Sorbonne Université, College Doctoral
| | - Alexandros Minakakis
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Fabien Girard
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Amaury Bignaud
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
- Sorbonne Université, College Doctoral
| | - Antoine Even
- Institut Curie, PSL University, Sorbonne Université, CNRS UMR 3664 Nuclear Dynamics, Paris, France
| | - Géraldine Gourgues
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Villenave d'Ornon, France
| | - Domenico Libri
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Carole Lartigue
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Villenave d'Ornon, France
| | - Aurèle Piazza
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Agnès Thierry
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Angela Taddei
- Institut Curie, PSL University, Sorbonne Université, CNRS UMR 3664 Nuclear Dynamics, Paris, France
| | - Frédéric Beckouët
- Molecular, Cellular and Developmental biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Mozziconacci
- Laboratoire Structure et Instabilité des génomes, UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS, Paris, France
- UAR 2700 2AD, Muséum National d'Histoire Naturelle, Paris, France
| | - Romain Koszul
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| |
Collapse
|
3
|
Scully R, Glodzik D, Menghi F, Liu ET, Zhang CZ. Mechanisms of tandem duplication in the cancer genome. DNA Repair (Amst) 2025; 145:103802. [PMID: 39742573 PMCID: PMC11843477 DOI: 10.1016/j.dnarep.2024.103802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/03/2025]
Abstract
Tandem duplications (TD) are among the most frequent type of structural variant (SV) in the cancer genome. They are characterized by a single breakpoint junction that defines the boundaries and the size of the duplicated segment. Cancer-associated TDs often increase oncogene copy number or disrupt tumor suppressor gene function, and thus have important roles in tumor evolution. TDs in cancer genomes fall into three classes, defined by the size of duplications, and are associated with distinct genetic drivers. In this review, we survey key features of cancer-related TDs and consider possible underlying mechanisms in relation to stressed DNA replication and the 3D organization of the S phase genome.
Collapse
Affiliation(s)
- Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | - Dominik Glodzik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Francesca Menghi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Edison T Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Cheng-Zhong Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
4
|
Laquel P, Ayciriex S, Doignon F, Camougrand N, Fougère L, Rocher C, Wattelet-Boyer V, Bessoule JJ, Testet E. Mlg1, a yeast acyltransferase located in ER membranes associated with mitochondria (MAMs), is involved in de novo synthesis and remodelling of phospholipids. FEBS J 2024; 291:2683-2702. [PMID: 38297966 DOI: 10.1111/febs.17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/27/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
In cells, phospholipids contain acyl chains of variable lengths and saturation, features that affect their functions. Their de novo synthesis in the endoplasmic reticulum takes place via the cytidine diphosphate diacylglycerol (CDP-DAG) and Kennedy pathways, which are conserved in eukaryotes. PA is a key intermediate for all phospholipids (PI, PIPs, PS, PE, PC, PG and CL). The de novo synthesis of PA occurs by acylation of glycerophosphate leading to the synthesis of 1-acyl lysoPA and subsequent acylation of 1-acyl lysoPA at the sn-2 position. Using membranes from Escherichia coli overexpressing MLG1, we showed that the yeast gene MLG1 encodes an acyltransferase, leading specifically to the synthesis of PA from 1-acyl lysoPA. Moreover, after their de novo synthesis, phospholipids can be remodelled by acyl exchange with one and/or two acyl chains exchanged at the sn-1 and/or sn-2 position. Based on shotgun lipidomics of the reference and mlg1Δ strains, as well as biochemical assays for acyltransferase activities, we identified an additional remodelling activity for Mlg1p, namely, incorporation of palmitic acid into the sn-1 position of PS and PE. By using confocal microscopy and subcellular fractionation, we also found that this acyltransferase is located in ER membranes associated with mitochondria, a finding that highlights the importance of these organelles in the global cellular metabolism of lipids.
Collapse
Affiliation(s)
- Patricia Laquel
- Univ. Bordeaux, CNRS, LBM, UMR 5200, Villenave d'Ornon, France
| | - Sophie Ayciriex
- Univ. Lyon, CNRS, Université Claude Bernard Lyon 1, ISA, UMR 5280, Villeurbanne, France
| | | | | | - Louise Fougère
- Univ. Bordeaux, CNRS, LBM, UMR 5200, Villenave d'Ornon, France
| | | | | | | | - Eric Testet
- Univ. Bordeaux, CNRS, LBM, UMR 5200, Villenave d'Ornon, France
- Bordeaux INP, LBM, UMR 5200, Villenave d'Ornon, France
| |
Collapse
|
5
|
The road less travelled? Exploring the nuanced evolutionary consequences of duplicated genes. Essays Biochem 2022; 66:737-744. [PMID: 36449319 DOI: 10.1042/ebc20220213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022]
Abstract
Duplicated genes have long been appreciated as both substrates and catalysts of evolutionary processes. From even the simplest cell to complex multicellular animals and plants, duplicated genes have made immeasurable contributions to the phenotypic evolution of all life on Earth. Not merely drivers of morphological innovation and speciation events, however, gene duplications sculpt the evolution of genetic architecture in ways we are only just coming to understand now we have the experimental tools to do so. As such, the present article revisits our understanding of the ways in which duplicated genes evolve, examining closely the various fates they can adopt in light of recent work that yields insights from studies of paralogues from across the tree of life that challenge the classical framework.
Collapse
|
6
|
Descorps-Declère S, Richard GF. Megasatellite formation and evolution in vertebrate genes. Cell Rep 2022; 40:111347. [PMID: 36103826 DOI: 10.1016/j.celrep.2022.111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/28/2022] [Accepted: 08/23/2022] [Indexed: 11/03/2022] Open
Abstract
Since formation of the first proto-eukaryotes, gene repertoire and genome complexity have significantly increased. Among genetic elements responsible for this increase are tandem repeats. Here we describe a genome-wide analysis of large tandem repeats, called megasatellites, in 58 vertebrate genomes. Two bursts occurred, one after the radiation between Agnatha and Gnathostomata fishes and the second one in therian mammals. Megasatellites are enriched in subtelomeric regions and frequently encoded in genes involved in transcription regulation, intracellular trafficking, and cell membrane metabolism, reminiscent of what is observed in fungus genomes. The presence of many introns within young megasatellites suggests that an exon-intron DNA segment is first duplicated and amplified before accumulation of mutations in intronic parts partially erases the megasatellite in such a way that it becomes detectable only in exons. Our results suggest that megasatellite formation and evolution is a dynamic and still ongoing process in vertebrate genomes.
Collapse
Affiliation(s)
- Stéphane Descorps-Declère
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 25 rue du Dr Roux, 75015 Paris, France.
| | - Guy-Franck Richard
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Natural & Synthetic Genome Instabilities, 25 rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
7
|
Panaro MA, Calvello R, Miniero DV, Mitolo V, Cianciulli A. Imaging Intron Evolution. Methods Protoc 2022; 5:mps5040053. [PMID: 35893579 PMCID: PMC9326662 DOI: 10.3390/mps5040053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Intron evolution may be readily imaged through the combined use of the “dot plot” function of the NCBI BLAST, aligning two sequences at a time, and the Vertebrate “Multiz” alignment and conservation tool of the UCSC Genome Browser. With the NCBI BLAST, an ideal alignment of two highly conserved sequences generates a diagonal straight line in the plot from the lower left corner to the upper right corner. Gaps in this line correspond to non-conserved sections. In addition, the dot plot of the alignment of a sequence with the same sequence after the removal of the Transposable Elements (TEs) can be observed along the diagonal gaps that correspond to the sites of TE insertion. The UCSC Genome Browser can graph, along the entire sequence of a single gene, the level of overall conservation in vertebrates. This level can be compared with the conservation level of the gene in one or more selected vertebrate species. As an example, we show the graphic analysis of the intron conservation in two genes: the mitochondrial solute carrier 21 (SLC25A21) and the growth hormone receptor (GHR), whose coding sequences are conserved through vertebrates, while their introns show dramatic changes in nucleotide composition and even length. In the SLC25A21, a few short but significant nucleotide sequences are conserved in zebrafish, Xenopus and humans, and the rate of conservation steadily increases from chicken/human to mouse/human alignments. In the GHR, a less conserved gene, the earlier indication of intron conservation is a small signal in chicken/human alignment. The UCSC tool may simultaneously display the conservation level of a gene in different vertebrates, with reference to the level of overall conservation in Vertebrates. It is shown that, at least in SLC25A21, the sites of higher conservation are not always coincident in chicken and zebrafish nor are the sites of higher vertebrate conservation.
Collapse
|
8
|
Uribe-Calvillo T, Maestroni L, Marsolier MC, Khadaroo B, Arbiol C, Schott J, Llorente B. Comprehensive analysis of cis- and trans-acting factors affecting ectopic Break-Induced Replication. PLoS Genet 2022; 18:e1010124. [PMID: 35727827 PMCID: PMC9249352 DOI: 10.1371/journal.pgen.1010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/01/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
Break-induced replication (BIR) is a highly mutagenic eukaryotic homologous DNA recombination pathway that repairs one-ended DNA double strand breaks such as broken DNA replication forks and eroded telomeres. While searching for cis-acting factors regulating ectopic BIR efficiency, we found that ectopic BIR efficiency is the highest close to chromosome ends. The variations of ectopic BIR efficiency as a function of the length of DNA to replicate can be described as a combination of two decreasing exponential functions, a property in line with repeated cycles of strand invasion, elongation and dissociation that characterize BIR. Interestingly, the apparent processivity of ectopic BIR depends on the length of DNA already synthesized. Ectopic BIR is more susceptible to disruption during the synthesis of the first ~35–40 kb of DNA than later, notably when the template chromatid is being transcribed or heterochromatic. Finally, we show that the Srs2 helicase promotes ectopic BIR from both telomere proximal and telomere distal regions in diploid cells but only from telomere proximal sites in haploid cells. Altogether, we bring new light on the factors impacting a last resort DNA repair pathway. DNA is a long molecule composed of two anti-parallel strands that can undergo breaks that need to be efficiently repaired to ensure genomic stability, hence preventing genetic diseases such as cancer. Homologous recombination is a major DNA repair pathway that copies DNA from intact homologous templates to seal DNA double strand breaks. Short DNA repair tracts are favored when homologous sequences for the two extremities of the broken molecule are present. However, when homologous sequences are present for only one extremity of the broken molecule, DNA repair synthesis can proceed up to the end of the chromosome, the telomere. This notably occurs at eroded telomeres when telomerase, the enzyme normally responsible for telomere elongation, is inactive, and at broken DNA replication intermediates. However, this Break-Induced Replication or BIR pathway is highly mutagenic. By initiating BIR at various distances from the telomere, we found that the length of DNA to synthesize significantly reduces BIR efficiency. Interestingly, our findings support two DNA synthesis phases, the first one being much less processive than the second one. Ultimately, this tends to restrain the use of this last resort DNA repair pathway to chromosome extremities notably when it takes place between non-allelic homologous sequences.
Collapse
Affiliation(s)
- Tannia Uribe-Calvillo
- Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Laetitia Maestroni
- Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Marie-Claude Marsolier
- Institute for Integrative Biology of the Cell (I2BC), Institut des sciences du vivant Frédéric Joliot, CNRS UMR 9198, CEA Saclay, Gif-sur-Yvette, France
- Eco-anthropologie (EA), Muséum national d’Histoire naturelle, CNRS, Université de Paris, Musée de l’Homme, Paris, France
| | - Basheer Khadaroo
- Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Christine Arbiol
- Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Jonathan Schott
- Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Bertrand Llorente
- Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
- * E-mail:
| |
Collapse
|
9
|
Micheli G, Camilloni G. Can Introns Stabilize Gene Duplication? BIOLOGY 2022; 11:941. [PMID: 35741463 PMCID: PMC9220161 DOI: 10.3390/biology11060941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Gene duplication is considered one of the most important events that determine the evolution of genomes. However, the neo-duplication condition of a given gene is particularly unstable due to recombination events. Several mechanisms have been proposed to justify this step. In this "opinion article" we propose a role for intron sequences in stabilizing gene duplication by limiting and reducing the identity of the gene sequence between the two duplicated copies. A review of the topic and a detailed hypothesis are presented.
Collapse
Affiliation(s)
- Gioacchino Micheli
- Istituto di Biologia e Patologia Molecolari CNR, Università Sapienza, P.le A. Moro 5, 00185 Roma, Italy;
| | - Giorgio Camilloni
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Università Sapienza, P.le A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
10
|
Genome-wide effect of non-optimal temperatures under anaerobic conditions on gene expression in Saccharomyces cerevisiae. Genomics 2022; 114:110386. [PMID: 35569731 DOI: 10.1016/j.ygeno.2022.110386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/28/2022] [Accepted: 05/07/2022] [Indexed: 12/29/2022]
Abstract
Understanding of thermal adaptation mechanisms in yeast is crucial to develop better-adapted strains to industrial processes, providing more economical and sustainable products. We have analyzed the transcriptomic responses of three Saccharomyces cerevisiae strains, a commercial wine strain, ADY5, a laboratory strain, CEN.PK113-7D and a commercial bioethanol strain, Ethanol Red, grown at non-optimal temperatures under anaerobic chemostat conditions. Transcriptomic analysis of the three strains revealed a huge complexity of cellular mechanisms and responses. Overall, cold exerted a stronger transcriptional response in the three strains comparing with heat conditions, with a higher number of down-regulating genes than of up-regulating genes regardless the strain analyzed. The comparison of the transcriptome at both sub- and supra-optimal temperatures showed the presence of common genes up- or down-regulated in both conditions, but also the presence of common genes up- or down-regulated in the three studied strains. More specifically, we have identified and validated three up-regulated genes at sub-optimal temperature in the three strains, OPI3, EFM6 and YOL014W. Finally, the comparison of the transcriptomic data with a previous proteomic study with the same strains revealed a good correlation between gene activity and protein abundance, mainly at low temperature. Our work provides a global insight into the specific mechanisms involved in temperature adaptation regarding both transcriptome and proteome, which can be a step forward in the comprehension and improvement of yeast thermotolerance.
Collapse
|
11
|
Saguez C, Viterbo D, Descorps-Declère S, Cormack BP, Dujon B, Richard GF. Functional variability in adhesion and flocculation of yeast megasatellite genes. Genetics 2022; 221:iyac042. [PMID: 35274698 PMCID: PMC9071537 DOI: 10.1093/genetics/iyac042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 11/14/2022] Open
Abstract
Megasatellites are large tandem repeats found in all fungal genomes but especially abundant in the opportunistic pathogen Candida glabrata. They are encoded in genes involved in cell-cell interactions, either between yeasts or between yeast and human cells. In the present work, we have been using an iterative genetic system to delete several Candida glabrata megasatellite-containing genes and found that 2 of them were positively involved in adhesion to epithelial cells, whereas 3 genes negatively controlled adhesion. Two of the latter, CAGL0B05061g or CAGL0A04851g, were also negative regulators of yeast-to-yeast adhesion, making them central players in controlling Candida glabrata adherence properties. Using a series of synthetic Saccharomyces cerevisiae strains in which the FLO1 megasatellite was replaced by other tandem repeats of similar length but different sequences, we showed that the capacity of a strain to flocculate in liquid culture was unrelated to its capacity to adhere to epithelial cells or to invade agar. Finally, to understand how megasatellites were initially created and subsequently expanded, an experimental evolution system was set up, in which modified yeast strains containing different megasatellite seeds were grown in bioreactors for more than 200 generations and selected for their ability to sediment at the bottom of the culture tube. Several flocculation-positive mutants were isolated. Functionally relevant mutations included general transcription factors as well as a 230-kbp segmental duplication.
Collapse
Affiliation(s)
- Cyril Saguez
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genétique des Génomes, Paris F-75015, France
- Present address: Abolis Biotechnologies, 5 Rue Henri Desbruères, Evry 91030, France
| | - David Viterbo
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genétique des Génomes, Paris F-75015, France
| | - Stéphane Descorps-Declère
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genétique des Génomes, Paris F-75015, France
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Department of Computational Biology, Paris F-75015, France
| | - Brendan P Cormack
- Department of Molecular Biology & Genetics, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Bernard Dujon
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genétique des Génomes, Paris F-75015, France
| | - Guy-Franck Richard
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genétique des Génomes, Paris F-75015, France
| |
Collapse
|
12
|
Kuzmin E, Taylor JS, Boone C. Retention of duplicated genes in evolution. Trends Genet 2022; 38:59-72. [PMID: 34294428 PMCID: PMC8678172 DOI: 10.1016/j.tig.2021.06.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 01/03/2023]
Abstract
Gene duplication is a prevalent phenomenon across the tree of life. The processes that lead to the retention of duplicated genes are not well understood. Functional genomics approaches in model organisms, such as yeast, provide useful tools to test the mechanisms underlying retention with functional redundancy and divergence of duplicated genes, including fates associated with neofunctionalization, subfunctionalization, back-up compensation, and dosage amplification. Duplicated genes may also be retained as a consequence of structural and functional entanglement. Advances in human gene editing have enabled the interrogation of duplicated genes in the human genome, providing new tools to evaluate the relative contributions of each of these factors to duplicate gene retention and the evolution of genome structure.
Collapse
Affiliation(s)
- Elena Kuzmin
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Research Centre, McGill University, 1160 Ave des Pins Ouest, Montreal, QC, Canada H3A 1A3.
| | - John S Taylor
- Department of Biology, University of Victoria, PO Box 1700, Station CSC, Victoria, BC, Canada V8W 2Y2
| | - Charles Boone
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, Canada M5S 3E1; RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan, 351-0198
| |
Collapse
|
13
|
Piazza A, Bordelet H, Dumont A, Thierry A, Savocco J, Girard F, Koszul R. Cohesin regulates homology search during recombinational DNA repair. Nat Cell Biol 2021; 23:1176-1186. [PMID: 34750581 DOI: 10.1038/s41556-021-00783-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023]
Abstract
Homologous recombination repairs DNA double-strand breaks (DSB) using an intact dsDNA molecule as a template. It entails a homology search step, carried out along a conserved RecA/Rad51-ssDNA filament assembled on each DSB end. Whether, how and to what extent a DSB impacts chromatin folding, and how this (re)organization in turns influences the homology search process, remain ill-defined. Here we characterize two layers of spatial chromatin reorganization following DSB formation in Saccharomyces cerevisiae. Although cohesin folds chromosomes into cohesive arrays of ~20-kb-long chromatin loops as cells arrest in G2/M, the DSB-flanking regions interact locally in a resection- and 9-1-1 clamp-dependent manner, independently of cohesin, Mec1ATR, Rad52 and Rad51. This local structure blocks cohesin progression, constraining the DSB region at the base of a loop. Functionally, cohesin promotes DSB-dsDNA interactions and donor identification in cis, while inhibiting them in trans. This study identifies multiple direct and indirect ways by which cohesin regulates homology search during recombinational DNA repair.
Collapse
Affiliation(s)
- Aurèle Piazza
- Institut Pasteur, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015, Paris, France.
- Université de Lyon, ENS de Lyon, Université Claude Bernard, Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, INSERM U1210, 46 allée d'Italie, 69007, Lyon, France.
| | - Hélène Bordelet
- Institut Pasteur, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015, Paris, France
- Université de Lyon, ENS de Lyon, Université Claude Bernard, Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, INSERM U1210, 46 allée d'Italie, 69007, Lyon, France
| | - Agnès Dumont
- Université de Lyon, ENS de Lyon, Université Claude Bernard, Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, INSERM U1210, 46 allée d'Italie, 69007, Lyon, France
| | - Agnès Thierry
- Institut Pasteur, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015, Paris, France
| | - Jérôme Savocco
- Université de Lyon, ENS de Lyon, Université Claude Bernard, Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, INSERM U1210, 46 allée d'Italie, 69007, Lyon, France
| | - Fabien Girard
- Institut Pasteur, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015, Paris, France
| | - Romain Koszul
- Institut Pasteur, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015, Paris, France.
| |
Collapse
|
14
|
Abstract
Aims:
The discontinuous pattern of genome size variation in angiosperms is an unsolved
problem related to genome evolution. In this study, we introduced a genome evolution operator
and solved the related eigenvalue equation to deduce the discontinuous pattern.
Background:
Genome is a well-defined system for studying the evolution of species. One of the
basic problems is the genome size evolution. The DNA amounts for angiosperm species are highly
variable, differing over 1000-fold. One big surprise is the discovery of the discontinuous
distribution of nuclear DNA amounts in many angiosperm genera.
Objective:
The discontinuous distribution of nuclear DNA amounts has certain regularity, much
like a group of quantum states in atomic physics. The quantum pattern has not been explained by
all the evolutionary theories so far and we shall interpret it through the quantum simulation of
genome evolution.
Methods:
We introduced a genome evolution operator H to deduce the distribution of DNA
amount. The nuclear DNA amount in angiosperms is studied from the eigenvalue equation of the
genome evolution operator H. The operator H is introduced by physical simulation and it is
defined as a function of the genome size N and the derivative with respect to the size.
Results:
The discontinuity of DNA size distribution and its synergetic occurrence in related
angiosperms species are successfully deduced from the solution of the equation. The results agree
well with the existing experimental data of Aloe, Clarkia, Nicotiana, Lathyrus, Allium and other
genera.
Conclusion:
The success of our approach may infer the existence of a set of genomic evolutionary
equations satisfying classical-quantum duality. The classical phase of evolution means it obeys the
classical deterministic law, while the quantum phase means it obeys the quantum stochastic law.
The discontinuity of DNA size distribution provides novel evidences on the quantum evolution of
angiosperms. It has been realized that the discontinuous pattern is due to the existence of some
unknown evolutionary constraints. However, our study indicates that these constraints on the
angiosperm genome essentially originate from quantum.
Collapse
Affiliation(s)
- Liaofu Luo
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Lirong Zhang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
15
|
Thermo-adaptive evolution to generate improved Saccharomyces cerevisiae strains for cocoa pulp fermentations. Int J Food Microbiol 2021; 342:109077. [PMID: 33550155 DOI: 10.1016/j.ijfoodmicro.2021.109077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/22/2020] [Accepted: 01/09/2021] [Indexed: 11/22/2022]
Abstract
Cocoa pulp fermentation is a consequence of the succession of indigenous yeasts, lactic acid bacteria and acetic acid bacteria that not only produce a diversity of metabolites, but also cause the production of flavour precursors. However, as such spontaneous fermentations are less reproducible and contribute to produce variability, interest in a microbial starter culture is growing that could be used to inoculate cocoa pulp fermentations. This study aimed to generate robust S. cerevisiae strains by thermo-adaptive evolution that could be used in cocoa fermentation. We evolved a cocoa strain in a sugary defined medium at high temperature to improve both fermentation and growth capacity. Moreover, adaptive evolution at high temperature (40 °C) also enabled us to unveil the molecular basis underlying the improved phenotype by analysing the whole genome sequence of the evolved strain. Adaptation to high-temperature conditions occurred at different genomic levels, and promoted aneuploidies, segmental duplication, and SNVs in the evolved strain. The lipid profile analysis of the evolved strain also evidenced changes in the membrane composition that contribute to maintain an appropriate cell membrane state at high temperature. Our work demonstrates that experimental evolution is an effective approach to generate better-adapted yeast strains at high temperature for industrial processes.
Collapse
|
16
|
Rahnama M, Novikova O, Starnes JH, Zhang S, Chen L, Farman ML. Transposon-mediated telomere destabilization: a driver of genome evolution in the blast fungus. Nucleic Acids Res 2020; 48:7197-7217. [PMID: 32558886 PMCID: PMC7367193 DOI: 10.1093/nar/gkaa287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/03/2020] [Accepted: 04/14/2020] [Indexed: 01/01/2023] Open
Abstract
The fungus Magnaporthe oryzae causes devastating diseases of crops, including rice and wheat, and in various grasses. Strains from ryegrasses have highly unstable chromosome ends that undergo frequent rearrangements, and this has been associated with the presence of retrotransposons (Magnaporthe oryzae Telomeric Retrotransposons-MoTeRs) inserted in the telomeres. The objective of the present study was to determine the mechanisms by which MoTeRs promote telomere instability. Targeted cloning, mapping, and sequencing of parental and novel telomeric restriction fragments (TRFs), along with MinION sequencing of genomic DNA allowed us to document the precise molecular alterations underlying 109 newly-formed TRFs. These included truncations of subterminal rDNA sequences; acquisition of MoTeR insertions by 'plain' telomeres; insertion of the MAGGY retrotransposons into MoTeR arrays; MoTeR-independent expansion and contraction of subtelomeric tandem repeats; and a variety of rearrangements initiated through breaks in interstitial telomere tracts that are generated during MoTeR integration. Overall, we estimate that alterations occurred in approximately sixty percent of chromosomes (one in three telomeres) analyzed. Most importantly, we describe an entirely new mechanism by which transposons can promote genomic alterations at exceptionally high frequencies, and in a manner that can promote genome evolution while minimizing collateral damage to overall chromosome architecture and function.
Collapse
Affiliation(s)
- Mostafa Rahnama
- Department of Plant Pathology, University of Kentucky, 1405 Veteran's Dr., Lexington, KY 40546, USA
| | - Olga Novikova
- Department of Plant Pathology, University of Kentucky, 1405 Veteran's Dr., Lexington, KY 40546, USA
| | - John H Starnes
- Department of Plant Pathology, University of Kentucky, 1405 Veteran's Dr., Lexington, KY 40546, USA
| | - Shouan Zhang
- Department of Plant Pathology, University of Kentucky, 1405 Veteran's Dr., Lexington, KY 40546, USA
| | - Li Chen
- Department of Plant Pathology, University of Kentucky, 1405 Veteran's Dr., Lexington, KY 40546, USA
| | - Mark L Farman
- Department of Plant Pathology, University of Kentucky, 1405 Veteran's Dr., Lexington, KY 40546, USA
| |
Collapse
|
17
|
Lallemand T, Leduc M, Landès C, Rizzon C, Lerat E. An Overview of Duplicated Gene Detection Methods: Why the Duplication Mechanism Has to Be Accounted for in Their Choice. Genes (Basel) 2020; 11:E1046. [PMID: 32899740 PMCID: PMC7565063 DOI: 10.3390/genes11091046] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Gene duplication is an important evolutionary mechanism allowing to provide new genetic material and thus opportunities to acquire new gene functions for an organism, with major implications such as speciation events. Various processes are known to allow a gene to be duplicated and different models explain how duplicated genes can be maintained in genomes. Due to their particular importance, the identification of duplicated genes is essential when studying genome evolution but it can still be a challenge due to the various fates duplicated genes can encounter. In this review, we first describe the evolutionary processes allowing the formation of duplicated genes but also describe the various bioinformatic approaches that can be used to identify them in genome sequences. Indeed, these bioinformatic approaches differ according to the underlying duplication mechanism. Hence, understanding the specificity of the duplicated genes of interest is a great asset for tool selection and should be taken into account when exploring a biological question.
Collapse
Affiliation(s)
- Tanguy Lallemand
- IRHS, Agrocampus-Ouest, INRAE, Université d’Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France; (T.L.); (M.L.); (C.L.)
| | - Martin Leduc
- IRHS, Agrocampus-Ouest, INRAE, Université d’Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France; (T.L.); (M.L.); (C.L.)
| | - Claudine Landès
- IRHS, Agrocampus-Ouest, INRAE, Université d’Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France; (T.L.); (M.L.); (C.L.)
| | - Carène Rizzon
- Laboratoire de Mathématiques et Modélisation d’Evry (LaMME), Université d’Evry Val d’Essonne, Université Paris-Saclay, UMR CNRS 8071, ENSIIE, USC INRAE, 23 bvd de France, CEDEX, 91037 Evry Paris, France;
| | - Emmanuelle Lerat
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| |
Collapse
|
18
|
Park M, Cho YJ, Lee YW, Jung WH. Genomic Multiplication and Drug Efflux Influence Ketoconazole Resistance in Malassezia restricta. Front Cell Infect Microbiol 2020; 10:191. [PMID: 32426297 PMCID: PMC7203472 DOI: 10.3389/fcimb.2020.00191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
Malassezia restricta is an opportunistic fungal pathogen on human skin; it is associated with various skin diseases, including seborrheic dermatitis and dandruff, which are usually treated using ketoconazole. In this study, we clinically isolated ketoconazole-resistant M. restricta strains (KCTC 27529 and KCTC 27550) from patients with dandruff. To understand the mechanisms of ketoconazole resistance in the isolates, their genomes were sequenced and compared with the susceptible reference strain M. restricta KCTC 27527. Using comparative genome analysis, we identified tandem multiplications of the genomic loci containing ATM1 and ERG11 homologs in M. restricta KCTC 27529 and KCTC 27550, respectively. Additionally, we found that the copy number increase of ATM1 and ERG11 is reflected in the increased expression of these genes; moreover, we observed that overexpression of these homologs caused ketoconazole resistance in a genetically tractable fungal pathogen, Cryptococcus neoformans. In addition to tandem multiplications of the genomic region containing the ATM1 homolog, the PDR5 homolog, which encodes the drug efflux pump protein was upregulated in M. restricta KCTC 27529 compared to the reference strain. Biochemical analysis confirmed that drug efflux was highly activated in M. restricta KCTC 27529, implying that upregulation of the PDR5 homolog may also contribute to ketoconazole resistance in the strain. Overall, our results suggest that multiplication of the genomic loci encoding genes involved in ergosterol synthesis, mitochondrial iron metabolism, and oxidative stress response and overexpression of the drug efflux pumps are the mechanisms underlying ketoconazole resistance in M. restricta.
Collapse
Affiliation(s)
- Minji Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Yong-Joon Cho
- School of Biological Sciences and Research Institute of Basic Sciences, Seoul National University, Seoul, South Korea
| | - Yang Won Lee
- Department of Dermatology, School of Medicine, Konkuk University, Seoul, South Korea.,Research Institute of Medicine, Konkuk University, Seoul, South Korea
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| |
Collapse
|
19
|
Borriello E, Walker SI, Laubichler MD. Cell phenotypes as macrostates of the GRN dynamics. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:213-224. [DOI: 10.1002/jez.b.22938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Enrico Borriello
- ASU‐SFI Center for Biosocial Complex SystemsArizona State UniversityTempe Arizona
| | - Sara I. Walker
- ASU‐SFI Center for Biosocial Complex SystemsArizona State UniversityTempe Arizona
- Beyond Center for Fundamental Concepts in ScienceArizona State UniversityTempe Arizona
- School of Earth and Space ExplorationArizona State UniversityTempe Arizona
- Blue Marble Space Institute of ScienceSeattle Washington
| | - Manfred D. Laubichler
- ASU‐SFI Center for Biosocial Complex SystemsArizona State UniversityTempe Arizona
- Santa Fe InstituteSanta Fe New Mexico
- Marine Biological LaboratoryWoods Hole Massachusetts
- School of Life SciencesArizona State UniversityTempe Arizona
| |
Collapse
|
20
|
Yang F, Teoh F, Tan ASM, Cao Y, Pavelka N, Berman J. Aneuploidy Enables Cross-Adaptation to Unrelated Drugs. Mol Biol Evol 2020; 36:1768-1782. [PMID: 31028698 PMCID: PMC6657732 DOI: 10.1093/molbev/msz104] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aneuploidy is common both in tumor cells responding to chemotherapeutic agents and in fungal cells adapting to antifungal drugs. Because aneuploidy simultaneously affects many genes, it has the potential to confer multiple phenotypes to the same cells. Here, we analyzed the mechanisms by which Candida albicans, the most prevalent human fungal pathogen, acquires the ability to survive both chemotherapeutic agents and antifungal drugs. Strikingly, adaptation to both types of drugs was accompanied by the acquisition of specific whole-chromosome aneuploidies, with some aneuploid karyotypes recovered independently and repeatedly from very different drug conditions. Specifically, strains selected for survival in hydroxyurea, an anticancer drug, acquired cross-adaptation to caspofungin, a first-line antifungal drug, and both acquired traits were attributable to trisomy of the same chromosome: loss of trisomy was accompanied by loss of adaptation to both drugs. Mechanistically, aneuploidy simultaneously altered the copy number of most genes on chromosome 2, yet survival in hydroxyurea or caspofungin required different genes and stress response pathways. Similarly, chromosome 5 monosomy conferred increased tolerance to both fluconazole and to caspofungin, antifungals with different mechanisms of action. Thus, the potential for cross-adaptation is not a feature of aneuploidy per se; rather, it is dependent on specific genes harbored on given aneuploid chromosomes. Furthermore, pre-exposure to hydroxyurea increased the frequency of appearance of caspofungin survivors, and hydroxyurea-adapted C. albicans cells were refractory to antifungal drug treatment in a mouse model of systemic candidiasis. This highlights the potential clinical consequences for the management of cancer chemotherapy patients at risk of fungal infections.
Collapse
Affiliation(s)
- Feng Yang
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Flora Teoh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Alrina Shin Min Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yongbing Cao
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai TCM-Integrated Institute of Vascular Disease, Shanghai, China
| | - Norman Pavelka
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Judith Berman
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
21
|
Huang CJ, Lu MY, Chang YW, Li WH. Experimental Evolution of Yeast for High-Temperature Tolerance. Mol Biol Evol 2019; 35:1823-1839. [PMID: 29684163 DOI: 10.1093/molbev/msy077] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Thermotolerance is a polygenic trait that contributes to cell survival and growth under unusually high temperatures. Although some genes associated with high-temperature growth (Htg+) have been identified, how cells accumulate mutations to achieve prolonged thermotolerance is still mysterious. Here, we conducted experimental evolution of a Saccharomyces cerevisiae laboratory strain with stepwise temperature increases for it to grow at 42 °C. Whole genome resequencing of 14 evolved strains and the parental strain revealed a total of 153 mutations in the evolved strains, including single nucleotide variants, small INDELs, and segmental duplication/deletion events. Some mutations persisted from an intermediate temperature to 42 °C, so they might be Htg+ mutations. Functional categorization of mutations revealed enrichment of exonic mutations in the SWI/SNF complex and F-type ATPase, pointing to their involvement in high-temperature tolerance. In addition, multiple mutations were found in a general stress-associated signal transduction network consisting of Hog1 mediated pathway, RAS-cAMP pathway, and Rho1-Pkc1 mediated cell wall integrity pathway, implying that cells can achieve Htg+ partly through modifying existing stress regulatory mechanisms. Using pooled segregant analysis of five Htg+ phenotype-orientated pools, we inferred causative mutations for growth at 42 °C and identified those mutations with stronger impacts on the phenotype. Finally, we experimentally validated a number of the candidate Htg+ mutations. This study increased our understanding of the genetic basis of yeast tolerance to high temperature.
Collapse
Affiliation(s)
- Chih-Jen Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Mei-Yeh Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ya-Wen Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, Taiwan.,Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan.,Department of Ecology and Evolution, University of Chicago, Chicago, IL
| |
Collapse
|
22
|
Lauer S, Gresham D. An evolving view of copy number variants. Curr Genet 2019; 65:1287-1295. [PMID: 31076843 DOI: 10.1007/s00294-019-00980-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/17/2019] [Accepted: 04/20/2019] [Indexed: 01/08/2023]
Abstract
Copy number variants (CNVs) are regions of the genome that vary in integer copy number. CNVs, which comprise both amplifications and deletions of DNA sequence, have been identified across all domains of life, from bacteria and archaea to plants and animals. CNVs are an important source of genetic diversity, and can drive rapid adaptive evolution and progression of heritable and somatic human diseases, such as cancer. However, despite their evolutionary importance and clinical relevance, CNVs remain understudied compared to single-nucleotide variants (SNVs). This is a consequence of the inherent difficulties in detecting CNVs at low-to-intermediate frequencies in heterogeneous populations of cells. Here, we discuss molecular methods used to detect CNVs, the limitations associated with using these techniques, and the application of new and emerging technologies that present solutions to these challenges. The goal of this short review and perspective is to highlight aspects of CNV biology that are understudied and define avenues for further research that address specific gaps in our knowledge of these complex alleles. We describe our recently developed method for CNV detection in which a fluorescent gene functions as a single-cell CNV reporter and present key findings from our evolution experiments in Saccharomyces cerevisiae. Using a CNV reporter, we found that CNVs are generated at a high rate and undergo selection with predictable dynamics across independently evolving replicate populations. Many CNVs appear to be generated through DNA replication-based processes that are mediated by the presence of short, interrupted, inverted-repeat sequences. Our results have important implications for the role of CNVs in evolutionary processes and the molecular mechanisms that underlie CNV formation. We discuss the possible extension of our method to other applications, including tracking the dynamics of CNVs in models of human tumors.
Collapse
Affiliation(s)
- Stephanie Lauer
- Institute for Systems Genetics, New York University Langone Health, New York, NY, USA
| | - David Gresham
- Center for Genomics and System Biology, Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
23
|
Piazza A, Heyer WD. Homologous Recombination and the Formation of Complex Genomic Rearrangements. Trends Cell Biol 2019; 29:135-149. [PMID: 30497856 PMCID: PMC6402879 DOI: 10.1016/j.tcb.2018.10.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022]
Abstract
The maintenance of genome integrity involves multiple independent DNA damage avoidance and repair mechanisms. However, the origin and pathways of the focal chromosomal reshuffling phenomena collectively referred to as chromothripsis remain mechanistically obscure. We discuss here the role, mechanisms, and regulation of homologous recombination (HR) in the formation of simple and complex chromosomal rearrangements. We emphasize features of the recently characterized multi-invasion (MI)-induced rearrangement (MIR) pathway which uniquely amplifies the initial DNA damage. HR intermediates and cellular contexts that endanger genomic stability are discussed as well as the emerging roles of various classes of nucleases in the formation of genome rearrangements. Long-read sequencing and improved mapping of repeats should enable better appreciation of the significance of recombination in generating genomic rearrangements.
Collapse
Affiliation(s)
- Aurèle Piazza
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; Spatial Regulation of Genomes, Department of Genomes and Genetics, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 3525, Institut Pasteur, 75015 Paris, France
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
24
|
Escalera-Fanjul X, Quezada H, Riego-Ruiz L, González A. Whole-Genome Duplication and Yeast’s Fruitful Way of Life. Trends Genet 2019; 35:42-54. [DOI: 10.1016/j.tig.2018.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/10/2018] [Accepted: 09/27/2018] [Indexed: 01/30/2023]
|
25
|
Assogba BS, Alout H, Koffi A, Penetier C, Djogbénou LS, Makoundou P, Weill M, Labbé P. Adaptive deletion in resistance gene duplications in the malaria vector Anopheles gambiae. Evol Appl 2018; 11:1245-1256. [PMID: 30151037 PMCID: PMC6099818 DOI: 10.1111/eva.12619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/15/2018] [Indexed: 12/11/2022] Open
Abstract
While gene copy-number variations play major roles in long-term evolution, their early dynamics remains largely unknown. However, examples of their role in short-term adaptation are accumulating: identical repetitions of a locus (homogeneous duplications) can provide a quantitative advantage, while the association of differing alleles (heterogeneous duplications) allows carrying two functions simultaneously. Such duplications often result from rearrangements of sometimes relatively large chromosome fragments, and even when adaptive, they can be associated with deleterious side effects that should, however, be reduced by subsequent evolution. Here, we took advantage of the unique model provided by the malaria mosquito Anopheles gambiae s.l. to investigate the early evolution of several duplications, heterogeneous and homogeneous, segregating in natural populations from West Africa. These duplications encompass ~200 kb and 11 genes, including the adaptive insecticide resistance ace-1 locus. Through the survey of several populations from three countries over 3-4 years, we showed that an internal deletion of all coamplified genes except ace-1 is currently spreading in West Africa and introgressing from An. gambiae s.s. to An. coluzzii. Both observations provide evidences of its selection, most likely due to reducing the gene-dosage disturbances caused by the excessive copies of the nonadaptive genes. Our study thus provides a unique example of the early adaptive trajectory of duplications and underlines the role of the environmental conditions (insecticide treatment practices and species ecology). It also emphasizes the striking diversity of adaptive responses in these mosquitoes and reveals a worrisome process of resistance/cost trade-off evolution that could impact the control of malaria vectors in Africa.
Collapse
Affiliation(s)
- Benoît S. Assogba
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS‐UM‐IRD‐EPHE)Université de MontpellierMontpellierFrance
- Disease Control and Elimination DepartmentMedical Research Council, Unit The GambiaBanjulThe Gambia
- Institut Régional de Santé PubliqueUniversité d'Abomey CalaviCotonouBenin
- Faculté des Sciences et TechniquesLaboratoire de Biologie et de Typage Moléculaire en MicrobiologieUniversité d'Abomey CalaviCotonouBénin
| | - Haoues Alout
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS‐UM‐IRD‐EPHE)Université de MontpellierMontpellierFrance
| | - Alphonsine Koffi
- Institut Pierre Richet (IPR)/Institut National de Santé Publique (INSP)BouakéCôte d'Ivoire
| | - Cédric Penetier
- Institut de Recherche pour le Développement (IRD)UMR MIVEGECMontpellierFrance
| | - Luc S. Djogbénou
- Institut Régional de Santé PubliqueUniversité d'Abomey CalaviCotonouBenin
- Faculté des Sciences et TechniquesLaboratoire de Biologie et de Typage Moléculaire en MicrobiologieUniversité d'Abomey CalaviCotonouBénin
| | - Patrick Makoundou
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS‐UM‐IRD‐EPHE)Université de MontpellierMontpellierFrance
| | - Mylène Weill
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS‐UM‐IRD‐EPHE)Université de MontpellierMontpellierFrance
| | - Pierrick Labbé
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS‐UM‐IRD‐EPHE)Université de MontpellierMontpellierFrance
| |
Collapse
|
26
|
Border collies of the genome: domestication of an autonomous retrovirus-like transposon. Curr Genet 2018; 65:71-78. [PMID: 29931377 DOI: 10.1007/s00294-018-0857-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/23/2022]
Abstract
Retrotransposons often spread rapidly through eukaryotic genomes until they are neutralized by host-mediated silencing mechanisms, reduced by recombination and mutation, and lost or transformed into benevolent entities. But the Ty1 retrotransposon appears to have been domesticated to guard the genome of Saccharomyces cerevisiae.
Collapse
|
27
|
Population size changes and selection drive patterns of parallel evolution in a host-virus system. Nat Commun 2018; 9:1706. [PMID: 29703896 PMCID: PMC5923231 DOI: 10.1038/s41467-018-03990-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 03/26/2018] [Indexed: 11/09/2022] Open
Abstract
Predicting the repeatability of evolution remains elusive. Theory and empirical studies suggest that strong selection and large population sizes increase the probability for parallel evolution at the phenotypic and genotypic levels. However, selection and population sizes are not constant, but rather change continuously and directly affect each other even on short time scales. Here, we examine the degree of parallel evolution shaped through eco-evolutionary dynamics in an algal host population coevolving with a virus. We find high degrees of parallelism at the level of population size changes (ecology) and at the phenotypic level between replicated populations. At the genomic level, we find evidence for parallelism, as the same large genomic region was duplicated in all replicated populations, but also substantial novel sequence divergence between replicates. These patterns of genome evolution can be explained by considering population size changes as an important driver of rapid evolution.
Collapse
|
28
|
Stoichiometry and compositional plasticity of the yeast nuclear pore complex revealed by quantitative fluorescence microscopy. Proc Natl Acad Sci U S A 2018; 115:E3969-E3977. [PMID: 29632211 DOI: 10.1073/pnas.1719398115] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The nuclear pore complex (NPC) is an eightfold symmetrical channel providing selective transport of biomolecules across the nuclear envelope. Each NPC consists of ∼30 different nuclear pore proteins (Nups) all present in multiple copies per NPC. Significant progress has recently been made in the characterization of the vertebrate NPC structure. However, because of the estimated size differences between the vertebrate and yeast NPC, it has been unclear whether the NPC architecture is conserved between species. Here, we have developed a quantitative image analysis pipeline, termed nuclear rim intensity measurement (NuRIM), to precisely determine copy numbers for almost all Nups within native NPCs of budding yeast cells. Our analysis demonstrates that the majority of yeast Nups are present at most in 16 copies per NPC. This reveals a dramatic difference to the stoichiometry determined for the human NPC, suggesting that despite a high degree of individual Nup conservation, the yeast and human NPC architecture is significantly different. Furthermore, using NuRIM, we examined the effects of mutations on NPC stoichiometry. We demonstrate for two paralog pairs of key scaffold Nups, Nup170/Nup157 and Nup192/Nup188, that their altered expression leads to significant changes in the NPC stoichiometry inducing either voids in the NPC structure or substitution of one paralog by the other. Thus, our results not only provide accurate stoichiometry information for the intact yeast NPC but also reveal an intriguing compositional plasticity of the NPC architecture, which may explain how differences in NPC composition could arise in the course of evolution.
Collapse
|
29
|
Abstract
Genome rearrangements underlie different human diseases including many cancers. Determining the rates at which genome rearrangements arise and isolating unique, independent genome rearrangements is critical to understanding the genes and pathways that prevent or promote genome rearrangements. Here, we describe quantitative S. cerevisiae genetic assays for measuring the rates of accumulating genome rearrangements including deletions, translocations, and broken chromosomes healed by de novo telomere addition that result in the deletion of two counter-selectable genes, CAN1 and URA3, placed in the nonessential regions of the S. cerevisiae genome. The assays also allow for the isolation of individual genome rearrangements for structural studies, and a method for analyzing genome rearrangements by next-generation DNA sequencing is provided.
Collapse
Affiliation(s)
- Anjana Srivatsan
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0669, USA
| | - Christopher D Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0669, USA
- Department of Medicine, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0669, USA
| | - Richard D Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0669, USA.
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0669, USA.
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0669, USA.
- Institute of Genomic Medicine, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0669, USA.
| |
Collapse
|
30
|
Pathways and Mechanisms that Prevent Genome Instability in Saccharomyces cerevisiae. Genetics 2017; 206:1187-1225. [PMID: 28684602 PMCID: PMC5500125 DOI: 10.1534/genetics.112.145805] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Genome rearrangements result in mutations that underlie many human diseases, and ongoing genome instability likely contributes to the development of many cancers. The tools for studying genome instability in mammalian cells are limited, whereas model organisms such as Saccharomyces cerevisiae are more amenable to these studies. Here, we discuss the many genetic assays developed to measure the rate of occurrence of Gross Chromosomal Rearrangements (called GCRs) in S. cerevisiae. These genetic assays have been used to identify many types of GCRs, including translocations, interstitial deletions, and broken chromosomes healed by de novo telomere addition, and have identified genes that act in the suppression and formation of GCRs. Insights from these studies have contributed to the understanding of pathways and mechanisms that suppress genome instability and how these pathways cooperate with each other. Integrated models for the formation and suppression of GCRs are discussed.
Collapse
|
31
|
Mercy G, Mozziconacci J, Scolari VF, Yang K, Zhao G, Thierry A, Luo Y, Mitchell LA, Shen M, Shen Y, Walker R, Zhang W, Wu Y, Xie ZX, Luo Z, Cai Y, Dai J, Yang H, Yuan YJ, Boeke JD, Bader JS, Muller H, Koszul R. 3D organization of synthetic and scrambled chromosomes. Science 2017; 355:355/6329/eaaf4597. [PMID: 28280150 DOI: 10.1126/science.aaf4597] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/01/2017] [Indexed: 11/02/2022]
Abstract
Although the design of the synthetic yeast genome Sc2.0 is highly conservative with respect to gene content, the deletion of several classes of repeated sequences and the introduction of thousands of designer changes may affect genome organization and potentially alter cellular functions. We report here the Hi-C-determined three-dimensional (3D) conformations of Sc2.0 chromosomes. The absence of repeats leads to a smoother contact pattern and more precisely tractable chromosome conformations, and the large-scale genomic organization is globally unaffected by the presence of synthetic chromosome(s). Two exceptions are synIII, which lacks the silent mating-type cassettes, and synXII, specifically when the ribosomal DNA is moved to another chromosome. We also exploit the contact maps to detect rearrangements induced in SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-mediated evolution) strains.
Collapse
Affiliation(s)
- Guillaume Mercy
- Spatial Regulation of Genomes, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France.,UMR3525, Centre National de la Recherche Scientifique (CNRS), Paris 75015, France.,Sorbonne Universités, Université Pierre et Marie Curie (Université Paris 6), Paris 75005, France
| | - Julien Mozziconacci
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR7600, Université Pierre et Marie Curie (Université Paris 6), Sorbonne Universités, Paris, France
| | - Vittore F Scolari
- Spatial Regulation of Genomes, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France.,UMR3525, Centre National de la Recherche Scientifique (CNRS), Paris 75015, France
| | - Kun Yang
- Department of Biomedical Engineering and High-Throughput Biology Center, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Guanghou Zhao
- Key Laboratory for Industrial Biocatalysis (Ministry of Education), Key Laboratory of Bioinformatics (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Agnès Thierry
- Spatial Regulation of Genomes, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France.,UMR3525, Centre National de la Recherche Scientifique (CNRS), Paris 75015, France
| | - Yisha Luo
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Leslie A Mitchell
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Michael Shen
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Yue Shen
- BGI-Shenzhen, Shenzhen 518083, China.,BGI-Qingdao, Qingdao 266555, China.,School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Roy Walker
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Weimin Zhang
- Key Laboratory for Industrial Biocatalysis (Ministry of Education), Key Laboratory of Bioinformatics (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Wu
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ze-Xiong Xie
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhouqing Luo
- Key Laboratory for Industrial Biocatalysis (Ministry of Education), Key Laboratory of Bioinformatics (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yizhi Cai
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Junbiao Dai
- Key Laboratory for Industrial Biocatalysis (Ministry of Education), Key Laboratory of Bioinformatics (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Huanming Yang
- James D. Watson Institute of Genome Sciences, Hangzhou 310058, China.,BGI-Shenzhen, Shenzhen 518083, China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Joel S Bader
- Department of Biomedical Engineering and High-Throughput Biology Center, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Héloïse Muller
- Spatial Regulation of Genomes, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France. .,UMR3525, Centre National de la Recherche Scientifique (CNRS), Paris 75015, France
| | - Romain Koszul
- Spatial Regulation of Genomes, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France. .,UMR3525, Centre National de la Recherche Scientifique (CNRS), Paris 75015, France
| |
Collapse
|
32
|
Taylor JW, Branco S, Gao C, Hann-Soden C, Montoya L, Sylvain I, Gladieux P. Sources of Fungal Genetic Variation and Associating It with Phenotypic Diversity. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0057-2016. [PMID: 28936945 PMCID: PMC11687547 DOI: 10.1128/microbiolspec.funk-0057-2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Indexed: 01/17/2023] Open
Abstract
The first eukaryotic genome to be sequenced was fungal, and there continue to be more sequenced genomes in the kingdom Fungi than in any other eukaryotic kingdom. Comparison of these genomes reveals many sources of genetic variation, from single nucleotide polymorphisms to horizontal gene transfer and on to changes in the arrangement and number of chromosomes, not to mention endofungal bacteria and viruses. Population genomics shows that all sources generate variation all the time and implicate natural selection as the force maintaining genome stability. Variation in wild populations is a rich resource for associating genetic variation with phenotypic variation, whether through quantitative trait locus mapping, genome-wide association studies, or reverse ecology. Subjects of studies associating genetic and phenotypic variation include model fungi, e.g., Saccharomyces and Neurospora, but pioneering studies have also been made with fungi pathogenic to plants, e.g., Pyricularia (= Magnaporthe), Zymoseptoria, and Fusarium, and to humans, e.g., Coccidioides, Cryptococcus, and Candida.
Collapse
Affiliation(s)
- John W Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720-3102
| | - Sara Branco
- Département Génétique et Ecologie Evolutives Laboratoire Ecologie, Systématique et Evolution, CNRS-UPS-AgroParisTech, Université de Paris-Sud, 91405 Orsay, France, and Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717
| | - Cheng Gao
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
| | - Chris Hann-Soden
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
| | - Liliam Montoya
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
| | - Iman Sylvain
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
| | - Pierre Gladieux
- INRA, UMR BGPI, Campus International de Baillarguet, 34398 Montpellier, France
| |
Collapse
|
33
|
Dujon BA, Louis EJ. Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina). Genetics 2017; 206:717-750. [PMID: 28592505 PMCID: PMC5499181 DOI: 10.1534/genetics.116.199216] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/03/2017] [Indexed: 12/15/2022] Open
Abstract
Considerable progress in our understanding of yeast genomes and their evolution has been made over the last decade with the sequencing, analysis, and comparisons of numerous species, strains, or isolates of diverse origins. The role played by yeasts in natural environments as well as in artificial manufactures, combined with the importance of some species as model experimental systems sustained this effort. At the same time, their enormous evolutionary diversity (there are yeast species in every subphylum of Dikarya) sparked curiosity but necessitated further efforts to obtain appropriate reference genomes. Today, yeast genomes have been very informative about basic mechanisms of evolution, speciation, hybridization, domestication, as well as about the molecular machineries underlying them. They are also irreplaceable to investigate in detail the complex relationship between genotypes and phenotypes with both theoretical and practical implications. This review examines these questions at two distinct levels offered by the broad evolutionary range of yeasts: inside the best-studied Saccharomyces species complex, and across the entire and diversified subphylum of Saccharomycotina. While obviously revealing evolutionary histories at different scales, data converge to a remarkably coherent picture in which one can estimate the relative importance of intrinsic genome dynamics, including gene birth and loss, vs. horizontal genetic accidents in the making of populations. The facility with which novel yeast genomes can now be studied, combined with the already numerous available reference genomes, offer privileged perspectives to further examine these fundamental biological questions using yeasts both as eukaryotic models and as fungi of practical importance.
Collapse
Affiliation(s)
- Bernard A Dujon
- Department Genomes and Genetics, Institut Pasteur, Centre National de la Recherche Scientifique UMR3525, 75724-CEDEX15 Paris, France
- Université Pierre et Marie Curie UFR927, 75005 Paris, France
| | - Edward J Louis
- Centre for Genetic Architecture of Complex Traits, University of Leicester, LE1 7RH, United Kingdom
- Department of Genetics, University of Leicester, LE1 7RH, United Kingdom
| |
Collapse
|
34
|
Effects of sub-culturing on genetic and physiological parameters in different Beauveria bassiana isolates. J Invertebr Pathol 2017; 145:62-67. [DOI: 10.1016/j.jip.2017.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/09/2017] [Accepted: 03/19/2017] [Indexed: 11/20/2022]
|
35
|
Weissenbach J. The rise of genomics. C R Biol 2016; 339:231-9. [PMID: 27263360 DOI: 10.1016/j.crvi.2016.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/19/2016] [Accepted: 04/19/2016] [Indexed: 11/17/2022]
Abstract
A brief history of the development of genomics is provided. Complete sequencing of genomes of uni- and multicellular organisms is based on important progress in sequencing and bioinformatics. Evolution of these methods is ongoing and has triggered an explosion in data production and analysis. Initial analyses focused on the inventory of genes encoding proteins. Completeness and quality of gene prediction remains crucial. Genome analyses profoundly modified our views on evolution, biodiversity and contributed to the detection of new functions, yet to be fully elucidated, such as those fulfilled by non-coding RNAs. Genomics has become the basis for the study of biology and provides the molecular support for a bunch of large-scale studies, the omics.
Collapse
Affiliation(s)
- Jean Weissenbach
- Commissariat à l'énergie atomique et aux énergies alternatives, Institut de génomique, Genoscope, 2, rue Gaston-Crémieux, 91000 Évry, France; CNRS, Unité de génomique métabolique UMR8030, 2, rue Gaston-Crémieux, 91000 Évry, France; Université d'Évry, Unité de génomique métabolique UMR8030, 2, rue Gaston-Crémieux, 91000 Évry, France.
| |
Collapse
|
36
|
Thierry A, Khanna V, Dujon B. Massive Amplification at an Unselected Locus Accompanies Complex Chromosomal Rearrangements in Yeast. G3 (BETHESDA, MD.) 2016; 6:1201-15. [PMID: 26945028 PMCID: PMC4856073 DOI: 10.1534/g3.115.024547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/20/2016] [Indexed: 12/13/2022]
Abstract
Gene amplification has been observed in different organisms in response to environmental constraints, such as limited nutrients or exposure to a variety of toxic compounds, conferring them with specific phenotypic adaptations via increased expression levels. However, the presence of multiple gene copies in natural genomes has generally not been found in the absence of specific functional selection. Here, we show that the massive amplification of a chromosomal locus (up to 880 copies per cell) occurs in the absence of any direct selection, and is associated with low-order amplifications of flanking segments in complex chromosomal alterations. These results were obtained from mutants with restored phenotypes that spontaneously appeared from genetically engineered strains of the yeast Saccharomyces cerevisiae suffering from severe fitness reduction. Grossly extended chromosomes (macrotene) were formed, with complex structural alterations but sufficient stability to propagate unchanged over successive generations. Their detailed molecular analysis, including complete genome sequencing, identification of sequence breakpoints, and comparisons between mutants, revealed novel mechanisms causing their formation, whose combined action underlies the astonishing dynamics of eukaryotic chromosomes and their consequences.
Collapse
Affiliation(s)
- Agnès Thierry
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS (UMR3525), Sorbonne Universités, UPMC, Université Paris 06 (UFR927), F-75724 CEDEX 15, France
| | - Varun Khanna
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS (UMR3525), Sorbonne Universités, UPMC, Université Paris 06 (UFR927), F-75724 CEDEX 15, France
| | - Bernard Dujon
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS (UMR3525), Sorbonne Universités, UPMC, Université Paris 06 (UFR927), F-75724 CEDEX 15, France
| |
Collapse
|
37
|
The tandem duplicator phenotype as a distinct genomic configuration in cancer. Proc Natl Acad Sci U S A 2016; 113:E2373-82. [PMID: 27071093 DOI: 10.1073/pnas.1520010113] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Next-generation sequencing studies have revealed genome-wide structural variation patterns in cancer, such as chromothripsis and chromoplexy, that do not engage a single discernable driver mutation, and whose clinical relevance is unclear. We devised a robust genomic metric able to identify cancers with a chromotype called tandem duplicator phenotype (TDP) characterized by frequent and distributed tandem duplications (TDs). Enriched only in triple-negative breast cancer (TNBC) and in ovarian, endometrial, and liver cancers, TDP tumors conjointly exhibit tumor protein p53 (TP53) mutations, disruption of breast cancer 1 (BRCA1), and increased expression of DNA replication genes pointing at rereplication in a defective checkpoint environment as a plausible causal mechanism. The resultant TDs in TDP augment global oncogene expression and disrupt tumor suppressor genes. Importantly, the TDP strongly correlates with cisplatin sensitivity in both TNBC cell lines and primary patient-derived xenografts. We conclude that the TDP is a common cancer chromotype that coordinately alters oncogene/tumor suppressor expression with potential as a marker for chemotherapeutic response.
Collapse
|
38
|
Tine M, Kuhl H, Teske PR, Tschöp MH, Jastroch M. Diversification and coevolution of the ghrelin/growth hormone secretagogue receptor system in vertebrates. Ecol Evol 2016; 6:2516-35. [PMID: 27066235 PMCID: PMC4797157 DOI: 10.1002/ece3.2057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 12/13/2022] Open
Abstract
The gut hormone ghrelin is involved in numerous metabolic functions, such as the stimulation of growth hormone secretion, gastric motility, and food intake. Ghrelin is modified by ghrelin O-acyltransferase (GOAT) or membrane-bound O-acyltransferase domain-containing 4 (MBOAT4) enabling action through the growth hormone secretagogue receptors (GHS-R). During the course of evolution, initially strong ligand/receptor specificities can be disrupted by genomic changes, potentially modifying physiological roles of the ligand/receptor system. Here, we investigated the coevolution of ghrelin, GOAT, and GHS-R in vertebrates. We combined similarity search, conserved synteny analyses, phylogenetic reconstructions, and protein structure comparisons to reconstruct the evolutionary history of the ghrelin system. Ghrelin remained a single-gene locus in all vertebrate species, and accordingly, a single GHS-R isoform was identified in all tetrapods. Similar patterns of the nonsynonymous (dN) and synonymous (dS) ratio (dN/dS) in the vertebrate lineage strongly suggest coevolution of the ghrelin and GHS-R genes, supporting specific functional interactions and common physiological pathways. The selection profiles do not allow confirmation as to whether ghrelin binds specifically to GOAT, but the ghrelin dN/dS patterns are more similar to those of GOAT compared to MBOAT1 and MBOAT2 isoforms. Four GHS-R isoforms were identified in teleost genomes. This diversification of GHS-R resulted from successive rounds of duplications, some of which remained specific to the teleost lineage. Coevolution signals are lost in teleosts, presumably due to the diversification of GHS-R but not the ghrelin gene. The identification of the GHS-R diversity in teleosts provides a molecular basis for comparative studies on ghrelin's physiological roles and regulation, while the comparative sequence and structure analyses will assist translational medicine to determine structure-function relationships of the ghrelin/GHS-R system.
Collapse
Affiliation(s)
- Mbaye Tine
- Genome Centre at Max Planck Institute for Plant Breeding Research Carl-von-Linné-Weg 10D-50829 Köln Germany; Molecular Zoology Laboratory Department of Zoology University of Johannesburg Kingsway Campus Auckland Park 2006 South Africa
| | - Heiner Kuhl
- Max Planck Institute for Molecular Genetics Ihnestrasse 63-73 14195 Berlin Germany
| | - Peter R Teske
- Molecular Zoology Laboratory Department of Zoology University of Johannesburg Kingsway Campus Auckland Park 2006 South Africa
| | - Matthias H Tschöp
- Helmholtz Diabetes Center & German Diabetes Center (DZD) Helmholtz Zentrum München, 85764 Neuherberg, Germany; Division of Metabolic Diseases Technische Universität München 80333 Munich Germany
| | - Martin Jastroch
- Helmholtz Diabetes Center & German Diabetes Center (DZD) Helmholtz Zentrum München, 85764 Neuherberg, Germany; Division of Metabolic Diseases Technische Universität München 80333 Munich Germany
| |
Collapse
|
39
|
Molecular Combing of Single DNA Molecules on the 10 Megabase Scale. Sci Rep 2016; 6:19636. [PMID: 26781994 PMCID: PMC4726065 DOI: 10.1038/srep19636] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
DNA combing allows the investigation of DNA replication on genomic single DNA molecules, but the lengths that can be analysed have been restricted to molecules of 200-500 kb. We have improved the DNA combing procedure so that DNA molecules can be analysed up to the length of entire chromosomes in fission yeast and up to 12 Mb fragments in human cells. Combing multi-Mb-scale DNA molecules revealed previously undetected origin clusters in fission yeast and shows that in human cells replication origins fire stochastically forming clusters of fired origins with an average size of 370 kb. We estimate that a single human cell forms around 3200 clusters at mid S-phase and fires approximately 100,000 origins to complete genome duplication. The procedure presented here will be adaptable to other organisms and experimental conditions.
Collapse
|
40
|
Abstract
Chromosome rearrangement plays a causal role in tumorigenesis by contributing to the inactivation of tumor suppressor genes, the dysregulated expression or amplification of oncogenes and the generation of novel gene fusions. Chromosome breaks are important intermediates in this process. How, when and where these breaks arise and the specific mechanisms engaged in their repair strongly influence the resulting patterns of chromosome rearrangement. Here, we review recent progress in understanding how certain distinctive features of the cancer genome, including clustered mutagenesis, tandem segmental duplications, complex breakpoints, chromothripsis, chromoplexy and chromoanasynthesis may arise.
Collapse
|
41
|
Elucidating the molecular architecture of adaptation via evolve and resequence experiments. Nat Rev Genet 2015; 16:567-82. [PMID: 26347030 DOI: 10.1038/nrg3937] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Evolve and resequence (E&R) experiments use experimental evolution to adapt populations to a novel environment, then next-generation sequencing to analyse genetic changes. They enable molecular evolution to be monitored in real time on a genome-wide scale. Here, we review the field of E&R experiments across diverse systems, ranging from simple non-living RNA to bacteria, yeast and the complex multicellular organism Drosophila melanogaster. We explore how different evolutionary outcomes in these systems are largely consistent with common population genetics principles. Differences in outcomes across systems are largely explained by different starting population sizes, levels of pre-existing genetic variation, recombination rates and adaptive landscapes. We highlight emerging themes and inconsistencies that future experiments must address.
Collapse
|
42
|
Dujon B. Basic principles of yeast genomics, a personal recollection: Graphical Abstract Figure. FEMS Yeast Res 2015; 15:fov047. [DOI: 10.1093/femsyr/fov047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2015] [Indexed: 12/12/2022] Open
|
43
|
Hose J, Yong CM, Sardi M, Wang Z, Newton MA, Gasch AP. Dosage compensation can buffer copy-number variation in wild yeast. eLife 2015; 4. [PMID: 25955966 PMCID: PMC4448642 DOI: 10.7554/elife.05462] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 05/07/2015] [Indexed: 12/22/2022] Open
Abstract
Aneuploidy is linked to myriad diseases but also facilitates organismal evolution. It remains unclear how cells overcome the deleterious effects of aneuploidy until new phenotypes evolve. Although laboratory strains are extremely sensitive to aneuploidy, we show here that aneuploidy is common in wild yeast isolates, which show lower-than-expected expression at many amplified genes. We generated diploid strain panels in which cells carried two, three, or four copies of the affected chromosomes, to show that gene-dosage compensation functions at >30% of amplified genes. Genes subject to dosage compensation are under higher expression constraint in wild populations—but they show elevated rates of gene amplification, suggesting that copy-number variation is buffered at these genes. We find that aneuploidy provides a clear ecological advantage to oak strain YPS1009, by amplifying a causal gene that escapes dosage compensation. Our work presents a model in which dosage compensation buffers gene amplification through aneuploidy to provide a natural, but likely transient, route to rapid phenotypic evolution. DOI:http://dx.doi.org/10.7554/eLife.05462.001 Evolution is driven by changes to the genes and other genetic information found in the DNA of an organism. These changes might, for example, alter the physical characteristics of the organism, or change how efficiently crucial tasks are carried out inside cells. Whatever the change, if it makes it easier for the organism to survive and reproduce, it is more likely to be passed on to future generations. DNA is organized inside cells in structures called chromosomes. Most of the cells in animals, plants, and fungi contain two copies of each chromosome. However, sometimes mistakes happen during cell division and extra copies of a chromosome—and hence the genes contained within it—may end up in a cell. These extra copies of genes might help to speed up the rate at which a species evolves, as the ‘spare’ copies are free to adapt to new roles. However, having extra copies of genes can also often be harmful, and in humans can cause genetic disorders such as Down syndrome. In the laboratory, chromosomes are commonly studied in a species of yeast called Saccharomyces cerevisiae. This species consists of several groups—or strains—that are genetically distinct from each other. Over the years, breeding the yeast for experiments has created laboratory strains that have lost some of the characteristics seen in wild strains. Earlier studies suggested that these cells fail to grow properly if they contain extra copies of chromosomes. Now, Hose et al. have studied nearly 50 wild strains of Saccharomyces cerevisiae. In these, extra copies of chromosomes are commonplace, and seemingly have no detrimental effect on growth. Instead, Hose et al. found that cells with too many copies of a gene use many of those genes less often than would be expected. This process is known as ‘dosage compensation’. This dosage compensation has not been observed in laboratory strains, in part because the extra gene copies make them sickly and hard to study. Together, the results provide examples of how dosage compensation could help new traits to evolve in a species by reducing the negative effects of duplicated genes. This knowledge may have broad application, from suggesting methods to alleviate human disorders to implicating new ways to engineer useful traits in yeast and other microbes. DOI:http://dx.doi.org/10.7554/eLife.05462.002
Collapse
Affiliation(s)
- James Hose
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
| | - Chris Mun Yong
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
| | - Maria Sardi
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
| | - Zhishi Wang
- Department of Statistics, University of Wisconsin-Madison, Madison, United States
| | - Michael A Newton
- Department of Statistics, University of Wisconsin-Madison, Madison, United States
| | - Audrey P Gasch
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
44
|
Abstract
The genome size of an organism varies from species to species. The C-value paradox enigma is a very complex puzzle with regards to vast diversity in genome sizes in eukaryotes. Here we reported the detailed genomic information of 172 fungal species among different fungal genomes and found that fungal genomes are very diverse in nature. In fungi, the diversity of genomes varies from 8.97 Mb to 177.57 Mb. The average genome sizes of Ascomycota and Basidiomycota fungi are 36.91 and 46.48 Mb respectively. But higher genome size is observed in Oomycota (74.85 Mb) species, a lineage of fungus-like eukaryotic microorganisms. The average coding genes of Oomycota species are almost doubled than that of Acomycota and Basidiomycota fungus.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
45
|
Abstract
Long-terminal repeat (LTR)-retrotransposons generate a copy of their DNA (cDNA) by reverse transcription of their RNA genome in cytoplasmic nucleocapsids. They are widespread in the eukaryotic kingdom and are the evolutionary progenitors of retroviruses [1]. The Ty1 element of the budding yeast Saccharomyces cerevisiae was the first LTR-retrotransposon demonstrated to mobilize through an RNA intermediate, and not surprisingly, is the best studied. The depth of our knowledge of Ty1 biology stems not only from the predominance of active Ty1 elements in the S. cerevisiae genome but also the ease and breadth of genomic, biochemical and cell biology approaches available to study cellular processes in yeast. This review describes the basic structure of Ty1 and its gene products, the replication cycle, the rapidly expanding compendium of host co-factors known to influence retrotransposition and the nature of Ty1's elaborate symbiosis with its host. Our goal is to illuminate the value of Ty1 as a paradigm to explore the biology of LTR-retrotransposons in multicellular organisms, where the low frequency of retrotransposition events presents a formidable barrier to investigations of retrotransposon biology.
Collapse
|
46
|
Thierry A, Khanna V, Créno S, Lafontaine I, Ma L, Bouchier C, Dujon B. Macrotene chromosomes provide insights to a new mechanism of high-order gene amplification in eukaryotes. Nat Commun 2015; 6:6154. [PMID: 25635677 PMCID: PMC4317496 DOI: 10.1038/ncomms7154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/15/2014] [Indexed: 12/30/2022] Open
Abstract
Copy number variation of chromosomal segments is now recognized as a major source of genetic polymorphism within natural populations of eukaryotes, as well as a possible cause of genetic diseases in humans, including cancer, but its molecular bases remain incompletely understood. In the baker's yeast Saccharomyces cerevisiae, a variety of low-order amplifications (segmental duplications) were observed after adaptation to limiting environmental conditions or recovery from gene dosage imbalance, and interpreted in terms of replication-based mechanisms associated or not with homologous recombination. Here we show the emergence of novel high-order amplification structures, with corresponding overexpression of embedded genes, during evolution under favourable growth conditions of severely unfit yeast cells bearing genetically disabled genomes. Such events form massively extended chromosomes, which we propose to call macrotene, whose characteristics suggest the products of intrachromosomal rolling-circle type of replication structures, probably initiated by increased accidental template switches under important cellular stress conditions.
Collapse
Affiliation(s)
- Agnès Thierry
- Institut Pasteur, Unité de Génétique moléculaire des levures, CNRS UMR3525, Sorbonne Universités, UPMC, Univ. Paris 06 UFR927, 25, rue du Docteur Roux, F-75724 Paris, France
| | - Varun Khanna
- Institut Pasteur, Unité de Génétique moléculaire des levures, CNRS UMR3525, Sorbonne Universités, UPMC, Univ. Paris 06 UFR927, 25, rue du Docteur Roux, F-75724 Paris, France
| | - Sophie Créno
- Institut Pasteur, Genomic platform, 28, rue du Docteur Roux, F-75724 Paris, France
| | - Ingrid Lafontaine
- Institut Pasteur, Unité de Génétique moléculaire des levures, CNRS UMR3525, Sorbonne Universités, UPMC, Univ. Paris 06 UFR927, 25, rue du Docteur Roux, F-75724 Paris, France
| | - Laurence Ma
- Institut Pasteur, Genomic platform, 28, rue du Docteur Roux, F-75724 Paris, France
| | - Christiane Bouchier
- Institut Pasteur, Genomic platform, 28, rue du Docteur Roux, F-75724 Paris, France
| | - Bernard Dujon
- Institut Pasteur, Unité de Génétique moléculaire des levures, CNRS UMR3525, Sorbonne Universités, UPMC, Univ. Paris 06 UFR927, 25, rue du Docteur Roux, F-75724 Paris, France
| |
Collapse
|
47
|
Marbouty M, Cournac A, Flot JF, Marie-Nelly H, Mozziconacci J, Koszul R. Metagenomic chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in microorganisms. eLife 2014; 3:e03318. [PMID: 25517076 PMCID: PMC4381813 DOI: 10.7554/elife.03318] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 11/05/2014] [Indexed: 12/18/2022] Open
Abstract
Genomic analyses of microbial populations in their natural environment remain limited by the difficulty to assemble full genomes of individual species. Consequently, the chromosome organization of microorganisms has been investigated in a few model species, but the extent to which the features described can be generalized to other taxa remains unknown. Using controlled mixes of bacterial and yeast species, we developed meta3C, a metagenomic chromosome conformation capture approach that allows characterizing individual genomes and their average organization within a mix of organisms. Not only can meta3C be applied to species already sequenced, but a single meta3C library can be used for assembling, scaffolding and characterizing the tridimensional organization of unknown genomes. By applying meta3C to a semi-complex environmental sample, we confirmed its promising potential. Overall, this first meta3C study highlights the remarkable diversity of microorganisms chromosome organization, while providing an elegant and integrated approach to metagenomic analysis. DOI:http://dx.doi.org/10.7554/eLife.03318.001 Microbial communities play vital roles in the environment and sustain animal and plant life. Marine microbes are part of the ocean's food chain; soil microbes support the turnover of major nutrients and facilitate plant growth; and the microbial communities residing in the human gut support digestion and the immune system, among other roles. These communities are very complex systems, often containing 1000s of different species engaged in co-dependent relationships, and are therefore very difficult to study. The entire DNA sequence of an organism constitutes its genome, and much of this genetic information is stored in large structures called chromosomes. Examining the genome of a species can provide important clues about its lifestyle and how it evolved. To do this, DNA is extracted from cells and is then usually cut into smaller fragments, amplified, and sequenced. The small stretches of sequence obtained, called reads, are finally assembled, yielding ideally the complete genome of the organism under study. Metagenomics attempts to interpret the combined genome of all the different species in a microbial community and has been instrumental in deciphering how the different species interact with each other. Metagenomics involves sequencing stretches of the community's DNA and matching these pieces to individual species to ultimately assemble whole genomes. While this may be a relatively straightforward task for communities that contain only a handful of members, the metagenomes derived from complex microbial communities are huge, fragmented, and incomplete. This often makes it very difficult or even nearly impossible to match the inferred DNA stretches to individual species. A method called chromosome conformation capture (or ‘3C’ for short) can reveal the physical contacts between different regions of a chromosome and between the different chromosomes of a cell. How often each of these chromosomal contacts occurs provides a kind of physical signature to each genome and each individual chromosome within it. Marbouty et al. took advantage of these interactions to develop a technique that combines metagenomics and chromosome conformation capture—called meta3C—that can analyze the DNA of many different species mixed together. Testing meta3C on artificial mixtures of a few species of yeast or bacteria showed that meta3C can separate the genomes of the different species without any prior knowledge of the composition of the mix. In a single experiment, meta3C can identify individual chromosomes, match each of them to its species of origin, and reveal the three-dimensional structure of each genome in the mix. Further tests showed that meta3C can also interpret more complex communities where the number and types of the species present are not known. Meta3C holds great promise for understanding how microbial communities work and how the genomes of the species within a community are organized. However, further developments of the technique will be required to investigate communities as diverse as those present in most natural environments. DOI:http://dx.doi.org/10.7554/eLife.03318.002
Collapse
Affiliation(s)
- Martial Marbouty
- Groupe Régulation Spatiale des Génomes, Département Génomes et Génétique, Institut Pasteur, Paris, France
| | - Axel Cournac
- Groupe Régulation Spatiale des Génomes, Département Génomes et Génétique, Institut Pasteur, Paris, France
| | - Jean-François Flot
- Biological Physics and Evolutionary Dynamics Group, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Hervé Marie-Nelly
- Groupe Régulation Spatiale des Génomes, Département Génomes et Génétique, Institut Pasteur, Paris, France
| | - Julien Mozziconacci
- Department of Physics, Laboratoire de physique théorique de la matière condensée, Université Pierre et Marie Curie, Paris, France
| | - Romain Koszul
- Groupe Régulation Spatiale des Génomes, Département Génomes et Génétique, Institut Pasteur, Paris, France
| |
Collapse
|
48
|
Marie-Nelly H, Marbouty M, Cournac A, Flot JF, Liti G, Parodi DP, Syan S, Guillén N, Margeot A, Zimmer C, Koszul R. High-quality genome (re)assembly using chromosomal contact data. Nat Commun 2014; 5:5695. [PMID: 25517223 PMCID: PMC4284522 DOI: 10.1038/ncomms6695] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/29/2014] [Indexed: 01/08/2023] Open
Abstract
Closing gaps in draft genome assemblies can be costly and time-consuming, and published genomes are therefore often left ‘unfinished.’ Here we show that genome-wide chromosome conformation capture (3C) data can be used to overcome these limitations, and present a computational approach rooted in polymer physics that determines the most likely genome structure using chromosomal contact data. This algorithm—named GRAAL—generates high-quality assemblies of genomes in which repeated and duplicated regions are accurately represented and offers a direct probabilistic interpretation of the computed structures. We first validated GRAAL on the reference genome of Saccharomyces cerevisiae, as well as other yeast isolates, where GRAAL recovered both known and unknown complex chromosomal structural variations. We then applied GRAAL to the finishing of the assembly of Trichoderma reesei and obtained a number of contigs congruent with the know karyotype of this species. Finally, we showed that GRAAL can accurately reconstruct human chromosomes from either fragments generated in silico or contigs obtained from de novo assembly. In all these applications, GRAAL compared favourably to recently published programmes implementing related approaches. The correct assembly of genomes from sequencing data remains a challenge due to difficulties in correctly assigning the location of repeated DNA elements. Here the authors describe GRAAL, an algorithm that utilizes genome-wide chromosome contact data within a probabilistic framework to produce accurate genome assemblies.
Collapse
Affiliation(s)
- Hervé Marie-Nelly
- 1] Institut Pasteur, Department of Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015 Paris, France [2] CNRS, UMR 3525, 75015 Paris, France [3] Institut Pasteur, Unité Imagerie et Modélisation, 75015 Paris, France [4] CNRS, URA 2582, 75015 Paris, France [5] Sorbonne Universités, UPMC Univ Paris06, IFD, 4 place Jussieu, 75252 Paris, France
| | - Martial Marbouty
- 1] Institut Pasteur, Department of Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015 Paris, France [2] CNRS, UMR 3525, 75015 Paris, France
| | - Axel Cournac
- 1] Institut Pasteur, Department of Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015 Paris, France [2] CNRS, UMR 3525, 75015 Paris, France
| | - Jean-François Flot
- Max Planck Institute for Dynamics and Self-Organization, Group Biological Physics and Evolutionary Dynamics, Bunsenstr. 10, 37073 Göttingen, Germany
| | - Gianni Liti
- Institute for Research on Cancer and Ageing of Nice (IRCAN), CNRS UMR 7284-INSERM U108, Université de Nice Sophia Antipolis, 06107 Nice, France
| | - Dante Poggi Parodi
- 1] Sorbonne Universités, UPMC Univ Paris06, IFD, 4 place Jussieu, 75252 Paris, France [2] IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
| | - Sylvie Syan
- Institut Pasteur, Unité Cell Biology of Parasitism, 75015 Paris, France
| | - Nancy Guillén
- Institut Pasteur, Unité Cell Biology of Parasitism, 75015 Paris, France
| | - Antoine Margeot
- IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
| | - Christophe Zimmer
- 1] Institut Pasteur, Unité Imagerie et Modélisation, 75015 Paris, France [2] CNRS, URA 2582, 75015 Paris, France
| | - Romain Koszul
- 1] Institut Pasteur, Department of Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015 Paris, France [2] CNRS, UMR 3525, 75015 Paris, France
| |
Collapse
|
49
|
Abstract
Owing to their small size and paucity of phenotypic characters, progress in the evolutionary biology of microbes in general, and human pathogenic fungi in particular, has been linked to a series of advances in DNA sequencing over the past quarter century. Phylogenetics was the first area to benefit, with the achievement of a basic understanding of fungal phylogeny. Population genetics was the next advance, finding cryptic species everywhere, and recombination in species previously thought to be asexual. Comparative genomics saw the next advance, in which variation in gene content and changes in gene family size were found to be important sources of variation. Fungal population genomics is showing that gene flow among closely related populations and species provides yet another source of adaptive, genetic variation. Now, two means to associate genetic variation with phenotypic variation, "reverse ecology" for adaptive phenotypes, and genome-wide association of any phenotype, are letting evolutionary biology make a profound contribution to molecular developmental biology of pathogenic fungi.
Collapse
Affiliation(s)
- John W Taylor
- University of California, Berkeley, California 94720-3102
| |
Collapse
|
50
|
Structures of naturally evolved CUP1 tandem arrays in yeast indicate that these arrays are generated by unequal nonhomologous recombination. G3-GENES GENOMES GENETICS 2014; 4:2259-69. [PMID: 25236733 PMCID: PMC4232551 DOI: 10.1534/g3.114.012922] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An important issue in genome evolution is the mechanism by which tandem duplications are generated from single-copy genes. In the yeast Saccharomyces cerevisiae, most strains contain tandemly duplicated copies of CUP1, a gene that encodes a copper-binding metallothionein. By screening 101 natural isolates of S. cerevisiae, we identified five different types of CUP1-containing repeats, as well as strains that only had one copy of CUP1. A comparison of the DNA sequences of these strains indicates that the CUP1 tandem arrays were generated by unequal nonhomologous recombination events from strains that had one CUP1 gene.
Collapse
|