1
|
Buzuk A, Marquez MD, Ho JV, Liu Y, Wang B, Qi CC, Perlstein DL. The Cia1 and Cia2 subunits of the CTC mediate recognition of apo-FeS proteins with a C-terminal targeting complex recognition motif. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645274. [PMID: 40196589 PMCID: PMC11974842 DOI: 10.1101/2025.03.25.645274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The cytosolic iron-sulfur cluster assembly (CIA) targeting complex is responsible for maturation of cytosolic and nuclear iron-sulfur enzymes, numbering >30 proteins critical for fundamental processes such as DNA replication and repair. Up to 25% of these client proteins terminate in a targeting complex recognition (TCR) motif. This carboxy-terminal tripeptide motif recruits the CIA targeting complex (CTC) to the client so that the metallocluster can be inserted. Herein, we use a combination of computational, biochemical and biophysical approaches to determine that the clients bearing a TCR motif docks at the interface of the Cia1 and Cia2 subunits of the CTC. Thus, mutations destabilizing the Cia1-Cia2 complex also disrupt TCR-based client identification by the CTC. Our study also reveals that the understudied human Cia2 paralog CIAO2A, which is proposed to be a specific targeting factor for iron regulatory protein 1, can recruit clients terminating in the TCR peptide. These data signal that CIAO2A plays a more general role in iron-sulfur protein maturation than previously appreciated. Taken together, our findings deepen our understanding of the molecular basis for client recognition by the CTC that is critical to understand the impact of CIA function in human health and disease.
Collapse
Affiliation(s)
| | | | - JV Ho
- Department of Chemistry, Boston University, Boston, MA USA
| | - Y Liu
- Department of Chemistry, Boston University, Boston, MA USA
| | - B Wang
- Department of Chemistry, Boston University, Boston, MA USA
| | - CC Qi
- Department of Chemistry, Boston University, Boston, MA USA
| | - DL Perlstein
- Department of Chemistry, Boston University, Boston, MA USA
| |
Collapse
|
2
|
Renaud EA, Maupin AJM, Berry L, Bals J, Bordat Y, Demolombe V, Rofidal V, Vignols F, Besteiro S. The HCF101 protein is an important component of the cytosolic iron-sulfur synthesis pathway in Toxoplasma gondii. PLoS Biol 2025; 23:e3003028. [PMID: 39913537 PMCID: PMC11838916 DOI: 10.1371/journal.pbio.3003028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 02/19/2025] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Several key cellular functions depend on proteins harboring an iron-sulfur (Fe-S) cofactor. As these Fe-S proteins localize to several subcellular compartments, they require a dedicated machinery for cofactor assembly. For instance, in plants and algae there are Fe-S cluster synthesis pathways localizing to the cytosol, but also present in the mitochondrion and in the chloroplast, 2 organelles of endosymbiotic origin. Toxoplasma gondii is a plastid-bearing parasitic protist responsible for a pathology affecting humans and other warm-blooded vertebrates. We have characterized the Toxoplasma homolog of HCF101, originally identified in plants as a protein transferring Fe-S clusters to photosystem I subunits in the chloroplast. Contrarily to plants, we have shown that HCF101 does not localize to the plastid in parasites, but instead is an important component of the cytosolic Fe-S assembly (CIA) pathway which is vital for Toxoplasma. While the CIA pathway is widely conserved in eukaryotes, it is the first time the involvement of HCF101 in this pan-eukaryotic machinery is established. Moreover, as this protein is essential for parasite viability and absent from its mammalian hosts, it constitutes a novel and promising potential drug target.
Collapse
Affiliation(s)
- Eléa A. Renaud
- LPHI, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Laurence Berry
- LPHI, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Julie Bals
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Yann Bordat
- LPHI, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Vincent Demolombe
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Valérie Rofidal
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Florence Vignols
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | |
Collapse
|
3
|
Grifagni D, Doni D, Susini B, Fonseca BM, Louro RO, Costantini P, Ciofi‐Baffoni S. Unraveling the molecular determinants of a rare human mitochondrial disorder caused by the P144L mutation of FDX2. Protein Sci 2024; 33:e5197. [PMID: 39467201 PMCID: PMC11515921 DOI: 10.1002/pro.5197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
Episodic mitochondrial myopathy with or without optic atrophy and reversible leukoencephalopathy (MEOAL) is a rare, orphan autosomal recessive disorder caused by mutations in ferredoxin-2 (FDX2), which is a [2Fe-2S] cluster-binding protein participating in the formation of iron-sulfur clusters in mitochondria. In this biosynthetic pathway, FDX2 works as electron donor to promote the assembly of both [2Fe-2S] and [4Fe-4S] clusters. A recently identified missense mutation of MEOAL is the homozygous mutation c.431C>T (p.P144L) described in six patients from two unrelated families. This mutation alters a highly conserved proline residue located in a loop of FDX2 that is distant from the [2Fe-2S] cluster. How this Pro to Leu substitution damages iron-sulfur cluster biosynthesis is unknown. In this work, we have first compared the structural, dynamic, cluster binding and redox properties of WT and P144L [2Fe-2S] FDX2 to have clues on how the pathogenic P144L mutation can perturb the FDX2 function. Then, we have investigated the interaction of both WT and P144L [2Fe-2S] FDX2 with its physiological electron donor, ferredoxin reductase FDXR, comparing their electron transfer efficiency and protein-protein recognition patterns. Overall, the data indicate that the pathogenic P144L mutation negatively affects the FDXR-dependent electron transfer pathway from NADPH to FDX2, thereby reducing the capacity of FDX2 in assembling both [2Fe-2S] and [4Fe-4S] clusters. Our study also provided solid molecular evidences on the functional role of the C-terminal tail of FDX2 in the electron transfer between FDX2 and FDXR.
Collapse
Affiliation(s)
- Deborah Grifagni
- Magnetic Resonance Center CERMUniversity of FlorenceFlorenceItaly
- Department of ChemistryUniversity of FlorenceFlorenceItaly
| | - Davide Doni
- Department of BiologyUniversity of PadovaPadovaItaly
| | - Bianca Susini
- Magnetic Resonance Center CERMUniversity of FlorenceFlorenceItaly
- Department of ChemistryUniversity of FlorenceFlorenceItaly
| | - Bruno M. Fonseca
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB‐NOVA)Universidade Nova de LisboaOeirasPortugal
| | - Ricardo O. Louro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB‐NOVA)Universidade Nova de LisboaOeirasPortugal
| | | | - Simone Ciofi‐Baffoni
- Magnetic Resonance Center CERMUniversity of FlorenceFlorenceItaly
- Department of ChemistryUniversity of FlorenceFlorenceItaly
| |
Collapse
|
4
|
Botticelli S, La Penna G, Minicozzi V, Stellato F, Morante S, Rossi G, Faraloni C. Predicting the Structure of Enzymes with Metal Cofactors: The Example of [FeFe] Hydrogenases. Int J Mol Sci 2024; 25:3663. [PMID: 38612474 PMCID: PMC11011570 DOI: 10.3390/ijms25073663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
The advent of deep learning algorithms for protein folding opened a new era in the ability of predicting and optimizing the function of proteins once the sequence is known. The task is more intricate when cofactors like metal ions or small ligands are essential to functioning. In this case, the combined use of traditional simulation methods based on interatomic force fields and deep learning predictions is mandatory. We use the example of [FeFe] hydrogenases, enzymes of unicellular algae promising for biotechnology applications to illustrate this situation. [FeFe] hydrogenase is an iron-sulfur protein that catalyzes the chemical reduction of protons dissolved in liquid water into molecular hydrogen as a gas. Hydrogen production efficiency and cell sensitivity to dioxygen are important parameters to optimize the industrial applications of biological hydrogen production. Both parameters are related to the organization of iron-sulfur clusters within protein domains. In this work, we propose possible three-dimensional structures of Chlorella vulgaris 211/11P [FeFe] hydrogenase, the sequence of which was extracted from the recently published genome of the given strain. Initial structural models are built using: (i) the deep learning algorithm AlphaFold; (ii) the homology modeling server SwissModel; (iii) a manual construction based on the best known bacterial crystal structure. Missing iron-sulfur clusters are included and microsecond-long molecular dynamics of initial structures embedded into the water solution environment were performed. Multiple-walkers metadynamics was also used to enhance the sampling of structures encompassing both functional and non-functional organizations of iron-sulfur clusters. The resulting structural model provided by deep learning is consistent with functional [FeFe] hydrogenase characterized by peculiar interactions between cofactors and the protein matrix.
Collapse
Affiliation(s)
- Simone Botticelli
- Department of Physics, University of Roma Tor Vergata, 00133 Rome, Italy; (S.B.); (V.M.); (F.S.); (S.M.); (G.R.)
- Section of Roma Tor Vergata, National Institute of Nuclear Physics, 00133 Rome, Italy
| | - Giovanni La Penna
- Section of Roma Tor Vergata, National Institute of Nuclear Physics, 00133 Rome, Italy
- Institute of Chemistry of Organometallic Compounds, National Research Council, 50019 Florence, Italy
| | - Velia Minicozzi
- Department of Physics, University of Roma Tor Vergata, 00133 Rome, Italy; (S.B.); (V.M.); (F.S.); (S.M.); (G.R.)
- Section of Roma Tor Vergata, National Institute of Nuclear Physics, 00133 Rome, Italy
| | - Francesco Stellato
- Department of Physics, University of Roma Tor Vergata, 00133 Rome, Italy; (S.B.); (V.M.); (F.S.); (S.M.); (G.R.)
- Section of Roma Tor Vergata, National Institute of Nuclear Physics, 00133 Rome, Italy
| | - Silvia Morante
- Department of Physics, University of Roma Tor Vergata, 00133 Rome, Italy; (S.B.); (V.M.); (F.S.); (S.M.); (G.R.)
- Section of Roma Tor Vergata, National Institute of Nuclear Physics, 00133 Rome, Italy
| | - Giancarlo Rossi
- Department of Physics, University of Roma Tor Vergata, 00133 Rome, Italy; (S.B.); (V.M.); (F.S.); (S.M.); (G.R.)
- Section of Roma Tor Vergata, National Institute of Nuclear Physics, 00133 Rome, Italy
- Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, 00184 Rome, Italy
| | - Cecilia Faraloni
- Institute of Bioeconomy, National Research Council, 50019 Florence, Italy
| |
Collapse
|
5
|
Marquez MD, Greth C, Buzuk A, Liu Y, Blinn CM, Beller S, Leiskau L, Hushka A, Wu K, Nur K, Netz DJA, Perlstein DL, Pierik AJ. Cytosolic iron-sulfur protein assembly system identifies clients by a C-terminal tripeptide. Proc Natl Acad Sci U S A 2023; 120:e2311057120. [PMID: 37883440 PMCID: PMC10623007 DOI: 10.1073/pnas.2311057120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
The eukaryotic cytosolic Fe-S protein assembly (CIA) machinery inserts iron-sulfur (Fe-S) clusters into cytosolic and nuclear proteins. In the final maturation step, the Fe-S cluster is transferred to the apo-proteins by the CIA-targeting complex (CTC). However, the molecular recognition determinants of client proteins are unknown. We show that a conserved [LIM]-[DES]-[WF]-COO- tripeptide is present at the C-terminus of more than a quarter of clients or their adaptors. When present, this targeting complex recognition (TCR) motif is necessary and sufficient for binding to the CTC in vitro and for directing Fe-S cluster delivery in vivo. Remarkably, fusion of this TCR signal enables engineering of cluster maturation on a nonnative protein via recruitment of the CIA machinery. Our study advances our understanding of Fe-S protein maturation and paves the way for bioengineering novel pathways containing Fe-S enzymes.
Collapse
Affiliation(s)
| | - Carina Greth
- Department of Chemistry, University of Kaiserslautern-Landau, Kaiserslautern67663, Germany
| | | | - Yaxi Liu
- Department of Chemistry, Boston University, Boston, MA02215
| | - Catharina M. Blinn
- Department of Chemistry, University of Kaiserslautern-Landau, Kaiserslautern67663, Germany
| | - Simone Beller
- Department of Chemistry, University of Kaiserslautern-Landau, Kaiserslautern67663, Germany
| | - Laura Leiskau
- Department of Chemistry, University of Kaiserslautern-Landau, Kaiserslautern67663, Germany
| | - Anthony Hushka
- Department of Chemistry, Boston University, Boston, MA02215
| | - Kassandra Wu
- Department of Chemistry, Boston University, Boston, MA02215
| | - Kübra Nur
- Department of Chemistry, University of Kaiserslautern-Landau, Kaiserslautern67663, Germany
| | - Daili J. A. Netz
- Department of Chemistry, University of Kaiserslautern-Landau, Kaiserslautern67663, Germany
| | | | - Antonio J. Pierik
- Department of Chemistry, University of Kaiserslautern-Landau, Kaiserslautern67663, Germany
| |
Collapse
|
6
|
Marquez MD, Greth C, Buzuk A, Liu Y, Blinn CM, Beller S, Leiskau L, Hushka A, Wu K, Nur K, Netz DJ, Perlstein DL, Pierik AJ. Cytosolic iron-sulfur protein assembly system identifies clients by a C-terminal tripeptide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541488. [PMID: 37292740 PMCID: PMC10245660 DOI: 10.1101/2023.05.19.541488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The eukaryotic cytosolic Fe-S protein assembly (CIA) machinery inserts iron-sulfur (Fe-S) clusters into cytosolic and nuclear proteins. In the final maturation step, the Fe-S cluster is transferred to the apo-proteins by the CIA-targeting complex (CTC). However, the molecular recognition determinants of client proteins are unknown. We show that a conserved [LIM]-[DES]-[WF]-COO- tripeptide present at the C-terminus of clients is necessary and sufficient for binding to the CTC in vitro and directing Fe-S cluster delivery in vivo. Remarkably, fusion of this TCR (target complex recognition) signal enables engineering of cluster maturation on a non-native protein via recruitment of the CIA machinery. Our study significantly advances our understanding of Fe-S protein maturation and paves the way for bioengineering applications.
Collapse
Affiliation(s)
| | - Carina Greth
- Department of Chemistry, RPTU Kaiserslautern-Landau; 67663 Kaiserslautern, Germany
| | | | - Yaxi Liu
- Department of Chemistry, Boston University; Boston, MA, USA
| | - Catharina M. Blinn
- Department of Chemistry, RPTU Kaiserslautern-Landau; 67663 Kaiserslautern, Germany
| | - Simone Beller
- Department of Chemistry, RPTU Kaiserslautern-Landau; 67663 Kaiserslautern, Germany
| | - Laura Leiskau
- Department of Chemistry, RPTU Kaiserslautern-Landau; 67663 Kaiserslautern, Germany
| | - Anthony Hushka
- Department of Chemistry, Boston University; Boston, MA, USA
| | - Kassandra Wu
- Department of Chemistry, Boston University; Boston, MA, USA
| | - Kübra Nur
- Department of Chemistry, RPTU Kaiserslautern-Landau; 67663 Kaiserslautern, Germany
| | - Daili J. Netz
- Department of Chemistry, RPTU Kaiserslautern-Landau; 67663 Kaiserslautern, Germany
| | | | - Antonio J. Pierik
- Department of Chemistry, RPTU Kaiserslautern-Landau; 67663 Kaiserslautern, Germany
| |
Collapse
|
7
|
Lindahl PA, Vali SW. Mössbauer-based molecular-level decomposition of the Saccharomyces cerevisiae ironome, and preliminary characterization of isolated nuclei. Metallomics 2022; 14:mfac080. [PMID: 36214417 PMCID: PMC9624242 DOI: 10.1093/mtomcs/mfac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022]
Abstract
One hundred proteins in Saccharomyces cerevisiae are known to contain iron. These proteins are found mainly in mitochondria, cytosol, nuclei, endoplasmic reticula, and vacuoles. Cells also contain non-proteinaceous low-molecular-mass labile iron pools (LFePs). How each molecular iron species interacts on the cellular or systems' level is underdeveloped as doing so would require considering the entire iron content of the cell-the ironome. In this paper, Mössbauer (MB) spectroscopy was used to probe the ironome of yeast. MB spectra of whole cells and isolated organelles were predicted by summing the spectral contribution of each iron-containing species in the cell. Simulations required input from published proteomics and microscopy data, as well as from previous spectroscopic and redox characterization of individual iron-containing proteins. Composite simulations were compared to experimentally determined spectra. Simulated MB spectra of non-proteinaceous iron pools in the cell were assumed to account for major differences between simulated and experimental spectra of whole cells and isolated mitochondria and vacuoles. Nuclei were predicted to contain ∼30 μM iron, mostly in the form of [Fe4S4] clusters. This was experimentally confirmed by isolating nuclei from 57Fe-enriched cells and obtaining the first MB spectra of the organelle. This study provides the first semi-quantitative estimate of all concentrations of iron-containing proteins and non-proteinaceous species in yeast, as well as a novel approach to spectroscopically characterizing LFePs.
Collapse
Affiliation(s)
- Paul A Lindahl
- Department of Chemistry, Texas A&M University, College Station, TX, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station TX, USA
| | - Shaik Waseem Vali
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| |
Collapse
|
8
|
Fan X, Barshop WD, Vashisht AA, Pandey V, Leal S, Rayatpisheh S, Jami-Alahmadi Y, Sha J, Wohlschlegel JA. Iron-regulated assembly of the cytosolic iron-sulfur cluster biogenesis machinery. J Biol Chem 2022; 298:102094. [PMID: 35654137 PMCID: PMC9243173 DOI: 10.1016/j.jbc.2022.102094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/10/2022] [Accepted: 05/25/2022] [Indexed: 11/07/2022] Open
Abstract
The cytosolic iron–sulfur (Fe-S) cluster assembly (CIA) pathway delivers Fe-S clusters to nuclear and cytosolic Fe-S proteins involved in essential cellular functions. Although the delivery process is regulated by the availability of iron and oxygen, it remains unclear how CIA components orchestrate the cluster transfer under varying cellular environments. Here, we utilized a targeted proteomics assay for monitoring CIA factors and substrates to characterize the CIA machinery. We find that nucleotide-binding protein 1 (NUBP1/NBP35), cytosolic iron–sulfur assembly component 3 (CIAO3/NARFL), and CIA substrates associate with nucleotide-binding protein 2 (NUBP2/CFD1), a component of the CIA scaffold complex. NUBP2 also weakly associates with the CIA targeting complex (MMS19, CIAO1, and CIAO2B) indicating the possible existence of a higher order complex. Interactions between CIAO3 and the CIA scaffold complex are strengthened upon iron supplementation or low oxygen tension, while iron chelation and reactive oxygen species weaken CIAO3 interactions with CIA components. We further demonstrate that CIAO3 mutants defective in Fe-S cluster binding fail to integrate into the higher order complexes. However, these mutants exhibit stronger associations with CIA substrates under conditions in which the association with the CIA targeting complex is reduced suggesting that CIAO3 and CIA substrates may associate in complexes independently of the CIA targeting complex. Together, our data suggest that CIA components potentially form a metabolon whose assembly is regulated by environmental cues and requires Fe-S cluster incorporation in CIAO3. These findings provide additional evidence that the CIA pathway adapts to changes in cellular environment through complex reorganization.
Collapse
Affiliation(s)
- Xiaorui Fan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA; Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - William D Barshop
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Vijaya Pandey
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Stephanie Leal
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Shima Rayatpisheh
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Jihui Sha
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| |
Collapse
|
9
|
The Intriguing Role of Iron-Sulfur Clusters in the CIAPIN1 Protein Family. INORGANICS 2022. [DOI: 10.3390/inorganics10040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Iron-sulfur (Fe/S) clusters are protein cofactors that play a crucial role in essential cellular functions. Their ability to rapidly exchange electrons with several redox active acceptors makes them an efficient system for fulfilling diverse cellular needs. They include the formation of a relay for long-range electron transfer in enzymes, the biosynthesis of small molecules required for several metabolic pathways and the sensing of cellular levels of reactive oxygen or nitrogen species to activate appropriate cellular responses. An emerging family of iron-sulfur cluster binding proteins is CIAPIN1, which is characterized by a C-terminal domain of about 100 residues. This domain contains two highly conserved cysteine-rich motifs, which are both involved in Fe/S cluster binding. The CIAPIN1 proteins have been described so far to be involved in electron transfer pathways, providing electrons required for the biosynthesis of important protein cofactors, such as Fe/S clusters and the diferric-tyrosyl radical, as well as in the regulation of cell death. Here, we have first investigated the occurrence of CIAPIN1 proteins in different organisms spanning the entire tree of life. Then, we discussed the function of this family of proteins, focusing specifically on the role that the Fe/S clusters play. Finally, we describe the nature of the Fe/S clusters bound to CIAPIN1 proteins and which are the cellular pathways inserting the Fe/S clusters in the two cysteine-rich motifs.
Collapse
|
10
|
Hinton TV, Batelu S, Gleason N, Stemmler TL. Molecular characteristics of proteins within the mitochondrial Fe-S cluster assembly complex. Micron 2021; 153:103181. [PMID: 34823116 DOI: 10.1016/j.micron.2021.103181] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022]
Abstract
Iron-Sulfur (Fe-S) clusters are essential for life, as they are widely utilized in nearly every biochemical pathway. When bound to proteins, Fe-S clusters assist in catalysis, signal recognition, and energy transfer events, as well as additional cellular pathways including cellular respiration and DNA repair and replication. In Eukaryotes, Fe-S clusters are produced through coordinated activity by mitochondrial Iron-Sulfur Cluster (ISC) assembly pathway proteins through direct assembly, or through the production of the activated sulfur substrate used by the Cytosolic Iron-Sulfur Cluster Assembly (CIA) pathway. In the mitochondria, Fe-S cluster assembly is accomplished through the coordinated activity of the ISC pathway protein complex composed of a cysteine desulfurase, a scaffold protein, the accessory ISD11 protein, the acyl carrier protein, frataxin, and a ferredoxin; downstream events that accomplish Fe-S cluster transfer and delivery are driven by additional chaperone/delivery proteins that interact with the ISC assembly complex. Deficiency in human production or activity of Fe-S cluster containing proteins is often detrimental to cell and organism viability. Here we summarize what is known about the structure and functional activities of the proteins involved in the early steps of assembling [2Fe-2S] clusters before they are transferred to proteins devoted to their delivery. Our goal is to provide a comprehensive overview of how the ISC assembly apparatus proteins interact to make the Fe-S cluster which can be delivered to proteins downstream to the assembly event.
Collapse
Affiliation(s)
- Tiara V Hinton
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA.
| | - Sharon Batelu
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA.
| | - Noah Gleason
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA.
| | - Timothy L Stemmler
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA.
| |
Collapse
|
11
|
Shi R, Hou W, Wang ZQ, Xu X. Biogenesis of Iron-Sulfur Clusters and Their Role in DNA Metabolism. Front Cell Dev Biol 2021; 9:735678. [PMID: 34660592 PMCID: PMC8514734 DOI: 10.3389/fcell.2021.735678] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/06/2021] [Indexed: 12/02/2022] Open
Abstract
Iron–sulfur (Fe/S) clusters (ISCs) are redox-active protein cofactors that their synthesis, transfer, and insertion into target proteins require many components. Mitochondrial ISC assembly is the foundation of all cellular ISCs in eukaryotic cells. The mitochondrial ISC cooperates with the cytosolic Fe/S protein assembly (CIA) systems to accomplish the cytosolic and nuclear Fe/S clusters maturation. ISCs are needed for diverse cellular functions, including nitrogen fixation, oxidative phosphorylation, mitochondrial respiratory pathways, and ribosome assembly. Recent research advances have confirmed the existence of different ISCs in enzymes that regulate DNA metabolism, including helicases, nucleases, primases, DNA polymerases, and glycosylases. Here we outline the synthesis of mitochondrial, cytosolic and nuclear ISCs and highlight their functions in DNA metabolism.
Collapse
Affiliation(s)
- Ruifeng Shi
- Shenzhen University-Friedrich Schiller Universität Jena Joint Ph.D. Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, China.,Guangdong Key Laboratory for Genome Stability and Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, China
| | - Wenya Hou
- Guangdong Key Laboratory for Genome Stability and Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, China
| | - Zhao-Qi Wang
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.,Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
| | - Xingzhi Xu
- Shenzhen University-Friedrich Schiller Universität Jena Joint Ph.D. Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, China.,Guangdong Key Laboratory for Genome Stability and Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
12
|
Lill R. From the discovery to molecular understanding of cellular iron-sulfur protein biogenesis. Biol Chem 2021; 401:855-876. [PMID: 32229650 DOI: 10.1515/hsz-2020-0117] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/10/2020] [Indexed: 12/23/2022]
Abstract
Protein cofactors often are the business ends of proteins, and are either synthesized inside cells or are taken up from the nutrition. A cofactor that strictly needs to be synthesized by cells is the iron-sulfur (Fe/S) cluster. This evolutionary ancient compound performs numerous biochemical functions including electron transfer, catalysis, sulfur mobilization, regulation and protein stabilization. Since the discovery of eukaryotic Fe/S protein biogenesis two decades ago, more than 30 biogenesis factors have been identified in mitochondria and cytosol. They support the synthesis, trafficking and target-specific insertion of Fe/S clusters. In this review, I first summarize what led to the initial discovery of Fe/S protein biogenesis in yeast. I then discuss the function and localization of Fe/S proteins in (non-green) eukaryotes. The major part of the review provides a detailed synopsis of the three major steps of mitochondrial Fe/S protein biogenesis, i.e. the de novo synthesis of a [2Fe-2S] cluster on a scaffold protein, the Hsp70 chaperone-mediated transfer of the cluster and integration into [2Fe-2S] recipient apoproteins, and the reductive fusion of [2Fe-2S] to [4Fe-4S] clusters and their subsequent assembly into target apoproteins. Finally, I summarize the current knowledge of the mechanisms underlying the maturation of cytosolic and nuclear Fe/S proteins.
Collapse
Affiliation(s)
- Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032 Marburg, Germany.,SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Str., D-35043 Marburg, Germany
| |
Collapse
|
13
|
Braymer JJ, Freibert SA, Rakwalska-Bange M, Lill R. Mechanistic concepts of iron-sulfur protein biogenesis in Biology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118863. [PMID: 33007329 DOI: 10.1016/j.bbamcr.2020.118863] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023]
Abstract
Iron-sulfur (Fe/S) proteins are present in virtually all living organisms and are involved in numerous cellular processes such as respiration, photosynthesis, metabolic reactions, nitrogen fixation, radical biochemistry, protein synthesis, antiviral defense, and genome maintenance. Their versatile functions may go back to the proposed role of their Fe/S cofactors in the origin of life as efficient catalysts and electron carriers. More than two decades ago, it was discovered that the in vivo synthesis of cellular Fe/S clusters and their integration into polypeptide chains requires assistance by complex proteinaceous machineries, despite the fact that Fe/S proteins can be assembled chemically in vitro. In prokaryotes, three Fe/S protein biogenesis systems are known; ISC, SUF, and the more specialized NIF. The former two systems have been transferred by endosymbiosis from bacteria to mitochondria and plastids, respectively, of eukaryotes. In their cytosol, eukaryotes use the CIA machinery for the biogenesis of cytosolic and nuclear Fe/S proteins. Despite the structural diversity of the protein constituents of these four machineries, general mechanistic concepts underlie the complex process of Fe/S protein biogenesis. This review provides a comprehensive and comparative overview of the various known biogenesis systems in Biology, and summarizes their common or diverging molecular mechanisms, thereby illustrating both the conservation and diverse adaptions of these four machineries during evolution and under different lifestyles. Knowledge of these fundamental biochemical pathways is not only of basic scientific interest, but is important for the understanding of human 'Fe/S diseases' and can be used in biotechnology.
Collapse
Affiliation(s)
- Joseph J Braymer
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | - Sven A Freibert
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | | | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany; SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043 Marburg, Germany.
| |
Collapse
|
14
|
Daniel T, Faruq HM, Laura Magdalena J, Manuela G, Christopher Horst L. Role of GSH and Iron-Sulfur Glutaredoxins in Iron Metabolism-Review. Molecules 2020; 25:E3860. [PMID: 32854270 PMCID: PMC7503856 DOI: 10.3390/molecules25173860] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 12/26/2022] Open
Abstract
Glutathione (GSH) was initially identified and characterized for its redox properties and later for its contributions to detoxification reactions. Over the past decade, however, the essential contributions of glutathione to cellular iron metabolism have come more and more into focus. GSH is indispensable in mitochondrial iron-sulfur (FeS) cluster biosynthesis, primarily by co-ligating FeS clusters as a cofactor of the CGFS-type (class II) glutaredoxins (Grxs). GSH is required for the export of the yet to be defined FeS precursor from the mitochondria to the cytosol. In the cytosol, it is an essential cofactor, again of the multi-domain CGFS-type Grxs, master players in cellular iron and FeS trafficking. In this review, we summarize the recent advances and progress in this field. The most urgent open questions are discussed, such as the role of GSH in the export of FeS precursors from mitochondria, the physiological roles of the CGFS-type Grx interactions with BolA-like proteins and the cluster transfer between Grxs and recipient proteins.
Collapse
Affiliation(s)
- Trnka Daniel
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, 17475 Greifswald, Germany; (T.D.); (H.M.F.); (J.L.M.); (G.M.)
| | - Hossain Md Faruq
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, 17475 Greifswald, Germany; (T.D.); (H.M.F.); (J.L.M.); (G.M.)
| | - Jordt Laura Magdalena
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, 17475 Greifswald, Germany; (T.D.); (H.M.F.); (J.L.M.); (G.M.)
| | - Gellert Manuela
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, 17475 Greifswald, Germany; (T.D.); (H.M.F.); (J.L.M.); (G.M.)
| | - Lillig Christopher Horst
- Christopher Horst Lillig, Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| |
Collapse
|
15
|
Structural insights into Fe–S protein biogenesis by the CIA targeting complex. Nat Struct Mol Biol 2020; 27:735-742. [DOI: 10.1038/s41594-020-0454-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/19/2020] [Indexed: 12/11/2022]
|
16
|
Maione V, Grifagni D, Torricella F, Cantini F, Banci L. CIAO3 protein forms a stable ternary complex with two key players of the human cytosolic iron–sulfur cluster assembly machinery. J Biol Inorg Chem 2020; 25:501-508. [DOI: 10.1007/s00775-020-01778-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/16/2020] [Indexed: 11/24/2022]
|
17
|
Wang Y, Singh R, Tong E, Tang M, Zheng L, Fang H, Li R, Guo L, Song J, Srinivasan R, Sharma A, Lin L, Trujillo JA, Manshardt R, Chen LY, Ming R, Yu Q. Positional cloning and characterization of the papaya diminutive mutant reveal a truncating mutation in the CpMMS19 gene. THE NEW PHYTOLOGIST 2020; 225:2006-2021. [PMID: 31733154 DOI: 10.1111/nph.16325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
The papaya diminutive mutant exhibits miniature stature, retarded growth and reduced fertility. This undesirable mutation appeared in the variety 'Sunset', the progenitor of the transgenic line 'SunUp', and was accidentally carried forward into breeding populations. The diminutive mutation was mapped to chromosome 2 and fine mapped to scaffold 25. Sequencing of a bacterial artificial chromosome in the fine mapped region led to the identification of the target gene responsible for the diminutive mutant, a gene orthologous to MMS19 with a 36.8 kb deletion co-segregating with the diminutive mutant. The genomic sequence of CpMMS19 is 62 kb, consisting of 20 exons and 19 introns. It encodes a protein of 1143 amino acids while the diminutive allele encodes a truncated protein of 287 amino acids. Expression of the full-length CpMMS19 was able to complement the thermosensitive growth of the yeast mms19 deletion mutant while expression of the diminutive allele resulted in increased thermosensitivity. Over-expression of the diminutive allele in Arabidopsis met18 mutant results in a high frequency of seed abortion. The papaya diminutive phenotype is caused by an alteration in gene function rather than a loss-of-function mutation. SCAR (sequence characterized amplified region) markers were developed for rapid detection of the diminutive allele in breeding populations.
Collapse
Affiliation(s)
- Ying Wang
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ratnesh Singh
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, 75252, USA
| | - Eric Tong
- Hawaii Agriculture Research Center, Kunia, HI, 96759, USA
| | - Min Tang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liwei Zheng
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, 75252, USA
| | - Hongkun Fang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruoyu Li
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lin Guo
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinjin Song
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rajeswari Srinivasan
- Department of Tropical Plant & Soil Sciences, University of Hawaii, Honolulu, HI, 96822, USA
| | - Anupma Sharma
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, 75252, USA
| | - Lianyu Lin
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, 75252, USA
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jorge A Trujillo
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Richard Manshardt
- Department of Tropical Plant & Soil Sciences, University of Hawaii, Honolulu, HI, 96822, USA
| | - Li-Yu Chen
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Qingyi Yu
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, 75252, USA
- Hawaii Agriculture Research Center, Kunia, HI, 96759, USA
| |
Collapse
|
18
|
Luo J, Zhang X, He S, Lou Q, Zhai G, Shi C, Yin Z, Zheng F. Deletion of narfl leads to increased oxidative stress mediated abnormal angiogenesis and digestive organ defects in zebrafish. Redox Biol 2019; 28:101355. [PMID: 31677554 PMCID: PMC6920133 DOI: 10.1016/j.redox.2019.101355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/10/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023] Open
Abstract
Nuclear prelamin A recognition factor-like (NARFL) is a human protein that participates in cytosolic iron-sulfur (Fe-S) protein biogenesis and cellular defense against oxidative stress. Previous studies of Narfl knockout mice did not reveal well the regulatory mechanisms of embryonic development mediated by Narfl because the homozygous mice die in utero. Here, we investigated the function of narfl in an established zebrafish knockout model by taking advantage of zebrafish external fertilization and ease of embryonic development examination. Our experiments showed that narfl deletion resulted in larvae lethality, subintestinal vessel (SIV) malformation and digestive organ defects in the early stages of embryonic development. Biochemical analyses and western blot revealed increased oxidative stress and upregulated hypoxia-inducible factor-1α (HIF-1α) expression in narfl-/- fish. The use of HIF-1α inhibitor 2-methoxyestradiol (2ME2) for the treatment of mutants partially rescued the SIV sprouting. These results suggest that narfl deletion causes increased oxidative stress and subintestinal vessel malformation, which further influence the development of digestive organs and might contribute to the lethality of the narfl knockout fish.
Collapse
Affiliation(s)
- Jing Luo
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Xiaokang Zhang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Siying He
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Qiyong Lou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Gang Zhai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Chuang Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.
| | - Fang Zheng
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
| |
Collapse
|
19
|
The monothiol glutaredoxin GrxD is essential for sensing iron starvation in Aspergillus fumigatus. PLoS Genet 2019; 15:e1008379. [PMID: 31525190 PMCID: PMC6762210 DOI: 10.1371/journal.pgen.1008379] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/26/2019] [Accepted: 08/20/2019] [Indexed: 01/17/2023] Open
Abstract
Efficient adaptation to iron starvation is an essential virulence determinant of the most common human mold pathogen, Aspergillus fumigatus. Here, we demonstrate that the cytosolic monothiol glutaredoxin GrxD plays an essential role in iron sensing in this fungus. Our studies revealed that (i) GrxD is essential for growth; (ii) expression of the encoding gene, grxD, is repressed by the transcription factor SreA in iron replete conditions and upregulated during iron starvation; (iii) during iron starvation but not iron sufficiency, GrxD displays predominant nuclear localization; (iv) downregulation of grxD expression results in de-repression of genes involved in iron-dependent pathways and repression of genes involved in iron acquisition during iron starvation, but did not significantly affect these genes during iron sufficiency; (v) GrxD displays protein-protein interaction with components of the cytosolic iron-sulfur cluster biosynthetic machinery, indicating a role in this process, and with the transcription factors SreA and HapX, which mediate iron regulation of iron acquisition and iron-dependent pathways; (vi) UV-Vis spectra of recombinant HapX or the complex of HapX and GrxD indicate coordination of iron-sulfur clusters; (vii) the cysteine required for iron-sulfur cluster coordination in GrxD is in vitro dispensable for interaction with HapX; and (viii) there is a GrxD-independent mechanism for sensing iron sufficiency by HapX; (ix) inactivation of SreA suppresses the lethal effect caused by GrxD inactivation. Taken together, this study demonstrates that GrxD is crucial for iron homeostasis in A. fumigatus. Aspergillus fumigatus is a ubiquitous saprophytic mold and the major causative pathogen causing life-threatening aspergillosis. To improve therapy, there is an urgent need for a better understanding of the fungal physiology. We have previously shown that adaptation to iron starvation is an essential virulence attribute of A. fumigatus. In the present study, we characterized the mechanism employed by A. fumigatus to sense the cellular iron status, which is essential for iron homeostasis. We demonstrate that the transcription factors SreA and HapX, which coordinate iron acquisition, iron consumption and iron detoxification require physical interaction with the monothiol glutaredoxin GrxD to sense iron starvation. Moreover, we show that there is a GrxD-independent mechanism for sensing excess of iron.
Collapse
|
20
|
Pandey AK, Pain J, Dancis A, Pain D. Mitochondria export iron-sulfur and sulfur intermediates to the cytoplasm for iron-sulfur cluster assembly and tRNA thiolation in yeast. J Biol Chem 2019; 294:9489-9502. [PMID: 31040179 DOI: 10.1074/jbc.ra119.008600] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/26/2019] [Indexed: 12/28/2022] Open
Abstract
Iron-sulfur clusters are essential cofactors of proteins. In eukaryotes, iron-sulfur cluster biogenesis requires a mitochondrial iron-sulfur cluster machinery (ISC) and a cytoplasmic iron-sulfur protein assembly machinery (CIA). Here we used mitochondria and cytoplasm isolated from yeast cells, and [35S]cysteine to detect cytoplasmic Fe-35S cluster assembly on a purified apoprotein substrate. We showed that mitochondria generate an intermediate, called (Fe-S)int, needed for cytoplasmic iron-sulfur cluster assembly. The mitochondrial biosynthesis of (Fe-S)int required ISC components such as Nfs1 cysteine desulfurase, Isu1/2 scaffold, and Ssq1 chaperone. Mitochondria then exported (Fe-S)int via the Atm1 transporter in the inner membrane, and we detected (Fe-S)int in active form. When (Fe-S)int was added to cytoplasm, CIA utilized it for iron-sulfur cluster assembly without any further help from the mitochondria. We found that both iron and sulfur for cytoplasmic iron-sulfur cluster assembly originate from the mitochondria, revealing a surprising and novel mitochondrial role. Mitochondrial (Fe-S)int export was most efficient in the presence of cytoplasm containing an apoprotein substrate, suggesting that mitochondria respond to the cytoplasmic demand for iron-sulfur cluster synthesis. Of note, the (Fe-S)int is distinct from the sulfur intermediate called Sint, which is also made and exported by mitochondria but is instead used for cytoplasmic tRNA thiolation. In summary, our findings establish a direct and vital role of mitochondria in cytoplasmic iron-sulfur cluster assembly in yeast cells.
Collapse
Affiliation(s)
- Ashutosh K Pandey
- From the Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103 and
| | - Jayashree Pain
- From the Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103 and
| | - Andrew Dancis
- the Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Debkumar Pain
- From the Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103 and
| |
Collapse
|
21
|
Wang X, Chen X, Sun L, Qian W. Canonical cytosolic iron-sulfur cluster assembly and non-canonical functions of DRE2 in Arabidopsis. PLoS Genet 2019; 15:e1008094. [PMID: 31034471 PMCID: PMC6508740 DOI: 10.1371/journal.pgen.1008094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 05/09/2019] [Accepted: 03/16/2019] [Indexed: 11/17/2022] Open
Abstract
As a component of the Cytosolic Iron-sulfur cluster Assembly (CIA) pathway, DRE2 is essential in organisms from yeast to mammals. However, the roles of DRE2 remain incompletely understood largely due to the lack of viable dre2 mutants. In this study, we successfully created hypomorphic dre2 mutants using the CRISPR/Cas9 technology. Like other CIA pathway mutants, the dre2 mutants have accumulation of DNA lesions and show constitutive DNA damage response. In addition, the dre2 mutants exhibit DNA hypermethylation at hundreds of loci. The mutant forms of DRE2 in the dre2 mutants, which bear deletions in the linker region of DRE2, lost interaction with GRXS17 but have stronger interaction with NBP35, resulting in the CIA-related defects of dre2. Interestingly, we find that DRE2 is also involved in auxin response that may be independent of its CIA role. DRE2 localizes in both the cytoplasm and the nucleus and nuclear DRE2 associates with euchromatin. Furthermore, DRE2 directly associates with multiple auxin responsive genes and maintains their normal expression. Our study highlights the importance of the linker region of DRE2 in coordinating CIA-related protein interactions and identifies the canonical and non-canonical roles of DRE2 in maintaining genome stability, epigenomic patterns, and auxin response. The Cytosolic Iron-sulfur cluster Assembly (CIA) pathway is essential for the maturation of Fe-S proteins localized in the cytosol and the nucleus. As an important component of the CIA pathway, DRE2 is essential from yeast to mammals. To study the CIA-related functions of DRE2 and further explore novel non-CIA roles of DRE2 in Arabidopsis, we for the first time created two homozygous dre2 hypomorphic mutants using the CRISPR/Cas9 technology. The dre2 mutants exhibit hallmark features of the CIA pathway mutants indicating CIA-dependent functions of DRE2 in Arabidopsis. Unexpectedly, we find that DRE2 participates in auxin response and nuclear DRE2 directly binds multiple auxin responsive genes and regulates their expression, suggesting that DRE2 plays CIA-independent roles. Our findings significantly expand our understanding of the biological functions of DRE2 in eukaryotes.
Collapse
Affiliation(s)
- Xiaokang Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xudong Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Linhua Sun
- Academy for Advanced Interdisciplinary Studies, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
22
|
Grossman JD, Camire EJ, Glynn CA, Neil CM, Seguinot BO, Perlstein DL. The Cfd1 Subunit of the Nbp35-Cfd1 Iron Sulfur Cluster Scaffolding Complex Controls Nucleotide Binding. Biochemistry 2019; 58:1587-1595. [PMID: 30785732 DOI: 10.1021/acs.biochem.8b00798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The cytosolic iron sulfur cluster assembly (CIA) scaffold biosynthesizes iron sulfur cluster cofactors for enzymes residing in the cytosol and the nucleus. In fungi and animals, it comprises two homologous ATPases, called Nbp35 and Cfd1 in yeast, which can form homodimeric and heterodimeric complexes. Both proteins are required for CIA function, but their individual roles are not well understood. Here we investigate the nucleotide affinity of each form of the scaffold for ATP and ADP to reveal any differences that could shed light on the functions of the different oligomeric forms of the protein or any distinct roles of the individual subunits. All forms of the CIA scaffold are specific for adenosine nucleotides and not guanosine nucleotides. Although the Cfd1 homodimer has no detectable ATPase activity, it binds ATP with an affinity comparable to that of the hydrolysis competent forms, Nbp352 and Nbp35-Cfd1. Titrations to determine the number of nucleotide binding sites combined with site-directed mutagenesis demonstrate that the nucleotide must bind to the Cfd1 subunit of the heterodimer before it can bind to Nbp35 and that the Cfd1 subunit is hydrolysis competent when bound to Nbp35 in the heterodimer. Altogether, our work reveals the distinct roles of the Nbp35 and Cfd1 subunits in their heterodimeric complex. Cfd1 controls nucleotide binding, and the Nbp35 subunit is required to activate nucleotide hydrolysis.
Collapse
Affiliation(s)
- John D Grossman
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Eric J Camire
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Calina A Glynn
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Christopher M Neil
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Bryan O Seguinot
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Deborah L Perlstein
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|
23
|
van der Weel L, As KS, Dekker WJ, van den Eijnden L, van Helmond W, Schiphorst C, Hagen WR, Hagedoorn PL. ZraP, the most prominent zinc protein under zinc stress conditions has no direct role in in-vivo zinc tolerance in Escherichia coli. J Inorg Biochem 2019; 192:98-106. [DOI: 10.1016/j.jinorgbio.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/28/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
|
24
|
Depletion of thiol reducing capacity impairs cytosolic but not mitochondrial iron-sulfur protein assembly machineries. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:240-251. [DOI: 10.1016/j.bbamcr.2018.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023]
|
25
|
Ciofi-Baffoni S, Nasta V, Banci L. Protein networks in the maturation of human iron-sulfur proteins. Metallomics 2019; 10:49-72. [PMID: 29219157 DOI: 10.1039/c7mt00269f] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The biogenesis of iron-sulfur (Fe-S) proteins in humans is a multistage process occurring in different cellular compartments. The mitochondrial iron-sulfur cluster (ISC) assembly machinery composed of at least 17 proteins assembles mitochondrial Fe-S proteins. A cytosolic iron-sulfur assembly (CIA) machinery composed of at least 13 proteins has been more recently identified and shown to be responsible for the Fe-S cluster incorporation into cytosolic and nuclear Fe-S proteins. Cytosolic and nuclear Fe-S protein maturation requires not only the CIA machinery, but also the components of the mitochondrial ISC assembly machinery. An ISC export machinery, composed of a protein transporter located in the mitochondrial inner membrane, has been proposed to act in mediating the export process of a still unknown component that is required for the CIA machinery. Several functional and molecular aspects of the protein networks operative in the three machineries are still largely obscure. This Review focuses on the Fe-S protein maturation processes in humans with the specific aim of providing a molecular picture of the currently known protein-protein interaction networks. The human ISC and CIA machineries are presented, and the ISC export machinery is discussed with respect to possible molecules being the substrates of the mitochondrial protein transporter.
Collapse
Affiliation(s)
- Simone Ciofi-Baffoni
- Magnetic Resonance Center-CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy.
| | | | | |
Collapse
|
26
|
Tonini ML, Peña-Diaz P, Haindrich AC, Basu S, Kriegová E, Pierik AJ, Lill R, MacNeill SA, Smith TK, Lukeš J. Branched late-steps of the cytosolic iron-sulphur cluster assembly machinery of Trypanosoma brucei. PLoS Pathog 2018; 14:e1007326. [PMID: 30346997 PMCID: PMC6211773 DOI: 10.1371/journal.ppat.1007326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 11/01/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
Fe-S clusters are ubiquitous cofactors of proteins involved in a variety of essential cellular processes. The biogenesis of Fe-S clusters in the cytosol and their insertion into proteins is accomplished through the cytosolic iron-sulphur protein assembly (CIA) machinery. The early- and middle-acting modules of the CIA pathway concerned with the assembly and trafficking of Fe-S clusters have been previously characterised in the parasitic protist Trypanosoma brucei. In this study, we applied proteomic and genetic approaches to gain insights into the network of protein-protein interactions of the late-acting CIA targeting complex in T. brucei. All components of the canonical CIA machinery are present in T. brucei including, as in humans, two distinct CIA2 homologues TbCIA2A and TbCIA2B. These two proteins are found interacting with TbCIA1, yet the interaction is mutually exclusive, as determined by mass spectrometry. Ablation of most of the components of the CIA targeting complex by RNAi led to impaired cell growth in vitro, with the exception of TbCIA2A in procyclic form (PCF) trypanosomes. Depletion of the CIA-targeting complex was accompanied by reduced levels of protein-bound cytosolic iron and decreased activity of an Fe-S dependent enzyme in PCF trypanosomes. We demonstrate that the C-terminal domain of TbMMS19 acts as a docking site for TbCIA2B and TbCIA1, forming a trimeric complex that also interacts with target Fe-S apo-proteins and the middle-acting CIA component TbNAR1. Cytosolic and nuclear proteins containing iron-sulphur clusters (Fe-S) are essential for the survival of every extant eukaryotic cell. The biogenesis of Fe-S clusters and their insertion into proteins is accomplished through the cytosolic iron-sulphur protein assembly (CIA) machinery. Recently, the CIA factors that generate cytosolic Fe-S clusters were characterised in T. brucei, a unicellular parasite that causes diseases in humans and animals. However, an outstanding question in this organism is the way by which the CIA machinery directs and inserts newly formed Fe-S clusters into proteins. We found that the T. brucei proteins TbCIA2B and TbCIA1 assemble at a region of the C-terminal domain of a third protein, TbMMS19, to form a complex labelled the CIA targeting complex (CTC). The CTC interacts with TbNAR1 and with Fe-S proteins, meaning that the complex assists in the transfer of Fe-S clusters from the upstream members of the pathway into target Fe-S proteins. T. brucei cells depleted of CTC had decreased levels of protein-bound cytosolic iron, and lower activities of cytosolic aconitase, an enzyme that depends upon Fe-S clusters to function.
Collapse
Affiliation(s)
- Maiko Luis Tonini
- Biomedical Sciences Research Complex (BSRC), University of St Andrews, St Andrews, Fife, United Kingdom
| | - Priscila Peña-Diaz
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Alexander C. Haindrich
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Somsuvro Basu
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Institut für Zytobiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Eva Kriegová
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Antonio J. Pierik
- Faculty of Chemistry–Biochemistry, University of Kaiserslautern, Kaiserslautern, Germany
| | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Marburg, Germany
- LOEWE Zentrum für synthetische Mikrobiologie, Marburg, Germany
| | - Stuart A. MacNeill
- Biomedical Sciences Research Complex (BSRC), University of St Andrews, St Andrews, Fife, United Kingdom
- * E-mail: (SAM); (TKS); (JL)
| | - Terry K. Smith
- Biomedical Sciences Research Complex (BSRC), University of St Andrews, St Andrews, Fife, United Kingdom
- * E-mail: (SAM); (TKS); (JL)
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
- * E-mail: (SAM); (TKS); (JL)
| |
Collapse
|
27
|
Function and crystal structure of the dimeric P-loop ATPase CFD1 coordinating an exposed [4Fe-4S] cluster for transfer to apoproteins. Proc Natl Acad Sci U S A 2018; 115:E9085-E9094. [PMID: 30201724 DOI: 10.1073/pnas.1807762115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Maturation of iron-sulfur (Fe-S) proteins in eukaryotes requires complex machineries in mitochondria and cytosol. Initially, Fe-S clusters are assembled on dedicated scaffold proteins and then are trafficked to target apoproteins. Within the cytosolic Fe-S protein assembly (CIA) machinery, the conserved P-loop nucleoside triphosphatase Nbp35 performs a scaffold function. In yeast, Nbp35 cooperates with the related Cfd1, which is evolutionary less conserved and is absent in plants. Here, we investigated the potential scaffold function of human CFD1 (NUBP2) in CFD1-depleted HeLa cells by measuring Fe-S enzyme activities or 55Fe incorporation into Fe-S target proteins. We show that CFD1, in complex with NBP35 (NUBP1), performs a crucial role in the maturation of all tested cytosolic and nuclear Fe-S proteins, including essential ones involved in protein translation and DNA maintenance. CFD1 also matures iron regulatory protein 1 and thus is critical for cellular iron homeostasis. To better understand the scaffold function of CFD1-NBP35, we resolved the crystal structure of Chaetomium thermophilum holo-Cfd1 (ctCfd1) at 2.6-Å resolution as a model Cfd1 protein. Importantly, two ctCfd1 monomers coordinate a bridging [4Fe-4S] cluster via two conserved cysteine residues. The surface-exposed topology of the cluster is ideally suited for both de novo assembly and facile transfer to Fe-S apoproteins mediated by other CIA factors. ctCfd1 specifically interacted with ATP, which presumably associates with a pocket near the Cfd1 dimer interface formed by the conserved Walker motif. In contrast, ctNbp35 preferentially bound GTP, implying differential regulation of the two fungal scaffold components during Fe-S cluster assembly and/or release.
Collapse
|
28
|
Peña-Diaz P, Lukeš J. Fe-S cluster assembly in the supergroup Excavata. J Biol Inorg Chem 2018; 23:521-541. [PMID: 29623424 PMCID: PMC6006210 DOI: 10.1007/s00775-018-1556-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/29/2018] [Indexed: 12/21/2022]
Abstract
The majority of established model organisms belong to the supergroup Opisthokonta, which includes yeasts and animals. While enlightening, this focus has neglected protists, organisms that represent the bulk of eukaryotic diversity and are often regarded as primitive eukaryotes. One of these is the “supergroup” Excavata, which comprises unicellular flagellates of diverse lifestyles and contains species of medical importance, such as Trichomonas, Giardia, Naegleria, Trypanosoma and Leishmania. Excavata exhibits a continuum in mitochondrial forms, ranging from classical aerobic, cristae-bearing mitochondria to mitochondria-related organelles, such as hydrogenosomes and mitosomes, to the extreme case of a complete absence of the organelle. All forms of mitochondria house a machinery for the assembly of Fe–S clusters, ancient cofactors required in various biochemical activities needed to sustain every extant cell. In this review, we survey what is known about the Fe–S cluster assembly in the supergroup Excavata. We aim to bring attention to the diversity found in this group, reflected in gene losses and gains that have shaped the Fe–S cluster biogenesis pathways.
Collapse
Affiliation(s)
- Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
29
|
Ben-Shimon L, Paul VD, David-Kadoch G, Volpe M, Stümpfig M, Bill E, Mühlenhoff U, Lill R, Ben-Aroya S. Fe-S cluster coordination of the chromokinesin KIF4A alters its sub-cellular localization during mitosis. J Cell Sci 2018; 131:jcs.211433. [DOI: 10.1242/jcs.211433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 05/11/2018] [Indexed: 11/20/2022] Open
Abstract
Fe-S clusters act as co-factors of proteins with diverse functions, e.g. in DNA repair. Down-regulation of the cytosolic iron-sulfur protein assembly (CIA) machinery promotes genomic instability by the inactivation of multiple DNA repair pathways. Furthermore, CIA deficiencies are associated with so far unexplained mitotic defects. Here, we show that CIA2B and MMS19, constituents of the CIA targeting complex involved in facilitating Fe-S cluster insertion into cytosolic and nuclear target proteins, co-localize with components of the mitotic machinery. Down-regulation of CIA2B and MMS19 impairs the mitotic cycle. We identify the chromokinesin KIF4A as a mitotic component involved in these effects. KIF4A binds a Fe-S cluster in vitro through its conserved cysteine-rich domain. We demonstrate in vivo that this domain is required for the mitosis-related KIF4A localization and for the mitotic defects associated with KIF4A knockout. KIF4A is the first identified mitotic component carrying such a post-translational modification. These findings suggest that the lack of Fe-S clusters in KIF4A upon down-regulation of the CIA targeting complex contributes to the mitotic defects.
Collapse
Affiliation(s)
- Lilach Ben-Shimon
- The Nano Center, Building 206 room B-840, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| | - Viktoria D. Paul
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany
- LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Strasse, 35043 Marburg, Germany
| | - Galit David-Kadoch
- The Nano Center, Building 206 room B-840, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| | - Marina Volpe
- The Nano Center, Building 206 room B-840, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| | - Martin Stümpfig
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim-Ruhr, Germany
| | - Ulrich Mühlenhoff
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany
- LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Strasse, 35043 Marburg, Germany
| | - Shay Ben-Aroya
- The Nano Center, Building 206 room B-840, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| |
Collapse
|
30
|
Stehling O, Paul VD, Bergmann J, Basu S, Lill R. Biochemical Analyses of Human Iron–Sulfur Protein Biogenesis and of Related Diseases. Methods Enzymol 2018; 599:227-263. [DOI: 10.1016/bs.mie.2017.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
31
|
|
32
|
Upadhyay AS, Stehling O, Panayiotou C, Rösser R, Lill R, Överby AK. Cellular requirements for iron-sulfur cluster insertion into the antiviral radical SAM protein viperin. J Biol Chem 2017; 292:13879-13889. [PMID: 28615450 DOI: 10.1074/jbc.m117.780122] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/05/2017] [Indexed: 01/05/2023] Open
Abstract
Viperin (RSAD2) is an interferon-stimulated antiviral protein that belongs to the radical S-adenosylmethionine (SAM) enzyme family. Viperin's iron-sulfur (Fe/S) cluster is critical for its antiviral activity against many different viruses. CIA1 (CIAO1), an essential component of the cytosolic iron-sulfur protein assembly (CIA) machinery, is crucial for Fe/S cluster insertion into viperin and hence for viperin's antiviral activity. In the CIA pathway, CIA1 cooperates with CIA2A, CIA2B, and MMS19 targeting factors to form various complexes that mediate the dedicated maturation of specific Fe/S recipient proteins. To date, however, the mechanisms of how viperin acquires its radical SAM Fe/S cluster to gain antiviral activity are poorly understood. Using co-immunoprecipitation and 55Fe-radiolabeling experiments, we therefore studied the roles of CIA2A, CIA2B, and MMS19 for Fe/S cluster insertion. CIA2B and MMS19 physically interacted with the C terminus of viperin and used CIA1 as the primary viperin-interacting protein. In contrast, CIA2A bound to viperin's N terminus in a CIA1-, CIA2B-, and MMS19-independent fashion. Of note, the observed interaction of both CIA2 isoforms with a single Fe/S target protein is unprecedented in the CIA pathway. 55Fe-radiolabeling experiments with human cells depleted of CIA1, CIA2A, CIA2B, or MMS19 revealed that CIA1, but none of the other CIA factors, is predominantly required for 55Fe/S cluster incorporation into viperin. Collectively, viperin maturation represents a novel CIA pathway with a minimal requirement of the CIA-targeting factors and represents a new paradigm for the insertion of the Fe/S cofactor into a radical SAM protein.
Collapse
Affiliation(s)
- Arunkumar S Upadhyay
- From the Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden.,the Laboratory for Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Oliver Stehling
- the Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-strasse 6, 35032 Marburg, Germany, and
| | - Christakis Panayiotou
- From the Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden.,the Laboratory for Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Ralf Rösser
- the Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-strasse 6, 35032 Marburg, Germany, and
| | - Roland Lill
- the Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-strasse 6, 35032 Marburg, Germany, and .,LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Strasse, 35043 Marburg, Germany
| | - Anna K Överby
- From the Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden, .,the Laboratory for Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
33
|
Mashruwala AA, Boyd JM. Investigating the role(s) of SufT and the domain of unknown function 59 (DUF59) in the maturation of iron-sulfur proteins. Curr Genet 2017; 64:9-16. [PMID: 28589301 DOI: 10.1007/s00294-017-0716-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 01/07/2023]
Abstract
Comprehending biology at the molecular and systems levels is predicated upon understanding the functions of proteins. Proteins are typically composed of one or more functional moieties termed domains. Members of Bacteria, Eukarya, and Archaea utilize proteins containing a domain of unknown function (DUF) 59. Proteins requiring iron-sulfur (FeS) clusters containing cofactors are necessary for nearly all organisms making the assembly of functional FeS proteins essential. Recently, studies in eukaryotic and bacterial organisms have shown that proteins containing a DUF59, or those composed solely of DUF59, function in FeS protein maturation and/or intracellular Fe homeostasis. Herein, we review the current literature, discuss potential roles for DUF59, and address future studies that will help advance the field.
Collapse
Affiliation(s)
- Ameya A Mashruwala
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Dr., New Brunswick, NJ, 08901, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Dr., New Brunswick, NJ, 08901, USA.
| |
Collapse
|
34
|
Abstract
INTRODUCTION Mitochondria are cellular organelles that perform numerous bioenergetic, biosynthetic, and regulatory functions and play a central role in iron metabolism. Extracellular iron is taken up by cells and transported to the mitochondria, where it is utilized for synthesis of cofactors essential to the function of enzymes involved in oxidation-reduction reactions, DNA synthesis and repair, and a variety of other cellular processes. Areas covered: This article reviews the trafficking of iron to the mitochondria and normal mitochondrial iron metabolism, including heme synthesis and iron-sulfur cluster biogenesis. Much of our understanding of mitochondrial iron metabolism has been revealed by pathologies that disrupt normal iron metabolism. These conditions affect not only iron metabolism but mitochondrial function and systemic health. Therefore, this article also discusses these pathologies, including conditions of systemic and mitochondrial iron dysregulation as well as cancer. Literature covering these areas was identified via PubMed searches using keywords: Iron, mitochondria, Heme Synthesis, Iron-sulfur Cluster, and Cancer. References cited by publications retrieved using this search strategy were also consulted. Expert commentary: While much has been learned about mitochondrial and its iron, key questions remain. Developing a better understanding of mitochondrial iron and its regulation will be paramount in developing therapies for syndromes that affect mitochondrial iron.
Collapse
Affiliation(s)
- Bibbin T. Paul
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut
| | - David H. Manz
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut
- School of Dental Medicine, University of Connecticut Health, Farmington, Connecticut
| | - Frank M. Torti
- Department of Medicine, University of Connecticut Health, Farmington, Connecticut
| | - Suzy V. Torti
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut
| |
Collapse
|
35
|
Wachnowsky C, Fidai I, Cowan JA. Cytosolic iron-sulfur cluster transfer-a proposed kinetic pathway for reconstitution of glutaredoxin 3. FEBS Lett 2016; 590:4531-4540. [PMID: 27859051 DOI: 10.1002/1873-3468.12491] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 12/30/2022]
Abstract
Iron-sulfur (Fe-S) clusters are ubiquitously conserved and play essential cellular roles. The mechanism of Fe-S cluster biogenesis involves multiple proteins in a complex pathway. Cluster biosynthesis primarily occurs in the mitochondria, but key Fe-S proteins also exist in the cytosol. One such protein, glutaredoxin 3 (Grx3), is involved in iron regulation, sensing, and mediating [2Fe-2S] cluster delivery to cytosolic protein targets, but the cluster donor for cytosolic Grx3 has not been elucidated. Herein, we delineate the kinetic transfer of [2Fe-2S] clusters into Grx3 from potential cytosolic carrier/scaffold proteins, IscU and Nfu, to evaluate a possible model for Grx3 reconstitution in vivo.
Collapse
Affiliation(s)
- Christine Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Insiya Fidai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,The Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - James A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.,The Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
36
|
Pyrih J, Pyrihová E, Kolísko M, Stojanovová D, Basu S, Harant K, Haindrich AC, Doležal P, Lukeš J, Roger A, Tachezy J. Minimal cytosolic iron-sulfur cluster assembly machinery of Giardia intestinalis is partially associated with mitosomes. Mol Microbiol 2016; 102:701-714. [PMID: 27582265 DOI: 10.1111/mmi.13487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2016] [Indexed: 01/10/2023]
Abstract
Iron-sulfur (Fe-S) clusters are essential cofactors that enable proteins to transport electrons, sense signals, or catalyze chemical reactions. The maturation of dozens of Fe-S proteins in various compartments of every eukaryotic cell is driven by several assembly pathways. The ubiquitous cytosolic Fe-S cluster assembly (CIA) pathway, typically composed of eight highly conserved proteins, depends on mitochondrial Fe-S cluster assembly (ISC) machinery. Giardia intestinalis contains one of the smallest eukaryotic genomes and the mitosome, an extremely reduced mitochondrion. Because the only pathway known to be retained within this organelle is the synthesis of Fe-S clusters mediated by ISC machinery, a likely function of the mitosome is to cooperate with the CIA pathway. We investigated the cellular localization of CIA components in G. intestinalis and the origin and distribution of CIA-related components and Tah18-like proteins in other Metamonada. We show that orthologs of Tah18 and Dre2 are missing in these eukaryotes. In Giardia, all CIA components are exclusively cytosolic, with the important exception of Cia2 and two Nbp35 paralogs, which are present in the mitosomes. We propose that the dual localization of Cia2 and Nbp35 proteins in Giardia might represent a novel connection between the ISC and the CIA pathways.
Collapse
Affiliation(s)
- Jan Pyrih
- Department of Parasitology, Charles University in Prague, Vestec, 252 42, Czech Republic
| | - Eva Pyrihová
- Department of Parasitology, Charles University in Prague, Vestec, 252 42, Czech Republic
| | - Martin Kolísko
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Darja Stojanovová
- Department of Parasitology, Charles University in Prague, Vestec, 252 42, Czech Republic
| | - Somsuvro Basu
- Institute of Parasitology, Biology Centre, České Budějovice, Budweis, 37005, Czech Republic
| | - Karel Harant
- Department of Parasitology, Charles University in Prague, Vestec, 252 42, Czech Republic
| | - Alexander C Haindrich
- Institute of Parasitology, Biology Centre, České Budějovice, Budweis, 37005, Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice, Budweis, 37005, Czech Republic
| | - Pavel Doležal
- Department of Parasitology, Charles University in Prague, Vestec, 252 42, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, České Budějovice, Budweis, 37005, Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice, Budweis, 37005, Czech Republic.,Canadian Institute for Advanced Research, Toronto, ON, M5G 1Z8, Canada
| | - Andrew Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Canadian Institute for Advanced Research, Toronto, ON, M5G 1Z8, Canada
| | - Jan Tachezy
- Department of Parasitology, Charles University in Prague, Vestec, 252 42, Czech Republic
| |
Collapse
|
37
|
Buzas DM. Emerging links between iron-sulfur clusters and 5-methylcytosine base excision repair in plants. Genes Genet Syst 2016; 91:51-62. [PMID: 27592684 DOI: 10.1266/ggs.16-00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are ancient cofactors present in all kingdoms of life. Both the Fe-S cluster assembly machineries and target apoproteins are distributed across different subcellular compartments. The essential function of Fe-S clusters in nuclear enzymes is particularly difficult to study. The base excision repair (BER) pathway guards the integrity of DNA; enzymes from the DEMETER family of DNA glycosylases in plants are Fe-S cluster-dependent and extend the BER repertowere to excision of 5-methylcytosine (5mC). Recent studies in plants genetically link the majority of proteins from the cytosolic Fe-S cluster biogenesis (CIA) pathway with 5mC BER and DNA repair. This link can now be further explored. First, it opens new possibilities for understanding how Fe-S clusters participate in 5mC BER and related processes. I describe DNA-mediated charge transfer, an Fe-S cluster-based mechanism for locating base lesions with high efficiency, which is used by bacterial DNA glycosylases encoding Fe-S cluster binding domains that are also conserved in the DEMETER family. Second, because detailed analysis of the mutant phenotype of CIA proteins relating to 5mC BER revealed that they formed two groups, we may also gain new insights into both the composition of the Fe-S assembly pathway and the biological contexts of Fe-S proteins.
Collapse
Affiliation(s)
- Diana Mihaela Buzas
- Faculty of Life and Environmental Sciences, Gene Research Center, University of Tsukuba
| |
Collapse
|
38
|
Degli Esposti M, Cortez D, Lozano L, Rasmussen S, Nielsen HB, Martinez Romero E. Alpha proteobacterial ancestry of the [Fe-Fe]-hydrogenases in anaerobic eukaryotes. Biol Direct 2016; 11:34. [PMID: 27473689 PMCID: PMC4967309 DOI: 10.1186/s13062-016-0136-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/21/2016] [Indexed: 11/10/2022] Open
Abstract
Eukaryogenesis, a major transition in evolution of life, originated from the symbiogenic fusion of an archaea with a metabolically versatile bacterium. By general consensus, the latter organism belonged to α proteobacteria, subsequently evolving into the mitochondrial organelle of our cells. The consensus is based upon genetic and metabolic similarities between mitochondria and aerobic α proteobacteria but fails to explain the origin of several enzymes found in the mitochondria-derived organelles of anaerobic eukaryotes such as Trichomonas and Entamoeba. These enzymes are thought to derive from bacterial lineages other than α proteobacteria, e.g., Clostridium - an obligate anaerobe. [FeFe]-hydrogenase constitues the characteristic enzyme of this anaerobic metabolism and is present in different types also in Entamoeba and other anaerobic eukaryotes. Here we show that α proteobacteria derived from metagenomic studies possess both the cytosolic and organellar type of [FeFe]-hydrogenase, as well as all the proteins required for hydrogenase maturation. These organisms are related to cultivated members of the Rhodospirillales order previously suggested to be close relatives of mitochondrial ancestors. For the first time, our evidence supports an α proteobacterial ancestry for both the anaerobic and the aerobic metabolism of eukaryotes. Reviewers: This article was reviewed by William Martin and Nick Lane, both suggested by the Authors.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Italian Institute of Technology, Via Morego 30, 16136, Genoa, Italy. .,Center for Genomic Sciences, UNAM Cuernavaca, Cuernavaca, Mexico.
| | - Diego Cortez
- Center for Genomic Sciences, UNAM Cuernavaca, Cuernavaca, Mexico
| | - Luis Lozano
- Center for Genomic Sciences, UNAM Cuernavaca, Cuernavaca, Mexico
| | - Simon Rasmussen
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Kemitorvet, Building 208, 2800, Kongens Lyngby, Denmark
| | - Henrik Bjørn Nielsen
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Kemitorvet, Building 208, 2800, Kongens Lyngby, Denmark
| | | |
Collapse
|
39
|
The conserved protein Dre2 uses essential [2Fe–2S] and [4Fe–4S] clusters for its function in cytosolic iron–sulfur protein assembly. Biochem J 2016; 473:2073-85. [DOI: 10.1042/bcj20160416] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/10/2016] [Indexed: 11/17/2022]
Abstract
The essential protein Dre2 uses iron–sulfur (Fe–S) clusters to transfer electrons for cytosolic Fe–S protein biogenesis. Biochemical, cell biological and spectroscopic approaches demonstrate that recombinant Dre2 binds oxygen-labile [2Fe–2S] and [4Fe–4S] clusters at two conserved C-terminal motifs with four cysteine residues each.
Collapse
|
40
|
Chiang S, Kovacevic Z, Sahni S, Lane DJR, Merlot AM, Kalinowski DS, Huang MLH, Richardson DR. Frataxin and the molecular mechanism of mitochondrial iron-loading in Friedreich's ataxia. Clin Sci (Lond) 2016; 130:853-70. [PMID: 27129098 DOI: 10.1042/cs20160072] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/16/2016] [Indexed: 12/19/2022]
Abstract
The mitochondrion is a major site for the metabolism of the transition metal, iron, which is necessary for metabolic processes critical for cell vitality. The enigmatic mitochondrial protein, frataxin, is known to play a significant role in both cellular and mitochondrial iron metabolism due to its iron-binding properties and its involvement in iron-sulfur cluster (ISC) and heme synthesis. The inherited neuro- and cardio-degenerative disease, Friedreich's ataxia (FA), is caused by the deficient expression of frataxin that leads to deleterious alterations in iron metabolism. These changes lead to the accumulation of inorganic iron aggregates in the mitochondrial matrix that are presumed to play a key role in the oxidative damage and subsequent degenerative features of this disease. Furthermore, the concurrent dys-regulation of cellular antioxidant defense, which coincides with frataxin deficiency, exacerbates oxidative stress. Hence, the pathogenesis of FA underscores the importance of the integrated homeostasis of cellular iron metabolism and the cytoplasmic and mitochondrial redox environments. This review focuses on describing the pathogenesis of the disease, the molecular mechanisms involved in mitochondrial iron-loading and the dys-regulation of cellular antioxidant defense due to frataxin deficiency. In turn, current and emerging therapeutic strategies are also discussed.
Collapse
Affiliation(s)
- Shannon Chiang
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Angelica M Merlot
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michael L-H Huang
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia )
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia )
| |
Collapse
|
41
|
Liu Z, Campbell V, Heidelberg KB, Caron DA. Gene expression characterizes different nutritional strategies among three mixotrophic protists. FEMS Microbiol Ecol 2016; 92:fiw106. [PMID: 27194617 DOI: 10.1093/femsec/fiw106] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2016] [Indexed: 12/16/2022] Open
Abstract
Mixotrophic protists, i.e. protists that can carry out both phototrophy and heterotrophy, are a group of organisms with a wide range of nutritional strategies. The ecological and biogeochemical importance of these species has recently been recognized. In this study, we investigated and compared the gene expression of three mixotrophic protists, Prymnesium parvum, Dinobyron sp. and Ochromonas sp. under light and dark conditions in the presence of prey using RNA-Seq. Gene expression of the obligately phototrophic P. parvum and Dinobryon sp. changed significantly between light and dark treatments, while that of primarily heterotrophic Ochromonas sp. was largely unchanged. Gene expression of P. parvum and Dinobryon sp. shared many similarities, especially in the expression patterns of genes related to reproduction. However, key genes involved in central carbon metabolism and phagotrophy had different expression patterns between these two species, suggesting differences in prey consumption and heterotrophic nutrition in the dark. Transcriptomic data also offered clues to other physiological traits of these organisms such as preference of nitrogen sources and photo-oxidative stress. These results provide potential target genes for further exploration of the mechanisms of mixotrophic physiology and demonstrate the potential usefulness of molecular approaches in characterizing the nutritional modes of mixotrophic protists.
Collapse
Affiliation(s)
- Zhenfeng Liu
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089-0371, USA
| | - Victoria Campbell
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089-0371, USA
| | - Karla B Heidelberg
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089-0371, USA
| | - David A Caron
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089-0371, USA
| |
Collapse
|
42
|
The antimalarial drug primaquine targets Fe-S cluster proteins and yeast respiratory growth. Redox Biol 2015; 7:21-29. [PMID: 26629948 PMCID: PMC4683384 DOI: 10.1016/j.redox.2015.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 10/22/2015] [Accepted: 10/22/2015] [Indexed: 12/22/2022] Open
Abstract
Malaria is a major health burden in tropical and subtropical countries. The antimalarial drug primaquine is extremely useful for killing the transmissible gametocyte forms of Plasmodium falciparum and the hepatic quiescent forms of P. vivax. Yet its mechanism of action is still poorly understood. In this study, we used the yeast Saccharomyces cerevisiae model to help uncover the mode of action of primaquine. We found that the growth inhibitory effect of primaquine was restricted to cells that relied on respiratory function to proliferate and that deletion of SOD2 encoding the mitochondrial superoxide dismutase severely increased its effect, which can be countered by the overexpression of AIM32 and MCR1 encoding mitochondrial enzymes involved in the response to oxidative stress. This indicated that ROS produced by respiratory activity had a key role in primaquine-induced growth defect. We observed that Δsod2 cells treated with primaquine displayed a severely decreased activity of aconitase that contains a Fe–S cluster notoriously sensitive to oxidative damage. We also showed that in vitro exposure to primaquine impaired the activity of purified aconitase and accelerated the turnover of the Fe–S cluster of the essential protein Rli1. It is suggested that ROS-labile Fe–S groups are the primary targets of primaquine. Aconitase activity is known to be essential at certain life-cycle stages of the malaria parasite. Thus primaquine-induced damage of its labile Fe–S cluster – and of other ROS-sensitive enzymes – could inhibit parasite development. The mode of action of the antimalarial drug primaquine is poorly understood. The yeast model is used to decipher its mechanism of action. SOD and respiratory function are key for yeast sensitivity to primaquine. Primaquine treatment impairs Fe–S containing enzyme aconitase. Its attack on Fe–S clusters could explain the primaquine-induced growth inhibition.
Collapse
|
43
|
MET18 Connects the Cytosolic Iron-Sulfur Cluster Assembly Pathway to Active DNA Demethylation in Arabidopsis. PLoS Genet 2015; 11:e1005559. [PMID: 26492035 PMCID: PMC4619598 DOI: 10.1371/journal.pgen.1005559] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/08/2015] [Indexed: 11/24/2022] Open
Abstract
DNA demethylation mediated by the DNA glycosylase ROS1 helps determine genomic DNA methylation patterns and protects active genes from being silenced. However, little is known about the mechanism of regulation of ROS1 enzymatic activity. Using a forward genetic screen, we identified an anti-silencing (ASI) factor, ASI3, the dysfunction of which causes transgene promoter hyper-methylation and silencing. Map-based cloning identified ASI3 as MET18, a component of the cytosolic iron-sulfur cluster assembly (CIA) pathway. Mutation in MET18 leads to hyper-methylation at thousands of genomic loci, the majority of which overlap with hypermethylated loci identified in ros1 and ros1dml2dml3 mutants. Affinity purification followed by mass spectrometry indicated that ROS1 physically associates with MET18 and other CIA components. Yeast two-hybrid and split luciferase assays showed that ROS1 can directly interact with MET18 and another CIA component, AE7. Site-directed mutagenesis of ROS1 indicated that the conserved iron-sulfur motif is indispensable for ROS1 enzymatic activity. Our results suggest that ROS1-mediated active DNA demethylation requires MET18-dependent transfer of the iron-sulfur cluster, highlighting an important role of the CIA pathway in epigenetic regulation. DNA cytosine methylation is a major epigenetic mark that confers transcriptional regulation. Active removal of DNA methylation is important for plants and mammals during development and in responses to various stress conditions. In the model plant species Arabidopsis thaliana, active DNA demethylation depends on a family of 5-methylcytosine DNA glycosylases/demethylases including ROS1, DME, and others. While the epigenetic function of this demethylase family is well-known, little is known about how their enzymatic activities may be regulated. In this report, we carried out a forward genetic screen for anti-silencing factors and identified MET18, a conserved component of cytosolic iron-sulfur cluster assembly (CIA) pathway in eukaryotes, as being required for the ROS1-dependent active DNA demethylation. Dysfunction of MET18 causes DNA hyper-methylation at thousands of genomic loci where DNA methylation is pruned by ROS1. In addition, ROS1 physically interacts with MET18 and other CIA pathway components; while a conserved iron-sulfur-binding motif is indispensable for ROS1 enzyme activity. Our results suggested that MET18 affects DNA demethylation by influencing ROS1 enzymatic activity via direct interaction with the iron-sulfur-binding motif of ROS1, highlighting a direct connection between iron-sulfur cluster assembly and active DNA demethylation.
Collapse
|
44
|
Ozer HK, Dlouhy AC, Thornton JD, Hu J, Liu Y, Barycki JJ, Balk J, Outten CE. Cytosolic Fe-S Cluster Protein Maturation and Iron Regulation Are Independent of the Mitochondrial Erv1/Mia40 Import System. J Biol Chem 2015; 290:27829-40. [PMID: 26396185 DOI: 10.1074/jbc.m115.682179] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Indexed: 01/08/2023] Open
Abstract
The sulfhydryl oxidase Erv1 partners with the oxidoreductase Mia40 to import cysteine-rich proteins in the mitochondrial intermembrane space. In Saccharomyces cerevisiae, Erv1 has also been implicated in cytosolic Fe-S protein maturation and iron regulation. To investigate the connection between Erv1/Mia40-dependent mitochondrial protein import and cytosolic Fe-S cluster assembly, we measured Mia40 oxidation and Fe-S enzyme activities in several erv1 and mia40 mutants. Although all the erv1 and mia40 mutants exhibited defects in Mia40 oxidation, only one erv1 mutant strain (erv1-1) had significantly decreased activities of cytosolic Fe-S enzymes. Further analysis of erv1-1 revealed that it had strongly decreased glutathione (GSH) levels, caused by an additional mutation in the gene encoding the glutathione biosynthesis enzyme glutamate cysteine ligase (GSH1). To address whether Erv1 or Mia40 plays a role in iron regulation, we measured iron-dependent expression of Aft1/2-regulated genes and mitochondrial iron accumulation in erv1 and mia40 strains. The only strain to exhibit iron misregulation is the GSH-deficient erv1-1 strain, which is rescued with addition of GSH. Together, these results confirm that GSH is critical for cytosolic Fe-S protein biogenesis and iron regulation, whereas ruling out significant roles for Erv1 or Mia40 in these pathways.
Collapse
Affiliation(s)
- Hatice K Ozer
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Adrienne C Dlouhy
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Jeremy D Thornton
- the John Innes Centre and University of East Anglia, Norwich Research Park, Norwich NR4 7UH, United Kingdom, and
| | - Jingjing Hu
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Yilin Liu
- the Department of Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | - Joseph J Barycki
- the Department of Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | - Janneke Balk
- the John Innes Centre and University of East Anglia, Norwich Research Park, Norwich NR4 7UH, United Kingdom, and
| | - Caryn E Outten
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208,
| |
Collapse
|
45
|
Human mitochondrial MIA40 (CHCHD4) is a component of the Fe-S cluster export machinery. Biochem J 2015; 471:231-41. [PMID: 26275620 DOI: 10.1042/bj20150012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 08/14/2015] [Indexed: 02/07/2023]
Abstract
Mitochondria play an essential role in synthesis and export of iron-sulfur (Fe-S) clusters to other sections of a cell. Although the mechanism of Fe-S cluster synthesis is well elucidated, information on the identity of the proteins involved in the export pathway is limited. The present study identifies hMIA40 (human mitochondrial intermembrane space import and assembly protein 40), also known as CHCHD4 (coiled-coil-helix-coiled-coil-helix domain-containing 4), as a component of the mitochondrial Fe-S cluster export machinery. hMIA40 is an iron-binding protein with the ability to bind iron in vivo and in vitro. hMIA40 harbours CPC (Cys-Pro-Cys) motif-dependent Fe-S clusters that are sensitive to oxidation. Depletion of hMIA40 results in accumulation of iron in mitochondria concomitant with decreases in the activity and stability of Fe-S-containing cytosolic enzymes. Intriguingly, overexpression of either the mitochondrial export component or cytosolic the Fe-S cluster assembly component does not have any effect on the phenotype of hMIA40-depleted cells. Taken together, our results demonstrate an indispensable role for hMIA40 for the export of Fe-S clusters from mitochondria.
Collapse
|
46
|
Paul VD, Mühlenhoff U, Stümpfig M, Seebacher J, Kugler KG, Renicke C, Taxis C, Gavin AC, Pierik AJ, Lill R. The deca-GX3 proteins Yae1-Lto1 function as adaptors recruiting the ABC protein Rli1 for iron-sulfur cluster insertion. eLife 2015; 4:e08231. [PMID: 26182403 PMCID: PMC4523923 DOI: 10.7554/elife.08231] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/15/2015] [Indexed: 11/13/2022] Open
Abstract
Cytosolic and nuclear iron-sulfur (Fe-S) proteins are involved in many essential pathways including translation and DNA maintenance. Their maturation requires the cytosolic Fe-S protein assembly (CIA) machinery. To identify new CIA proteins we employed systematic protein interaction approaches and discovered the essential proteins Yae1 and Lto1 as binding partners of the CIA targeting complex. Depletion of Yae1 or Lto1 results in defective Fe-S maturation of the ribosome-associated ABC protein Rli1, but surprisingly no other tested targets. Yae1 and Lto1 facilitate Fe-S cluster assembly on Rli1 in a chain of binding events. Lto1 uses its conserved C-terminal tryptophan for binding the CIA targeting complex, the deca-GX3 motifs in both Yae1 and Lto1 facilitate their complex formation, and Yae1 recruits Rli1. Human YAE1D1 and the cancer-related ORAOV1 can replace their yeast counterparts demonstrating evolutionary conservation. Collectively, the Yae1-Lto1 complex functions as a target-specific adaptor that recruits apo-Rli1 to the generic CIA machinery. DOI:http://dx.doi.org/10.7554/eLife.08231.001 Many proteins depend on small molecules called cofactors to be able to perform their roles in cells. One class of proteins—the iron-sulfur proteins—contain cofactors that are made of clusters of iron and sulfide ions. In yeast, humans and other eukaryotes, the clusters are assembled and incorporated into their target proteins by a group of assembly factors called the CIA machinery. Several components of the CIA machinery have previously been identified and most of them appear to be core components that are needed to assemble many different proteins in cells. Since these iron-sulfur proteins are involved in important processes such as the production of proteins and the maintenance of DNA, losing of any of these CIA proteins tends to be lethal to the organism. Paul et al. used several ‘proteomic’ techniques to study the assembly of iron-sulfur proteins in yeast and identified two new proteins called Yae1 and Lto1 that are involved in this process. Unlike other CIA proteins, Yae1 and Lto1 are only required for the assembly of just one particular iron-sulfur protein called Rli1, which is essential for the production of proteins. Most newly made iron-sulfur proteins can bind directly to a group of CIA proteins called the CIA targeting complex, but Rli1 cannot. The experiments show that Lto1 binds to both the CIA targeting complex and to Yae1, which in turn recruits the Rli1 to the CIA complex. Paul et al. also show that humans have proteins that are very similar to Yae1 and Lto1. Inserting the human counterparts of Yae1 and Lto1 into yeast lacking these proteins could fully restore the assembly of iron-sulfur clusters into Rli1. This suggests that Yae1 and Lto1 proteins evolved in the common ancestors of fungi and humans and have changed little since. Taken together, Paul et al.'s findings reveal that Yae1 and Lto1 act as adaptors that link the rest of the CIA machinery to their specific target protein Rli1 in yeast and humans. A future challenge is to find out the three-dimensional structures of Yae1 and Lto1 to better understand how these proteins work and interact. DOI:http://dx.doi.org/10.7554/eLife.08231.002
Collapse
Affiliation(s)
- Viktoria Désirée Paul
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany
| | - Ulrich Mühlenhoff
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany
| | - Martin Stümpfig
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany
| | - Jan Seebacher
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Karl G Kugler
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christian Renicke
- Fachbereich Biologie/Genetik, Philipps-Universität Marburg, Marburg, Germany
| | - Christof Taxis
- Fachbereich Biologie/Genetik, Philipps-Universität Marburg, Marburg, Germany
| | - Anne-Claude Gavin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Antonio J Pierik
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany
| |
Collapse
|
47
|
Lill R, Dutkiewicz R, Freibert SA, Heidenreich T, Mascarenhas J, Netz DJ, Paul VD, Pierik AJ, Richter N, Stümpfig M, Srinivasan V, Stehling O, Mühlenhoff U. The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron–sulfur proteins. Eur J Cell Biol 2015; 94:280-91. [DOI: 10.1016/j.ejcb.2015.05.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
48
|
The Cytosolic Iron-Sulfur Cluster Assembly Protein MMS19 Regulates Transcriptional Gene Silencing, DNA Repair, and Flowering Time in Arabidopsis. PLoS One 2015; 10:e0129137. [PMID: 26053632 PMCID: PMC4459967 DOI: 10.1371/journal.pone.0129137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 05/05/2015] [Indexed: 11/19/2022] Open
Abstract
MMS19 is an essential component of the cytoplasmic iron-sulfur (Fe-S) cluster assembly complex in fungi and mammals; the mms19 null mutant alleles are lethal. Our study demonstrates that MMS19/MET18 in Arabidopsis thaliana interacts with the cytoplasmic Fe-S cluster assembly complex but is not an essential component of the complex. We find that MMS19 also interacts with the catalytic subunits of DNA polymerases, which have been demonstrated to be involved in transcriptional gene silencing (TGS), DNA repair, and flowering time regulation. Our results indicate that MMS19 has a similar biological function, suggesting a functional link between MMS19 and DNA polymerases. In the mms19 null mutant, the assembly of Fe-S clusters on the catalytic subunit of DNA polymerase α is reduced but not blocked, which is consistent with the viability of the mutant. Our study suggests that MMS19 assists the assembly of Fe-S clusters on DNA polymerases in the cytosol, thereby facilitating transcriptional gene silencing, DNA repair, and flowering time control.
Collapse
|
49
|
Fuss JO, Tsai CL, Ishida JP, Tainer JA. Emerging critical roles of Fe-S clusters in DNA replication and repair. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1853:1253-71. [PMID: 25655665 PMCID: PMC4576882 DOI: 10.1016/j.bbamcr.2015.01.018] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/13/2015] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
Abstract
Fe-S clusters are partners in the origin of life that predate cells, acetyl-CoA metabolism, DNA, and the RNA world. The double helix solved the mystery of DNA replication by base pairing for accurate copying. Yet, for genome stability necessary to life, the double helix has equally important implications for damage repair. Here we examine striking advances that uncover Fe-S cluster roles both in copying the genetic sequence by DNA polymerases and in crucial repair processes for genome maintenance, as mutational defects cause cancer and degenerative disease. Moreover, we examine an exciting, controversial role for Fe-S clusters in a third element required for life - the long-range coordination and regulation of replication and repair events. By their ability to delocalize electrons over both Fe and S centers, Fe-S clusters have unbeatable features for protein conformational control and charge transfer via double-stranded DNA that may fundamentally transform our understanding of life, replication, and repair. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- Jill O Fuss
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| | - Chi-Lin Tsai
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Justin P Ishida
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - John A Tainer
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| |
Collapse
|
50
|
Paul VD, Lill R. Biogenesis of cytosolic and nuclear iron-sulfur proteins and their role in genome stability. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1528-39. [PMID: 25583461 DOI: 10.1016/j.bbamcr.2014.12.018] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/08/2014] [Accepted: 12/12/2014] [Indexed: 01/09/2023]
Abstract
Iron-sulfur (Fe-S) clusters are versatile protein cofactors that require numerous components for their synthesis and insertion into apoproteins. In eukaryotes, maturation of cytosolic and nuclear Fe-S proteins is accomplished by cooperation of the mitochondrial iron-sulfur cluster (ISC) assembly and export machineries, and the cytosolic iron-sulfur protein assembly (CIA) system. Currently, nine CIA proteins are known to specifically assist the two major steps of the biogenesis reaction. They are essential for cell viability and conserved from yeast to man. The essential character of this biosynthetic process is explained by the involvement of Fe-S proteins in central processes of life, e.g., protein translation and numerous steps of nuclear DNA metabolism such as DNA replication and repair. Malfunctioning of these latter Fe-S enzymes leads to genome instability, a hallmark of cancer. This review is focused on the maturation and biological function of cytosolic and nuclear Fe-S proteins, a topic of central interest for both basic and medical research. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- Viktoria Désirée Paul
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Straße 6, 35032 Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Straße 6, 35032 Marburg, Germany; LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Str., 35043 Marburg, Germany.
| |
Collapse
|