1
|
Chen W, Wang X, Huang G, Sheng Q, Zhou E. Identification of cellular senescence-related genes as biomarkers for lupus nephritis based on bioinformatics. Front Genet 2025; 16:1551450. [PMID: 40290492 PMCID: PMC12021929 DOI: 10.3389/fgene.2025.1551450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
Background Lupus nephritis (LN) is one of the most common and severe complications of systemic lupus erythematosus with unclear pathogenesis. The most accurate diagnosis criterion of LN is still renal biopsy and nowadays treatment strategies of LN are far from satisfactory. Cellular senescence is defined as the permanent cell cycle arrest marked by senescence-associated secretory phenotype (SASP), which has been proved to accelerate the mobility and mortality of patients with LN. The study is aimed to identify cellular senescence-related genes for LN. Methods Genes related to cellular senescence and LN were obtained from the MSigDB genetic database and GEO database respectively. Through differential gene analysis, Weighted Gene Go-expression Network Analysis (WGCNA) and machine learning algorithms, hub cellular senescence-related differentially expressed genes (CS-DEGs) were identified. By external validation, hub CS-DEGs were further filtered and the remaining genes were identified as biomarkers. We explored their potential physiopathologic function through GSEA. Results We obtained 432 genes related to cellular senescence, 1,208 differentially expressed genes (DEGs) and 840 genes in the key gene module related to LN, which were intersected with each other for CS-DEGs. Subsequent Machine learning algorithms screened out six hub CS-DEGs and finally three hub CS-DEGs, ALOX5, PTGER2 and PRKCB passed through external validation, which were identified as biomarkers. The three biomarkers were enriched in "B Cell receptor signaling pathway" and "NF-kappa B signaling pathway" based on GESA results. Conclusion This study explored the potential relationship between cellular senescence and LN, and identified three biomarkers ALOX5, PTGER2, and PRKCB playing key roles in LN, which will provide new insights for the diagnosis and treatment of LN.
Collapse
Affiliation(s)
- Wei Chen
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, Jiangsu, China
- Jiangsu University Key Laboratory of Tonifying Kidney and Anti-senescence, Nanjing, Jiangsu, China
| | - Xiaofang Wang
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, Jiangsu, China
- Department of Nephrology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, China
| | - Guoshun Huang
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, Jiangsu, China
- Jiangsu University Key Laboratory of Tonifying Kidney and Anti-senescence, Nanjing, Jiangsu, China
| | - Qin Sheng
- Department of Nephrology, Suzhou Affiliated Hospital of Nanjing University of Chinese Medicine (Suzhou Hospital of Traditional Chinese Medicine), Suzhou, Jiangsu, China
| | - Enchao Zhou
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, Jiangsu, China
- Jiangsu University Key Laboratory of Tonifying Kidney and Anti-senescence, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Hugo C, Asante I, Sadybekov A, Katritch V, Yassine HN. Development of Calcium-Dependent Phospholipase A2 Inhibitors to Target Cellular Senescence and Oxidative Stress in Neurodegenerative Diseases. Antioxid Redox Signal 2024; 41:1100-1116. [PMID: 39575710 DOI: 10.1089/ars.2024.0794] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Significance: Cellular senescence is a critical process underlying aging and is associated with age-related diseases such as Alzheimer's disease. Lipids are implicated in cellular senescence. Fatty acids, particularly eicosanoids, have been associated with various forms of senescence and inflammation, and the associated reactive oxygen species production has been proposed as a therapeutic target for mitigating senescence. When overactivated, calcium-dependent phospholipase A2 (cPLA2) catalyzes the conversion of arachidonic acid into eicosanoids such as leukotrienes and prostaglandins. Recent Advances: With a growing understanding of the importance of lipids as mediators and modulators of senescence, cPLA2 has emerged as a compelling drug target. cPLA2 overactivation plays a significant role in several pathways associated with senescence, including neuroinflammation and oxidative stress. Critical Issues: Previous cPLA2 inhibitors have shown potential in ameliorating inflammation and oxidative stress, but the dominant hurdles in the central nervous system-targeting drug discovery are specificity and blood-brain barrier penetrance. Future Directions: With the need for more effective drugs against neurological diseases, we emphasize the significance of discovering new brain-penetrant, potent, and specific cPLA2 inhibitors. We discuss how the recently developed Virtual Synthon Hierarchical Enumeration Screening, an iterative synthon-based approach for fast structure-based virtual screening of billions of compounds, provides an efficient exploration of large chemical spaces for the discovery of brain-penetrant cPLA2 small-molecule inhibitors. Antioxid. Redox Signal. 41, 1100-1116.
Collapse
Affiliation(s)
- Cristelle Hugo
- Department of Neurology, Keck School of Medicine, Los Angeles, California, USA
| | - Isaac Asante
- Department of Ophthalmology, Keck School of Medicine, Los Angeles, California, USA
- Department of Clinical Pharmacy, Mann School of Pharmacy, Los Angeles, California, USA
- Medical Systems Innovation (ITEMS), USC Institute for Technology, Los Angeles, California, USA
| | - Anastasiia Sadybekov
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, California, USA
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, California, USA
- Department of Chemistry, University of Southern California, Los Angeles, California, USA
| | - Hussein N Yassine
- Department of Neurology, Keck School of Medicine, Los Angeles, California, USA
- Center for Personalized Brain Health, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Kahnt AS, Häfner AK, Steinhilber D. The role of human 5-Lipoxygenase (5-LO) in carcinogenesis - a question of canonical and non-canonical functions. Oncogene 2024; 43:1319-1327. [PMID: 38575760 PMCID: PMC11065698 DOI: 10.1038/s41388-024-03016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
5-Lipoxygenase (5-LO), a fatty acid oxygenase, is the central enzyme in leukotriene (LT) biosynthesis, potent arachidonic acid-derived lipid mediators released by innate immune cells, that control inflammatory and allergic responses. In addition, through interaction with 12- and 15-lipoxgenases, the enzyme is involved in the formation of omega-3 fatty acid-based oxylipins, which are thought to be involved in the resolution of inflammation. The expression of 5-LO is frequently deregulated in solid and liquid tumors, and there is strong evidence that the enzyme plays an important role in carcinogenesis. However, global inhibition of LT formation and signaling has not yet shown the desired success in clinical trials. Curiously, the release of 5-LO-derived lipid mediators from tumor cells is often low, and the exact mechanism by which 5-LO influences tumor cell function is poorly understood. Recent data now show that in addition to releasing oxylipins, 5-LO can also influence gene expression in a lipid mediator-independent manner. These non-canonical functions, including modulation of miRNA processing and transcription factor shuttling, most likely influence cancer cell function and the tumor microenvironment and might explain the low clinical efficacy of pharmacological strategies that previously only targeted oxylipin formation and signaling by 5-LO. This review summarizes the canonical and non-canonical functions of 5-LO with a particular focus on tumorigenesis, highlights unresolved issues, and suggests future research directions.
Collapse
Affiliation(s)
- Astrid S Kahnt
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Straße 9, 60438, Frankfurt/Main, Germany.
| | - Ann-Kathrin Häfner
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Straße 9, 60438, Frankfurt/Main, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Straße 9, 60438, Frankfurt/Main, Germany
| |
Collapse
|
4
|
Amoah AS, Pestov NB, Korneenko TV, Prokhorenko IA, Kurakin GF, Barlev NA. Lipoxygenases at the Intersection of Infection and Carcinogenesis. Int J Mol Sci 2024; 25:3961. [PMID: 38612771 PMCID: PMC11011848 DOI: 10.3390/ijms25073961] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The persisting presence of opportunistic pathogens like Pseudomonas aeruginosa poses a significant threat to many immunocompromised cancer patients with pulmonary infections. This review highlights the complexity of interactions in the host's defensive eicosanoid signaling network and its hijacking by pathogenic bacteria to their own advantage. Human lipoxygenases (ALOXs) and their mouse counterparts are integral elements of the innate immune system, mostly operating in the pro-inflammatory mode. Taking into account the indispensable role of inflammation in carcinogenesis, lipoxygenases have counteracting roles in this process. In addition to describing the structure-function of lipoxygenases in this review, we discuss their roles in such critical processes as cancer cell signaling, metastases, death of cancer and immune cells through ferroptosis, as well as the roles of ALOXs in carcinogenesis promoted by pathogenic infections. Finally, we discuss perspectives of novel oncotherapeutic approaches to harness lipoxygenase signaling in tumors.
Collapse
Affiliation(s)
- Abdul-Saleem Amoah
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (A.-S.A.); (N.A.B.)
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Nikolay B. Pestov
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (A.-S.A.); (N.A.B.)
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (T.V.K.); (I.A.P.)
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
- Vavilov Institute of General Genetics, Moscow 119991, Russia
| | - Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (T.V.K.); (I.A.P.)
| | - Igor A. Prokhorenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (T.V.K.); (I.A.P.)
| | - Georgy F. Kurakin
- Department of Biochemistry, Pirogov Russian National Research Medical University, Moscow 117513, Russia;
| | - Nickolai A. Barlev
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (A.-S.A.); (N.A.B.)
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| |
Collapse
|
5
|
Mogck BA, Jezak ST, Wiley CD. Mitochondria-Targeted Catalase Does Not Suppress Development of Cellular Senescence during Aging. Biomedicines 2024; 12:414. [PMID: 38398016 PMCID: PMC10886841 DOI: 10.3390/biomedicines12020414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Cellular senescence is a complex stress response marked by stable proliferative arrest and the secretion of biologically active molecules collectively known as the senescence-associated secretory phenotype (SASP). Mitochondria-derived reactive oxygen species (ROS) have been implicated in aging and age-related processes, including senescence. Stressors that increase ROS levels promote both senescence and the SASP, while reducing mitochondrial ROS or mitochondria themselves can prevent senescence or the SASP. Mitochondrially targeted catalase (mCAT), a transgene that reduces mitochondrial levels of ROS, has been shown to extend the lifespan of murine models and protect against the age-related loss of mitochondrial function. However, it remains unclear whether mCAT can prevent senescence or the SASP. In this study, we investigated the impact of mCAT on senescence in cultured cells and aged mice in order to discover if the lifespan-extending activity of mCAT might be due to the reduction in senescent cells or the SASP. Contrary to expectations, we observed that mCAT does not reduce markers of senescence or the SASP in cultured cells. Moreover, mCAT does not prevent the accumulation of senescent cells or the development of the SASP in adipose tissue from aged mice. These results suggest that mitochondrial ROS may not always play a causal role in the development of senescence during natural aging and underscore the need for a nuanced understanding of the intricate relationship between mitochondrial ROS and cellular senescence.
Collapse
Affiliation(s)
- Bronwyn A. Mogck
- Jean Mayer USDA Human Nutrition Research on Aging, Tufts University, Boston, MA 02111, USA
- SENS Research Foundation, Mountain View, CA 94041, USA
| | - Samantha T. Jezak
- Jean Mayer USDA Human Nutrition Research on Aging, Tufts University, Boston, MA 02111, USA
- Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA 02111, USA
| | - Christopher D. Wiley
- Jean Mayer USDA Human Nutrition Research on Aging, Tufts University, Boston, MA 02111, USA
- Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA 02111, USA
- Department of Medicine, School of Medicine, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
6
|
Sharma R, Diwan B. Lipids and the hallmarks of ageing: From pathology to interventions. Mech Ageing Dev 2023; 215:111858. [PMID: 37652278 DOI: 10.1016/j.mad.2023.111858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Lipids are critical structural and functional architects of cellular homeostasis. Change in systemic lipid profile is a clinical indicator of underlying metabolic pathologies, and emerging evidence is now defining novel roles of lipids in modulating organismal ageing. Characteristic alterations in lipid metabolism correlate with age, and impaired systemic lipid profile can also accelerate the development of ageing phenotype. The present work provides a comprehensive review of the extent of lipids as regulators of the modern hallmarks of ageing viz., cellular senescence, chronic inflammation, gut dysbiosis, telomere attrition, genome instability, proteostasis and autophagy, epigenetic alterations, and stem cells dysfunctions. Current evidence on the modulation of each of these hallmarks has been discussed with emphasis on inherent age-dependent deficiencies in lipid metabolism as well as exogenous lipid changes. There appears to be sufficient evidence to consider impaired lipid metabolism as key driver of the ageing process although much of knowledge is yet fragmented. Considering dietary lipids, the type and quantity of lipids in the diet is a significant, but often overlooked determinant that governs the effects of lipids on ageing. Further research using integrative approaches amidst the known aging hallmarks is highly desirable for understanding the therapeutics of lipids associated with ageing.
Collapse
Affiliation(s)
- Rohit Sharma
- Nutrigerontology Laboratory, Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan 173229, India.
| | - Bhawna Diwan
- Nutrigerontology Laboratory, Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan 173229, India
| |
Collapse
|
7
|
Park MN. The Therapeutic Potential of a Strategy to Prevent Acute Myeloid Leukemia Stem Cell Reprogramming in Older Patients. Int J Mol Sci 2023; 24:12037. [PMID: 37569414 PMCID: PMC10418941 DOI: 10.3390/ijms241512037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common and incurable leukemia subtype. Despite extensive research into the disease's intricate molecular mechanisms, effective treatments or expanded diagnostic or prognostic markers for AML have not yet been identified. The morphological, immunophenotypic, cytogenetic, biomolecular, and clinical characteristics of AML patients are extensive and complex. Leukemia stem cells (LSCs) consist of hematopoietic stem cells (HSCs) and cancer cells transformed by a complex, finely-tuned interaction that causes the complexity of AML. Microenvironmental regulation of LSCs dormancy and the diagnostic and therapeutic implications for identifying and targeting LSCs due to their significance in the pathogenesis of AML are discussed in this review. It is essential to perceive the relationship between the niche for LSCs and HSCs, which together cause the progression of AML. Notably, methylation is a well-known epigenetic change that is significant in AML, and our data also reveal that microRNAs are a unique factor for LSCs. Multiple-targeted approaches to reduce the risk of epigenetic factors, such as the administration of natural compounds for the elimination of local LSCs, may prevent potentially fatal relapses. Furthermore, the survival analysis of overlapping genes revealed that specific targets had significant effects on the survival and prognosis of patients. We predict that the multiple-targeted effects of herbal products on epigenetic modification are governed by different mechanisms in AML and could prevent potentially fatal relapses. Thus, these strategies can facilitate the incorporation of herbal medicine and natural compounds into the advanced drug discovery and development processes achievable with Network Pharmacology research.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| |
Collapse
|
8
|
Göbel T, Goebel B, Hyprath M, Lamminger I, Weisser H, Angioni C, Mathes M, Thomas D, Kahnt AS. Three-dimensional growth reveals fine-tuning of 5-lipoxygenase by proliferative pathways in cancer. Life Sci Alliance 2023; 6:e202201804. [PMID: 36849252 PMCID: PMC9971161 DOI: 10.26508/lsa.202201804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
The leukotriene (LT) pathway is positively correlated with the progression of solid malignancies, but the factors that control the expression of 5-lipoxygenase (5-LO), the central enzyme in LT biosynthesis, in tumors are poorly understood. Here, we report that 5-LO along with other members of the LT pathway is up-regulated in multicellular colon tumor spheroids. This up-regulation was inversely correlated with cell proliferation and activation of PI3K/mTORC-2- and MEK-1/ERK-dependent pathways. Furthermore, we found that E2F1 and its target gene MYBL2 were involved in the repression of 5-LO during cell proliferation. Importantly, we found that this PI3K/mTORC-2- and MEK-1/ERK-dependent suppression of 5-LO is also existent in tumor cells from other origins, suggesting that this mechanism is widely applicable to other tumor entities. Our data show that tumor cells fine-tune 5-LO and LT biosynthesis in response to environmental changes repressing the enzyme during proliferation while making use of the enzyme under cell stress conditions, implying that tumor-derived 5-LO plays a role in the manipulation of the tumor stroma to quickly restore cell proliferation.
Collapse
Affiliation(s)
- Tamara Göbel
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Bjarne Goebel
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Marius Hyprath
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Ira Lamminger
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Hannah Weisser
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Carlo Angioni
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, ZAFES, Goethe University, Frankfurt, Germany
| | - Marius Mathes
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, ZAFES, Goethe University, Frankfurt, Germany
- Fraunhofer Institute of Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| | - Astrid S Kahnt
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| |
Collapse
|
9
|
Metabolic landscape in cardiac aging: insights into molecular biology and therapeutic implications. Signal Transduct Target Ther 2023; 8:114. [PMID: 36918543 PMCID: PMC10015017 DOI: 10.1038/s41392-023-01378-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Cardiac aging is evident by a reduction in function which subsequently contributes to heart failure. The metabolic microenvironment has been identified as a hallmark of malignancy, but recent studies have shed light on its role in cardiovascular diseases (CVDs). Various metabolic pathways in cardiomyocytes and noncardiomyocytes determine cellular senescence in the aging heart. Metabolic alteration is a common process throughout cardiac degeneration. Importantly, the involvement of cellular senescence in cardiac injuries, including heart failure and myocardial ischemia and infarction, has been reported. However, metabolic complexity among human aging hearts hinders the development of strategies that targets metabolic susceptibility. Advances over the past decade have linked cellular senescence and function with their metabolic reprogramming pathway in cardiac aging, including autophagy, oxidative stress, epigenetic modifications, chronic inflammation, and myocyte systolic phenotype regulation. In addition, metabolic status is involved in crucial aspects of myocardial biology, from fibrosis to hypertrophy and chronic inflammation. However, further elucidation of the metabolism involvement in cardiac degeneration is still needed. Thus, deciphering the mechanisms underlying how metabolic reprogramming impacts cardiac aging is thought to contribute to the novel interventions to protect or even restore cardiac function in aging hearts. Here, we summarize emerging concepts about metabolic landscapes of cardiac aging, with specific focuses on why metabolic profile alters during cardiac degeneration and how we could utilize the current knowledge to improve the management of cardiac aging.
Collapse
|
10
|
Faggioli F, Velarde MC, Wiley CD. Cellular Senescence, a Novel Area of Investigation for Metastatic Diseases. Cells 2023; 12:cells12060860. [PMID: 36980201 PMCID: PMC10047218 DOI: 10.3390/cells12060860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Metastasis is a systemic condition and the major challenge among cancer types, as it can lead to multiorgan vulnerability. Recently, attention has been drawn to cellular senescence, a complex stress response condition, as a factor implicated in metastatic dissemination and outgrowth. Here, we examine the current knowledge of the features required for cells to invade and colonize secondary organs and how senescent cells can contribute to this process. First, we describe the role of senescence in placentation, itself an invasive process which has been linked to higher rates of invasive cancers. Second, we describe how senescent cells can contribute to metastatic dissemination and colonization. Third, we discuss several metabolic adaptations by which senescent cells could promote cancer survival along the metastatic journey. In conclusion, we posit that targeting cellular senescence may have a potential therapeutic efficacy to limit metastasis formation.
Collapse
Affiliation(s)
- Francesca Faggioli
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Istituto di Ricerca Genetica e Biomedica (IRGB-CNR) uos Milan, Via Fantoli 15/16, 20090 Milan, Italy
- Correspondence: ; Tel.: +39-02-82245211
| | - Michael C. Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City PH 1101, Philippines
| | - Christopher D. Wiley
- Jean Mayer USDA Human Nutrition Research Center on Aging, Boston, MA 02111, USA
- School of Medicine, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
11
|
Vahalová P, Cifra M. Biological autoluminescence as a perturbance-free method for monitoring oxidation in biosystems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:80-108. [PMID: 36336139 DOI: 10.1016/j.pbiomolbio.2022.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Biological oxidation processes are in the core of life energetics, play an important role in cellular biophysics, physiological cell signaling or cellular pathophysiology. Understanding of biooxidation processes is also crucial for biotechnological applications. Therefore, a plethora of methods has been developed for monitoring oxidation so far, each with distinct advantages and disadvantages. We review here the available methods for monitoring oxidation and their basic characteristics and capabilities. Then we focus on a unique method - the only one that does not require input of additional external energy or chemicals - which employs detection of biological autoluminescence (BAL). We highlight the pros and cons of this method and provide an overview of how BAL can be used to report on various aspects of cellular oxidation processes starting from oxygen consumption to the generation of oxidation products such as carbonyls. This review highlights the application potential of this completely non-invasive and label-free biophotonic diagnostic method.
Collapse
Affiliation(s)
- Petra Vahalová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czech Republic
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
| |
Collapse
|
12
|
Zileuton Alleviates Radiation-Induced Cutaneous Ulcers via Inhibition of Senescence-Associated Secretory Phenotype in Rodents. Int J Mol Sci 2022; 23:ijms23158390. [PMID: 35955523 PMCID: PMC9369445 DOI: 10.3390/ijms23158390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Radiation-induced cutaneous ulcers are a challenging medical problem for patients receiving radiation therapy. The inhibition of cell senescence has been suggested as a prospective strategy to prevent radiation ulcers. However, there is no effective treatment for senescent cells in radiation ulcers. In this study, we investigated whether zileuton alleviated radiation-induced cutaneous ulcer by focusing on cell senescence. We demonstrate increased cell senescence and senescence-associated secretory phenotype (SASP) in irradiated dermal fibroblasts and skin tissue. The SASP secreted from senescent cells induces senescence in adjacent cells. In addition, 5-lipoxygenase (5-LO) expression increased in irradiated dermal fibroblasts and skin tissue, and SASP and cell senescence were regulated by 5-LO through p38 phosphorylation. Finally, the inhibition of 5-LO following treatment with zileuton inhibited SASP and mitigated radiation ulcers in animal models. Our results demonstrate that inhibition of SASP from senescent cells by zileuton can effectively mitigate radiation-induced cutaneous ulcers, indicating that inhibition of 5-LO might be a viable strategy for patients with this condition.
Collapse
|
13
|
Wang X, Sipila P, Si Z, Rosales JL, Gao X, Lee KY. CDK5RAP2 loss-of-function causes premature cell senescence via the GSK3β/β-catenin-WIP1 pathway. Cell Death Dis 2021; 13:9. [PMID: 34930892 PMCID: PMC8688469 DOI: 10.1038/s41419-021-04457-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/23/2021] [Accepted: 12/07/2021] [Indexed: 12/03/2022]
Abstract
Developmental disorders characterized by small body size have been linked to CDK5RAP2 loss-of-function mutations, but the mechanisms underlying which remain obscure. Here, we demonstrate that knocking down CDK5RAP2 in human fibroblasts triggers premature cell senescence that is recapitulated in Cdk5rap2an/an mouse embryonic fibroblasts and embryos, which exhibit reduced body weight and size, and increased senescence-associated (SA)-β-gal staining compared to Cdk5rap2+/+ and Cdk5rap2+/an embryos. Interestingly, CDK5RAP2-knockdown human fibroblasts show increased p53 Ser15 phosphorylation that does not correlate with activation of p53 kinases, but rather correlates with decreased level of the p53 phosphatase, WIP1. Ectopic WIP1 expression reverses the senescent phenotype in CDK5RAP2-knockdown cells, indicating that senescence in these cells is linked to WIP1 downregulation. CDK5RAP2 interacts with GSK3β, causing increased inhibitory GSK3β Ser9 phosphorylation and inhibiting the activity of GSK3β, which phosphorylates β-catenin, tagging β-catenin for degradation. Thus, loss of CDK5RAP2 decreases GSK3β Ser9 phosphorylation and increases GSK3β activity, reducing nuclear β-catenin, which affects the expression of NF-κB target genes such as WIP1. Consequently, loss of CDK5RAP2 or β-catenin causes WIP1 downregulation. Inhibition of GSK3β activity restores β-catenin and WIP1 levels in CDK5RAP2-knockdown cells, reducing p53 Ser15 phosphorylation and preventing senescence in these cells. Conversely, inhibition of WIP1 activity increases p53 Ser15 phosphorylation and senescence in CDK5RAP2-depleted cells lacking GSK3β activity. These findings indicate that loss of CDK5RAP2 promotes premature cell senescence through GSK3β/β-catenin downregulation of WIP1. Premature cell senescence may contribute to reduced body size associated with CDK5RAP2 loss-of-function.
Collapse
Affiliation(s)
- Xidi Wang
- grid.22072.350000 0004 1936 7697Department of Cell Biology & Anatomy, Arnie Charbonneau Cancer and Alberta Children’s Hospital Research Institutes, Cumming School of Medicine, University of Calgary, Calgary, AB Canada ,grid.410736.70000 0001 2204 9268Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, China
| | - Patrick Sipila
- grid.22072.350000 0004 1936 7697Department of Cell Biology & Anatomy, Arnie Charbonneau Cancer and Alberta Children’s Hospital Research Institutes, Cumming School of Medicine, University of Calgary, Calgary, AB Canada
| | - Zizhen Si
- grid.410736.70000 0001 2204 9268Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, China
| | - Jesusa L. Rosales
- grid.22072.350000 0004 1936 7697Department of Cell Biology & Anatomy, Arnie Charbonneau Cancer and Alberta Children’s Hospital Research Institutes, Cumming School of Medicine, University of Calgary, Calgary, AB Canada
| | - Xu Gao
- grid.410736.70000 0001 2204 9268Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, China
| | - Ki-Young Lee
- Department of Cell Biology & Anatomy, Arnie Charbonneau Cancer and Alberta Children's Hospital Research Institutes, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
14
|
Wiley CD, Campisi J. The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat Metab 2021; 3:1290-1301. [PMID: 34663974 PMCID: PMC8889622 DOI: 10.1038/s42255-021-00483-8] [Citation(s) in RCA: 340] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022]
Abstract
Cellular senescence entails a permanent proliferative arrest, coupled to multiple phenotypic changes. Among these changes is the release of numerous biologically active molecules collectively known as the senescence-associated secretory phenotype, or SASP. A growing body of literature indicates that both senescence and the SASP are sensitive to cellular and organismal metabolic states, which in turn can drive phenotypes associated with metabolic dysfunction. Here, we review the current literature linking senescence and metabolism, with an eye toward findings at the cellular level, including both metabolic inducers of senescence and alterations in cellular metabolism associated with senescence. Additionally, we consider how interventions that target either metabolism or senescent cells might influence each other and mitigate some of the pro-aging effects of cellular senescence. We conclude that the most effective interventions will likely break a degenerative feedback cycle by which cellular senescence promotes metabolic diseases, which in turn promote senescence.
Collapse
Affiliation(s)
- Christopher D Wiley
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, CA, USA.
- Buck Institute for Research on Aging, Novato, CA, USA.
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
15
|
Mongiovi JM, Hong CC, Zirpoli GR, Khoury T, Omilian AR, Qin B, Bandera EV, Yao S, Ambrosone CB, Gong Z. Genetic Variants in COX2 and ALOX Genes and Breast Cancer Risk in White and Black Women. Front Oncol 2021; 11:679998. [PMID: 34249719 PMCID: PMC8263909 DOI: 10.3389/fonc.2021.679998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/07/2021] [Indexed: 01/05/2023] Open
Abstract
COX and ALOX genes are involved in inflammatory processes and that may be related to breast cancer risk differentially between White and Black women. We evaluated distributions of genetic variants involved in COX2 and ALOX-related pathways and examined their associations with breast cancer risk among 1,275 White and 1,299 Black cases and controls who participated in the Women's Circle of Health Study. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using multivariable-adjusted logistic regression models. Our results showed differential associations of certain genetic variants with breast cancer according to menopausal and ER status in either White or Black women. In White women, an increased risk of breast cancer was observed for COX2-rs689470 (OR: 2.02, P = 0.01) in the dominant model, and was strongest among postmenopausal women (OR: 2.72, P = 0.02) and for estrogen receptor positive (ER+) breast cancers (OR: 2.60, P = 0.001). A reduced risk was observed for ALOX5-rs7099874 (OR: 0.75, P = 0.01) in the dominant model, and was stronger among postmenopausal women (OR: 0.68, P = 0.03) and for ER+ cancer (OR: 0.66, P = 0.001). Four SNPs (rs3840880, rs1126667, rs434473, rs1042357) in the ALOX12 gene were found in high LD (r2 >0.98) in White women and were similarly associated with reduced risk of breast cancer, with a stronger association among postmenopausal women and for ER- cancer. Among Black women, increased risk was observed for ALOX5-rs1369214 (OR: 1.44, P = 0.003) in the recessive model and was stronger among premenopausal women (OR: 1.57, P = 0.03) and for ER+ cancer (OR: 1.53, P = 0.003). Our study suggests that genetic variants of COX2 and ALOX genes are associated with breast cancer, and that these associations and genotype distributions differ in subgroups defined by menopausal and ER status between White and Black women. Findings may provide insights into the etiology of breast cancer and areas for further research into reasons for breast cancer differences between races.
Collapse
Affiliation(s)
- Jennifer M. Mongiovi
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, United States
| | - Chi-Chen Hong
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Gary R. Zirpoli
- Slone Epidemiology Center, Boston University, Boston, NY, United States
| | - Thaer Khoury
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Angela R. Omilian
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Bo Qin
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Elisa V. Bandera
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Song Yao
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Christine B. Ambrosone
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Zhihong Gong
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
16
|
Pils V, Terlecki-Zaniewicz L, Schosserer M, Grillari J, Lämmermann I. The role of lipid-based signalling in wound healing and senescence. Mech Ageing Dev 2021; 198:111527. [PMID: 34174292 DOI: 10.1016/j.mad.2021.111527] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/28/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Lipid-based signalling modulates several cellular processes and intercellular communication during wound healing and tissue regeneration. Bioactive lipids include but are not limited to the diverse group of eicosanoids, phospholipids, and extracellular vesicles and mediate the attraction of immune cells, initiation of inflammatory responses, and their resolution. In aged individuals, wound healing and tissue regeneration are greatly impaired, resulting in a delayed healing process and non-healing wounds. Senescent cells accumulate with age in vivo, preferably at sites implicated in age-associated pathologies and their elimination was shown to alleviate many age-associated diseases and disorders. In contrast to these findings, the transient presence of senescent cells in the process of wound healing exerts beneficial effects and limits fibrosis. Hence, clearance of senescent cells during wound healing was repeatedly shown to delay wound closure in vivo. Recent findings established a dysregulated synthesis of eicosanoids, phospholipids and extracellular vesicles as part of the senescent phenotype. This intriguing connection between cellular senescence, lipid-based signalling, and the process of wound healing and tissue regeneration prompts us to compile the current knowledge in this review and propose future directions for investigation.
Collapse
Affiliation(s)
- Vera Pils
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Lucia Terlecki-Zaniewicz
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Markus Schosserer
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Austria
| | - Johannes Grillari
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz and Vienna, Austria; Austrian Cluster for Tissue Regeneration, Austria
| | - Ingo Lämmermann
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
17
|
Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis. Cell Metab 2021; 33:1124-1136.e5. [PMID: 33811820 PMCID: PMC8501892 DOI: 10.1016/j.cmet.2021.03.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/21/2020] [Accepted: 03/11/2021] [Indexed: 12/19/2022]
Abstract
Cellular senescence is a stress or damage response that causes a permanent proliferative arrest and secretion of numerous factors with potent biological activities. This senescence-associated secretory phenotype (SASP) has been characterized largely for secreted proteins that participate in embryogenesis, wound healing, inflammation, and many age-related pathologies. By contrast, lipid components of the SASP are understudied. We show that senescent cells activate the biosynthesis of several oxylipins that promote segments of the SASP and reinforce the proliferative arrest. Notably, senescent cells synthesize and accumulate an unstudied intracellular prostaglandin, 1a,1b-dihomo-15-deoxy-delta-12,14-prostaglandin J2. Released 15-deoxy-delta-12,14-prostaglandin J2 is a biomarker of senolysis in culture and in vivo. This and other prostaglandin D2-related lipids promote the senescence arrest and SASP by activating RAS signaling. These data identify an important aspect of cellular senescence and a method to detect senolysis.
Collapse
|
18
|
Ma XY, Wei L, Lei Z, Chen Y, Ding Z, Chen ZS. Recent progress on targeting leukemia stem cells. Drug Discov Today 2021; 26:1904-1913. [PMID: 34029689 DOI: 10.1016/j.drudis.2021.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/14/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Leukemia is a type of malignant clonal disease of hematopoietic stem cells (HSCs). A small population of leukemic stem cells (LSCs) are responsible for the initiation, drug resistance, and relapse of leukemia. LSCs have the ability to form tumors after xenotransplantation in immunodeficient mice and appear to be common in most human leukemias. Therefore, the eradication of LSCs is an approach with the potential to improve survival or even to cure leukemia. Using recent research in the field of LSCs, we summarize the targeted therapy approaches for the removal of LSCs through surface markers including immune checkpoint molecules, pathways influencing LSC survival, or the survival microenvironment of LSCs. In addition, we introduce the survival microenvironment and survival regulation of LSCs.
Collapse
Affiliation(s)
- Xiang-Yu Ma
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China.
| | - Zining Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yanglu Chen
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Zhiyong Ding
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Gangxing 3rd Rd, High-Tech and Innovation Zone, Jinan, Shandong 250101, PR China
| | - Zhe-Sheng Chen
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China.
| |
Collapse
|
19
|
Narzt MS, Pils V, Kremslehner C, Nagelreiter IM, Schosserer M, Bessonova E, Bayer A, Reifschneider R, Terlecki-Zaniewicz L, Waidhofer-Söllner P, Mildner M, Tschachler E, Cavinato M, Wedel S, Jansen-Dürr P, Nanic L, Rubelj I, El-Ghalbzouri A, Zoratto S, Marchetti-Deschmann M, Grillari J, Gruber F, Lämmermann I. Epilipidomics of Senescent Dermal Fibroblasts Identify Lysophosphatidylcholines as Pleiotropic Senescence-Associated Secretory Phenotype (SASP) Factors. J Invest Dermatol 2020; 141:993-1006.e15. [PMID: 33333126 DOI: 10.1016/j.jid.2020.11.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
During aging, skin accumulates senescent cells. The transient presence of senescent cells, followed by their clearance by the immune system, is important in tissue repair and homeostasis. The persistence of senescent cells that evade clearance contributes to the age-related deterioration of the skin. The senescence-associated secretory phenotype of these cells contains immunomodulatory molecules that facilitate clearance but also promote chronic damage. Here, we investigated the epilipidome-the oxidative modifications of phospholipids-of senescent dermal fibroblasts, because these molecules are among the bioactive lipids that were recently identified as senescence-associated secretory phenotype factors. Using replicative- and stress- induced senescence protocols, we identified lysophosphatidylcholines as universally elevated in senescent fibroblasts, whereas other oxidized lipids displayed a pattern that was characteristic for the used senescence protocol. When we tested the lysophosphatidylcholines for senescence-associated secretory phenotype activity, we found that they elicit chemokine release in nonsenescent fibroblasts but also interfere with toll-like receptor 2 and 6/CD36 signaling and phagocytic capacity in macrophages. Using matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry imaging, we localized two lysophosphatidylcholine species in aged skin. This suggests that lysophospholipids may facilitate immune evasion and low-grade chronic inflammation in skin aging.
Collapse
Affiliation(s)
- Marie-Sophie Narzt
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria; Department of Dermatology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz and Vienna, Austria
| | - Vera Pils
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Christopher Kremslehner
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria; Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence, Vienna, Austria
| | - Ionela-Mariana Nagelreiter
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria; Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence, Vienna, Austria; Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria
| | - Markus Schosserer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Emilia Bessonova
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Alina Bayer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Raffaela Reifschneider
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Lucia Terlecki-Zaniewicz
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Petra Waidhofer-Söllner
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Maria Cavinato
- Institute for Biomedical Aging Research, University of Innsbruck, Austria; Center for Molecular Biosciences Innsbruck, Innsbruck, Austria
| | - Sophia Wedel
- Institute for Biomedical Aging Research, University of Innsbruck, Austria; Center for Molecular Biosciences Innsbruck, Innsbruck, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, Austria; Center for Molecular Biosciences Innsbruck, Innsbruck, Austria
| | - Lucia Nanic
- Ruder Boskovic Institute, Division of Molecular Biology, Laboratory for Molecular and Cellular Biology, Zagreb, Croatia
| | - Ivica Rubelj
- Ruder Boskovic Institute, Division of Molecular Biology, Laboratory for Molecular and Cellular Biology, Zagreb, Croatia
| | | | - Samuele Zoratto
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence, Vienna, Austria; Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Martina Marchetti-Deschmann
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Johannes Grillari
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz and Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Florian Gruber
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria; Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence, Vienna, Austria.
| | - Ingo Lämmermann
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Diabetic kidney disease (DKD) is the leading cause of kidney failure in the USA, representing ~ 44% of all cases of kidney failure. Advancements in both glucose management and inhibitors of the renin-angiotensin system have significantly improved prognosis for individuals with DKD, yet DKD continues to affect 30-40% of people with type 2 diabetes and is still a major predictor of mortality in this population. Thus, new interventions are required to address this significant health burden. RECENT FINDINGS One potential target for intervention is cellular senescence. Senescence permanently arrests cell division in response to genotoxic, oncogenic, or metabolic stresses-coupled to the secretion of inflammatory cytokines, chemokines, growth factors, proteases, and other molecules that can have potent local and systemic effects. This senescence-associated secretory phenotype (SASP) explains how a relatively small number of senescent cells can promote pathology, and a growing number of degenerative conditions have been found to be caused or aggravated by senescent cells. Many SASP factors are also associated with loss of kidney function. Targeted elimination of senescent cells prevents the development of several degenerative pathologies. Since senescent cells appear in the proximal tubules and podocytes of patients with DKD, they are an appealing target for intervention in these disorders. Here, we review the current literature linking senescence to DKD and speculate on the likely routes to intervention in a clinical setting.
Collapse
Affiliation(s)
- Christopher D Wiley
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|
21
|
Lipid Mediators Regulate Pulmonary Fibrosis: Potential Mechanisms and Signaling Pathways. Int J Mol Sci 2020; 21:ijms21124257. [PMID: 32549377 PMCID: PMC7352853 DOI: 10.3390/ijms21124257] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease of unknown etiology characterized by distorted distal lung architecture, inflammation, and fibrosis. The molecular mechanisms involved in the pathophysiology of IPF are incompletely defined. Several lung cell types including alveolar epithelial cells, fibroblasts, monocyte-derived macrophages, and endothelial cells have been implicated in the development and progression of fibrosis. Regardless of the cell types involved, changes in gene expression, disrupted glycolysis, and mitochondrial oxidation, dysregulated protein folding, and altered phospholipid and sphingolipid metabolism result in activation of myofibroblast, deposition of extracellular matrix proteins, remodeling of lung architecture and fibrosis. Lipid mediators derived from phospholipids, sphingolipids, and polyunsaturated fatty acids play an important role in the pathogenesis of pulmonary fibrosis and have been described to exhibit pro- and anti-fibrotic effects in IPF and in preclinical animal models of lung fibrosis. This review describes the current understanding of the role and signaling pathways of prostanoids, lysophospholipids, and sphingolipids and their metabolizing enzymes in the development of lung fibrosis. Further, several of the lipid mediators and enzymes involved in their metabolism are therapeutic targets for drug development to treat IPF.
Collapse
|
22
|
Wiley CD, Brumwell AN, Davis SS, Jackson JR, Valdovinos A, Calhoun C, Alimirah F, Castellanos CA, Ruan R, Wei Y, Chapman HA, Ramanathan A, Campisi J, Jourdan Le Saux C. Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis. JCI Insight 2019; 4:130056. [PMID: 31687975 DOI: 10.1172/jci.insight.130056] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/29/2019] [Indexed: 12/26/2022] Open
Abstract
Accumulation of senescent cells is associated with the progression of pulmonary fibrosis, but mechanisms accounting for this linkage are not well understood. To explore this issue, we investigated whether a class of biologically active profibrotic lipids, the leukotrienes (LT), is part of the senescence-associated secretory phenotype. The analysis of conditioned medium (CM), lipid extracts, and gene expression of LT biosynthesis enzymes revealed that senescent cells secreted LT, regardless of the origin of the cells or the modality of senescence induction. The synthesis of LT was biphasic and followed by antifibrotic prostaglandin (PG) secretion. The LT-rich CM of senescent lung fibroblasts (IMR-90) induced profibrotic signaling in naive fibroblasts, which were abrogated by inhibitors of ALOX5, the principal enzyme in LT biosynthesis. The bleomycin-induced expression of genes encoding LT and PG synthases, level of cysteinyl LT in the bronchoalveolar lavage, and overall fibrosis were reduced upon senescent cell removal either in a genetic mouse model or after senolytic treatment. Quantification of ALOX5+ cells in lung explants obtained from idiopathic pulmonary fibrosis (IPF) patients indicated that half of these cells were also senescent (p16Ink4a+). Unlike human fibroblasts from unused donor lungs made senescent by irradiation, senescent IPF fibroblasts secreted LTs but failed to synthesize PGs. This study demonstrates for the first time to our knowledge that senescent cells secrete functional LTs, significantly contributing to the LT pool known to cause or exacerbate IPF.
Collapse
Affiliation(s)
| | | | - Sonnet S Davis
- Buck Institute for Research on Aging, Novato, California, USA
| | | | | | - Cheresa Calhoun
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | | | | | - Ying Wei
- UCSF, San Francisco, California, USA
| | | | - Arvind Ramanathan
- Buck Institute for Research on Aging, Novato, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine (inStem), Rajiv Gandhi Nagar, Kodigehalli, Bengaluru, Karnataka, India
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, California, USA.,Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Claude Jourdan Le Saux
- UCSF, San Francisco, California, USA.,University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
23
|
Induction of p73, Δ133p53, Δ160p53, pAKT lead to neuroprotection via DNA repair by 5-LOX inhibition. Mol Biol Rep 2019; 47:269-274. [PMID: 31659693 DOI: 10.1007/s11033-019-05127-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/09/2019] [Indexed: 12/19/2022]
Abstract
The inflammatory process plays a key role in neurodegenerative disorder. The inflammatory molecule, 5-lipooxygenase (5-LOX), protein is involved in the pathologic phenotype of AD which includes Aβ amyloid deposition and tau hyperphosphorylation. This study aims to identify the mechanistic role in neuroprotection by 5-LOX inhibitor in neurotoxic SH-SY5Y cell line model by evaluating different cell survival pathway. The neurotoxic SH-SY5Y cells were developed by the treatment of Aβ25-35. The cells were then treated with 5-LOX peptide inhibitor, YWCS to prevent neurotoxicity reported earlier from our lab. The effect of 5-LOX inhibition on cell survival pathways were determined by western blot experiment with different doses of peptide by using polyclonal anti body of p53, anti-Akt and anti-phosphorylated Akt. Immunoprecipitation and mass spectroscopic studies were done to identify the altered proteins appeared on the blot. Over expression of phosphorylated Akt and 3 bands on p53 lane blot other than p53 were observed. Three bands were identified as isoforms of p53 which correspond to p73, Δ133p53 and Δ160p53 in the cells treated only with 80 µM of YWCS compare to untreated cells. However, no alteration of total p53 and Akt were observed in treated cells. The results exposed the novel mechanistic pathway of neuroprotection by 5-LOX inhibition is likely to be mediated by DNA DSB repair through p53 isoforms and PI3K/Akt pathway. Our finding has opened a new window in the therapeutic approach for the prevention of AD.
Collapse
|
24
|
Chung EJ, Reedy JL, Kwon S, Patil S, Valle L, White AO, Citrin DE. 12-Lipoxygenase is a Critical Mediator of Type II Pneumocyte Senescence, Macrophage Polarization and Pulmonary Fibrosis after Irradiation. Radiat Res 2019; 192:367-379. [PMID: 31373871 PMCID: PMC6816027 DOI: 10.1667/rr15356.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Radiation-induced pulmonary fibrosis (RIPF) is a chronic, progressive complication of therapeutic irradiation of the thorax. It has been suggested that senescence of type II pneumocytes (AECIIs), an alveolar stem cell, plays a role in the development of RIPF through loss of replicative reserve and via senescent AECII-driven release of proinflammatory and profibrotic cytokines. Within this context, we hypothesized that arachidonate 12-lipoxygenase (12-LOX) is a critical mediator of AECII senescence and RIPF. Treatment of wild-type AECIIs with 12S-hydroxyeicosateraenoic acid (12S-HETE), a downstream product of 12-LOX, was sufficient to induce senescence in a NADPH oxidase 4 (NOX4)-dependent manner. Mice deficient in 12-LOX exhibited reduced AECII senescence, pulmonary collagen accumulation and accumulation of alternatively activated (M2) macrophages after thoracic irradiation (5 × 6 Gy) compared to wild-type mice. Conditioned media from irradiated or 12S-HETE-treated primary pneumocytes contained elevated levels of IL-4 and IL-13 compared to untreated pneumocytes. Primary macrophages treated with conditioned media from irradiated AECII demonstrated preferential M2 type polarization when AECIIs were derived from wild-type mice compared to 12-LOX-deficient mice. Together, these data identified 12-LOX as a critical component of RIPF and a therapeutic target for radiation-induced lung injury.
Collapse
Affiliation(s)
- Eun Joo Chung
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Jessica L. Reedy
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Seokjoo Kwon
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Shilpa Patil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Luca Valle
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Ayla O. White
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Deborah E. Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
25
|
Moradi F, Babashah S, Sadeghizadeh M, Jalili A, Hajifathali A, Roshandel H. Signaling pathways involved in chronic myeloid leukemia pathogenesis: The importance of targeting Musashi2-Numb signaling to eradicate leukemia stem cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:581-589. [PMID: 31231484 PMCID: PMC6570743 DOI: 10.22038/ijbms.2019.31879.7666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/15/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Chronic myeloid leukemia (CML) is a myeloid clonal proliferation disease defining by the presence of the Philadelphia chromosome that shows the movement of BCR-ABL1. In this study, the critical role of the Musashi2-Numb axis in determining cell fate and relationship of the axis to important signaling pathways such as Hedgehog and Notch that are essential for self-renewal pathways in CML stem cells will be reviewed meticulously. MATERIALS AND METHODS In this review, a PubMed search using the keywords of Leukemia, signaling pathways, Musashi2-Numb was performed, and then we summarized different research works . RESULTS Although tyrosine kinase inhibitors such as Imatinib significantly kill and remove the cell with BCR-ABL1 translocation, they are unable to target BCR-ABL1 leukemia stem cells. The main problem is stem cells resistance to Imatinib therapy. Therefore, the identification and control of downstream molecules/ signaling route of the BCR-ABL1 that are involved in the survival and self-renewal of leukemia stem cells can be an effective treatment strategy to eliminate leukemia stem cells, which supposed to be cured by Musashi2-Numb signaling pathway. CONCLUSION The control of molecules /pathways downstream of the BCR-ABL1 and targeting Musashi2-Numb can be an effective therapeutic strategy for treatment of chronic leukemia stem cells. While Musashi2 is a poor prognostic marker in leukemia, in treatment and strategy, it has significant diagnostic value.
Collapse
Affiliation(s)
- Foruzan Moradi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arsalan Jalili
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hajifathali Roshandel
- Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
26
|
Häfner AK, Kahnt AS, Steinhilber D. Beyond leukotriene formation—The noncanonical functions of 5-lipoxygenase. Prostaglandins Other Lipid Mediat 2019; 142:24-32. [DOI: 10.1016/j.prostaglandins.2019.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/14/2019] [Accepted: 03/25/2019] [Indexed: 01/17/2023]
|
27
|
Lopes-Paciencia S, Saint-Germain E, Rowell MC, Ruiz AF, Kalegari P, Ferbeyre G. The senescence-associated secretory phenotype and its regulation. Cytokine 2019; 117:15-22. [PMID: 30776684 DOI: 10.1016/j.cyto.2019.01.013] [Citation(s) in RCA: 354] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/19/2019] [Accepted: 01/27/2019] [Indexed: 12/13/2022]
Abstract
The senescence-associated secretory phenotype (SASP) defines the ability of senescent cells to express and secrete a variety of extracellular modulators that includes cytokines, chemokines, proteases, growth factors and bioactive lipids. The role of the SASP depends on the context. The SASP reinforces the senescent cell cycle arrest, stimulates the immune-mediated clearance of potentially tumorigenic cells, limits fibrosis and promotes wound healing and tissue regeneration. On the other hand, the SASP can mediate chronic inflammation and stimulate the growth and survival of tumor cells. The regulation of the SASP occurs at multiple levels including chromatin remodelling, activation of specific transcription factors such as C/EBP and NF-κB, control of mRNA translation and intracellular trafficking. Several SASP modulators have already been identified setting the stage for future research on their clinical applications.
Collapse
Affiliation(s)
- Stéphane Lopes-Paciencia
- Department of Biochemistry and Molecular Medicine, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada; CRCHUM, 900 Saint-Denis - Room R10.432, Montréal, QC H2X 0A9, Canada
| | - Emmanuelle Saint-Germain
- Department of Biochemistry and Molecular Medicine, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada; CRCHUM, 900 Saint-Denis - Room R10.432, Montréal, QC H2X 0A9, Canada
| | - Marie-Camille Rowell
- Department of Biochemistry and Molecular Medicine, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada; CRCHUM, 900 Saint-Denis - Room R10.432, Montréal, QC H2X 0A9, Canada
| | - Ana Fernández Ruiz
- Department of Biochemistry and Molecular Medicine, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada; CRCHUM, 900 Saint-Denis - Room R10.432, Montréal, QC H2X 0A9, Canada
| | - Paloma Kalegari
- Department of Biochemistry and Molecular Medicine, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada; CRCHUM, 900 Saint-Denis - Room R10.432, Montréal, QC H2X 0A9, Canada
| | - Gerardo Ferbeyre
- Department of Biochemistry and Molecular Medicine, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada; CRCHUM, 900 Saint-Denis - Room R10.432, Montréal, QC H2X 0A9, Canada.
| |
Collapse
|
28
|
Cadenas C, Vosbeck S, Edlund K, Grgas K, Madjar K, Hellwig B, Adawy A, Glotzbach A, Stewart JD, Lesjak MS, Franckenstein D, Claus M, Hayen H, Schriewer A, Gianmoena K, Thaler S, Schmidt M, Micke P, Pontén F, Mardinoglu A, Zhang C, Käfferlein HU, Watzl C, Frank S, Rahnenführer J, Marchan R, Hengstler JG. LIPG-promoted lipid storage mediates adaptation to oxidative stress in breast cancer. Int J Cancer 2019; 145:901-915. [PMID: 30653260 PMCID: PMC6618071 DOI: 10.1002/ijc.32138] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022]
Abstract
Endothelial lipase (LIPG) is a cell surface associated lipase that displays phospholipase A1 activity towards phosphatidylcholine present in high‐density lipoproteins (HDL). LIPG was recently reported to be expressed in breast cancer and to support proliferation, tumourigenicity and metastasis. Here we show that severe oxidative stress leading to AMPK activation triggers LIPG upregulation, resulting in intracellular lipid droplet accumulation in breast cancer cells, which supports survival. Neutralizing oxidative stress abrogated LIPG upregulation and the concomitant lipid storage. In human breast cancer, high LIPG expression was observed in a limited subset of tumours and was significantly associated with shorter metastasis‐free survival in node‐negative, untreated patients. Moreover, expression of PLIN2 and TXNRD1 in these tumours indicated a link to lipid storage and oxidative stress. Altogether, our findings reveal a previously unrecognized role for LIPG in enabling oxidative stress‐induced lipid droplet accumulation in tumour cells that protects against oxidative stress, and thus supports tumour progression. What's new? Endothelial lipase (LIPG), a cell surface‐associated lipase with multifaceted roles, is expressed on breast cancer cells, but its molecular function and clinical relevance remain unknown. Here the authors uncover a link between oxidative stress and LIPG upregulation and show that high LIPG expression is associated with shorter metastasis‐free survival in women with node‐negative breast cancer. The authors speculate that LIPG may favor metastasis by enabling stress adaptation through lipid droplet formation and protection of mitochondria.
Collapse
Affiliation(s)
- Cristina Cadenas
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Sonja Vosbeck
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Karolina Edlund
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Katharina Grgas
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Katrin Madjar
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - Birte Hellwig
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - Alshaimaa Adawy
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Annika Glotzbach
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Joanna D Stewart
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Michaela S Lesjak
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Dennis Franckenstein
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Maren Claus
- Department of Immunology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Heiko Hayen
- Department of Analytical Chemistry, Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Alexander Schriewer
- Department of Analytical Chemistry, Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Kathrin Gianmoena
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Sonja Thaler
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of the University of Heidelberg, Tridomus C, Mannheim, Germany
| | - Marcus Schmidt
- Department of Obstetrics and Gynecology, University Hospital Mainz, Mainz, Germany
| | - Patrick Micke
- Department of Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Fredrik Pontén
- Department of Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Cheng Zhang
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Heiko U Käfferlein
- Center of Toxicology, Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA), Institute of the Ruhr University Bochum, Bochum, Germany
| | - Carsten Watzl
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Saša Frank
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | | | - Rosemarie Marchan
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Jan G Hengstler
- Department of Toxicology, Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| |
Collapse
|
29
|
Leukemia Stem Cells in Chronic Myeloid Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1143:191-215. [PMID: 31338821 DOI: 10.1007/978-981-13-7342-8_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by a chromosome translocation that generates the BCR-ABL oncogene encoding a constitutively activated tyrosine kinase. Although BCR-ABL tyrosine kinase inhibitors (TKIs) are highly effective in treating CML at chronic phase, a number of patients develop drug resistance due to the inability of TKIs to kill leukemia stem cells (LSCs). Similar to other types of hematopoietic malignancies, LSCs in CML are believed to be a rare cell population responsible for leukemia initiation, disease progression, and drug resistance. Therefore, a full understanding of the biology of LSCs will help to develop novel therapeutic strategies for effective treatment of CML to possibly reach a cure. In recent years, a significant progress has been made in studying the biology of LSCs in both animal models and human patients at cellular and molecular levels, providing a basis for designing and testing potential molecular targets for eradicating LSCs in CML.
Collapse
|
30
|
Modulation of reactive oxygen levels and gene expression in sensitive and resistant tumoral cells by C-phyocyanin. Mol Biol Rep 2018; 46:1349-1356. [DOI: 10.1007/s11033-018-4569-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/10/2018] [Indexed: 12/29/2022]
|
31
|
Pohl SÖG, Agostino M, Dharmarajan A, Pervaiz S. Cross Talk Between Cellular Redox State and the Antiapoptotic Protein Bcl-2. Antioxid Redox Signal 2018; 29:1215-1236. [PMID: 29304561 DOI: 10.1089/ars.2017.7414] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE B cell lymphoma-2 (Bcl-2) was discovered over three decades ago and is the prototype antiapoptotic member of the Bcl-2 family that comprises proteins with contrasting effects on cell fate. First identified as a consequence of chromosomal translocation (t 14:18) in human lymphoma, subsequent studies have revealed mutations and/or gene copy number alterations as well as post-translational modifications of Bcl-2 in a variety of human cancers. The canonical function of Bcl-2 is linked to its ability to inhibit mitochondrial membrane permeabilization, thereby regulating apoptosome assembly and activation by blocking the cytosolic translocation of death amplification factors. Of note, the identification of specific domains within the Bcl-2 family of proteins (Bcl-2 homology domains; BH domains) has not only provided a mechanistic insight into the various interactions between the member proteins but has also been the impetus behind the design and development of small molecule inhibitors and BH3 mimetics for clinical use. Recent Advances: Aside from its role in maintaining mitochondrial integrity, recent evidence provides testimony to a novel facet in the biology of Bcl-2 that involves an intricate cross talk with cellular redox state. Bcl-2 overexpression modulates mitochondrial redox metabolism to create a "pro-oxidant" milieu, conducive for cell survival. However, under states of oxidative stress, overexpression of Bcl-2 functions as a redox sink to prevent excessive buildup of reactive oxygen species, thereby inhibiting execution signals. Emerging evidence indicates various redox-dependent transcriptional changes and post-translational modifications with different functional outcomes. CRITICAL ISSUES Understanding the complex interplay between Bcl-2 and the cellular redox milieu from the standpoint of cell fate signaling remains vital for a better understanding of pathological states associated with altered redox metabolism and/or aberrant Bcl-2 expression. FUTURE DIRECTIONS Based on its canonical functions, Bcl-2 has emerged as a potential druggable target. Small molecule inhibitors of Bcl-2 and/or other family members with similar function, as well as BH3 mimetics, are showing promise in the clinic. The emerging evidence for the noncanonical activity linked to cellular redox metabolism provides a novel avenue for the design and development of diagnostic and therapeutic strategies against cancers refractory to conventional chemotherapy by the overexpression of this prosurvival protein.
Collapse
Affiliation(s)
- Sebastian Öther-Gee Pohl
- 1 Stem Cell and Cancer Biology Laboratory, Curtin Health and Innovation Research Institute, Curtin University , Bentley, Western Australia .,2 School of Biomedical Sciences, Curtin University , Perth, Western Australia
| | - Mark Agostino
- 1 Stem Cell and Cancer Biology Laboratory, Curtin Health and Innovation Research Institute, Curtin University , Bentley, Western Australia .,2 School of Biomedical Sciences, Curtin University , Perth, Western Australia .,3 Curtin Institute for Computation, Curtin University , Perth, Western Australia
| | - Arun Dharmarajan
- 1 Stem Cell and Cancer Biology Laboratory, Curtin Health and Innovation Research Institute, Curtin University , Bentley, Western Australia .,2 School of Biomedical Sciences, Curtin University , Perth, Western Australia
| | - Shazib Pervaiz
- 2 School of Biomedical Sciences, Curtin University , Perth, Western Australia .,4 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,5 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,6 National University Cancer Institute, National University Health System , Singapore, Singapore
| |
Collapse
|
32
|
Xu D, Xu Y, Cui Q, Liu D, Liu Z, Wang X, Yang Y, Feng M, Liang R, Chen H, Ye K, Kong MG. Cold atmospheric plasma as a potential tool for multiple myeloma treatment. Oncotarget 2018; 9:18002-18017. [PMID: 29719586 PMCID: PMC5915053 DOI: 10.18632/oncotarget.24649] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/30/2018] [Indexed: 01/02/2023] Open
Abstract
Multiple myeloma (MM) is a fatal and incurable hematological malignancy thus new therapy need to be developed. Cold atmospheric plasma, a new technology that could generate various active species, could efficiently induce various tumor cells apoptosis. More details about the interaction of plasma and tumor cells need to be addressed before the application of gas plasma in clinical cancer treatment. In this study, we demonstrate that He+O2 plasma could efficiently induce myeloma cell apoptosis through the activation of CD95 and downstream caspase cascades. Extracellular and intracellular reactive oxygen species (ROS) accumulation is essential for CD95-mediated cell apoptosis in response to plasma treatment. Furthermore, p53 is shown to be a key transcription factor in activating CD95 and caspase cascades. More importantly, we demonstrate that CD95 expression is higher in tumor cells than in normal cells in both MM cell lines and MM clinical samples, which suggests that CD95 could be a favorable target for plasma treatment as it could selectively inactivate myeloma tumor cells. Our results illustrate the molecular details of plasma induced myeloma cell apoptosis and it shows that gas plasma could be a potential tool for myeloma therapy in the future.
Collapse
Affiliation(s)
- Dehui Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P.R. China.,The School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P.R. China
| | - Yujing Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P.R. China
| | - Qingjie Cui
- The School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P.R. China
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P.R. China
| | - Zhijie Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P.R. China
| | - Xiaohua Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P.R. China
| | - Yanjie Yang
- Department of Cardiovascular Medicine, First Affiliated Hospital of the Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Miaojuan Feng
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China
| | - Rong Liang
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P.R. China
| | - Hailan Chen
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Kai Ye
- School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P.R. China.,First Affiliated Hospital of the Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Michael G Kong
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P.R. China.,Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA.,Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, 23529, USA
| |
Collapse
|
33
|
The Fanconi anemia pathway controls oncogenic response in hematopoietic stem and progenitor cells by regulating PRMT5-mediated p53 arginine methylation. Oncotarget 2018; 7:60005-60020. [PMID: 27507053 PMCID: PMC5312365 DOI: 10.18632/oncotarget.11088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 07/26/2016] [Indexed: 01/26/2023] Open
Abstract
The Fanconi anemia (FA) pathway is involved in DNA damage and other cellular stress responses. We have investigated the role of the FA pathway in oncogenic stress response by employing an in vivo stress-response model expressing the Gadd45β-luciferase transgene. Using two inducible models of oncogenic activation (LSL-K-rasG12D and MycER), we show that hematopoietic stem and progenitor cells (HSPCs) from mice deficient for the FA core complex components Fanca or Fancc exhibit aberrant short-lived response to oncogenic insults. Mechanistic studies reveal that FA deficiency in HSPCs impairs oncogenic stress-induced G1 cell-cycle checkpoint, resulting from a compromised K-rasG12D-induced arginine methylation of p53 mediated by the protein arginine methyltransferase 5 (PRMT5). Furthermore, forced expression of PRMT5 in HSPCs from LSL-K-rasG12D/CreER-Fanca−/− mice prolongs oncogenic response and delays leukemia development in recipient mice. Our study defines an arginine methylation-dependent FA-p53 interplay that controls oncogenic stress response.
Collapse
|
34
|
Danshenol A inhibits TNF-α-induced expression of intercellular adhesion molecule-1 (ICAM-1) mediated by NOX4 in endothelial cells. Sci Rep 2017; 7:12953. [PMID: 29021525 PMCID: PMC5636799 DOI: 10.1038/s41598-017-13072-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/13/2017] [Indexed: 11/09/2022] Open
Abstract
ICAM-1 overexpression and subsequent adhesion of leukocytes to endothelial cells play critical roles in the early stage of atherosclerosis. Danshenol A (DA) is an abietane-type diterpenoid isolated from traditional Chinese herb Salvia miltiorrhiza Bunge. The mechanisms under its regulation of adhesion of molecular expression are explored. Here, the effect of DA on TNF-α-induced ICAM-1 expression was investigated in endothelial cells. TNF-α-induced ICAM-1 expression and subsequent adhesion of monocytes, as well as elevated reactive oxygen species (ROS) generation and NOX4 expression were all significantly reversed by DA, siNOX4 and NOX4 inhibitor GKT137831. Furthermore, TNF-α-induced ICAM-1 expression, which was increased via IKKβ/IκBα-mediated activation of NF-κB p65, was also inhibited by DA. Interestingly, NOX4 overexpression suppressed the ICAM-1 expression, and this finding may be ascribed to the activation of Nrf-2. Additionally, NF-κB inhibitor PDTC, siNOX4, or DA can decrease the TNF-α-induced ICAM-1 expression and suppress the adhesion of monocytes. In all, DA inhibited TNF-α-induced ICAM-1 expression and subsequent monocyte adhesion to endothelial cells through the NOX4-dependent IKKβ/NF-κB pathway. Besides, NOX4 played dual role in regulating ICAM-1 expression via diverse signal pathway. This novel bioactivity will make DA a good candidate to be further explored for therapeutic or preventive application for atherosclerosis.
Collapse
|
35
|
Chen Y, Shan Y, Lu M, DeSouza N, Guo Z, Hoffman R, Liang A, Li S. Alox5 Blockade Eradicates JAK2V617F-Induced Polycythemia Vera in Mice. Cancer Res 2016; 77:164-174. [PMID: 27784744 DOI: 10.1158/0008-5472.can-15-2933] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 09/06/2016] [Accepted: 09/30/2016] [Indexed: 01/09/2023]
Abstract
Myeloproliferative neoplasms such as polycythemia vera (PV), which are associated with the JAK mutation V617F, remain incurable despite progress in the use of JAK2 inhibitors for treatment of some of these diseases. In this study, we employed mice that undergo JAK2V617F-induced PV as a tool to explore new candidate targets for therapy. Our investigations focused on the lipid metabolic enzyme arachidonate 5-lipoxygenase (Alox5), which we found to be strongly upregulated by JAK2V617F in hematopoietic cells in vitro and in vivo Notably, genetic deletion of Alox5 or its inhibition in mice with a bioactive small-molecule inhibitor was sufficient to attenuate PV development. This therapeutic effect was associated with induction of a blockade in cell-cycle progression and also with apoptosis in PV cells. Genetic loss exerted an inhibitory effect on PV-initiating cells. Similarly, Alox5 inhibition was sufficient to suppress colony formation in human JAK2V617F-expressing CD34+ cells. Mechanistic investigations showed that Alox5 inhibition reduced AKT activation and decreased β-catenin expression in JAK2V617F-expressing cells. Together, our results define Alox5 as a key genetic effector of JAK2V617F in driving PV, and they identify this enzyme as a candidate therapeutic target to treat this refractory myeloproliferative neoplasm. Cancer Res; 77(1); 164-74. ©2016 AACR.
Collapse
Affiliation(s)
- Yaoyu Chen
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Yi Shan
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Min Lu
- Division of Hematology/Oncology, Department of Medicine, Mount Sinai School of Medicine, New York, New York
| | - Ngoc DeSouza
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Zhiru Guo
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Ronald Hoffman
- Division of Hematology/Oncology, Department of Medicine, Mount Sinai School of Medicine, New York, New York
| | - Aibin Liang
- Department of Hematology, Tongji Hospital of Tongji University School of Medicine, Shanghai, PR China.
| | - Shaoguang Li
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
36
|
Jun JI, Lau LF. CCN2 induces cellular senescence in fibroblasts. J Cell Commun Signal 2016; 11:15-23. [PMID: 27752926 DOI: 10.1007/s12079-016-0359-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/07/2016] [Indexed: 12/13/2022] Open
Abstract
The expression of Ccn2 (CTGF) has been linked to fibrosis in many tissues and pathologies, although its activities in fibroblastic cells and precise mechanism of action in fibrogenesis are still controversial. Here, we showed that CCN2 can induce cellular senescence in fibroblasts both in vitro and in vivo, whereupon senescent cells express an anti-fibrotic "senescence-associated secretory phenotype" (SASP) that includes upregulation of matrix metalloproteinases and downregulation of collagen. Mechanistically, CCN2 induces fibroblast senescence through integrin α6β1-mediated accumulation of reactive oxygen species, leading to activation of p53 and induction of p16INK4a. In cutaneous wound healing, Ccn2 expression is highly elevated only during the initial inflammatory phase and quickly declines thereafter to a low level during the proliferation and maturation phases of healing when myofibroblasts play a major role. Consistent with this expression kinetics, knockdown of Ccn2 has little effect on the rate of wound closure, formation of senescent cells, or collagen content of the wounds. However, application of purified CCN2 protein on cutaneous wounds leads to induction of senescent cells, expression of SASP, and reduction of collagen content. These results show that CCN2 can induce cellular senescence in fibroblasts and is capable of exerting an anti-fibrotic effect in a context-dependent manner.
Collapse
Affiliation(s)
- Joon-Ii Jun
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL, 60607, USA
| | - Lester F Lau
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL, 60607, USA.
| |
Collapse
|
37
|
Synthesis, in vitro anticancer and antibacterial activities and in silico studies of new 4-substituted 1,2,3-triazole-coumarin hybrids. Eur J Med Chem 2016; 124:794-808. [PMID: 27639370 DOI: 10.1016/j.ejmech.2016.08.062] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 01/19/2023]
Abstract
The 4-substituted 1,2,3-triazole core in designed coumarin hybrids (4-35) with diverse physicochemical properties was introduced by eco-friendly copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition under microwave irradiation. Coumarin-1,2,3-triazole-benzofused heterocycle hybrids emerged as the class of compounds exhibiting the highest antiproliferative activity. The strong relationship between lipophilicity and antiproliferative activities was observed indicating that lipophilic 1,2,3-triazole-coumarin hybrids containing phenylethyl (13), 3,5-difluorophenyl (14), 5-iodoindole (30) and benzimidazole (33 and 35) subunits showed the most potent cytostatic effects. The 7-methylcoumarin-1,2,3-triazole-2-methylbenzimidazole hybrid 33 can be highlighted as a lead that exerted the highest cytotoxicity against hepatocellular carcinoma HepG2 cells with IC50 value of 0.9 μM and high selectivity (SI = 50). This compound induced cell death, mainly due to early apoptosis. Strong antiproliferative effect of 33 could be associated with its inhibition of 5-lipoxygenase (5-LO) activity and perturbation of sphingolipid signaling by interfering with intracellular acid ceramidase (ASAH) activity. Outlined considerable effect of lipophilicity on antiproliferative activity was not observed for antibacterial activity. The compounds with p-pentylphenyl (17), 2-chloro-4-fluorobenzenesulfonamide (23) and dithiocarbamate (27) moiety were endowed with high selectivity against Enterococcus species. Moreover, these compounds were found to be superior in inhibiting the growth of clinically isolated vancomycin-resistant Enterococcus faecium, while the reference antibiotics exhibited the lack of activity. Our findings indicate that coumarin-1,2,3-triazole could be used as the scaffold for structural optimization to develop more potent and selective anticancer agents and encourage further development of novel structurally related analogs of 33 as more effective 5-LO inhibitors.
Collapse
|
38
|
Wiley CD, Campisi J. From Ancient Pathways to Aging Cells-Connecting Metabolism and Cellular Senescence. Cell Metab 2016; 23:1013-1021. [PMID: 27304503 PMCID: PMC4911819 DOI: 10.1016/j.cmet.2016.05.010] [Citation(s) in RCA: 302] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/19/2016] [Accepted: 05/25/2016] [Indexed: 02/07/2023]
Abstract
Cellular senescence is a complex stress response that permanently arrests the proliferation of cells at risk for oncogenic transformation. However, senescent cells can also drive phenotypes associated with aging. Although the senescence-associated growth arrest prevents the development of cancer, and the metabolism of cancer cells has been studied in depth, the metabolic causes and consequences of cellular senescence were largely unexplored until recently. New findings reveal key roles for several aspects of cellular metabolism in the establishment and control of senescent phenotypes. These discoveries have important implications for both cancer and aging. In this review, we highlight some of the recent links between metabolism and phenotypes that are commonly associated with senescent cells.
Collapse
Affiliation(s)
- Christopher D Wiley
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| | - Judith Campisi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| |
Collapse
|
39
|
Wang B, Li D, Sidler C, Rodriguez-Juarez R, Singh N, Heyns M, Ilnytskyy Y, Bronson RT, Kovalchuk O. A suppressive role of ionizing radiation-responsive miR-29c in the development of liver carcinoma via targeting WIP1. Oncotarget 2016; 6:9937-50. [PMID: 25888625 PMCID: PMC4496408 DOI: 10.18632/oncotarget.3157] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/15/2015] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related deaths worldwide, and it has been linked to radiation exposure. As a well-defined oncogene, wild-type p53-induced phosphatase 1 (WIP1) plays an inhibitory role in several tumor suppressor pathways, including p53. WIP1 is amplified and overexpressed in many malignancies, including HCC. However, the underlying mechanisms remain largely unknown. Here, we show that low-dose ionizing radiation (IR) induces miR-29c expression in female mouse liver, while inhibiting its expression in HepG2, a human hepatocellular carcinoma cell line which is used as a model system in this study. miR-29c expression is downregulated in human hepatocellular carcinoma cells, which is inversely correlated with WIP1 expression. miR-29c attenuates luciferase activity of a reporter harboring the 3'UTR binding motif of WIP1 mRNA. Ectopic expression of miR-29c significantly represses cell proliferation and induces apoptosis and G1 arrest in HepG2. In contrast, the knockdown of miR-29c greatly enhances HepG2 cell proliferation and suppresses apoptosis. The biological effects of miR-29c may be mediated by its target WIP1 which regulates p53 activity via dephosphorylation at Ser-15. Finally, fluorescence in situ hybridization (FISH) and immunohistochemical analyses indicate that miR-29c is downregulated in 50.6% of liver carcinoma tissues examined, whereas WIP1 is upregulated in 45.4% of these tissues. The expression of miR-29c inversely correlates with that of WIP1 in HCC. Our results suggest that the IR-responsive miR-29c may function as a tumor suppressor that plays a crucial role in the development of liver carcinoma via targeting WIP1, therefore possibly representing a target molecule for therapeutic intervention for this disease.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada.,Department of Biochemistry, Qiqihar Medical University, Qiqihar, P.R. China
| | - Dongping Li
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada.,Department of Biochemistry, Qiqihar Medical University, Qiqihar, P.R. China
| | - Corinne Sidler
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | | | - Natasha Singh
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | - Mieke Heyns
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | - Roderick T Bronson
- The Dana Farber/Harvard Comprehensive Cancer Center, Boston, Massachusetts, USA
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| |
Collapse
|
40
|
Hu Y, Li S. Survival regulation of leukemia stem cells. Cell Mol Life Sci 2016; 73:1039-50. [PMID: 26686687 PMCID: PMC11108378 DOI: 10.1007/s00018-015-2108-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 02/05/2023]
Abstract
Leukemia stem cells (LSCs) are a subpopulation cells at the apex of hierarchies in leukemia cells and responsible for disease continuous propagation. In this article, we discuss some cellular and molecular components, which are critical for LSC survival. These components include intrinsic signaling pathways and extrinsic microenvironments. The intrinsic signaling pathways to be discussed include Wnt/β-catenin signaling, Hox genes, Hh pathway, Alox5, and some miRNAs, which have been shown to play important roles in regulating LSC survival and proliferation. The extrinsic components to be discussed include selectins, CXCL12/CXCR4, and CD44, which involve in LSC homing, survival, and proliferation by affecting bone marrow microenvironment. Potential strategies for eradicating LSCs will also discuss.
Collapse
Affiliation(s)
- Yiguo Hu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, The Third Part Renmin South Road, Chengdu, 610041, Sichuan, China.
| | - Shaoguang Li
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
41
|
Kim J, Shim M. COX-2 inhibitor NS-398 suppresses doxorubicin-induced p53 accumulation through inhibition of ROS-mediated Jnk activation. Mol Carcinog 2016; 55:2156-2167. [PMID: 26756900 DOI: 10.1002/mc.22458] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/13/2015] [Accepted: 12/28/2015] [Indexed: 12/26/2022]
Abstract
Cyclooxygenase-2 (COX-2) is one of the isoforms of cyclooxygenase, a rate-limiting enzyme in the arachidonic acid cascade. COX-2 protein expression is highly induced by numerous factors and it has been reportedly overexpressed in various human malignancies. Although anti-tumorigenic effects of COX-2 inhibitors have been shown, several lines of evidence suggest that COX-2 inhibitors antagonize the cytotoxicity of chemotherapeutic agents. In this study, we investigated the effect of NS-398, a COX-2 inhibitor, on modulation of doxorubicin (DOX)-induced p53 accumulation. Non-selective and selective COX-2 inhibitors attenuated DOX-induced accumulation of wild type (WT) but not mutant p53. Nutlin-3α or MG132 abolished the suppressive effect of a COX-2 inhibitor on DOX-induced p53 increase. Moreover, the DOX-induced increase in p53 protein levels was reduced in COX-2 knockout (KO) mouse embryonic fibroblasts (MEFs) compared to those in WT or COX-1 KO MEFs. DOX-induced accumulation of p53 was attenuated by a specific inhibitor or knockdown of Jun-N-terminal kinase (Jnk). In addition, DOX-induced Jnk activation was decreased in COX-2 KO MEFs or by COX-2 inhibition, suggesting that Jnk stabilizes p53 by a mechanism that involves COX-2. Pre-treatment with a reactive oxygen species (ROS) scavenger, N-acetylcysteine, attenuated DOX-induced Jnk activation and subsequent p53 accumulation. Furthermore, the absence or inhibition of COX-2 resulted in suppression of DOX-induced increase in ROS levels. These results suggest that COX-2 activates Jnk through modulation of ROS levels, leading to accumulation of p53. Our study identifies a putative novel cross-talk between COX-2 and p53. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joohwee Kim
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina.,Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina
| | - Minsub Shim
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina.,Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
42
|
Zhang M, Liu D, Li S, Chang L, Zhang Y, Liu R, Sun F, Duan W, Du W, Wu Y, Zhao T, Xu C, Lu Y. Bone marrow mesenchymal stem cell transplantation retards the natural senescence of rat hearts. Stem Cells Transl Med 2015; 4:494-502. [PMID: 25855590 DOI: 10.5966/sctm.2014-0206] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/02/2015] [Indexed: 11/16/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) have been shown to offer a wide variety of cellular functions including the protective effects on damaged hearts. Here we investigated the antiaging properties of BMSCs and the underlying mechanism in a cellular model of cardiomyocyte senescence and a rat model of aging hearts. Neonatal rat ventricular cells (NRVCs) and BMSCs were cocultured in the same dish with a semipermeable membrane to separate the two populations. Monocultured NRVCs displayed the senescence-associated phenotypes, characterized by an increase in the number of β-galactosidase-positive cells and decreases in the degradation and disappearance of cellular organelles in a time-dependent manner. The levels of reactive oxygen species and malondialdehyde were elevated, whereas the activities of antioxidant enzymes superoxide dismutase and glutathione peroxidase were decreased, along with upregulation of p53, p21(Cip1/Waf1), and p16(INK4a) in the aging cardiomyocytes. These deleterious alterations were abrogated in aging NRVCs cocultured with BMSCs. Qualitatively, the same senescent phenotypes were consistently observed in aging rat hearts. Notably, BMSC transplantation significantly prevented these detrimental alterations and improved the impaired cardiac function in the aging rats. In summary, BMSCs possess strong antisenescence action on the aging NRVCs and hearts and can improve cardiac function after transplantation in aging rats. The present study, therefore, provides an alternative approach for the treatment of heart failure in the elderly population.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Di Liu
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Shuang Li
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Lingling Chang
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yu Zhang
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Ruixue Liu
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Fei Sun
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Wenqi Duan
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Weijie Du
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yanping Wu
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Tianyang Zhao
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Chaoqian Xu
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yanjie Lu
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| |
Collapse
|
43
|
Aledo JC. Life-history Constraints on the Mechanisms that Control the Rate of ROS Production. Curr Genomics 2014; 15:217-30. [PMID: 24955029 PMCID: PMC4064561 DOI: 10.2174/1389202915666140515230615] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 12/01/2022] Open
Abstract
The quest to understand why and how we age has led to numerous lines of investigation that have gradually converged to consider mitochondrial metabolism as a major player. During mitochondrial respiration a small and variable amount of the consumed oxygen is converted to reactive species of oxygen (ROS). For many years, these ROS have been perceived as harmful by-products of respiration. However, evidence from recent years indicates that ROS fulfill important roles as cellular messengers. Results obtained using model organisms suggest that ROS-dependent signalling may even activate beneficial cellular stress responses, which eventually may lead to increased lifespan. Nevertheless, when an overload of ROS cannot be properly disposed of, its accumulation generates oxidative stress, which plays a major part in the ageing process. Comparative studies about the rates of ROS production and oxidative damage accumulation, have led to the idea that the lower rate of mitochondrial oxygen radical generation of long-lived animals with respect to that of their short-lived counterpart, could be a primary cause of their slow ageing rate. A hitherto largely under-appreciated alternative view is that such lower rate of ROS production, rather than a cause may be a consequence of the metabolic constraints imposed for the large body sizes that accompany high lifespans. To help understanding the logical underpinning of this rather heterodox view, herein I review the current literature regarding the mechanisms of ROS formation, with particular emphasis on evolutionary aspects.
Collapse
Affiliation(s)
- Juan Carlos Aledo
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071-Málaga, Spain
| |
Collapse
|
44
|
Cellular protection using Flt3 and PI3Kα inhibitors demonstrates multiple mechanisms of oxidative glutamate toxicity. Nat Commun 2014; 5:3672. [PMID: 24739485 DOI: 10.1038/ncomms4672] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023] Open
Abstract
Glutamate-induced oxidative stress is a major contributor to neurodegenerative diseases. Here, we identify small-molecule inhibitors of this process. We screen a kinase inhibitor library on neuronal cells and identify Flt3 and PI3Kα inhibitors as potent protectors against glutamate toxicity. Both inhibitors prevented reactive oxygen species (ROS) generation, mitochondrial hyperpolarization and lipid peroxidation in neuronal cells, but they do so by distinct molecular mechanisms. The PI3Kα inhibitor protects cells by inducing partial restoration of depleted glutathione levels and accumulation of intracellular amino acids, whereas the Flt3 inhibitor prevents lipid peroxidation, a key mechanism of glutamate-mediated toxicity. We also demonstrate that glutamate toxicity involves a combination of ferroptosis, necrosis and AIF-dependent apoptosis. We confirm the protective effect by using multiple inhibitors of these kinases and multiple cell types. Our results not only identify compounds that protect against glutamate-stimulated oxidative stress, but also provide new insights into the mechanisms of glutamate toxicity in neurons.
Collapse
|
45
|
Wang S, Zhou M, Lin F, Liu D, Hong W, Lu L, Zhu Y, Xu A. Interferon-γ induces senescence in normal human melanocytes. PLoS One 2014; 9:e93232. [PMID: 24681574 PMCID: PMC3969336 DOI: 10.1371/journal.pone.0093232] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/03/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Interferon-γ (IFN-γ) plays an important role in the proceedings of vitiligo through recruiting lymphocytes to the lesional skin. However, the potential effects of IFN-γ on skin melanocytes and the subsequent contribution to the vitiligo pathogenesis are still unclear. OBJECTIVE To investigate the effects of IFN-γ on viability and cellular functions of melanocytes. METHODS Primary human melanocytes were treated with IFN-γ. Cell viability, apoptosis, cell cycle melanin content and intracellular reactive oxygen species (ROS) level were measured. mRNA expression was examined by real-time PCR. The release of interleukin 6 (IL-6) and heat shock protein 70 (HSP-70) was monitored by ELISA. β-galactosidase staining was utilized to evaluate melanocyte senescence. RESULTS Persistent IFN-γ treatment induced viability loss, apoptosis, cell cycle arrest and senescence in melanocytes. Melanocyte senescence was characterized as the changes in pigmentation and morphology, as well as the increase of β-galactosidase activity. Increase of p21Cip1/Waf1 protein was evident in melanocytes after IFN-γ treatment. IFN-γ induction of senescence was attenuated by siRNAs against p21, Janus kinase 2 (JAK2) or signal transducer and activator of transcription 1 (STAT1), but not by JAK1 siRNA nor by p53 inhibitor pifithrin-α. IFN-γ treatment increased the accumulation of intracellular ROS in melanocytes, while ROS scavenger N-acetyl cysteine (NAC) effectively inhibited IFN-γ induced p21 expression and melanocyte senescence. IL-6 and HSP-70 release was significantly induced by IFN-γ treatment, which was largely inhibited by NAC. The increase of IL-6 and HSP-70 release could also be observed in senescent melanocytes. CONCLUSION IFN-γ can induce senescence in melanocytes and consequently enhance their immuno-competency, leading to a vitiligo-prone milieu.
Collapse
Affiliation(s)
- Suiquan Wang
- Department of Dermatology, Hangzhou Institute of Dermatology and Venereology, Third People's Hospital of Hangzhou, Hangzhou, Zhejiang Province, China
| | - Miaoni Zhou
- Department of Dermatology, Hangzhou Institute of Dermatology and Venereology, Third People's Hospital of Hangzhou, Hangzhou, Zhejiang Province, China
| | - Fuquan Lin
- Department of Dermatology, Hangzhou Institute of Dermatology and Venereology, Third People's Hospital of Hangzhou, Hangzhou, Zhejiang Province, China
| | - Dongyin Liu
- Department of Dermatology, Hangzhou Institute of Dermatology and Venereology, Third People's Hospital of Hangzhou, Hangzhou, Zhejiang Province, China
| | - Weisong Hong
- Department of Dermatology, Hangzhou Institute of Dermatology and Venereology, Third People's Hospital of Hangzhou, Hangzhou, Zhejiang Province, China
| | - Liangjun Lu
- Department of Dermatology, Hangzhou Institute of Dermatology and Venereology, Third People's Hospital of Hangzhou, Hangzhou, Zhejiang Province, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yiping Zhu
- Department of Dermatology, Hangzhou Institute of Dermatology and Venereology, Third People's Hospital of Hangzhou, Hangzhou, Zhejiang Province, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Aie Xu
- Department of Dermatology, Hangzhou Institute of Dermatology and Venereology, Third People's Hospital of Hangzhou, Hangzhou, Zhejiang Province, China
- * E-mail:
| |
Collapse
|
46
|
Role of cysteinyl leukotriene receptor-1 antagonists in treatment of experimentally induced mammary tumor. Toxicol Ind Health 2013; 31:1024-36. [DOI: 10.1177/0748233713485884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It has been reported that a leukotriene (LT)-D4 receptor (i.e. cysteinyl LT1 receptor; CysLT1R) has an important role in carcinogenesis. The current study was carried out to assess the possible antitumor effects of montelukast (MON), a CysLT1R antagonist, in a mouse mammary carcinoma model, that is, a solid Ehrlich carcinoma (SEC). Effects of MON on tumor-induced immune dysfunction and the possibility that MON may modulate the antitumor and immunomodulatory effects of doxorubicin (DOX) were also studied. The effects in tumor-bearing hosts of several dosings with MON (10 mg/kg, per os), with and without the added presence of DOX (2 mg/kg, intraperitoneal), were investigated in vivo; end points evaluated included assessment of tumor volume, splenic lymphocyte profiles/functionality, tumor necrosis factor-α content, as well as apoptosis and expression of nuclear factor-κB (NF-κB) among the tumor cells. The data indicate that MON induced significant antitumor activity against the SEC. MON treatments also significantly mitigated both tumor- and DOX-induced declines in immune parameters assessed here. Moreover, MON led to decreased NF-κB nuclear expression and, in doing so, appeared to chemosensitize these tumor cells to DOX-induced apoptosis.
Collapse
|
47
|
Zhang X, He Y, Lee KH, Dubois W, Li Z, Wu X, Kovalchuk A, Zhang W, Huang J. Rap2b, a novel p53 target, regulates p53-mediated pro-survival function. Cell Cycle 2013; 12:1279-91. [PMID: 23535297 DOI: 10.4161/cc.24364] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The tumor suppressor p53 is a critical regulator of apoptosis and cell cycle arrest/pro-survival. Upon DNA damage, p53 evokes both cell cycle arrest/pro-survival and apoptosis transcriptional programs. The ultimate cellular outcome depends on the balance of these two programs. However, the p53 downstream targets that mediate this cell fate decision remain to be identified. Using an integrative genomic approach, we identify Rap2b as a conserved p53-activated gene that counters p53-mediated apoptosis after DNA damage. Upon DNA damage, p53 directly binds to the promoter of Rap2b and activates its transcription. The reduction of Rap2b levels by small interference RNA sensitizes cells to DNA damage-induced apoptosis in a p53-dependent manner. Consistent with its pro-survival function, analysis of cancer genomic data reveals that Rap2b is overexpressed in many types of tumors. Anchorage-independent growth assays show that Rap2b has only weak transformation activity, suggesting that it is not an oncogene by itself. Together, our results identify Rap2b as a new player in the pro-survival program conducted by p53 and raise the possibility that targeting Rap2b could sensitize tumor cells to apoptosis in response to DNA damage.
Collapse
Affiliation(s)
- Xinyue Zhang
- Cancer and Stem Cell Epigenetics, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Fang Y, Hu XH, Jia ZG, Xu MH, Guo ZY, Gao FH. Tiron protects against UVB-induced senescence-like characteristics in human dermal fibroblasts by the inhibition of superoxide anion production and glutathione depletion. Australas J Dermatol 2012; 53:172-80. [PMID: 22734867 DOI: 10.1111/j.1440-0960.2012.00912.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND/OBJECTIVES Free radicals and reactive oxygen species (ROS), which are generated by UV irradiation, may induce an irreversible growth arrest similar to senescence. Tiron, 4,5-dihydroxy-1,3-benzene disulfonic acid, is a widely used antioxidant to rescue ROS-evoked cell death. The aim of the article was to explore the effects of tiron on skin photoaging and associated mechanisms. METHODS The effects of tiron on cell proliferation were determined using 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide. Senescent cells were determined by morphology and senescence-associated β-galactosidase activity analysis. Intracellular hydrogen peroxide, superoxide anion and glutathione concentration were analysed by a fluorescent probe. The concomitant changes of protein expression were analysed with Western blot. RESULTS Human dermal fibroblasts were induced to premature senescence by sub-cytotoxic doses of irradiated UVB. Strong senescence-associated β-galactosidase activity and increased intracellular superoxide anion were observed in human dermal fibroblasts irradiated by UVB. Tiron blocks UVB-induced glutathione depletion and increase of superoxide anion and protects against UVB-induced senescence-like characteristics in human dermal fibroblasts. Compared with normal fibroblasts, UVB-irradiated human dermal fibroblasts showed a higher ratio of active (hypophosphorylated) to inactive (phosphorylated) forms of Rb and p38, upregulation of p53 or p16 and c-Myc and insulin-like growth factor 1 (IGF-1) downregulation. After treatment with tiron, p53, p16 c-Myc and IGF-1 as well as phosphorylation Rb and p38 could partially recover. CONCLUSION These results indicate that tiron protects against UVB-induced senescence-like characteristics in human dermal fibroblasts via the inhibition of production of superoxide anion and glutathione depletion, and modulation of related senescence proteins.
Collapse
Affiliation(s)
- Yong Fang
- No.3 People's Hospital/Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | | | | | | | | | | |
Collapse
|
49
|
Wang ZJ, Zhou B, Mao WW, Yin M. Overexpression of 5-lipoxygenase increases the neuronal vulnerability of PC12 cells to Aβ₄₂. YAKUGAKU ZASSHI 2012; 131:1843-53. [PMID: 22129883 DOI: 10.1248/yakushi.131.1843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
5-Lipoxygenase (5-LOX), which is believed to be a major source of oxidative stress, participates in somatostatin-receptor transmembrane signaling in the central nervous system. We used the Tet-On inducible expression system in PC12 cells to obtain cell lines with reproducible, stable 5-LOX expression levels to study its function. Cell apoptosis rates induced by Aβ(42) were determined using an apo-BrdDU kit. Lipid peroxide, antioxidant enzyme, and caspase-3 activities were evaluated with respective commercial kits. The expression of 5-LOX, bcl-2, and bax were detected by immunoblotting. A subclone of PC18 with Tet-On inducible expression of 5-LOX was selected from PC12 transfectants. Expression of 5-LOX had no significant inhibitory effect on the cell viability of the PC18 clone. In contrast, compared with the control group, the cell viability of clone PC18 was significantly reduced after the induction of 5-LOX during Aβ exposure. The differences in cell viability before and after the induction of 5-LOX during Aβ insult were significantly offset by AA861. Overexpression of 5-LOX only slightly improved the activities of superoxide dismutase (SOD). The levels of intracellular peroxides, SOD and caspase-3 activity, and Bax expression were significantly upregulated, and the levels of glutathione peroxidase and catalase were downregulated correspondingly in clone PC18 during Aβ exposure. These results indicate that constitutive expression of 5-LOX is not detrimental per se, but overexpression of 5-LOX may become problematic during Aβ exposure.
Collapse
Affiliation(s)
- Ze-Jian Wang
- Shanghai Jiaotong University School of Pharmacy, Shanghai, P R China
| | | | | | | |
Collapse
|
50
|
Mattiussi M, Tilman G, Lenglez S, Decottignies A. Human telomerase represses ROS-dependent cellular responses to Tumor Necrosis Factor-α without affecting NF-κB activation. Cell Signal 2012; 24:708-17. [DOI: 10.1016/j.cellsig.2011.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/20/2011] [Accepted: 11/04/2011] [Indexed: 12/23/2022]
|