1
|
Flacht L, Lunelli M, Kaszuba K, Chen ZA, Reilly FJO, Rappsilber J, Kosinski J, Kolbe M. Integrative structural analysis of the type III secretion system needle complex from Shigella flexneri. Protein Sci 2023; 32:e4595. [PMID: 36790757 PMCID: PMC10019453 DOI: 10.1002/pro.4595] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
The type III secretion system (T3SS) is a large, transmembrane protein machinery used by various pathogenic gram-negative bacteria to transport virulence factors into the host cell during infection. Understanding the structure of T3SSs is crucial for future developments of therapeutics that could target this system. However, much of the knowledge about the structure of T3SS is available only for Salmonella, and it is unclear how this large assembly is conserved across species. Here, we combined cryo-electron microscopy, cross-linking mass spectrometry, and integrative modeling to determine the structure of the T3SS needle complex from Shigella flexneri. We show that the Shigella T3SS exhibits unique features distinguishing it from other structurally characterized T3SSs. The secretin pore complex adopts a new fold of its C-terminal S domain and the pilotin MxiM[SctG] locates around the outer surface of the pore. The export apparatus structure exhibits a conserved pseudohelical arrangement but includes the N-terminal domain of the SpaS[SctU] subunit, which was not present in any of the previously published virulence-related T3SS structures. Similar to other T3SSs, however, the apparatus is anchored within the needle complex by a network of flexible linkers that either adjust conformation to connect to equivalent patches on the secretin oligomer or bind distinct surface patches at the same height of the export apparatus. The conserved and unique features delineated by our analysis highlight the necessity to analyze T3SS in a species-specific manner, in order to fully understand the underlying molecular mechanisms of these systems. The structure of the type III secretion system from Shigella flexneri delineates conserved and unique features, which could be used for the development of broad-range therapeutics.
Collapse
Affiliation(s)
- Lara Flacht
- Department for Structural Infection BiologyCenter for Structural Systems Biology (CSSB) & Helmholtz Centre for Infection Research (HZI)HamburgGermany
- Dynamics of Viral Structures, Leibniz Institute for Virology (LIV)HamburgGermany
| | - Michele Lunelli
- Department for Structural Infection BiologyCenter for Structural Systems Biology (CSSB) & Helmholtz Centre for Infection Research (HZI)HamburgGermany
| | - Karol Kaszuba
- Department for Structural Infection BiologyCenter for Structural Systems Biology (CSSB) & Helmholtz Centre for Infection Research (HZI)HamburgGermany
- Centre for Structural Systems Biology (CSSB) & European Molecular Biology Laboratory (EMBL)HamburgGermany
| | - Zhuo Angel Chen
- Technische Universität Berlin, Institute of Biotechnology, Chair of BioanalyticsBerlinGermany
| | - Francis J. O'. Reilly
- Technische Universität Berlin, Institute of Biotechnology, Chair of BioanalyticsBerlinGermany
| | - Juri Rappsilber
- Technische Universität Berlin, Institute of Biotechnology, Chair of BioanalyticsBerlinGermany
- University of Edinburgh, Wellcome Centre for Cell BiologyEdinburghUK
| | - Jan Kosinski
- Centre for Structural Systems Biology (CSSB) & European Molecular Biology Laboratory (EMBL)HamburgGermany
- Structural and Computational Biology Unit, European Molecular Biology LaboratoryHeidelbergGermany
| | - Michael Kolbe
- Department for Structural Infection BiologyCenter for Structural Systems Biology (CSSB) & Helmholtz Centre for Infection Research (HZI)HamburgGermany
- MIN‐FacultyUniversity HamburgHamburgGermany
| |
Collapse
|
2
|
Zhu S. Computational characterization of homologous ligands binding to a deep hydrophobic pocket in
Shigella flexneri
pilot protein MxiM. Proteins 2022; 90:2116-2123. [DOI: 10.1002/prot.26402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Shun Zhu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences Fudan University Shanghai People's Republic of China
| |
Collapse
|
3
|
The Shigella Type III Secretion System: An Overview from Top to Bottom. Microorganisms 2021; 9:microorganisms9020451. [PMID: 33671545 PMCID: PMC7926512 DOI: 10.3390/microorganisms9020451] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
Shigella comprises four species of human-restricted pathogens causing bacillary dysentery. While Shigella possesses multiple genetic loci contributing to virulence, a type III secretion system (T3SS) is its primary virulence factor. The Shigella T3SS nanomachine consists of four major assemblies: the cytoplasmic sorting platform; the envelope-spanning core/basal body; an exposed needle; and a needle-associated tip complex with associated translocon that is inserted into host cell membranes. The initial subversion of host cell activities is carried out by the effector functions of the invasion plasmid antigen (Ipa) translocator proteins, with the cell ultimately being controlled by dedicated effector proteins that are injected into the host cytoplasm though the translocon. Much of the information now available on the T3SS injectisome has been accumulated through collective studies on the T3SS from three systems, those of Shigella flexneri, Salmonella typhimurium and Yersinia enterocolitica/Yersinia pestis. In this review, we will touch upon the important features of the T3SS injectisome that have come to light because of research in the Shigella and closely related systems. We will also briefly highlight some of the strategies being considered to target the Shigella T3SS for disease prevention.
Collapse
|
4
|
Naskar S, Hohl M, Tassinari M, Low HH. The structure and mechanism of the bacterial type II secretion system. Mol Microbiol 2020; 115:412-424. [PMID: 33283907 DOI: 10.1111/mmi.14664] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/03/2020] [Indexed: 12/17/2022]
Abstract
The type II secretion system (T2SS) is a multi-protein complex used by many bacteria to move substrates across their cell membrane. Substrates released into the environment serve as local and long-range effectors that promote nutrient acquisition, biofilm formation, and pathogenicity. In both animals and plants, the T2SS is increasingly recognized as a key driver of virulence. The T2SS spans the bacterial cell envelope and extrudes substrates through an outer membrane secretin channel using a pseudopilus. An inner membrane assembly platform and a cytoplasmic motor controls pseudopilus assembly. This microreview focuses on the structure and mechanism of the T2SS. Advances in cryo-electron microscopy are enabling increasingly elaborate sub-complexes to be resolved. However, key questions remain regarding the mechanism of pseudopilus extension and retraction, and how this is coupled with the choreography of the substrate moving through the secretion system. The T2SS is part of an ancient type IV filament superfamily that may have been present within the last universal common ancestor (LUCA). Overall, mechanistic principles that underlie T2SS function have implication for other closely related systems such as the type IV and tight adherence pilus systems.
Collapse
Affiliation(s)
- Souvik Naskar
- Department of Infectious Disease, Imperial College, London, UK
| | - Michael Hohl
- Department of Infectious Disease, Imperial College, London, UK
| | | | - Harry H Low
- Department of Infectious Disease, Imperial College, London, UK
| |
Collapse
|
5
|
Majewski DD, Okon M, Heinkel F, Robb CS, Vuckovic M, McIntosh LP, Strynadka NCJ. Characterization of the Pilotin-Secretin Complex from the Salmonella enterica Type III Secretion System Using Hybrid Structural Methods. Structure 2020; 29:125-138.e5. [PMID: 32877645 DOI: 10.1016/j.str.2020.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/21/2020] [Accepted: 08/11/2020] [Indexed: 12/01/2022]
Abstract
The type III secretion system (T3SS) is a multi-membrane-spanning protein channel used by Gram-negative pathogenic bacteria to secrete effectors directly into the host cell cytoplasm. In the many species reliant on the T3SS for pathogenicity, proper assembly of the outer membrane secretin pore depends on a diverse family of lipoproteins called pilotins. We present structural and biochemical data on the Salmonella enterica pilotin InvH and the S domain of its cognate secretin InvG. Characterization of InvH by X-ray crystallography revealed a dimerized, α-helical pilotin. Size-exclusion-coupled multi-angle light scattering and small-angle X-ray scattering provide supporting evidence for the formation of an InvH homodimer in solution. Structures of the InvH-InvG heterodimeric complex determined by X-ray crystallography and NMR spectroscopy indicate a predominantly hydrophobic interface. Knowledge of the interaction between InvH and InvG brings us closer to understanding the mechanisms by which pilotins assemble the secretin pore.
Collapse
Affiliation(s)
- Dorothy D Majewski
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Mark Okon
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Florian Heinkel
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Craig S Robb
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Marija Vuckovic
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Lawrence P McIntosh
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of British Columbia, Vancouver, BC, Canada.
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Silva YRDO, Contreras-Martel C, Macheboeuf P, Dessen A. Bacterial secretins: Mechanisms of assembly and membrane targeting. Protein Sci 2020; 29:893-904. [PMID: 32020694 DOI: 10.1002/pro.3835] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 12/20/2022]
Abstract
Secretion systems are employed by bacteria to transport macromolecules across membranes without compromising their integrities. Processes including virulence, colonization, and motility are highly dependent on the secretion of effector molecules toward the immediate cellular environment, and in some cases, into the host cytoplasm. In Type II and Type III secretion systems, as well as in Type IV pili, homomultimeric complexes known as secretins form large pores in the outer bacterial membrane, and the localization and assembly of such 1 MDa molecules often relies on pilotins or accessory proteins. Significant progress has been made toward understanding details of interactions between secretins and their partner proteins using approaches ranging from bacterial genetics to cryo electron microscopy. This review provides an overview of the mode of action of pilotins and accessory proteins for T2SS, T3SS, and T4PS secretins, highlighting recent near-atomic resolution cryo-EM secretin complex structures and underlining the importance of these interactions for secretin functionality.
Collapse
Affiliation(s)
- Yuri Rafael de Oliveira Silva
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas, São Paulo, Brazil.,Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Carlos Contreras-Martel
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Pauline Macheboeuf
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Andréa Dessen
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas, São Paulo, Brazil.,Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| |
Collapse
|
7
|
Lyons BJE, Strynadka NCJ. On the road to structure-based development of anti-virulence therapeutics targeting the type III secretion system injectisome. MEDCHEMCOMM 2019; 10:1273-1289. [PMID: 31534650 PMCID: PMC6748289 DOI: 10.1039/c9md00146h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022]
Abstract
The type III secretion system injectisome is a syringe-like multimembrane spanning nanomachine that is essential to the pathogenicity but not viability of many clinically relevant Gram-negative bacteria, such as enteropathogenic Escherichia coli, Salmonella enterica and Pseudomonas aeruginosa. Due to the rise in antibiotic resistance, new strategies must be developed to treat the growing spectre of drug resistant infections. Targeting the injectisome via an 'anti-virulence strategy' is a promising avenue to pursue as an alternative to the more commonly used bactericidal therapeutics, which have a high propensity for resulting resistance development and often more broad killing profile, including unwanted side effects in eliminating favourable members of the microbiome. Building on more than a decade of crystallographic work of truncated or isolated forms of the more than two dozen components of the secretion apparatus, recent advances in the field of single-particle cryo-electron microscopy have allowed for the elucidation of atomic resolution structures for many of the type III secretion system components in their assembled, oligomerized state including the needle complex, export apparatus and ATPase. Cryo-electron tomography studies have also advanced our understanding of the direct pathogen-host interaction between the type III secretion system translocon and host cell membrane. These new structural works that further our understanding of the myriad of protein-protein interactions that promote injectisome function will be highlighted in this review, with a focus on those that yield promise for future anti-virulence drug discovery and design. Recently developed inhibitors, including both synthetic, natural product and peptide inhibitors, as well as promising new developments of immunotherapeutics will be discussed. As our understanding of this intricate molecular machinery advances, the development of anti-virulence inhibitors can be enhanced through structure-guided drug design.
Collapse
Affiliation(s)
- Bronwyn J E Lyons
- Department of Biochemistry and Molecular Biology and Center for Blood Research , University of British Columbia , 2350 Health Sciences Mall , Vancouver , British Columbia V6T 1Z3 , Canada .
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and Center for Blood Research , University of British Columbia , 2350 Health Sciences Mall , Vancouver , British Columbia V6T 1Z3 , Canada .
| |
Collapse
|
8
|
Howard SP, Estrozi LF, Bertrand Q, Contreras-Martel C, Strozen T, Job V, Martins A, Fenel D, Schoehn G, Dessen A. Structure and assembly of pilotin-dependent and -independent secretins of the type II secretion system. PLoS Pathog 2019; 15:e1007731. [PMID: 31083688 PMCID: PMC6532946 DOI: 10.1371/journal.ppat.1007731] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/23/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023] Open
Abstract
The type II secretion system (T2SS) is a cell envelope-spanning macromolecular complex that is prevalent in Gram-negative bacterial species. It serves as the predominant virulence mechanism of many bacteria including those of the emerging human pathogens Vibrio vulnificus and Aeromonas hydrophila. The system is composed of a core set of highly conserved proteins that assemble an inner membrane platform, a periplasmic pseudopilus and an outer membrane complex termed the secretin. Localization and assembly of secretins in the outer membrane requires recognition of secretin monomers by two different partner systems: an inner membrane accessory complex or a highly sequence-diverse outer membrane lipoprotein, termed the pilotin. In this study, we addressed the question of differential secretin assembly mechanisms by using cryo-electron microscopy to determine the structures of the secretins from A. hydrophila (pilotin-independent ExeD) and V. vulnificus (pilotin-dependent EpsD). These structures, at approximately 3.5 Å resolution, reveal pentadecameric stoichiometries and C-terminal regions that carry a signature motif in the case of a pilotin-dependent assembly mechanism. We solved the crystal structure of the V. vulnificus EpsS pilotin and confirmed the importance of the signature motif for pilotin-dependent secretin assembly by performing modelling with the C-terminus of EpsD. We also show that secretin assembly is essential for membrane integrity and toxin secretion in V. vulnificus and establish that EpsD requires the coordinated activity of both the accessory complex EpsAB and the pilotin EpsS for full assembly and T2SS function. In contrast, mutation of the region of the S-domain that is normally the site of pilotin interactions has little effect on assembly or function of the ExeD secretin. Since secretins are essential outer membrane channels present in a variety of secretion systems, these results provide a structural and functional basis for understanding the key assembly steps for different members of this vast pore-forming family of proteins.
Collapse
Affiliation(s)
- S. Peter Howard
- Dept. Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Leandro F. Estrozi
- Univ Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Quentin Bertrand
- Univ Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | | | - Timothy Strozen
- Dept. Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Viviana Job
- Univ Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Alexandre Martins
- Univ Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Daphna Fenel
- Univ Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Guy Schoehn
- Univ Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Andréa Dessen
- Univ Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas, São Paulo, Brazil
| |
Collapse
|
9
|
Matsunami H, Yoon YH, Meshcheryakov VA, Namba K, Samatey FA. Structural flexibility of the periplasmic protein, FlgA, regulates flagellar P-ring assembly in Salmonella enterica. Sci Rep 2016; 6:27399. [PMID: 27273476 PMCID: PMC4895218 DOI: 10.1038/srep27399] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/18/2016] [Indexed: 11/21/2022] Open
Abstract
A periplasmic flagellar chaperone protein, FlgA, is required for P-ring assembly in bacterial flagella of taxa such as Salmonella enterica or Escherichia coli. The mechanism of chaperone-mediated P-ring formation is poorly understood. Here we present the open and closed crystal structures of FlgA from Salmonella enterica serovar Typhimurium, grown under different crystallization conditions. An intramolecular disulfide cross-linked form of FlgA caused a dominant negative effect on motility of the wild-type strain. Pull-down experiments support a specific protein-protein interaction between FlgI, the P-ring component protein, and the C-terminal domain of FlgA. Surface plasmon resonance and limited-proteolysis indicate that flexibility of the domain is reduced in the covalently closed form. These results show that the structural flexibility of the C-terminal domain of FlgA, which is related to the structural difference between the two crystal forms, is intrinsically associated with its molecular chaperone function in P-ring assembly.
Collapse
Affiliation(s)
- Hideyuki Matsunami
- Trans-Membrane Trafficking Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami, Okinawa 904-0495, Japan
| | - Young-Ho Yoon
- Trans-Membrane Trafficking Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami, Okinawa 904-0495, Japan
| | - Vladimir A Meshcheryakov
- Trans-Membrane Trafficking Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami, Okinawa 904-0495, Japan
| | - Keiichi Namba
- Dynamic NanoM achine Project, International Cooperative Research Project, Japan Science and Technology Agency, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.,Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.,Riken Quantitative Biology Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Fadel A Samatey
- Trans-Membrane Trafficking Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami, Okinawa 904-0495, Japan
| |
Collapse
|
10
|
Identification of YsaP, the Pilotin of the Yersinia enterocolitica Ysa Type III Secretion System. J Bacteriol 2015; 197:2770-9. [PMID: 26078446 DOI: 10.1128/jb.00238-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/09/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Secretins are multimeric outer membrane pore-forming proteins found in complex export systems in Gram-negative bacteria. All type III secretion systems (T3SSs) have a secretin, and one of these is the YsaC secretin of the chromosomally encoded Ysa T3SS of Yersinia enterocolitica. In some cases, pilotin proteins, which are outer membrane lipoproteins, are required for their cognate secretins to multimerize and/or localize to the outer membrane. However, if secretin multimers mislocalize to the inner membrane, this can trigger the protective phage shock protein (Psp) stress response. During a screen for mutations that suppress YsaC toxicity to a psp null strain, we isolated several independent mutations predicted to increase expression of the YE3559 gene within the Ysa pathogenicity island. YE3559, which we have named ysaP, is predicted to encode a small outer membrane lipoprotein, and this location was confirmed by membrane fractionation. Elevated ysaP expression increased the steady-state level of YsaC but made it less toxic to a psp null strain, and it also decreased YsaC-dependent induction of psp gene expression. Subsequent experiments showed that YsaP was not required for YsaC multimerization but was required for the multimers to localize to the outer membrane. Consistent with this, a ysaP null mutation compromised protein export by the Ysa T3SS. All these observations suggest that YsaP is the pilotin for the YsaC secretin. This is only the second pilotin to be characterized for Yersinia and one of only a small number of pilotins described for all bacteria. IMPORTANCE Secretins are essential for the virulence of many bacterial pathogens and also play roles in surface attachment, motility, and competence. This has generated considerable interest in understanding how secretins function. However, their fundamental differences from typical outer membrane proteins have raised various questions about secretins, including how they are assembled into outer membrane multimers. Pilotin proteins facilitate the assembly of some secretins, but only a small number of pilotins have been identified, slowing efforts to understand common and distinct features of secretin assembly. This study provides an important advance by identifying a novel member of the pilotin family and also demonstrating a method of pilotin discovery that could be broadly applied.
Collapse
|
11
|
Affiliation(s)
- Alain Filloux
- Alain Filloux, MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; E-mail:
| |
Collapse
|
12
|
ExsB is required for correct assembly of the Pseudomonas aeruginosa type III secretion apparatus in the bacterial membrane and full virulence in vivo. Infect Immun 2015; 83:1789-98. [PMID: 25690097 DOI: 10.1128/iai.00048-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/06/2015] [Indexed: 01/31/2023] Open
Abstract
Pseudomonas aeruginosa is responsible for high-morbidity infections of cystic fibrosis patients and is a major agent of nosocomial infections. One of its most potent virulence factors is a type III secretion system (T3SS) that injects toxins directly into the host cell cytoplasm. ExsB, a lipoprotein localized in the bacterial outer membrane, is one of the components of this machinery, of which the function remained elusive until now. The localization of the exsB gene within the exsCEBA regulatory gene operon suggested an implication in the T3SS regulation, while its similarity with yscW from Yersinia spp. argued in favor of a role in machinery assembly. The present work shows that ExsB is necessary for full in vivo virulence of P. aeruginosa. Furthermore, the requirement of ExsB for optimal T3SS assembly and activity is demonstrated using eukaryotic cell infection and in vitro assays. In particular, ExsB promotes the assembly of the T3SS secretin in the bacterial outer membrane, highlighting the molecular role of ExsB as a pilotin. This involvement in the regulation of the T3S apparatus assembly may explain the localization of the ExsB-encoding gene within the regulatory gene operon.
Collapse
|
13
|
Berry JL, Pelicic V. Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives. FEMS Microbiol Rev 2014; 39:134-54. [PMID: 25793961 PMCID: PMC4471445 DOI: 10.1093/femsre/fuu001] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Prokaryotes have engineered sophisticated surface nanomachines that have allowed them to colonize Earth and thrive even in extreme environments. Filamentous machineries composed of type IV pilins, which are associated with an amazing array of properties ranging from motility to electric conductance, are arguably the most widespread since distinctive proteins dedicated to their biogenesis are found in most known species of prokaryotes. Several decades of investigations, starting with type IV pili and then a variety of related systems both in bacteria and archaea, have outlined common molecular and structural bases for these nanomachines. Using type IV pili as a paradigm, we will highlight in this review common aspects and key biological differences of this group of filamentous structures. Using type IV pili as a paradigm, we review common genetic, structural and mechanistic features (many) as well as differences (few) of the exceptionally widespread and functionally versatile prokaryotic nano-machines composed of type IV pilins.
Collapse
Affiliation(s)
- Jamie-Lee Berry
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Vladimir Pelicic
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
14
|
Guo Z, Streu K, Krilov G, Mohanty U. Probing the Origin of Structural Stability of Single and Double Stapled p53 Peptide Analogs Bound to MDM2. Chem Biol Drug Des 2014; 83:631-42. [DOI: 10.1111/cbdd.12284] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/06/2013] [Accepted: 01/06/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Zuojun Guo
- Department of Chemistry; Boston College; 2609 Beacon Street Chestnut Hill MA 02467 USA
- Genomics Institute of the Novartis Research Foundation; 10675 John Jay Hopkins Dr. San Diego CA 92121 USA
| | - Kristina Streu
- Department of Chemistry; Boston College; 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Goran Krilov
- Schrödinger, Inc.; 120 W 45th Street, 17th Fl. New York NY 10036 USA
| | - Udayan Mohanty
- Department of Chemistry; Boston College; 2609 Beacon Street Chestnut Hill MA 02467 USA
| |
Collapse
|
15
|
Burkinshaw BJ, Strynadka NCJ. Assembly and structure of the T3SS. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1649-63. [PMID: 24512838 DOI: 10.1016/j.bbamcr.2014.01.035] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 02/06/2023]
Abstract
The Type III Secretion System (T3SS) is a multi-mega Dalton apparatus assembled from more than twenty components and is found in many species of animal and plant bacterial pathogens. The T3SS creates a contiguous channel through the bacterial and host membranes, allowing injection of specialized bacterial effector proteins directly to the host cell. In this review, we discuss our current understanding of T3SS assembly and structure, as well as highlight structurally characterized Salmonella effectors. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Brianne J Burkinshaw
- Department of Biochemistry and Molecular Biology, Center for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology, Center for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
16
|
Abstract
Secretion of effectors across bacterial membranes is usually mediated by large multisubunit complexes. In most cases, the secreted effectors are virulent factors normally associated to pathogenic diseases. The biogenesis of these secretion systems and the transport of the effectors are processes that require energy. This energy could be directly obtained by using the proton motive force, but in most cases the energy associated to these processes is derived from ATP hydrolysis. Here, a description of the machineries involved in generating the energy required for system biogenesis and substrate transport by type II, III and IV secretion systems is provided, with special emphasis on highlighting the structural similarities and evolutionary relationships among the secretion ATPases.
Collapse
Affiliation(s)
- Alejandro Peña
- Departamento de Biología Molecular, Universidad de Cantabria, UC-CSIC-SODERCAN, Santander, Spain
| | | |
Collapse
|
17
|
Chatterjee S, Chaudhury S, McShan AC, Kaur K, De Guzman RN. Structure and biophysics of type III secretion in bacteria. Biochemistry 2013; 52:2508-17. [PMID: 23521714 DOI: 10.1021/bi400160a] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Many plant and animal bacterial pathogens assemble a needle-like nanomachine, the type III secretion system (T3SS), to inject virulence proteins directly into eukaryotic cells to initiate infection. The ability of bacteria to inject effectors into host cells is essential for infection, survival, and pathogenesis for many Gram-negative bacteria, including Salmonella, Escherichia, Shigella, Yersinia, Pseudomonas, and Chlamydia spp. These pathogens are responsible for a wide variety of diseases, such as typhoid fever, large-scale food-borne illnesses, dysentery, bubonic plague, secondary hospital infections, and sexually transmitted diseases. The T3SS consists of structural and nonstructural proteins. The structural proteins assemble the needle apparatus, which consists of a membrane-embedded basal structure, an external needle that protrudes from the bacterial surface, and a tip complex that caps the needle. Upon host cell contact, a translocon is assembled between the needle tip complex and the host cell, serving as a gateway for translocation of effector proteins by creating a pore in the host cell membrane. Following delivery into the host cytoplasm, effectors initiate and maintain infection by manipulating host cell biology, such as cell signaling, secretory trafficking, cytoskeletal dynamics, and the inflammatory response. Finally, chaperones serve as regulators of secretion by sequestering effectors and some structural proteins within the bacterial cytoplasm. This review will focus on the latest developments and future challenges concerning the structure and biophysics of the needle apparatus.
Collapse
Affiliation(s)
- Srirupa Chatterjee
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | |
Collapse
|
18
|
Crystal structure of the pilotin from the enterohemorrhagic Escherichia coli type II secretion system. J Struct Biol 2013; 182:186-91. [PMID: 23458689 DOI: 10.1016/j.jsb.2013.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 02/06/2013] [Accepted: 02/18/2013] [Indexed: 12/17/2022]
Abstract
Bacteria contain several sophisticated macromolecular machineries responsible for translocating proteins across the cell envelope. One prominent example is the type II secretion system (T2SS), which contains a large outer membrane channel, called the secretin. These gated channels require specialized proteins, so-called pilotins, to reach and assemble in the outer membrane. Here we report the crystal structure of the pilotin GspS from the T2SS of enterohemorrhagic Escherichia coli (EHEC), an important pathogen that can cause severe disease in cases of food poisoning. In this four-helix protein, the straight helix α2, the curved helix α3 and the bent helix α4 surround the central N-terminal helix α1. The helices of GspS create a prominent groove, mainly formed by side chains of helices α1, α2 and α3. In the EHEC GspS structure this groove is occupied by extra electron density which is reminiscent of an α-helix and corresponds well with a binding site observed in a homologous pilotin. The residues forming the groove are well conserved among homologs, pointing to a key role of this groove in this class of T2SS pilotins. At the same time, T2SS pilotins in different species can be entirely different in structure, and the pilotins for secretins in non-T2SS machineries have yet again unrelated folds, despite a common function. It is striking that a common complex function, such as targeting and assembling an outer membrane multimeric channel, can be performed by proteins with entirely different folds.
Collapse
|
19
|
Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol Mol Biol Rev 2012; 76:262-310. [PMID: 22688814 DOI: 10.1128/mmbr.05017-11] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Flagellar and translocation-associated type III secretion (T3S) systems are present in most gram-negative plant- and animal-pathogenic bacteria and are often essential for bacterial motility or pathogenicity. The architectures of the complex membrane-spanning secretion apparatuses of both systems are similar, but they are associated with different extracellular appendages, including the flagellar hook and filament or the needle/pilus structures of translocation-associated T3S systems. The needle/pilus is connected to a bacterial translocon that is inserted into the host plasma membrane and mediates the transkingdom transport of bacterial effector proteins into eukaryotic cells. During the last 3 to 5 years, significant progress has been made in the characterization of membrane-associated core components and extracellular structures of T3S systems. Furthermore, transcriptional and posttranscriptional regulators that control T3S gene expression and substrate specificity have been described. Given the architecture of the T3S system, it is assumed that extracellular components of the secretion apparatus are secreted prior to effector proteins, suggesting that there is a hierarchy in T3S. The aim of this review is to summarize our current knowledge of T3S system components and associated control proteins from both plant- and animal-pathogenic bacteria.
Collapse
|
20
|
Kosarewicz A, Königsmaier L, Marlovits TC. The blueprint of the type-3 injectisome. Philos Trans R Soc Lond B Biol Sci 2012; 367:1140-54. [PMID: 22411984 DOI: 10.1098/rstb.2011.0205] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Type-3 secretion systems are sophisticated syringe-like nanomachines present in many animal and plant Gram-negative pathogens. They are capable of translocating an arsenal of specific bacterial toxins (effector proteins) from the prokaryotic cytoplasm across the three biological membranes directly into the eukaryotic cytosol, some of which modulate host cell mechanisms for the benefit of the pathogen. They populate a particular biological niche, which is maintained by specific, pathogen-dependent effectors. In contrast, the needle complex, which is the central component of this specialized protein delivery machine, is structurally well-conserved. It is a large supramolecular cylindrical structure composed of multiple copies of a relatively small subset of proteins, is embedded in the bacterial membranes and protrudes from the pathogen's surface with a needle filament. A central channel traverses the entire needle complex, and serves as a hollow conduit for proteins destined to travel this secretion pathway. In the past few years, there has been a tremendous increase in an understanding on both the structural and the mechanistic level. This review will thus focus on new insights of this remarkable molecular machine.
Collapse
Affiliation(s)
- Agata Kosarewicz
- Research Institute of Molecular Pathology, Dr. Bohr Gasse 7, A-1030 Vienna, Austria
| | | | | |
Collapse
|
21
|
The type II secretion system: biogenesis, molecular architecture and mechanism. Nat Rev Microbiol 2012; 10:336-51. [PMID: 22466878 DOI: 10.1038/nrmicro2762] [Citation(s) in RCA: 373] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many gram-negative bacteria use the sophisticated type II secretion system (T2SS) to translocate a wide range of proteins from the periplasm across the outer membrane. The inner-membrane platform of the T2SS is the nexus of the system and orchestrates the secretion process through its interactions with the periplasmic filamentous pseudopilus, the dodecameric outer-membrane complex and a cytoplasmic secretion ATPase. Here, recent structural and biochemical information is reviewed to describe our current knowledge of the biogenesis and architecture of the T2SS and its mechanism of action.
Collapse
|
22
|
Matsunami H, Samatey FA, Nagashima S, Imada K, Namba K. Crystallization and preliminary X-ray analysis of FlgA, a periplasmic protein essential for flagellar P-ring assembly. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:310-3. [PMID: 22442230 PMCID: PMC3310538 DOI: 10.1107/s1744309112001327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 01/11/2012] [Indexed: 11/10/2022]
Abstract
Salmonella FlgA, a periplasmic protein essential for flagellar P-ring assembly, has been crystallized in two forms. The native protein crystallized in space group C222, with unit-cell parameters a = 107.5, b = 131.8, c = 49.4 Å, and diffracted to about 2.0 Å resolution (crystal form I). In this crystal, the asymmetric unit is likely to contain one molecule, with a solvent content of 66.8%. Selenomethionine-labelled FlgA protein crystallized in space group C222(1), with unit-cell parameters a = 53.2, b = 162.5, c = 103.5 Å, and diffracted to 2.7 Å resolution (crystal form II). In crystal form II, the asymmetric unit contained two molecules with a solvent content of 48.0%. The multiple-wavelength and single-wavelength anomalous dispersion methods allowed the visualization of the electron-density distributions of the form I and II crystals, respectively. The two maps suggested that FlgA is in two different conformations in the two crystals.
Collapse
Affiliation(s)
- Hideyuki Matsunami
- Dynamic NanoMachine Project, ICORP, JST, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Trans-Membrane Trafficking Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna, Kunigami, Okinawa 904-0412, Japan
| | - Fadel A. Samatey
- Trans-Membrane Trafficking Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna, Kunigami, Okinawa 904-0412, Japan
| | - Shigehiro Nagashima
- Dynamic NanoMachine Project, ICORP, JST, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Katsumi Imada
- Dynamic NanoMachine Project, ICORP, JST, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keiichi Namba
- Dynamic NanoMachine Project, ICORP, JST, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Riken Quantitative Biology Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Gu S, Rehman S, Wang X, Shevchik VE, Pickersgill RW. Structural and functional insights into the pilotin-secretin complex of the type II secretion system. PLoS Pathog 2012; 8:e1002531. [PMID: 22346756 PMCID: PMC3276575 DOI: 10.1371/journal.ppat.1002531] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 12/28/2011] [Indexed: 11/18/2022] Open
Abstract
Gram-negative bacteria secrete virulence factors and assemble fibre structures on their cell surface using specialized secretion systems. Three of these, T2SS, T3SS and T4PS, are characterized by large outer membrane channels formed by proteins called secretins. Usually, a cognate lipoprotein pilot is essential for the assembly of the secretin in the outer membrane. The structures of the pilotins of the T3SS and T4PS have been described. However in the T2SS, the molecular mechanism of this process is poorly understood and its structural basis is unknown. Here we report the crystal structure of the pilotin of the T2SS that comprises an arrangement of four α-helices profoundly different from previously solved pilotins from the T3SS and T4P and known four α-helix bundles. The architecture can be described as the insertion of one α-helical hairpin into a second open α-helical hairpin with bent final helix. NMR, CD and fluorescence spectroscopy show that the pilotin binds tightly to 18 residues close to the C-terminus of the secretin. These residues, unstructured before binding to the pilotin, become helical on binding. Data collected from crystals of the complex suggests how the secretin peptide binds to the pilotin and further experiments confirm the importance of these C-terminal residues in vivo.
Collapse
Affiliation(s)
- Shuang Gu
- Queen Mary University of London, School of Biological and Chemical Sciences, London, England
| | - Saima Rehman
- Queen Mary University of London, School of Biological and Chemical Sciences, London, England
| | - Xiaohui Wang
- Université de Lyon, Université Lyon 1, Lyon; INSA-Lyon, Villeurbanne; CNRS, UMR5240, Microbiologie Adaptation et Pathogénie, Lyon, France
| | - Vladimir E. Shevchik
- Université de Lyon, Université Lyon 1, Lyon; INSA-Lyon, Villeurbanne; CNRS, UMR5240, Microbiologie Adaptation et Pathogénie, Lyon, France
| | - Richard W. Pickersgill
- Queen Mary University of London, School of Biological and Chemical Sciences, London, England
| |
Collapse
|
24
|
Koo J, Burrows LL, Lynne Howell P. Decoding the roles of pilotins and accessory proteins in secretin escort services. FEMS Microbiol Lett 2011; 328:1-12. [DOI: 10.1111/j.1574-6968.2011.02464.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/28/2011] [Accepted: 11/11/2011] [Indexed: 12/19/2022] Open
Affiliation(s)
| | - Lori L. Burrows
- Department of Biochemistry and Biomedical Sciences; McMaster University; Hamilton; ON; Canada
| | | |
Collapse
|
25
|
Tosi T, Nickerson NN, Mollica L, Jensen MR, Blackledge M, Baron B, England P, Pugsley AP, Dessen A. Pilotin-secretin recognition in the type II secretion system of Klebsiella oxytoca. Mol Microbiol 2011; 82:1422-32. [PMID: 22098633 DOI: 10.1111/j.1365-2958.2011.07896.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A crucial aspect of the functionality of bacterial type II secretion systems is the targeting and assembly of the outer membrane secretin. In the Klebsiella oxytoca type II secretion system, the lipoprotein PulS, a pilotin, targets secretin PulD monomers through the periplasm to the outer membrane. We present the crystal structure of PulS, an all-helical bundle that is structurally distinct from proteins with similar functions. Replacement of valine at position 42 in a charged groove of PulS abolished complex formation between a non-lipidated variant of PulS and a peptide corresponding to the unfolded region of PulD to which PulS binds (the S-domain), in vitro, as well as PulS function in vivo. Substitutions of other residues in the groove also diminished the interaction with the S-domain in vitro but exerted less marked effects in vivo. We propose that the interaction between PulS and the S-domain is maintained through a structural adaptation of the two proteins that could be influenced by cis factors such as the fatty acyl groups on PulS, as well as periplasmic trans-acting factors, which represents a possible paradigm for chaperone-target protein interactions.
Collapse
Affiliation(s)
- Tommaso Tosi
- Institut de Biologie Structurale, Bacterial Pathogenesis Group, Université Grenoble I, 41 rue Jules Horowitz, 38027 Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Puri V, Goyal A, Sankaranarayanan R, Enright AJ, Vaidya T. Evolutionary and functional insights into Leishmania META1: evidence for lateral gene transfer and a role for META1 in secretion. BMC Evol Biol 2011; 11:334. [PMID: 22093578 PMCID: PMC3270026 DOI: 10.1186/1471-2148-11-334] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 11/17/2011] [Indexed: 12/30/2022] Open
Abstract
Background Leishmania META1 has for long been a candidate molecule for involvement in virulence: META1 transcript and protein are up-regulated in metacyclic Leishmania. Yet, how META1 contributes to virulence remains unclear. We sought insights into the possible functions of META1 by studying its evolutionary origins. Results Using multiple criteria including sequence similarity, nucleotide composition, phylogenetic analysis and selection pressure on gene sequence, we present evidence that META1 originated in trypanosomatids as a result of a lateral gene transfer of a bacterial heat-inducible protein, HslJ. Furthermore, within the Leishmania genome, META1 sequence is under negative selection pressure against change/substitution. Using homology modeling of Leishmania META1 based on solved NMR structure of HslJ, we show that META1 and HslJ share a similar structural fold. The best hit for other proteins with similar fold is MxiM, a protein involved in the type III secretion system in Shigella. The striking structural similarity shared by META1, HslJ and MxiM suggests a possibility of shared functions. Upon structural superposition with MxiM, we have observed a putative hydrophobic cavity in META1. Mutagenesis of select hydrophobic residues in this cavity affects the secretion of the secreted acid phosphatase (SAP), indicating META1's involvement in secretory processes in Leishmania. Conclusions Overall, this work uses an evolutionary biology approach, 3D-modeling and site-directed mutagenesis to arrive at new insights into functions of Leishmania META1.
Collapse
Affiliation(s)
- Vidhi Puri
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad - 500 007, Andhra Pradesh, India
| | | | | | | | | |
Collapse
|
27
|
Nickerson NN, Tosi T, Dessen A, Baron B, Raynal B, England P, Pugsley AP. Outer membrane targeting of secretin PulD protein relies on disordered domain recognition by a dedicated chaperone. J Biol Chem 2011; 286:38833-43. [PMID: 21878629 PMCID: PMC3234708 DOI: 10.1074/jbc.m111.279851] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/26/2011] [Indexed: 12/29/2022] Open
Abstract
Interaction of bacterial outer membrane secretin PulD with its dedicated lipoprotein chaperone PulS relies on a disorder-to-order transition of the chaperone binding (S) domain near the PulD C terminus. PulS interacts with purified S domain to form a 1:1 complex. Circular dichroism, one-dimensional NMR, and hydrodynamic measurements indicate that the S domain is elongated and intrinsically disordered but gains secondary structure upon binding to PulS. Limited proteolysis and mass spectrometry identified the 28 C-terminal residues of the S domain as a minimal binding site with low nanomolar affinity for PulS in vitro that is sufficient for outer membrane targeting of PulD in vivo. The region upstream of this binding site is not required for targeting or multimerization and does not interact with PulS, but it is required for secretin function in type II secretion. Although other secretin chaperones differ substantially from PulS in sequence and secondary structure, they have all adopted at least superficially similar mechanisms of interaction with their cognate secretins, suggesting that intrinsically disordered regions facilitate rapid interaction between secretins and their chaperones.
Collapse
Affiliation(s)
- Nicholas N. Nickerson
- From the Institut Pasteur, Molecular Genetics Unit, Microbiology Department, rue du Dr. Roux, 75015 Paris
- the CNRS URA2172, rue du Dr. Roux, 75015 Paris
| | - Tommaso Tosi
- the Institut de Biologie Structurale, Bacterial Pathogenesis Group, Université de Grenoble I, Rue Jules Horowitz, 38027 Grenoble
- the CNRS UMR 5075, Rue Jules Horowitz, 38027 Grenoble
- the Commissariat à l'Enérgie Atomique, Rue Jules Horowitz, 38027 Grenoble
| | - Andréa Dessen
- the Institut de Biologie Structurale, Bacterial Pathogenesis Group, Université de Grenoble I, Rue Jules Horowitz, 38027 Grenoble
- the CNRS UMR 5075, Rue Jules Horowitz, 38027 Grenoble
- the Commissariat à l'Enérgie Atomique, Rue Jules Horowitz, 38027 Grenoble
| | - Bruno Baron
- the Institut Pasteur, Biophysics of Macromolecules and their Interactions Platform, Proteopole and Structural Biology and Chemistry Department, rue du Dr. Roux, 75015 Paris, and
- the CNRS URA2185, rue du Dr. Roux, 75015 Paris, France
| | - Bertrand Raynal
- the Institut Pasteur, Biophysics of Macromolecules and their Interactions Platform, Proteopole and Structural Biology and Chemistry Department, rue du Dr. Roux, 75015 Paris, and
- the CNRS URA2185, rue du Dr. Roux, 75015 Paris, France
| | - Patrick England
- the Institut Pasteur, Biophysics of Macromolecules and their Interactions Platform, Proteopole and Structural Biology and Chemistry Department, rue du Dr. Roux, 75015 Paris, and
- the CNRS URA2185, rue du Dr. Roux, 75015 Paris, France
| | - Anthony P. Pugsley
- From the Institut Pasteur, Molecular Genetics Unit, Microbiology Department, rue du Dr. Roux, 75015 Paris
- the CNRS URA2172, rue du Dr. Roux, 75015 Paris
| |
Collapse
|
28
|
Izoré T, Job V, Dessen A. Biogenesis, regulation, and targeting of the type III secretion system. Structure 2011; 19:603-12. [PMID: 21565695 DOI: 10.1016/j.str.2011.03.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/28/2011] [Accepted: 03/29/2011] [Indexed: 01/21/2023]
Abstract
The type III secretion system (T3SS) is employed by a number of Gram-negative bacterial pathogens to inject toxins into eukaryotic cells. The biogenesis of this complex machinery requires the regulated interaction between over 20 cytosolic, periplasmic, and membrane-imbedded proteins, many of which undergo processes such as polymerization, partner recognition, and partial unfolding. Elements of this intricate macromolecular system have been characterized through electron microscopy, crystallography, and NMR techniques, allowing for an initial understanding of the spatiotemporal regulation of T3SS-related events. Here, we report recent advances in the structural characterization of T3SS proteins from a number of bacteria, and provide an overview of recently identified small molecule T3SS inhibitors that could potentially be explored for novel antibacterial development.
Collapse
Affiliation(s)
- Thierry Izoré
- Bacterial Pathogenesis Group, Institut de Biologie Structurale, Université Grenoble I, 38027 Grenoble, France
| | | | | |
Collapse
|
29
|
McDowell MA, Johnson S, Deane JE, Cheung M, Roehrich AD, Blocker AJ, McDonnell JM, Lea SM. Structural and functional studies on the N-terminal domain of the Shigella type III secretion protein MxiG. J Biol Chem 2011; 286:30606-30614. [PMID: 21733840 PMCID: PMC3162421 DOI: 10.1074/jbc.m111.243865] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/24/2011] [Indexed: 11/06/2022] Open
Abstract
MxiG is a single-pass membrane protein that oligomerizes within the inner membrane ring of the Shigella flexneri type III secretion system (T3SS). The MxiG N-terminal domain (MxiG-N) is the predominant cytoplasmic structure; however, its role in T3SS assembly and secretion is largely uncharacterized. We have determined the solution structure of MxiG-N residues 6-112 (MxiG-N(6-112)), representing the first published structure of this T3SS domain. The structure shows strong structural homology to forkhead-associated (FHA) domains. Canonically, these cell-signaling modules bind phosphothreonine (Thr(P)) via highly conserved residues. However, the putative phosphate-binding pocket of MxiG-N(6-112) does not align with other FHA domain structures or interact with Thr(P). Furthermore, mutagenesis of potential phosphate-binding residues has no effect on S. flexneri T3SS assembly and function. Therefore, MxiG-N has a novel function for an FHA domain. Positioning of MxiG-N(6-112) within the EM density of the S. flexneri needle complex gives insight into the ambiguous stoichiometry of the T3SS, supporting models with 24 MxiG subunits in the inner membrane ring.
Collapse
Affiliation(s)
- Melanie A McDowell
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Janet E Deane
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Martin Cheung
- Schools of Cellular and Molecular Medicine and Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - A Dorothea Roehrich
- Schools of Cellular and Molecular Medicine and Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Ariel J Blocker
- Schools of Cellular and Molecular Medicine and Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - James M McDonnell
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom.
| |
Collapse
|
30
|
Izoré T, Perdu C, Job V, Attree I, Faudry E, Dessen A. Structural characterization and membrane localization of ExsB from the type III secretion system (T3SS) of Pseudomonas aeruginosa. J Mol Biol 2011; 413:236-46. [PMID: 21839744 DOI: 10.1016/j.jmb.2011.07.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 01/26/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that employs a finely tuned type III secretion system (T3SS) to inject toxins directly into the cytoplasm of target cells. ExsB is a 15.6-kDa protein encoded in a T3SS transcription regulation operon that displays high sequence similarity to YscW, a lipoprotein from Yersinia spp. whose genetic neighborhood also involves a transcriptional regulator, and has been shown to play a role in the stabilization of the outer membrane ring of the T3SS. Here, we show that ExsB is expressed in P. aeruginosa upon induction of the T3SS, and subcellular fractionation studies reveal that it is associated with the outer membrane. The high-resolution crystal structure of ExsB shows that it displays a compact β-sandwich fold with interdependent β-sheets. ExsB possesses a large patch of basic residues that could play a role in membrane recognition, and its structure is distinct from that of MxiM, a lipoprotein involved in secretin stabilization in Shigella, as well as from those of Pil lipoproteins involved in pilus biogenesis. These results reveal that small lipoproteins involved in formation of the outer membrane secretin ring display clear structural differences that may be related to the different functions they play in these systems.
Collapse
Affiliation(s)
- Thierry Izoré
- Bacterial Pathogenesis Group, Institut de Biologie Structurale (IBS), Université Grenoble I, France
| | | | | | | | | | | |
Collapse
|
31
|
Szeto TH, Dessen A, Pelicic V. Structure/function analysis of Neisseria meningitidis PilW, a conserved protein that plays multiple roles in type IV pilus biology. Infect Immun 2011; 79:3028-35. [PMID: 21646452 PMCID: PMC3147589 DOI: 10.1128/iai.05313-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 05/28/2011] [Indexed: 11/20/2022] Open
Abstract
Type IV pili (Tfp) are widespread filamentous bacterial organelles that mediate multiple functions and play a key role in pathogenesis in several important human pathogens, including Neisseria meningitidis. Tfp biology remains poorly understood at a molecular level because the roles of the numerous proteins that are involved remain mostly obscure. Guided by the high-resolution crystal structure we recently reported for N. meningitidis PilW, a widely conserved protein essential for Tfp biogenesis, we have performed a structure/function analysis by targeting a series of key residues through site-directed mutagenesis and analyzing the corresponding variants using an array of phenotypic assays. Here we show that PilW's involvement in the functionality of Tfp can be genetically uncoupled from its concurrent role in the assembly/stabilization of the secretin channels through which Tfp emerge on the bacterial surface. These findings suggest that PilW is a multifunctional protein.
Collapse
Affiliation(s)
- Tim H. Szeto
- Section of Microbiology, Imperial College London, London, United Kingdom
| | - Andréa Dessen
- Institut de Biologie Structurale, Bacterial Pathogenesis Group, Université Grenoble I, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique (CNRS), 41 rue Jules Horowitz, 38027 Grenoble, France
| | - Vladimir Pelicic
- Section of Microbiology, Imperial College London, London, United Kingdom
| |
Collapse
|
32
|
Korotkov KV, Gonen T, Hol WGJ. Secretins: dynamic channels for protein transport across membranes. Trends Biochem Sci 2011; 36:433-43. [PMID: 21565514 PMCID: PMC3155655 DOI: 10.1016/j.tibs.2011.04.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/06/2011] [Accepted: 04/08/2011] [Indexed: 12/16/2022]
Abstract
Secretins form megadalton bacterial-membrane channels in at least four sophisticated multiprotein systems that are crucial for translocation of proteins and assembled fibers across the outer membrane of many species of bacteria. Secretin subunits contain multiple domains, which interact with numerous other proteins, including pilotins, secretion-system partner proteins, and exoproteins. Our understanding of the structure of secretins is rapidly progressing, and it is now recognized that features common to all secretins include a cylindrical arrangement of 12-15 subunits, a large periplasmic vestibule with a wide opening at one end and a periplasmic gate at the other. Secretins might also play a key role in the biogenesis of their cognate secretion systems.
Collapse
Affiliation(s)
| | - Tamir Gonen
- Department of Biochemistry, University of Washington, Seattle, WA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA
| | - Wim G. J. Hol
- Department of Biochemistry, University of Washington, Seattle, WA
| |
Collapse
|
33
|
Abstract
Biological processes often depend on protein-ligand binding events, yet accurate calculation of the associated energetics remains as a significant challenge of central importance to structure-based drug design. Recently, we have proposed that the displacement of unfavorable waters by the ligand, replacing them with groups complementary to the protein surface, is the principal driving force for protein-ligand binding, and we have introduced the WaterMap method to account this effect. However, in spite of the adage "nature abhors vacuum," one can occasionally observe situations in which a portion of the receptor active site is so unfavorable for water molecules that a void is formed there. In this paper, we demonstrate that the presence of dry regions in the receptor has a nontrivial effect on ligand binding affinity, and suggest that such regions may represent a general motif for molecular recognition between the dry region in the receptor and the hydrophobic groups in the ligands. With the introduction of a term attributable to the occupation of the dry regions by ligand atoms, combined with the WaterMap calculation, we obtain excellent agreement with experiment for the prediction of relative binding affinities for a number of congeneric ligand series binding to the major urinary protein receptor. In addition, WaterMap when combined with the cavity contribution is more predictive than at least one specific implementation [Abel R, Young T, Farid R, Berne BJ, Friesner RA (2008) J Am Chem Soc 130:2817-2831] of the popular MM-GBSA approach to binding affinity calculation.
Collapse
Affiliation(s)
- Lingle Wang
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027
| | - B. J. Berne
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027
| | - R. A. Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027
| |
Collapse
|
34
|
Worrall LJ, Lameignere E, Strynadka NCJ. Structural overview of the bacterial injectisome. Curr Opin Microbiol 2010; 14:3-8. [PMID: 21112241 DOI: 10.1016/j.mib.2010.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 10/27/2010] [Accepted: 10/29/2010] [Indexed: 12/30/2022]
Abstract
The bacterial injectisome is a specialized protein-export system utilized by many pathogenic Gram-negative bacteria for the delivery of virulence proteins into the hosts they infect. This needle-like molecular nanomachine comprises >20 proteins creating a continuous passage from bacterial to host cytoplasm. The last few years have witnessed significant progress in our understanding of the structure of the injectisome with important contributions from X-ray crystallography, NMR and EM. This review will present the current state of the structure of the injectisome with particular focus on the molecular structures of individual components and how these assemble together in a functioning T3SS.
Collapse
Affiliation(s)
- Liam J Worrall
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
35
|
Peng J, Yang J, Jin Q. Research progress in Shigella in the postgenomic era. SCIENCE CHINA-LIFE SCIENCES 2010; 53:1284-90. [DOI: 10.1007/s11427-010-4089-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 12/20/2009] [Indexed: 01/01/2023]
|
36
|
Abstract
In a previous analysis of the solvation of protein active sites, a drying transition was observed in the narrow hydrophobic binding cavity of Cox-2. With the use of a crude metric that often seems able to discriminate those protein cavities that dry from those that do not, we made an extensive search of the PDB, and identified five other proteins that, in molecular dynamics simulations, undergo drying transitions in their active sites. Because such cavities need not desolvate before binding hydrophobic ligands they often exhibit very large binding affinities. This article gives evidence that drying in protein cavities is not unique to Cox-2.
Collapse
Affiliation(s)
- Tom Young
- Department of Chemistry, Columbia University, New York, NY 10027, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Schulze RJ, Chen S, Kumru OS, Zückert WR. Translocation of Borrelia burgdorferi surface lipoprotein OspA through the outer membrane requires an unfolded conformation and can initiate at the C-terminus. Mol Microbiol 2010; 76:1266-78. [PMID: 20398211 PMCID: PMC2999405 DOI: 10.1111/j.1365-2958.2010.07172.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Borrelia burgdorferi surface lipoproteins are essential to the pathogenesis of Lyme borreliosis, but the mechanisms responsible for their localization are only beginning to emerge. We have previously demonstrated the critical nature of the amino-terminal 'tether' domain of the mature lipoprotein for sorting a fluorescent reporter to the Borrelia cell surface. Here, we show that individual deletion of four contiguous residues within the tether of major surface lipoprotein OspA results in its inefficient translocation across the Borrelia outer membrane. Intriguingly, C-terminal epitope tags of these N-terminal deletion mutants were selectively surface-exposed. Fold-destabilizing C-terminal point mutations and deletions did not block OspA secretion, but rather restored one of the otherwise periplasmic tether mutants to the bacterial surface. Together, these data indicate that disturbance of a confined tether feature leads to premature folding of OspA in the periplasm and thereby prevents secretion through the outer membrane. Furthermore, they suggest that OspA emerges tail-first on the bacterial surface, yet independent of a specific C-terminal targeting peptide sequence.
Collapse
Affiliation(s)
| | | | - Ozan S. Kumru
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Mail Stop 3029, 3901 Rainbow Boulevard, Kansas City, KS 66160
| | - Wolfram R. Zückert
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Mail Stop 3029, 3901 Rainbow Boulevard, Kansas City, KS 66160
| |
Collapse
|
38
|
Type III secretion systems shape up as they ship out. Curr Opin Microbiol 2009; 13:47-52. [PMID: 20015680 DOI: 10.1016/j.mib.2009.11.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Accepted: 11/14/2009] [Indexed: 11/23/2022]
Abstract
Virulence associated protein type III secretion systems (T3SSs) are intricately structured organic nanosyringes that achieve the translocation of bacterial proteins from the prokaryotic cytoplasm across three membranes into the host cytosol. The substrates for these systems number in the hundreds, with remarkably diverse biological activities, modulating host cell biology for the benefit of the pathogen. Although there has been tremendous progress on the structure and function of the T3SS substrates, there has been comparatively little progress on the much more highly conserved secretion apparatus itself. This review summarizes recent advances in the field of structural microbiology that have begun to address this shortcoming, finally bringing to bear the power of structural biology to this central virulence system of Gram-negative bacterial pathogens.
Collapse
|
39
|
Sampaleanu LM, Bonanno JB, Ayers M, Koo J, Tammam S, Burley SK, Almo SC, Burrows LL, Howell PL. Periplasmic domains of Pseudomonas aeruginosa PilN and PilO form a stable heterodimeric complex. J Mol Biol 2009; 394:143-59. [PMID: 19857646 DOI: 10.1016/j.jmb.2009.09.037] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/09/2009] [Accepted: 09/17/2009] [Indexed: 11/18/2022]
Abstract
Type IV pili (T4P) are bacterial virulence factors responsible for attachment to surfaces and for twitching motility, a motion that involves a succession of pilus extension and retraction cycles. In the opportunistic pathogen Pseudomonas aeruginosa, the PilM/N/O/P proteins are essential for T4P biogenesis, and genetic and biochemical analyses strongly suggest that they form an inner-membrane complex. Here, we show through co-expression and biochemical analysis that the periplasmic domains of PilN and PilO interact to form a heterodimer. The structure of residues 69-201 of the periplasmic domain of PilO was determined to 2.2 A resolution and reveals the presence of a homodimer in the asymmetric unit. Each monomer consists of two N-terminal coiled coils and a C-terminal ferredoxin-like domain. This structure was used to generate homology models of PilN and the PilN/O heterodimer. Our structural analysis suggests that in vivo PilN/O heterodimerization would require changes in the orientation of the first N-terminal coiled coil, which leads to two alternative models for the role of the transmembrane domains in the PilN/O interaction. Analysis of PilN/O orthologues in the type II secretion system EpsL/M revealed significant similarities in their secondary structures and the tertiary structures of PilO and EpsM, although the way these proteins interact to form inner-membrane complexes appears to be different in T4P and type II secretion. Our analysis suggests that PilN interacts directly, via its N-terminal tail, with the cytoplasmic protein PilM. This work shows a direct interaction between the periplasmic domains of PilN and PilO, with PilO playing a key role in the proper folding of PilN. Our results suggest that PilN/O heterodimers form the foundation of the inner-membrane PilM/N/O/P complex, which is critical for the assembly of a functional T4P complex.
Collapse
Affiliation(s)
- L M Sampaleanu
- Program in Molecular Structure and Function, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Jobichen C, Fernandis AZ, Velazquez-Campoy A, Leung KY, Mok YK, Wenk MR, Sivaraman J. Identification and characterization of the lipid-binding property of GrlR, a locus of enterocyte effacement regulator. Biochem J 2009; 420:191-9. [PMID: 19228114 PMCID: PMC3672471 DOI: 10.1042/bj20081588] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipocalins are a broad family of proteins identified initially in eukaryotes and more recently in Gram-negative bacteria. The functions of lipocalin or lipid-binding proteins are often elusive and very diverse. Recently, we have determined the structure of GrlR (global regulator of LEE repressor), which plays a key role in the regulation of LEE (locus of enterocyte effacement) proteins. GrlR adopts a lipocalin-like fold that is composed of an eight-stranded beta-barrel followed by an alpha-helix at the C-terminus. GrlR has a highly hydrophobic cavity region and could be a potential transporter of lipophilic molecules. To verify this hypothesis, we carried out structure-based analysis of GrlR, determined the structure of the lipid-GrlR complex and measured the binding of lipid to recombinant GrlR by ITC (isothermal titration calorimetry). In addition, we identified phosphatidylglycerol and phosphatidylethanolamine as the endogenously bound lipid species of GrlR using electrospray-ionization MS. Furthermore, we have shown that the lipid-binding property of GrlR is similar to that of its closest lipocalin structural homologue, beta-lactoglobulin. Our studies demonstrate the hitherto unknown lipid-binding property of GrlR.
Collapse
Affiliation(s)
- Chacko Jobichen
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Aaron Zefrin Fernandis
- Yong Loo Lin School of Medicine, Department of Biochemistry, Centre for Life Sciences, National University of Singapore, Singapore 117456
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), and Fundacion Aragon I+D (ARAID-BIFI), University of Zaragoza, Zaragoza 50009, Spain
| | - Ka Yin Leung
- Department of Biological Sciences, National University of Singapore, Singapore 117543
- Faculty of Natural and Applied Sciences, Department of Biology, Trinity Western University, Langley, B.C., Canada V2Y 1Y1
| | - Yu-Keung Mok
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Markus R Wenk
- Department of Biological Sciences, National University of Singapore, Singapore 117543
- Yong Loo Lin School of Medicine, Department of Biochemistry, Centre for Life Sciences, National University of Singapore, Singapore 117456
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| |
Collapse
|
41
|
Meng G, Fronzes R, Chandran V, Remaut H, Waksman G. Protein oligomerization in the bacterial outer membrane (Review). Mol Membr Biol 2009; 26:136-45. [PMID: 19225986 DOI: 10.1080/09687680802712422] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The formation of homo-oligomeric assemblies is a well-established characteristic of many soluble proteins and enzymes. Oligomerization has been shown to increase protein stability, allow allosteric cooperativity, shape reaction compartments and provide multivalent interaction sites in soluble proteins. In comparison, our understanding of the prevalence and reasons behind protein oligomerization in membrane proteins is relatively sparse. Recent progress in structural biology of bacterial outer membrane proteins has suggested that oligomerization may be as common and versatile as in soluble proteins. Here we review the current understanding of oligomerization in the bacterial outer membrane from a structural and functional point of view.
Collapse
Affiliation(s)
- Guoyu Meng
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Okon M, Moraes TF, Lario PI, Creagh AL, Haynes CA, Strynadka NC, McIntosh LP. Structural Characterization of the Type-III Pilot-Secretin Complex from Shigella flexneri. Structure 2008; 16:1544-54. [DOI: 10.1016/j.str.2008.08.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Revised: 08/08/2008] [Accepted: 08/15/2008] [Indexed: 02/02/2023]
|
44
|
Trindade MB, Job V, Contreras-Martel C, Pelicic V, Dessen A. Structure of a widely conserved type IV pilus biogenesis factor that affects the stability of secretin multimers. J Mol Biol 2008; 378:1031-9. [PMID: 18433773 DOI: 10.1016/j.jmb.2008.03.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 03/07/2008] [Accepted: 03/11/2008] [Indexed: 11/19/2022]
Abstract
Type IV pili (Tfp) are arguably the most widespread pili in bacteria, whose biogenesis requires a complex machinery composed of as many as 18 different proteins. This includes the conserved outer membrane-localized secretin, which forms a pore through which Tfp emerge on the bacterial surface. Although, in most model species studied, secretin oligomerization and functionality requires the action of partner lipoproteins, structural information regarding these molecules is limited. We report the high-resolution crystal structure of PilW, the partner lipoprotein of the type IV pilus secretin PilQ from Neisseria meningitidis, which defines a conserved class of Tfp biogenesis proteins involved in the formation and/or stability of secretin multimers in a wide variety of bacteria. The use of the PilW structure as a blueprint reveals an area of high-level sequence conservation in homologous proteins from different pathogens that could reflect a possible secretin-binding site. These results could be exploited for the development of new broad-spectrum antibacterials interfering with the biogenesis of a widespread virulence factor.
Collapse
Affiliation(s)
- Melissa B Trindade
- Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, 41 rue Jules Horowitz, F-38027 Grenoble, France
| | | | | | | | | |
Collapse
|
45
|
Moraes TF, Spreter T, Strynadka NC. Piecing together the type III injectisome of bacterial pathogens. Curr Opin Struct Biol 2008; 18:258-66. [PMID: 18258424 DOI: 10.1016/j.sbi.2007.12.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 12/17/2007] [Accepted: 12/18/2007] [Indexed: 01/01/2023]
Abstract
The Type III secretion system is a bacterial 'injectisome' which allows Gram-negative bacteria to shuttle virulence proteins directly into the host cells they infect. This macromolecular assembly consists of more than 20 different proteins put together to collectively span three biological membranes. The recent T3SS crystal structures of the major oligomeric inner membrane ring, the helical needle filament, needle tip protein, the associated ATPase, and outer membrane pilotin together with electron microscopy reconstructions have dramatically furthered our understanding of how this protein translocator functions. The crucial details that describe how these proteins assemble into this oligomeric complex will need a hybrid of structural methodologies including EM, crystallography, and NMR to clarify the intra- and inter-molecular interactions between different structural components of the apparatus.
Collapse
Affiliation(s)
- Trevor F Moraes
- University of British Columbia, Biochemistry and Molecular Biology and the Center for Blood Research, Rm 4350 Life Sciences Center, 2350 Health Sciences Mall, Vancouver, Canada V6T 1Z3
| | | | | |
Collapse
|
46
|
The Salmonella SPI1 type three secretion system responds to periplasmic disulfide bond status via the flagellar apparatus and the RcsCDB system. J Bacteriol 2007; 190:87-97. [PMID: 17951383 DOI: 10.1128/jb.01323-07] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Upon contact with intestinal epithelial cells, Salmonella enterica serovar Typhimurium injects a set of effector proteins into the host cell cytoplasm via the Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS) to induce inflammatory diarrhea and bacterial uptake. The master SPI1 regulatory gene hilA is controlled directly by three AraC-like regulators: HilD, HilC, and RtsA. Previous work suggested a role for DsbA, a periplasmic disulfide bond oxidase, in SPI1 T3SS function. RtsA directly activates dsbA, and deletion of dsbA leads to loss of SPI1-dependent secretion. We have studied the dsbA phenotypes by monitoring expression of SPI1 regulatory, structural, and effector genes. Here we present evidence that loss of DsbA independently affects SPI1 regulation and SPI1 function. The dsbA-mediated feedback inhibition of SPI1 transcription is not due to defects in the SPI1 T3SS apparatus. Rather, the transcriptional response is dependent on both the flagellar protein FliZ and the RcsCDB system, which also affects fliZ transcription. Thus, the status of disulfide bonds in the periplasm affects expression of the SPI1 system indirectly via the flagellar apparatus. RcsCDB can also affect SPI1 independently of FliZ. All regulation is through HilD, consistent with our current model for SPI1 regulation.
Collapse
|
47
|
Hirano Y, Hossain MM, Takeda K, Tokuda H, Miki K. Structural Studies of the Cpx Pathway Activator NlpE on the Outer Membrane of Escherichia coli. Structure 2007; 15:963-76. [PMID: 17698001 DOI: 10.1016/j.str.2007.06.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Revised: 06/09/2007] [Accepted: 06/17/2007] [Indexed: 10/23/2022]
Abstract
NlpE, an outer membrane lipoprotein, functions during envelope stress responses in Gram-negative bacteria. In Escherichia coli, adhesion to abiotic surfaces has been reported to activate the Cpx pathway in an NlpE-dependent manner. External copper ions are also thought to activate the Cpx pathway mediated by NlpE. We determined the crystal structure of NlpE from E. coli at 2.6 A resolution. The structure showed that NlpE consists of two beta barrel domains. The N-terminal domain resembles the bacterial lipocalin Blc, and the C-terminal domain has an oligonucleotide/oligosaccharide-binding (OB) fold. From both biochemical analyses and the crystal structure, it can be deduced that the cysteine residues in the CXXC motif may be chemically active. Furthermore, two monomers in the asymmetric unit form an unusual 3D domain-swapped dimer. These findings indicate that tertiary and/or quaternary structural instability may be responsible for Cpx pathway activation.
Collapse
Affiliation(s)
- Yu Hirano
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
48
|
Jobichen C, Li M, Yerushalmi G, Tan YW, Mok YK, Rosenshine I, Leung KY, Sivaraman J. Structure of GrlR and the implication of its EDED motif in mediating the regulation of type III secretion system in EHEC. PLoS Pathog 2007; 3:e69. [PMID: 17511515 PMCID: PMC1868957 DOI: 10.1371/journal.ppat.0030069] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 03/29/2007] [Indexed: 01/25/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a common cause of severe hemorrhagic colitis. EHEC's virulence is dependent upon a type III secretion system (TTSS) encoded by 41 genes. These genes are organized in several operons clustered in the locus of enterocyte effacement. Most of the locus of enterocyte effacement genes, including grlA and grlR, are positively regulated by Ler, and Ler expression is positively and negatively modulated by GrlA and GrlR, respectively. However, the molecular basis for the GrlA and GrlR activity is still elusive. We have determined the crystal structure of GrlR at 1.9 A resolution. It consists of a typical beta-barrel fold with eight beta-strands containing an internal hydrophobic cavity and a plug-like loop on one side of the barrel. Strong hydrophobic interactions between the two beta-barrels maintain the dimeric architecture of GrlR. Furthermore, a unique surface-exposed EDED (Glu-Asp-Glu-Asp) motif is identified to be critical for GrlA-GrlR interaction and for the repressive activity of GrlR. This study contributes a novel molecular insight into the mechanism of GrlR function.
Collapse
Affiliation(s)
- Chacko Jobichen
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Mo Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Gal Yerushalmi
- Department of Molecular Genetics and Biotechnology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Yih Wan Tan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yu-Keung Mok
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Ilan Rosenshine
- Department of Molecular Genetics and Biotechnology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Ka Yin Leung
- Department of Biological Sciences, National University of Singapore, Singapore
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
49
|
Balasingham SV, Collins RF, Assalkhou R, Homberset H, Frye SA, Derrick JP, Tønjum T. Interactions between the lipoprotein PilP and the secretin PilQ in Neisseria meningitidis. J Bacteriol 2007; 189:5716-27. [PMID: 17526700 PMCID: PMC1951802 DOI: 10.1128/jb.00060-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Neisseria meningitidis can be the causative agent of meningitis or septicemia. This bacterium expresses type IV pili, which mediate a variety of functions, including autoagglutination, twitching motility, biofilm formation, adherence, and DNA uptake during transformation. The secretin PilQ supports type IV pilus extrusion and retraction, but it also requires auxiliary proteins for its assembly and localization in the outer membrane. Here we have studied the physical properties of the lipoprotein PilP and examined its interaction with PilQ. We found that PilP was an inner membrane protein required for pilus expression and transformation, since pilP mutants were nonpiliated and noncompetent. These mutant phenotypes were restored by the expression of PilP in trans. The pilP gene is located upstream of pilQ, and analysis of their transcripts indicated that pilP and pilQ were cotranscribed. Furthermore, analysis of the level of PilQ expression in pilP mutants revealed greatly reduced amounts of PilQ only in the deletion mutant, exhibiting a polar effect on pilQ transcription. In vitro experiments using recombinant fragments of PilP and PilQ showed that the N-terminal region of PilP interacted with the middle part of the PilQ polypeptide. A three-dimensional reconstruction of the PilQ-PilP interacting complex was obtained at low resolution by transmission electron microscopy, and PilP was shown to localize around the cap region of the PilQ oligomer. These findings suggest a role for PilP in pilus biogenesis. Although PilQ does not need PilP for its stabilization or membrane localization, the specific interaction between these two proteins suggests that they might have another coordinated activity in pilus extrusion/retraction or related functions.
Collapse
Affiliation(s)
- Seetha V Balasingham
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
50
|
Golovanov AP, Balasingham S, Tzitzilonis C, Goult BT, Lian LY, Homberset H, Tønjum T, Derrick JP. The Solution Structure of a Domain from the Neisseria meningitidis Lipoprotein PilP Reveals a New β-Sandwich Fold. J Mol Biol 2006; 364:186-95. [PMID: 17007878 DOI: 10.1016/j.jmb.2006.08.078] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 08/24/2006] [Accepted: 08/29/2006] [Indexed: 10/24/2022]
Abstract
Type IV pili are long, thin fibres, which extend from the surface of the bacterial pathogen Neisseria meningitidis; they play a key role in adhesion and colonisation of host cells. PilP is a lipoprotein, suggested to be involved in the assembly and stabilization of an outer membrane protein, PilQ, which is required for pilus formation. Here we describe the expression of a recombinant fragment of PilP, spanning residues 20 to 181, and determination of the solution structure of a folded domain, spanning residues 85 to 163, by NMR. The N-terminal third of the protein, from residues 20 to 84, is apparently unfolded. Protease digestion yielded a 113 residue fragment that contained the folded domain. The domain adopts a simple beta-sandwich type fold, consisting of a three-stranded beta-sheet packed against a four-stranded beta-sheet. There is also a short segment of 3(10) helix at the N-terminal part of the folded domain. We were unable to identify any other proteins that are closely related in structure to the PilP domain, although the fold appears to be distantly related to the lipocalin family. Over 40 homologues of PilP have been identified in Gram-negative bacteria and the majority of conserved residues lie within the folded domain. The fourth beta-strand and adjacent loop regions contain a high proportion of conserved residues, including three glycine residues, which seem to play a role in linking the two beta-sheets. The two beta-sheets pack together to form a crevice, lined with conserved hydrophobic residues: we suggest that this feature could act as a binding site for a small ligand. The results show that PilP and its homologues have a conserved, folded domain at the C-terminal end of the protein that may be involved in mediating binding to hydrophobic ligands.
Collapse
Affiliation(s)
- Alexander P Golovanov
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | | | | | | | | | | | | | | |
Collapse
|