1
|
Xu C, Yu XH, Wang G, Luo W, Chen L, Xia XD. The m 7G methylation modification: An emerging player of cardiovascular diseases. Int J Biol Macromol 2025; 309:142940. [PMID: 40210060 DOI: 10.1016/j.ijbiomac.2025.142940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/05/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Cardiovascular diseases severely endanger human health and are closely associated with epigenetic dysregulation. N7-methylguanosine (m7G), one of the common epigenetic modifications, is present in many different types of RNA molecules and has attracted significant attention due to its impact on various physiological and pathological processes. Recent studies have demonstrated that m7G methylation plays an important role in the occurrence and development of multiple cardiovascular diseases. Application of small molecule inhibitors to target m7G modification mediated by methyltransferase-like protein 1 (METTL1) has shown potentiality in the treatment of cardiovascular diseases. In this review, we summarize the basic knowledge about m7G modification and discuss its role and therapeutic potential in diverse cardiovascular diseases, aiming to provide a theoretical foundation for future research and therapeutic intervention.
Collapse
Affiliation(s)
- Can Xu
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, China
| | - Gang Wang
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China
| | - Wei Luo
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China
| | - Lei Chen
- Department of Cardiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, China.
| | - Xiao-Dan Xia
- Department of Orthopedics, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, China.
| |
Collapse
|
2
|
Hammermeister A, Gaik M, Dahate P, Glatt S. Structural Snapshots of Human tRNA Modifying Enzymes. J Mol Biol 2025:169106. [PMID: 40210523 DOI: 10.1016/j.jmb.2025.169106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/28/2025] [Accepted: 03/22/2025] [Indexed: 04/12/2025]
Abstract
Cells use a plethora of specialized enzymes to post-transcriptionally introduce chemical modifications into transfer RNA (tRNA) molecules. These modifications contribute novel chemical properties to the affected nucleotides and are crucial for the tRNA maturation process and for most other aspects of tRNA biology. Whereas, some of the modifications are ubiquitous and the respective modifying enzymes are conserved in all domains of life, other modifications are found only in specific organisms, in specific tRNAs or at specific positions of tRNAs. Despite the fact, that evolution has shaped a tremendous variety of tRNA modifications and the respective modification cascades, the clinical relevance of patient-derived mutations has recently led to an increased interest in the set of human tRNA modifying enzymes. Over decades macromolecular crystallography has immensely contributed to understand the enzymatic function of tRNA modifying enzymes at the molecular level. The advent of high resolution single-particle cryo-EM has recently led to structures of several clinically relevant human tRNA modifying enzymes in complex with tRNAs and a more fundamental understanding of the mechanistic consequences of specific disease-related mutations. Here, we aim to provide a comprehensive summary of the currently available experimentally determined structures of human tRNA modifying enzymes.
Collapse
Affiliation(s)
| | - Monika Gaik
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland
| | - Priyanka Dahate
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland; Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Vaidhyanathan S, Durbin M, Adetowubo AA, Do LH, Kavehmoghaddam S, Jonnalagadda SA, Aguilar BR, Ortiz-Gomez T, Lin YX, Dave A, Kiliç F, Karp AR, Rahmah MI, Riaz NF, Mandava N, Siner A, Grigoriev A. Mapping Current Studies of tRNA Fragments onto Disease Landscape. Biomolecules 2025; 15:512. [PMID: 40305238 PMCID: PMC12025293 DOI: 10.3390/biom15040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
Transfer-RNA-derived fragments (tRFs) are a relatively recently discovered class of non-coding RNAs derived from both precursor and mature transfer RNAs (tRNAs). Research on these molecules has been expanding rapidly, revealing their diverse roles in cellular processes, both in normal physiology and in disease states, often via post-transcriptional regulation of target genes. Altered tRFs abundances have been implicated in various conditions, where they may act as either drivers of disease progression or as protective agents. For instance, specific tRFs are associated with increased risk for cancer metastasis, while others may suppress tumor cell proliferation. Despite the growing recognition of tRFs as functional RNAs rather than sequencing noise, this field of study faces numerous challenges. Inconsistent naming conventions and variability in experimental approaches hinder the comparison of findings across studies, limiting our understanding of the common roles and mechanisms of tRFs. This review provides a comprehensive analysis of current literature on the various roles of tRFs in different diseases, particularly focusing on four broad areas: cancer, neurological, cardiovascular, and musculoskeletal disorders. We analyze studies that link specific tRFs to various aspects of human diseases and provide a convenient classification of these studies regarding the depth of the provided evidence. Further, we note gaps in current investigations and consider strategies to address methodological inconsistencies, including validation experiments and unified nomenclature. By consolidating research in this manner, we aim to facilitate comparisons across diverse studies, enhancing our ability to identify functional commonalities and furthering our understanding of the mechanisms by which tRFs act.
Collapse
Affiliation(s)
- Sathyanarayanan Vaidhyanathan
- Department of Biology, Rutgers University, Camden, NJ 08102, USA; (S.V.); (M.D.); (A.A.A.); (L.H.D.); (S.K.); (S.A.J.); (B.R.A.); (T.O.-G.); (F.K.); (A.R.K.); (N.F.R.); (N.M.); (A.S.)
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA; (Y.X.L.); (A.D.); (M.I.R.)
| | - MacKenna Durbin
- Department of Biology, Rutgers University, Camden, NJ 08102, USA; (S.V.); (M.D.); (A.A.A.); (L.H.D.); (S.K.); (S.A.J.); (B.R.A.); (T.O.-G.); (F.K.); (A.R.K.); (N.F.R.); (N.M.); (A.S.)
| | - Adesupo A. Adetowubo
- Department of Biology, Rutgers University, Camden, NJ 08102, USA; (S.V.); (M.D.); (A.A.A.); (L.H.D.); (S.K.); (S.A.J.); (B.R.A.); (T.O.-G.); (F.K.); (A.R.K.); (N.F.R.); (N.M.); (A.S.)
| | - Lisa H. Do
- Department of Biology, Rutgers University, Camden, NJ 08102, USA; (S.V.); (M.D.); (A.A.A.); (L.H.D.); (S.K.); (S.A.J.); (B.R.A.); (T.O.-G.); (F.K.); (A.R.K.); (N.F.R.); (N.M.); (A.S.)
| | - Sheida Kavehmoghaddam
- Department of Biology, Rutgers University, Camden, NJ 08102, USA; (S.V.); (M.D.); (A.A.A.); (L.H.D.); (S.K.); (S.A.J.); (B.R.A.); (T.O.-G.); (F.K.); (A.R.K.); (N.F.R.); (N.M.); (A.S.)
| | - Sai Anusha Jonnalagadda
- Department of Biology, Rutgers University, Camden, NJ 08102, USA; (S.V.); (M.D.); (A.A.A.); (L.H.D.); (S.K.); (S.A.J.); (B.R.A.); (T.O.-G.); (F.K.); (A.R.K.); (N.F.R.); (N.M.); (A.S.)
| | - Bryan Ramirez Aguilar
- Department of Biology, Rutgers University, Camden, NJ 08102, USA; (S.V.); (M.D.); (A.A.A.); (L.H.D.); (S.K.); (S.A.J.); (B.R.A.); (T.O.-G.); (F.K.); (A.R.K.); (N.F.R.); (N.M.); (A.S.)
| | - Tamin Ortiz-Gomez
- Department of Biology, Rutgers University, Camden, NJ 08102, USA; (S.V.); (M.D.); (A.A.A.); (L.H.D.); (S.K.); (S.A.J.); (B.R.A.); (T.O.-G.); (F.K.); (A.R.K.); (N.F.R.); (N.M.); (A.S.)
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA; (Y.X.L.); (A.D.); (M.I.R.)
| | - Yan X. Lin
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA; (Y.X.L.); (A.D.); (M.I.R.)
| | - Asim Dave
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA; (Y.X.L.); (A.D.); (M.I.R.)
| | - Fatmanur Kiliç
- Department of Biology, Rutgers University, Camden, NJ 08102, USA; (S.V.); (M.D.); (A.A.A.); (L.H.D.); (S.K.); (S.A.J.); (B.R.A.); (T.O.-G.); (F.K.); (A.R.K.); (N.F.R.); (N.M.); (A.S.)
| | - Alexa R. Karp
- Department of Biology, Rutgers University, Camden, NJ 08102, USA; (S.V.); (M.D.); (A.A.A.); (L.H.D.); (S.K.); (S.A.J.); (B.R.A.); (T.O.-G.); (F.K.); (A.R.K.); (N.F.R.); (N.M.); (A.S.)
| | - Mohammed Imthiyas Rahmah
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA; (Y.X.L.); (A.D.); (M.I.R.)
| | - Noor F. Riaz
- Department of Biology, Rutgers University, Camden, NJ 08102, USA; (S.V.); (M.D.); (A.A.A.); (L.H.D.); (S.K.); (S.A.J.); (B.R.A.); (T.O.-G.); (F.K.); (A.R.K.); (N.F.R.); (N.M.); (A.S.)
| | - Nikhila Mandava
- Department of Biology, Rutgers University, Camden, NJ 08102, USA; (S.V.); (M.D.); (A.A.A.); (L.H.D.); (S.K.); (S.A.J.); (B.R.A.); (T.O.-G.); (F.K.); (A.R.K.); (N.F.R.); (N.M.); (A.S.)
| | - Aleece Siner
- Department of Biology, Rutgers University, Camden, NJ 08102, USA; (S.V.); (M.D.); (A.A.A.); (L.H.D.); (S.K.); (S.A.J.); (B.R.A.); (T.O.-G.); (F.K.); (A.R.K.); (N.F.R.); (N.M.); (A.S.)
| | - Andrey Grigoriev
- Department of Biology, Rutgers University, Camden, NJ 08102, USA; (S.V.); (M.D.); (A.A.A.); (L.H.D.); (S.K.); (S.A.J.); (B.R.A.); (T.O.-G.); (F.K.); (A.R.K.); (N.F.R.); (N.M.); (A.S.)
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA; (Y.X.L.); (A.D.); (M.I.R.)
| |
Collapse
|
4
|
Ali RH, Orellana EA, Lee SH, Chae YC, Chen Y, Clauwaert J, Kennedy AL, Gutierrez AE, Papke DJ, Valenzuela M, Silverman B, Falzetta A, Ficarro SB, Marto JA, Fletcher CDM, Perez-Atayde A, Alcindor T, Shimamura A, Prensner JR, Gregory RI, Gutierrez A. A methyltransferase-independent role for METTL1 in tRNA aminoacylation and oncogenic transformation. Mol Cell 2025; 85:948-961.e11. [PMID: 39892392 PMCID: PMC11925124 DOI: 10.1016/j.molcel.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/04/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
Amplification of chromosomal material derived from 12q13-15 is common in human cancer and believed to result in overexpression of multiple collaborating oncogenes. To define the oncogenes involved, we overexpressed genes recurrently amplified in human liposarcoma using a zebrafish model of the disease. We found several genes whose overexpression collaborated with AKT in sarcomagenesis, including the tRNA methyltransferase METTL1. This was surprising, because AKT phosphorylates METTL1 to inactivate its enzymatic activity. Indeed, phosphomimetic S27D or catalytically dead alleles phenocopied the oncogenic activity of wild-type METTL1. We found that METTL1 binds the multi-tRNA synthetase complex, which contains many of the cellular aminoacyl-tRNA synthetases and promotes tRNA aminoacylation, polysome formation, and protein synthesis independent of its methyltransferase activity. METTL1-amplified liposarcomas were hypersensitive to actinomycin D, a clinical inhibitor of ribosome biogenesis. We propose that METTL1 overexpression promotes sarcomagenesis by stimulating tRNA aminoacylation, protein synthesis, and tumor cell growth independent of its methyltransferase activity.
Collapse
Affiliation(s)
- Raja H Ali
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Esteban A Orellana
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Molecular and Systems Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Su Hyun Lee
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yun-Cheol Chae
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yantao Chen
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jim Clauwaert
- Department of Pediatrics, Division of Pediatric Hematology/Oncology and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alyssa L Kennedy
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ashley E Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - David J Papke
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mateo Valenzuela
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Brianna Silverman
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Amanda Falzetta
- Department of Pediatrics, Division of Pediatric Hematology/Oncology and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Scott B Ficarro
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Linde Program in Cancer Chemical Biology, Center for Emerging Drug Targets and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jarrod A Marto
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Linde Program in Cancer Chemical Biology, Center for Emerging Drug Targets and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christopher D M Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Thierry Alcindor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Akiko Shimamura
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - John R Prensner
- Department of Pediatrics, Division of Pediatric Hematology/Oncology and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Richard I Gregory
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Harvard Initiative for RNA Medicine, Boston, MA, USA; Department of Molecular, Cell & Cancer Biology, UMass Chan Medical School, Worcester, MA, USA
| | - Alejandro Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
5
|
Zhou W, Yi Y, Cao W, Zhong X, Chen L. Functions of METTL1/WDR4 and QKI as m7G modification - related enzymes in digestive diseases. Front Pharmacol 2025; 15:1491763. [PMID: 39850560 PMCID: PMC11754259 DOI: 10.3389/fphar.2024.1491763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
N7-methylguanosine (m7G) modification is one of the most prevalent forms of chemical modification in RNA molecules, which plays an important role in biological processes such as RNA stability, translation regulation and ribosome recognition. Methyl-transferation of m7G modification is catalyzed by the enzyme complex of methyltransferase-like 1 (METTL1) and WD repeat domain 4 (WDR4), and Quaking (QKI) recognizes internal m7G methylated mRNA and regulates mRNA translation and stabilization. Recent studies have found that m7G modification - related enzymes are associated with the onset and progression of digestive cancer, such as colorectal cancer, liver cancer, and other digestive diseases such as ulcerative colitis. This review will focus on the latest research progress on the roles of m7G methyltransferase METTL1/WDR4 and recognized enzyme QKI in digestive diseases.
Collapse
Affiliation(s)
- Wenyan Zhou
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yan Yi
- Institute Center of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wenyu Cao
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaolin Zhong
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ling Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
6
|
Ruiz-Lozano P, Mercola M. tRNA methylation drives early postnatal cardiomyocyte maturation. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1375-1376. [PMID: 39587265 PMCID: PMC12062543 DOI: 10.1038/s44161-024-00572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Postnatal cardiomyocyte maturation is critical for the heart to sustain pump activity through adulthood. The methyltransferase METTL1 drives cardiomyocyte maturation during the first week of postnatal life in the mouse by enhancing ketogenesis and fatty acid oxidation.
Collapse
Affiliation(s)
- Pilar Ruiz-Lozano
- Regencor, Inc., San Carlos, CA, USA
- National Heart Lung Institute, Imperial College London, London, UK
| | - Mark Mercola
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
- Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Lin Y, Lin P, Lu Y, Zheng J, Zheng Y, Huang X, Zhao X, Cui L. Post-Translational Modifications of RNA-Modifying Proteins in Cellular Dynamics and Disease Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406318. [PMID: 39377984 PMCID: PMC11600222 DOI: 10.1002/advs.202406318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/02/2024] [Indexed: 11/28/2024]
Abstract
RNA-modifying proteins, classified as "writers," "erasers," and "readers," dynamically modulate RNA by adding, removing, or interpreting chemical groups, thereby influencing RNA stability, functionality, and interactions. To date, over 170 distinct RNA chemical modifications and more than 100 RNA-modifying enzymes have been identified, with ongoing research expanding these numbers. Although significant progress has been made in understanding RNA modification, the regulatory mechanisms that govern RNA-modifying proteins themselves remain insufficiently explored. Post-translational modifications (PTMs) such as phosphorylation, ubiquitination, and acetylation are crucial in modulating the function and behavior of these proteins. However, the full extent of PTM influence on RNA-modifying proteins and their role in disease development remains to be fully elucidated. This review addresses these gaps by offering a comprehensive analysis of the roles PTMs play in regulating RNA-modifying proteins. Mechanistic insights are provided into how these modifications alter biological processes, contribute to cellular function, and drive disease progression. In addition, the current research landscape is examined, highlighting the therapeutic potential of targeting PTMs on RNA-modifying proteins for precision medicine. By advancing understanding of these regulatory networks, this review seeks to facilitate the development of more effective therapeutic strategies and inspire future research in the critical area of PTMs in RNA-modifying proteins.
Collapse
Affiliation(s)
- Yunfan Lin
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
| | - Pei Lin
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
| | - Ye Lu
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080China
| | - Yucheng Zheng
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
| | - Xiangyu Huang
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
| | - Xinyuan Zhao
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
| | - Li Cui
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
- School of DentistryUniversity of California, Los AngelesLos AngelesCA90095USA
| |
Collapse
|
8
|
Falnes PØ. Closing in on human methylation-the versatile family of seven-β-strand (METTL) methyltransferases. Nucleic Acids Res 2024; 52:11423-11441. [PMID: 39351878 PMCID: PMC11514484 DOI: 10.1093/nar/gkae816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/15/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
Methylation is a common biochemical reaction, and a number of methyltransferase (MTase) enzymes mediate the various methylation events occurring in living cells. Almost all MTases use the methyl donor S-adenosylmethionine (AdoMet), and, in humans, the largest group of AdoMet-dependent MTases are the so-called seven-β-strand (7BS) MTases. Collectively, the 7BS MTases target a wide range of biomolecules, i.e. nucleic acids and proteins, as well as several small metabolites and signaling molecules. They play essential roles in key processes such as gene regulation, protein synthesis and metabolism, as well as neurotransmitter synthesis and clearance. A decade ago, roughly half of the human 7BS MTases had been characterized experimentally, whereas the remaining ones merely represented hypothetical enzymes predicted from bioinformatics analysis, many of which were denoted METTLs (METhylTransferase-Like). Since then, considerable progress has been made, and the function of > 80% of the human 7BS MTases has been uncovered. In this review, I provide an overview of the (estimated) 120 human 7BS MTases, grouping them according to substrate specificities and sequence similarity. I also elaborate on the challenges faced when studying these enzymes and describe recent major advances in the field.
Collapse
Affiliation(s)
- Pål Ø Falnes
- Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316Oslo, Norway
- CRESCO - Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
9
|
Sahu AK, Shah RA, Nashier D, Sharma P, Varada R, Lahry K, Singh S, Shetty S, Hussain T, Varshney U. Physiological significance of the two isoforms of initiator tRNAs in Escherichia coli. J Bacteriol 2024; 206:e0025124. [PMID: 39171914 PMCID: PMC11411947 DOI: 10.1128/jb.00251-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Escherichia coli possesses four initiator tRNA (i-tRNA) genes, three of which are present together as metZWV and the fourth one as metY. In E. coli B, all four genes (metZWV and metY) encode i-tRNAfMet1, in which the G at position 46 is modified to m7G46 by TrmB (m7G methyltransferase). However, in E. coli K, because of a single-nucleotide polymorphism, metY encodes a variant, i-tRNAfMet2, having an A in place of m7G46. We generated E. coli strains to explore the importance of this polymorphism in i-tRNAs. The strains were sustained either on metYA46 (metY of E. coli K origin encoding i-tRNAfMet2) or its derivative metYG46 (encoding i-tRNAfMet1) in single (chromosomal) or plasmid-borne copies. We show that the strains sustained on i-tRNAfMet1 have a growth fitness advantage over those sustained on i-tRNAfMet2. The growth fitness advantages are more pronounced for the strains sustained on i-tRNAfMet1 in nutrient-rich media than in nutrient-poor media. The growth fitness of the strains correlates well with the relative stabilities of the i-tRNAs in vivo. Furthermore, the atomistic molecular dynamics simulations support the higher stability of i-tRNAfMet1 than that of i-tRNAfMet2. The stability of i-tRNAfMet1 remains unaffected upon the deletion of TrmB. These studies highlight how metYG46 and metYA46 alleles might influence the growth fitness of E. coli under certain nutrient-limiting conditions. IMPORTANCE Escherichia coli harbors four initiator tRNA (i-tRNA) genes: three of these at metZWV and the fourth one at metY loci. In E. coli B, all four genes encode i-tRNAfMet1. In E. coli K, because of a single-nucleotide polymorphism, metY encodes a variant, i-tRNAfMet2, having an A in place of G at position 46 of i-tRNA sequence in metY. We show that G46 confers stability to i-tRNAfMet1. The strains sustained on i-tRNAfMet1 have a growth fitness advantage over those sustained on i-tRNAfMet2. Strains harboring metYG46 (B mimic) or metYA46 (K mimic) show that while in the nutrient-rich media, the K mimic is outcompeted rapidly; in the nutrient-poor medium, the K mimic is outcompeted less rapidly.
Collapse
Affiliation(s)
- Amit Kumar Sahu
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Riyaz Ahmad Shah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Divya Nashier
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Prafful Sharma
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Rajagopal Varada
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Kuldeep Lahry
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sudhir Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sunil Shetty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Tanweer Hussain
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
10
|
Zhang H, Sun F, Jiang S, Yang F, Dong X, Liu G, Wang M, Li Y, Su M, Wen Z, Yu C, Fan C, Li X, Zhang Z, Yang L, Li B. METTL protein family: focusing on the occurrence, progression and treatment of cancer. Biomark Res 2024; 12:105. [PMID: 39289775 PMCID: PMC11409517 DOI: 10.1186/s40364-024-00652-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
Methyltransferase-like protein is a ubiquitous enzyme-like protein in the human body, with binding domains for nucleic acids, proteins and other small molecules, and plays an important role in a variety of biological behaviours in normal organisms and diseases, characterised by the presence of a methyltransferase-like structural domain and a structurally conserved SAM-binding domain formed by the seven-stranded β-fold structure in the center of the protein. With the deepening of research, the METTL protein family has been found to be abnormally expressed in a variety of tumor diseases, and the clarification of its relationship with tumor diseases can be used as a molecular therapeutic target and has an important role in the prognosis of tumors. In this paper, we review the structure, biological process, immunotherapy, drug-targeted therapy, and markers of the METTL protein family to provide new ideas for the diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Huhu Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Fulin Sun
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Shuyao Jiang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Guoxiang Liu
- Department of Clinical Laboratory, Weifang People's Hospital, 151, Guangwen Streer, Weifang, 261041, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ya Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Mohan Su
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ziyuan Wen
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chunjuan Yu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chenkai Fan
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhe Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Lina Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Bing Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Department of Dermatology, The Affiliated Haici Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
11
|
Craig O, Lee S, Pilcher C, Saoud R, Abdirahman S, Salazar C, Williams N, Ascher D, Vary R, Luu J, Cowley K, Ramm S, Li MX, Thio N, Li J, Semple T, Simpson K, Gorringe K, Holien J. A new method for network bioinformatics identifies novel drug targets for mucinous ovarian carcinoma. NAR Genom Bioinform 2024; 6:lqae096. [PMID: 39184376 PMCID: PMC11344246 DOI: 10.1093/nargab/lqae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/11/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Mucinous ovarian carcinoma (MOC) is a subtype of ovarian cancer that is distinct from all other ovarian cancer subtypes and currently has no targeted therapies. To identify novel therapeutic targets, we developed and applied a new method of differential network analysis comparing MOC to benign mucinous tumours (in the absence of a known normal tissue of origin). This method mapped the protein-protein network in MOC and then utilised structural bioinformatics to prioritise the proteins identified as upregulated in the MOC network for their likelihood of being successfully drugged. Using this protein-protein interaction modelling, we identified the strongest 5 candidates, CDK1, CDC20, PRC1, CCNA2 and TRIP13, as structurally tractable to therapeutic targeting by small molecules. siRNA knockdown of these candidates performed in MOC and control normal fibroblast cell lines identified CDK1, CCNA2, PRC1 and CDC20, as potential drug targets in MOC. Three targets (TRIP13, CDC20, CDK1) were validated using known small molecule inhibitors. Our findings demonstrate the utility of our pipeline for identifying new targets and highlight potential new therapeutic options for MOC patients.
Collapse
Affiliation(s)
- Olivia Craig
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Samuel Lee
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Carlton, VIC 3010, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Courtney Pilcher
- School of Science, STEM College, RMIT University, Bundoora, VIC 3082, Australia
| | - Rita Saoud
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Suad Abdirahman
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Carolina Salazar
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Nathan Williams
- St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- School of Science, STEM College, RMIT University, Bundoora, VIC 3082, Australia
| | - David B Ascher
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4067, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Robert Vary
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Jennii Luu
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Karla J Cowley
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Susanne Ramm
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Mark Xiang Li
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Niko Thio
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
| | - Jason Li
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
| | - Tim Semple
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
| | - Kaylene J Simpson
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Kylie L Gorringe
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Jessica K Holien
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Carlton, VIC 3010, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- School of Science, STEM College, RMIT University, Bundoora, VIC 3082, Australia
| |
Collapse
|
12
|
Zheng P, Yang S, Ren D, Zhang X, Bai Q. A Pan-Cancer Analysis of the Oncogenic Role of Methyltransferase-Like 1 in Human Tumors. Neurol India 2024; 72:837-845. [PMID: 39216043 DOI: 10.4103/neurol-india.ni_1354_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/21/2022] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND OBJECT Although emerging cell- or animal-based evidence supports the relationship between methyltransferase-like 1 (METTL1) and cancers, no pan-cancer analysis is available. METHODS We thus first explored the potential oncogenic roles of METTL1 across 33 tumors based on the datasets of The Cancer Genome Atlas and Gene Expression Omnibus. RESULTS METTL1 is highly expressed in most cancers, and distinct associations exist between METTL1 expression and prognosis of tumor patients. METTL1 level is related with the dendritic and B-cell infiltration levels in most tumors. Moreover, RNA processing- and RNA metabolism-associated functions were involved in the functional mechanisms of METTL1. CONCLUSION Our pan-cancer study offers a relatively comprehensive understanding of the oncogenic roles of METTL1 across different tumors.
Collapse
Affiliation(s)
- Ping Zheng
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
- Department of Key Laboratory, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Shunmin Yang
- Department of Key Laboratory, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Dabin Ren
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Xiaoxue Zhang
- Department of Key Laboratory, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Qingke Bai
- Department of Key Laboratory, Shanghai Pudong New Area People's Hospital, Shanghai, China
| |
Collapse
|
13
|
Peng W, Fu J, Zhou L, Duan H. METTL1/FOXM1 promotes lung adenocarcinoma progression and gefitinib resistance by inhibiting PTPN13 expression. Cancer Med 2024; 13:e7420. [PMID: 38967523 PMCID: PMC11225164 DOI: 10.1002/cam4.7420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/17/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024] Open
Abstract
INTRODUCTION Lung adenocarcinoma (LUAD) is the most common malignant tumor in respiratory system. Methyltransferase-like 1 (METTL1) is a driver of m7G modification in mRNA. This study aimed to demonstrate the role of METTL1 in the proliferation, invasion and Gefitinib-resistance of LUAD. METHODS Public datasets were downloaded from the Gene Expression Profiling Interactive Analysis (GEPIA) and GSE31210 datasets. Malignant tumor phenotypes were tested in vitro and in vivo through biological function assays and nude mouse with xenograft tumors. RNA immunoprecipitation assays were conducted to determine the interaction between METTL1 protein and FOXM1 mRNA. Public transcriptional database, Chromatin immunoprecipitation and luciferase report assays were conducted to detect the downstream target of a transcriptional factor FOXM1. Half maximal inhibitory concentration (IC50) was calculated to evaluate the sensitivity to Gefitinib in LUAD cells. RESULTS The results showed that METTL1 was upregulated in LUAD, and the high expression of METTL1 was associated with unfavorable prognosis. Through the m7G-dependent manner, METTL1 improved the RNA stability of FOXM1, leading to the up-regulation of FOXM1. FOXM1 transcriptionally suppressed PTPN13 expression. The METTL1/FOXM1/PTPN13 axis reduced the sensitivity of LUAD cells to Gefitinib. Taken together, our data suggested that METTL1 plays oncogenic role in LUAD through inducing the m7G modification of FOXM1, therefore METTL1 probably is a new potential therapeutic target to counteract Gefitinib resistance in LUAD.
Collapse
Affiliation(s)
- Wei Peng
- Department of Oncology, Hunan Provincial People's HospitalThe First Affiliated of Human Normal UniversityChangshaHunanChina
- Key Laboratory of Study and Discovey of Small Targeted Molecules of Hunan ProvinceHunan Normal UniversityChangshaHunanChina
- Laboratory of Oncology, Institute of Translational MedicineHunan Procincial People's HospitalChangshaHunanChina
| | - Jia Fu
- Department of Oncology, Hunan Provincial People's HospitalThe First Affiliated of Human Normal UniversityChangshaHunanChina
| | - Lijun Zhou
- Department of Oncology, Hunan Provincial People's HospitalThe First Affiliated of Human Normal UniversityChangshaHunanChina
| | - Huaxin Duan
- Department of Oncology, Hunan Provincial People's HospitalThe First Affiliated of Human Normal UniversityChangshaHunanChina
- Key Laboratory of Study and Discovey of Small Targeted Molecules of Hunan ProvinceHunan Normal UniversityChangshaHunanChina
- Laboratory of Oncology, Institute of Translational MedicineHunan Procincial People's HospitalChangshaHunanChina
| |
Collapse
|
14
|
Lv X, Zhang R, Li S, Jin X. tRNA Modifications and Dysregulation: Implications for Brain Diseases. Brain Sci 2024; 14:633. [PMID: 39061374 PMCID: PMC11274612 DOI: 10.3390/brainsci14070633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Transfer RNAs (tRNAs) are well-known for their essential function in protein synthesis. Recent research has revealed a diverse range of chemical modifications that tRNAs undergo, which are crucial for various cellular processes. These modifications are necessary for the precise and efficient translation of proteins and also play important roles in gene expression regulation and cellular stress response. This review examines the role of tRNA modifications and dysregulation in the pathophysiology of various brain diseases, including epilepsy, stroke, neurodevelopmental disorders, brain tumors, Alzheimer's disease, and Parkinson's disease. Through a comprehensive analysis of existing research, our study aims to elucidate the intricate relationship between tRNA dysregulation and brain diseases. This underscores the critical need for ongoing exploration in this field and provides valuable insights that could facilitate the development of innovative diagnostic tools and therapeutic approaches, ultimately improving outcomes for individuals grappling with complex neurological conditions.
Collapse
Affiliation(s)
- Xinxin Lv
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| | - Ruorui Zhang
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - Shanshan Li
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| | - Xin Jin
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| |
Collapse
|
15
|
Li G, Yao Q, Liu P, Zhang H, Liu Y, Li S, Shi Y, Li Z, Zhu W. Critical roles and clinical perspectives of RNA methylation in cancer. MedComm (Beijing) 2024; 5:e559. [PMID: 38721006 PMCID: PMC11077291 DOI: 10.1002/mco2.559] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 01/06/2025] Open
Abstract
RNA modification, especially RNA methylation, is a critical posttranscriptional process influencing cellular functions and disease progression, accounting for over 60% of all RNA modifications. It plays a significant role in RNA metabolism, affecting RNA processing, stability, and translation, thereby modulating gene expression and cell functions essential for proliferation, survival, and metastasis. Increasing studies have revealed the disruption in RNA metabolism mediated by RNA methylation has been implicated in various aspects of cancer progression, particularly in metabolic reprogramming and immunity. This disruption of RNA methylation has profound implications for tumor growth, metastasis, and therapy response. Herein, we elucidate the fundamental characteristics of RNA methylation and their impact on RNA metabolism and gene expression. We highlight the intricate relationship between RNA methylation, cancer metabolic reprogramming, and immunity, using the well-characterized phenomenon of cancer metabolic reprogramming as a framework to discuss RNA methylation's specific roles and mechanisms in cancer progression. Furthermore, we explore the potential of targeting RNA methylation regulators as a novel approach for cancer therapy. By underscoring the complex mechanisms by which RNA methylation contributes to cancer progression, this review provides a foundation for developing new prognostic markers and therapeutic strategies aimed at modulating RNA methylation in cancer treatment.
Collapse
Affiliation(s)
- Ganglei Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Qinfan Yao
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Peixi Liu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Hongfei Zhang
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Yingjun Liu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Sichen Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Yuan Shi
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Zongze Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Wei Zhu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| |
Collapse
|
16
|
Han M, Huang Q, Li X, Chen X, Zhu H, Pan Y, Zhang B. M7G-related tumor immunity: novel insights of RNA modification and potential therapeutic targets. Int J Biol Sci 2024; 20:1238-1255. [PMID: 38385078 PMCID: PMC10878144 DOI: 10.7150/ijbs.90382] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024] Open
Abstract
RNA modifications play a pivotal role in regulating cellular biology by exerting influence over distribution features and molecular functions at the post-transcriptional level. Among these modifications, N7-methylguanosine (m7G) stands out as one of the most prevalent. Over recent years, significant attention has been directed towards understanding the implications of m7G modification. This modification is present in diverse RNA molecules, including transfer RNAs, messenger RNAs, ribosomal RNAs, and other noncoding RNAs. Its regulation occurs through a series of specific methyltransferases and m7G-binding proteins. Notably, m7G modification has been implicated in various diseases, prominently across multiple cancer types. Earlier studies have elucidated the significance of m7G modification in the context of immune biology regulation within the tumor microenvironment. This comprehensive review culminates in a synthesis of findings related to the modulation of immune cells infiltration, encompassing T cells, B cells, and various innate immune cells, all orchestrated by m7G modification. Furthermore, the interplay between m7G modification and its regulatory proteins can profoundly affect the efficacy of diverse adjuvant therapeutics, thereby potentially serving as a pivotal biomarker and therapeutic target for combinatory interventions in diverse cancer types.
Collapse
Affiliation(s)
- Mengzhen Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China
| | - Qibo Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China
| | - Xinxin Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China
| | - He Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China
| | - Yonglong Pan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China
| |
Collapse
|
17
|
Chen Y, Jiang Z, Yang Y, Zhang C, Liu H, Wan J. The functions and mechanisms of post-translational modification in protein regulators of RNA methylation: Current status and future perspectives. Int J Biol Macromol 2023; 253:126773. [PMID: 37690652 DOI: 10.1016/j.ijbiomac.2023.126773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
RNA methylation, an epigenetic modification that does not alter gene sequence, may be important to diverse biological processes. Protein regulators of RNA methylation include "writers," "erasers," and "readers," which respectively deposit, remove, and recognize methylated RNA. RNA methylation, particularly N6-methyladenosine (m6A), 5-methylcytosine (m5C), N3-methylcytosine (m3C), N1-methyladenosine (m1A) and N7-methylguanosine (m7G), has been suggested as disease therapeutic targets. Despite advances in the structure and pharmacology of RNA methylation regulators that have improved drug discovery, regulating these proteins by various post-translational modifications (PTMs) has received little attention. PTM modifies protein structure and function, affecting all aspects of normal biology and pathogenesis, including immunology, cell differentiation, DNA damage repair, and tumors. It is becoming evident that RNA methylation regulators are also regulated by diverse PTMs. PTM of RNA methylation regulators induces their covalent linkage to new functional groups, hence modifying their activity and function. Mass spectrometry has identified many PTMs on protein regulators of RNA methylation. In this review, we describe the functions and PTM of protein regulators of RNA methylation and summarize the recent advances in the regulatory mode of human disease and its underlying mechanisms.
Collapse
Affiliation(s)
- Youming Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zuli Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenxing Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyang Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
18
|
Zhang X, Zhu WY, Shen SY, Shen JH, Chen XD. Biological roles of RNA m7G modification and its implications in cancer. Biol Direct 2023; 18:58. [PMID: 37710294 PMCID: PMC10500781 DOI: 10.1186/s13062-023-00414-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
M7G modification, known as one of the common post-transcriptional modifications of RNA, is present in many different types of RNAs. With the accurate identification of m7G modifications within RNAs, their functional roles in the regulation of gene expression and different physiological functions have been revealed. In addition, there is growing evidence that m7G modifications are crucial in the emergence of cancer. Here, we review the most recent findings regarding the detection techniques, distribution, biological functions and Regulators of m7G. We also summarize the connections between m7G modifications and cancer development, drug resistance, and tumor microenvironment as well as we discuss the research's future directions and trends.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Wen-Yan Zhu
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Shu-Yi Shen
- Department of Dermatology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jia-Hao Shen
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Xiao-Dong Chen
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
| |
Collapse
|
19
|
Qiu L, Jing Q, Li Y, Han J. RNA modification: mechanisms and therapeutic targets. MOLECULAR BIOMEDICINE 2023; 4:25. [PMID: 37612540 PMCID: PMC10447785 DOI: 10.1186/s43556-023-00139-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
RNA modifications are dynamic and reversible chemical modifications on substrate RNA that are regulated by specific modifying enzymes. They play important roles in the regulation of many biological processes in various diseases, such as the development of cancer and other diseases. With the help of advanced sequencing technologies, the role of RNA modifications has caught increasing attention in human diseases in scientific research. In this review, we briefly summarized the basic mechanisms of several common RNA modifications, including m6A, m5C, m1A, m7G, Ψ, A-to-I editing and ac4C. Importantly, we discussed their potential functions in human diseases, including cancer, neurological disorders, cardiovascular diseases, metabolic diseases, genetic and developmental diseases, as well as immune disorders. Through the "writing-erasing-reading" mechanisms, RNA modifications regulate the stability, translation, and localization of pivotal disease-related mRNAs to manipulate disease development. Moreover, we also highlighted in this review all currently available RNA-modifier-targeting small molecular inhibitors or activators, most of which are designed against m6A-related enzymes, such as METTL3, FTO and ALKBH5. This review provides clues for potential clinical therapy as well as future study directions in the RNA modification field. More in-depth studies on RNA modifications, their roles in human diseases and further development of their inhibitors or activators are needed for a thorough understanding of epitranscriptomics as well as diagnosis, treatment, and prognosis of human diseases.
Collapse
Affiliation(s)
- Lei Qiu
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Qian Jing
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yanbo Li
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| |
Collapse
|
20
|
Qi YN, Liu Z, Hong LL, Li P, Ling ZQ. Methyltransferase-like proteins in cancer biology and potential therapeutic targeting. J Hematol Oncol 2023; 16:89. [PMID: 37533128 PMCID: PMC10394802 DOI: 10.1186/s13045-023-01477-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Abstract
RNA modification has recently become a significant process of gene regulation, and the methyltransferase-like (METTL) family of proteins plays a critical role in RNA modification, methylating various types of RNAs, including mRNA, tRNA, microRNA, rRNA, and mitochondrial RNAs. METTL proteins consist of a unique seven-beta-strand domain, which binds to the methyl donor SAM to catalyze methyl transfer. The most typical family member METTL3/METTL14 forms a methyltransferase complex involved in N6-methyladenosine (m6A) modification of RNA, regulating tumor proliferation, metastasis and invasion, immunotherapy resistance, and metabolic reprogramming of tumor cells. METTL1, METTL4, METTL5, and METTL16 have also been recently identified to have some regulatory ability in tumorigenesis, and the rest of the METTL family members rely on their methyltransferase activity for methylation of different nucleotides, proteins, and small molecules, which regulate translation and affect processes such as cell differentiation and development. Herein, we summarize the literature on METTLs in the last three years to elucidate their roles in human cancers and provide a theoretical basis for their future use as potential therapeutic targets.
Collapse
Affiliation(s)
- Ya-Nan Qi
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Zhu Liu
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China
| | - Lian-Lian Hong
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China
| | - Pei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, P.R. China.
| | - Zhi-Qiang Ling
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China.
| |
Collapse
|
21
|
García-Vílchez R, Añazco-Guenkova AM, Dietmann S, López J, Morón-Calvente V, D'Ambrosi S, Nombela P, Zamacola K, Mendizabal I, García-Longarte S, Zabala-Letona A, Astobiza I, Fernández S, Paniagua A, Miguel-López B, Marchand V, Alonso-López D, Merkel A, García-Tuñón I, Ugalde-Olano A, Loizaga-Iriarte A, Lacasa-Viscasillas I, Unda M, Azkargorta M, Elortza F, Bárcena L, Gonzalez-Lopez M, Aransay AM, Di Domenico T, Sánchez-Martín MA, De Las Rivas J, Guil S, Motorin Y, Helm M, Pandolfi PP, Carracedo A, Blanco S. METTL1 promotes tumorigenesis through tRNA-derived fragment biogenesis in prostate cancer. Mol Cancer 2023; 22:119. [PMID: 37516825 PMCID: PMC10386714 DOI: 10.1186/s12943-023-01809-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 06/17/2023] [Indexed: 07/31/2023] Open
Abstract
Newly growing evidence highlights the essential role that epitranscriptomic marks play in the development of many cancers; however, little is known about the role and implications of altered epitranscriptome deposition in prostate cancer. Here, we show that the transfer RNA N7-methylguanosine (m7G) transferase METTL1 is highly expressed in primary and advanced prostate tumours. Mechanistically, we find that METTL1 depletion causes the loss of m7G tRNA methylation and promotes the biogenesis of a novel class of small non-coding RNAs derived from 5'tRNA fragments. 5'tRNA-derived small RNAs steer translation control to favour the synthesis of key regulators of tumour growth suppression, interferon pathway, and immune effectors. Knockdown of Mettl1 in prostate cancer preclinical models increases intratumoural infiltration of pro-inflammatory immune cells and enhances responses to immunotherapy. Collectively, our findings reveal a therapeutically actionable role of METTL1-directed m7G tRNA methylation in cancer cell translation control and tumour biology.
Collapse
Affiliation(s)
- Raquel García-Vílchez
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Ana M Añazco-Guenkova
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Sabine Dietmann
- Washington University School of Medicine in St. Louis, 660S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Judith López
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Virginia Morón-Calvente
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Silvia D'Ambrosi
- Present Address: Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 Bld, 48160, Derio, Bizkaia, Spain
| | - Paz Nombela
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Kepa Zamacola
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 Bld, 48160, Derio, Bizkaia, Spain
| | - Isabel Mendizabal
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 Bld, 48160, Derio, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, 48011, Bilbao, Spain
| | - Saioa García-Longarte
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 Bld, 48160, Derio, Bizkaia, Spain
| | - Amaia Zabala-Letona
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 Bld, 48160, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ianire Astobiza
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 Bld, 48160, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Sonia Fernández
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 Bld, 48160, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Alejandro Paniagua
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain
| | - Borja Miguel-López
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Virginie Marchand
- Université de Lorraine, UAR2008 IBSLor CNRS-UL-INSERM, Biopôle UL, 9, Avenue de La Forêt de Haye, 54505, Vandoeuvre-Les-Nancy, France
| | - Diego Alonso-López
- Bioinformatics Unit, Cancer Research Center (CIC-IBMCC, CSIC/USAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), 37007, Salamanca, Spain
| | - Angelika Merkel
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Barcelona, Catalonia, Spain
- Germans Trias I Pujol Health Science Research Institute, Badalona, 08916, Barcelona, Catalonia, Spain
| | - Ignacio García-Tuñón
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain
| | | | - Ana Loizaga-Iriarte
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Urology, Basurto University Hospital, 48013, Bilbao, Spain
- Traslational Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, Avenida Montevideo 18, 48013, Bilbao, Spain
| | | | - Miguel Unda
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Urology, Basurto University Hospital, 48013, Bilbao, Spain
- Traslational Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, Avenida Montevideo 18, 48013, Bilbao, Spain
| | - Mikel Azkargorta
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 Bld, 48160, Derio, Bizkaia, Spain
- Carlos III Networked Proteomics Platform (ProteoRed-ISCIII), Madrid, Spain
| | - Félix Elortza
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 Bld, 48160, Derio, Bizkaia, Spain
- Carlos III Networked Proteomics Platform (ProteoRed-ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Laura Bárcena
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 Bld, 48160, Derio, Bizkaia, Spain
| | - Monika Gonzalez-Lopez
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 Bld, 48160, Derio, Bizkaia, Spain
| | - Ana M Aransay
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 Bld, 48160, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Tomás Di Domenico
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Manuel A Sánchez-Martín
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
- Servicio de Transgénesis, Nucleus, Universidad de Salamanca, 37007, Salamanca, Spain
| | - Javier De Las Rivas
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain
| | - Sònia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Barcelona, Catalonia, Spain
- Germans Trias I Pujol Health Science Research Institute, Badalona, 08916, Barcelona, Catalonia, Spain
| | - Yuri Motorin
- Université de Lorraine, UAR2008 IBSLor CNRS-UL-INSERM, Biopôle UL, 9, Avenue de La Forêt de Haye, 54505, Vandoeuvre-Les-Nancy, France
- Université de Lorraine, UMR7365 IMoPA CNRS-UL, Biopôle UL, 9, Avenue de La Forêt de Haye, 54505, Vandoeuvre-Les-Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Pier Paolo Pandolfi
- Molecular Biotechnology Center (MBC), Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126, Turin, TO, Italy
- William N. Pennington Cancer Center, Renown Health, Nevada System of Higher Education, Reno, NV, 89502, USA
| | - Arkaitz Carracedo
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 Bld, 48160, Derio, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, 48011, Bilbao, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Pathology, Basurto University Hospital, 48013, Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080, Bilbao, Spain
| | - Sandra Blanco
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain.
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 Bld, 48160, Derio, Bizkaia, Spain.
| |
Collapse
|
22
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
23
|
Kapinova A, Mazurakova A, Halasova E, Dankova Z, Büsselberg D, Costigliola V, Golubnitschaja O, Kubatka P. Underexplored reciprocity between genome-wide methylation status and long non-coding RNA expression reflected in breast cancer research: potential impacts for the disease management in the framework of 3P medicine. EPMA J 2023; 14:249-273. [PMID: 37275549 PMCID: PMC10236066 DOI: 10.1007/s13167-023-00323-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
Breast cancer (BC) is the most common female malignancy reaching a pandemic scale worldwide. A comprehensive interplay between genetic alterations and shifted epigenetic regions synergistically leads to disease development and progression into metastatic BC. DNA and histones methylations, as the most studied epigenetic modifications, represent frequent and early events in the process of carcinogenesis. To this end, long non-coding RNAs (lncRNAs) are recognized as potent epigenetic modulators in pathomechanisms of BC by contributing to the regulation of DNA, RNA, and histones' methylation. In turn, the methylation status of DNA, RNA, and histones can affect the level of lncRNAs expression demonstrating the reciprocity of mechanisms involved. Furthermore, lncRNAs might undergo methylation in response to actual medical conditions such as tumor development and treated malignancies. The reciprocity between genome-wide methylation status and long non-coding RNA expression levels in BC remains largely unexplored. Since the bio/medical research in the area is, per evidence, strongly fragmented, the relevance of this reciprocity for BC development and progression has not yet been systematically analyzed. Contextually, the article aims at:consolidating the accumulated knowledge on both-the genome-wide methylation status and corresponding lncRNA expression patterns in BC andhighlighting the potential benefits of this consolidated multi-professional approach for advanced BC management. Based on a big data analysis and machine learning for individualized data interpretation, the proposed approach demonstrates a great potential to promote predictive diagnostics and targeted prevention in the cost-effective primary healthcare (sub-optimal health conditions and protection against the health-to-disease transition) as well as advanced treatment algorithms tailored to the individualized patient profiles in secondary BC care (effective protection against metastatic disease). Clinically relevant examples are provided, including mitochondrial health control and epigenetic regulatory mechanisms involved.
Collapse
Affiliation(s)
- Andrea Kapinova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Erika Halasova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Zuzana Dankova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | | | - Olga Golubnitschaja
- Predictive, Preventive, and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| |
Collapse
|
24
|
Sivakumar S, Jin DX, Rathod R, Ross J, Cantley LC, Scaltriti M, Chen JW, Hutchinson KE, Wilson TR, Sokol ES, Vasan N. Genetic Heterogeneity and Tissue-specific Patterns of Tumors with Multiple PIK3CA Mutations. Clin Cancer Res 2023; 29:1125-1136. [PMID: 36595567 PMCID: PMC10011881 DOI: 10.1158/1078-0432.ccr-22-2270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
PURPOSE To comprehensively characterize tissue-specific and molecular subclasses of multiple PIK3CA (multi-PIK3CA) mutations and assess their impact on potential therapeutic outcomes. EXPERIMENTAL DESIGN We profiled a pan-cancer cohort comprised of 352,392 samples across 66 tumor types using a targeted hybrid capture-based next-generation sequencing panel covering at least 324 cancer-related genes. Molecularly defined subgroups, allelic configuration, clonality, and mutational signatures were identified and tested for association with PI3K inhibitor therapeutic response. RESULTS Multi-PIK3CA mutations are found in 11% of all PIK3CA-mutant tumors, including 9% of low tumor mutational burden (TMB) PIK3CA-mutant tumors, and are enriched in breast and gynecologic cancers. Multi-PIK3CA mutations are frequently clonal and in cis on the same allele and occur at characteristic positions across tumor types. These mutations tend to be mutually exclusive of mutations in other driver genes, and of genes in the PI3K pathway. Among PIK3CA-mutant tumors with a high TMB, 18% are multi-PIK3CA mutant and often harbor an apolipoprotein B mRNA-editing enzyme, catalytic polypeptide (APOBEC) mutational signature. Despite large differences in specific allele combinations comprising multi-PIK3CA mutant tumors, especially across cancer types, patients with different classes of multi-PIK3CA mutant estrogen receptor-positive, HER2-negative breast cancers respond similarly to PI3K inhibition. CONCLUSIONS Our pan-tumor study provides biological insights into the genetic heterogeneity and tissue specificities of multi-PIK3CA mutations, with potential clinical utility to guide PI3K inhibition strategies.
Collapse
Affiliation(s)
| | | | - Ruchita Rathod
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, New York
| | - Jeffrey Ross
- Foundation Medicine, Cambridge, Massachusetts.,Departments of Pathology and Urology, Upstate Medical University, Syracuse, New York
| | | | | | - Jessica W Chen
- Oncology Biomarker Development, Genentech, South San Francisco, California
| | | | - Timothy R Wilson
- Oncology Biomarker Development, Genentech, South San Francisco, California
| | | | - Neil Vasan
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
25
|
Barraud P, Tisné C. Cracking the case of m 7G modification in human tRNAs. Nat Struct Mol Biol 2023; 30:242-243. [PMID: 36922621 DOI: 10.1038/s41594-023-00937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Pierre Barraud
- Microbial Gene Expression Unit, Institute of Physico-Chemical Biology (IBPC), Centre National de la Recherche Scientifique, Université Paris Cité, Paris, France
| | - Carine Tisné
- Microbial Gene Expression Unit, Institute of Physico-Chemical Biology (IBPC), Centre National de la Recherche Scientifique, Université Paris Cité, Paris, France.
| |
Collapse
|
26
|
Xia X, Wang Y, Zheng JC. Internal m7G methylation: A novel epitranscriptomic contributor in brain development and diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:295-308. [PMID: 36726408 PMCID: PMC9883147 DOI: 10.1016/j.omtn.2023.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In recent years, N7-methylguanosine (m7G) methylation, originally considered as messenger RNA (mRNA) 5' caps modifications, has been identified at defined internal positions within multiple types of RNAs, including transfer RNAs, ribosomal RNAs, miRNA, and mRNAs. Scientists have put substantial efforts to discover m7G methyltransferases and methylated sites in RNAs to unveil the essential roles of m7G modifications in the regulation of gene expression and determine the association of m7G dysregulation in various diseases, including neurological disorders. Here, we review recent findings regarding the distribution, abundance, biogenesis, modifiers, and functions of m7G modifications. We also provide an up-to-date summary of m7G detection and profile mapping techniques, databases for validated and predicted m7G RNA sites, and web servers for m7G methylation prediction. Furthermore, we discuss the pathological roles of METTL1/WDR-driven m7G methylation in neurological disorders. Last, we outline a roadmap for future directions and trends of m7G modification research, particularly in the central nervous system.
Collapse
Affiliation(s)
- Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai 200331, China,Corresponding author: Xiaohuan Xia, Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200065, China.
| | - Yi Wang
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai 200331, China,Translational Research Center, Shanghai Yangzhi Rehabilitation Hospital affiliated to Tongji University School of Medicine, Shanghai 201613, China
| | - Jialin C. Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai 200331, China,Corresponding author: Jialin C. Zheng, Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200065, China.
| |
Collapse
|
27
|
Ruiz-Arroyo VM, Raj R, Babu K, Onolbaatar O, Roberts PH, Nam Y. Structures and mechanisms of tRNA methylation by METTL1-WDR4. Nature 2023; 613:383-390. [PMID: 36599982 PMCID: PMC9930641 DOI: 10.1038/s41586-022-05565-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/16/2022] [Indexed: 01/06/2023]
Abstract
Specific, regulated modification of RNAs is important for proper gene expression1,2. tRNAs are rich with various chemical modifications that affect their stability and function3,4. 7-Methylguanosine (m7G) at tRNA position 46 is a conserved modification that modulates steady-state tRNA levels to affect cell growth5,6. The METTL1-WDR4 complex generates m7G46 in humans, and dysregulation of METTL1-WDR4 has been linked to brain malformation and multiple cancers7-22. Here we show how METTL1 and WDR4 cooperate to recognize RNA substrates and catalyse methylation. A crystal structure of METTL1-WDR4 and cryo-electron microscopy structures of METTL1-WDR4-tRNA show that the composite protein surface recognizes the tRNA elbow through shape complementarity. The cryo-electron microscopy structures of METTL1-WDR4-tRNA with S-adenosylmethionine or S-adenosylhomocysteine along with METTL1 crystal structures provide additional insights into the catalytic mechanism by revealing the active site in multiple states. The METTL1 N terminus couples cofactor binding with conformational changes in the tRNA, the catalytic loop and the WDR4 C terminus, acting as the switch to activate m7G methylation. Thus, our structural models explain how post-translational modifications of the METTL1 N terminus can regulate methylation. Together, our work elucidates the core and regulatory mechanisms underlying m7G modification by METTL1, providing the framework to understand its contribution to biology and disease.
Collapse
Affiliation(s)
- Victor M Ruiz-Arroyo
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rishi Raj
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kesavan Babu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Otgonbileg Onolbaatar
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Paul H Roberts
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yunsun Nam
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
28
|
Li J, Wang L, Hahn Q, Nowak RP, Viennet T, Orellana EA, Roy Burman SS, Yue H, Hunkeler M, Fontana P, Wu H, Arthanari H, Fischer ES, Gregory RI. Structural basis of regulated m 7G tRNA modification by METTL1-WDR4. Nature 2023; 613:391-397. [PMID: 36599985 PMCID: PMC11179147 DOI: 10.1038/s41586-022-05566-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Chemical modifications of RNA have key roles in many biological processes1-3. N7-methylguanosine (m7G) is required for integrity and stability of a large subset of tRNAs4-7. The methyltransferase 1-WD repeat-containing protein 4 (METTL1-WDR4) complex is the methyltransferase that modifies G46 in the variable loop of certain tRNAs, and its dysregulation drives tumorigenesis in numerous cancer types8-14. Mutations in WDR4 cause human developmental phenotypes including microcephaly15-17. How METTL1-WDR4 modifies tRNA substrates and is regulated remains elusive18. Here we show, through structural, biochemical and cellular studies of human METTL1-WDR4, that WDR4 serves as a scaffold for METTL1 and the tRNA T-arm. Upon tRNA binding, the αC region of METTL1 transforms into a helix, which together with the α6 helix secures both ends of the tRNA variable loop. Unexpectedly, we find that the predicted disordered N-terminal region of METTL1 is part of the catalytic pocket and essential for methyltransferase activity. Furthermore, we reveal that S27 phosphorylation in the METTL1 N-terminal region inhibits methyltransferase activity by locally disrupting the catalytic centre. Our results provide a molecular understanding of tRNA substrate recognition and phosphorylation-mediated regulation of METTL1-WDR4, and reveal the presumed disordered N-terminal region of METTL1 as a nexus of methyltransferase activity.
Collapse
Affiliation(s)
- Jiazhi Li
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Longfei Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Quentin Hahn
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Radosław P Nowak
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Thibault Viennet
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Esteban A Orellana
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Shourya S Roy Burman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hong Yue
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Moritz Hunkeler
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pietro Fontana
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eric S Fischer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Richard I Gregory
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Harvard Initiative for RNA Medicine, Boston, MA, USA.
| |
Collapse
|
29
|
Zhao J, Zou J, Jiao W, Lin L, Wang J, Lin Z. Construction of N-7 methylguanine-related mRNA prognostic model in uterine corpus endometrial carcinoma based on multi-omics data and immune-related analysis. Sci Rep 2022; 12:18813. [PMID: 36335189 PMCID: PMC9637130 DOI: 10.1038/s41598-022-22879-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
N-7 methylguanine (m7G) is one of the most common RNA base modifications in post-transcriptional regulation, which participates in multiple processes such as transcription, mRNA splicing and translation during the mRNA life cycle. However, its expression and prognostic value in uterine corpus endometrial carcinoma (UCEC) have not been systematically studied. In this paper, the data such as gene expression profiles, clinical data of UCEC patients, somatic mutations and copy number variants (CNVs) are obtained from the cancer genome atlas (TCGA) and UCSC Xena. By analyzing the expression differences of m7G-related mRNA in UCEC and plotting the correlation network maps, a risk score model composed of four m7G-related mRNAs (NSUN2, NUDT3, LARP1 and NCBP3) is constructed using least absolute shrinkage and selection operator (LASSO), univariate and multivariate Cox regression in order to identify prognosis and immune response. The correlation of clinical prognosis is analyzed between the m7G-related mRNA and UCEC via Kaplan-Meier method, receiver operating characteristic (ROC) curve, principal component analysis (PCA), t-SNE, decision curve analysis (DCA) curve and nomogram etc. It is concluded that the high risk is significantly correlated with (P < 0.001) the poorer overall survival (OS) in patients with UCEC. It is one of the independent risk factors affecting the OS. Differentially expressed genes are identified by R software in the high and low risk groups. The functional analysis and pathway enrichment analysis have been performed. Single sample gene set enrichment analysis (ssGSEA), immune checkpoints, m6A-related genes, tumor mutation burden (TMB), stem cell correlation, tumor immune dysfunction and rejection (TIDE) scores and drug sensitivity are also used to study the risk model. In addition, we have obtained 3 genotypes based on consensus clustering, which are significantly related to (P < 0.001) the OS and progression-free survival (PFS). The deconvolution algorithm (CIBERSORT) is applied to calculate the proportion of 22 tumor infiltrating immune cells (TIC) in UCEC patients and the estimation algorithm (ESTIMATE) is applied to work out the number of immune and matrix components. In summary, m7G-related mRNA may become a potential biomarker for UCEC prognosis, which may promote UCEC occurrence and development by regulating cell cycles and immune cell infiltration. It is expected to become a potential therapeutic target of UECE.
Collapse
Affiliation(s)
- Junde Zhao
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Jiani Zou
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Wenjian Jiao
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Lidong Lin
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Jiuling Wang
- grid.452402.50000 0004 1808 3430Office of Medical Insurance Management, Qilu Hospital of Shandong University, Jinan, 250012 China
| | - Zhiheng Lin
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| |
Collapse
|
30
|
Abstract
As one of the prevalent posttranscriptional modifications of RNA, N7-methylguanosine (m7G) plays essential roles in RNA processing, metabolism, and function, mainly regulated by the methyltransferase-like 1 (METTL1) and WD repeat domain 4 (WDR4) complex. Emerging evidence suggests that the METTL1/WDR4 complex promoted or inhibited the processes of many tumors, including head and neck, lung, liver, colon, bladder cancer, and teratoma, dependent on close m7G methylation modification of tRNA or microRNA (miRNA). Therefore, METTL1 and m7G modification can be used as biomarkers or potential intervention targets, providing new possibilities for early diagnosis and treatment of tumors. This review will mainly focus on the mechanisms of METTL1/WDR4 via m7G in tumorigenesis and the corresponding detection methods.
Collapse
Affiliation(s)
- Wenli Cheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Aili Gao
- Guangzhou Institution of Dermatology, Guangzhou, Guangdong 510095, P.R. China
| | - Hui Lin
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P. R. China
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
31
|
Feng Q, Wang D, Xue T, Lin C, Gao Y, Sun L, Jin Y, Liu D. The role of RNA modification in hepatocellular carcinoma. Front Pharmacol 2022; 13:984453. [PMID: 36120301 PMCID: PMC9479111 DOI: 10.3389/fphar.2022.984453] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/11/2022] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly mortal type of primary liver cancer. Abnormal epigenetic modifications are present in HCC, and RNA modification is dynamic and reversible and is a key post-transcriptional regulator. With the in-depth study of post-transcriptional modifications, RNA modifications are aberrantly expressed in human cancers. Moreover, the regulators of RNA modifications can be used as potential targets for cancer therapy. In RNA modifications, N6-methyladenosine (m6A), N7-methylguanosine (m7G), and 5-methylcytosine (m5C) and their regulators have important regulatory roles in HCC progression and represent potential novel biomarkers for the confirmation of diagnosis and treatment of HCC. This review focuses on RNA modifications in HCC and the roles and mechanisms of m6A, m7G, m5C, N1-methyladenosine (m1A), N3-methylcytosine (m3C), and pseudouridine (ψ) on its development and maintenance. The potential therapeutic strategies of RNA modifications are elaborated for HCC.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Tianyi Xue
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liqun Sun
- Department of Pediatrics, First Hospital of Jilin University, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Dianfeng Liu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
- *Correspondence: Dianfeng Liu,
| |
Collapse
|
32
|
Dabin R, Wei C, Liang S, Ke C, Zhihan W, Ping Z. Astrocytic IGF-1 and IGF-1R Orchestrate Mitophagy in Traumatic Brain Injury via Exosomal miR-let-7e. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3504279. [PMID: 36062186 PMCID: PMC9433209 DOI: 10.1155/2022/3504279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/16/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022]
Abstract
Defective brain hormonal signaling and autophagy have been associated with neurodegeneration after brain insults, characterized by neuronal loss and cognitive dysfunction. However, few studies have linked them in the context of brain injury. Insulin-like growth factor-1 (IGF-1) is an important hormone that contributes to growth, cell proliferation, and autophagy and is also expressed in the brain. Here, we assessed the clinical data from TBI patients and performed both in vitro and in vivo experiments with proteomic and gene-chip analysis to assess the functions of IGF-1 in mitophagy following TBI. We show that reduced plasma IGF-1 is correlated with cognition in TBI patients. Overexpression of astrocytic IGF-1 improves cognitive dysfunction and mitophagy in TBI mice. Mechanically, proteomics data show that the IGF-1-related NF-κB pathway transcriptionally regulates decapping mRNA2 (Dcp2) and miR-let-7, together with IGF-1R to orchestrate mitophagy in TBI. Finally, we demonstrate that brain injury induces impaired mitophagy at the chronic stage and that IGF-1 treatment could facilitate the mitophagy markers via exosomal miR-let-7e. By showing that IGF-1 is an important mediator of the beneficial effect of the neural-endocrine network in TBI models, our findings place IGF-1/IGF-1R as a potential target capable of noncoding RNAs and opposing mitophagy failure and cognitive impairment in TBI.
Collapse
Affiliation(s)
- Ren Dabin
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Chen Wei
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Shu Liang
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai, China
| | - Cao Ke
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Wang Zhihan
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Zheng Ping
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| |
Collapse
|
33
|
Luo Y, Yao Y, Wu P, Zi X, Sun N, He J. The potential role of N 7-methylguanosine (m7G) in cancer. J Hematol Oncol 2022; 15:63. [PMID: 35590385 PMCID: PMC9118743 DOI: 10.1186/s13045-022-01285-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/07/2022] [Indexed: 02/07/2023] Open
Abstract
N7-methylguanosine (m7G), one of the most prevalent RNA modifications, has recently attracted significant attention. The m7G modification actively participates in biological and pathological functions by affecting the metabolism of various RNA molecules, including messenger RNA, ribosomal RNA, microRNA, and transfer RNA. Increasing evidence indicates a critical role for m7G in human disease development, especially cancer, and aberrant m7G levels are closely associated with tumorigenesis and progression via regulation of the expression of multiple oncogenes and tumor suppressor genes. Currently, the underlying molecular mechanisms of m7G modification in cancer are not comprehensively understood. Here, we review the current knowledge regarding the potential function of m7G modifications in cancer and discuss future m7G-related diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Yuejun Luo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxin Yao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Wu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohui Zi
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. .,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. .,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
34
|
Moroz‐Omori EV, Huang D, Kumar Bedi R, Cheriyamkunnel SJ, Bochenkova E, Dolbois A, Rzeczkowski MD, Li Y, Wiedmer L, Caflisch A. METTL3 Inhibitors for Epitranscriptomic Modulation of Cellular Processes. ChemMedChem 2021; 16:3035-3043. [PMID: 34237194 PMCID: PMC8518639 DOI: 10.1002/cmdc.202100291] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/29/2021] [Indexed: 12/31/2022]
Abstract
The methylase METTL3 is the writer enzyme of the N6 -methyladenosine (m6 A) modification of RNA. Using a structure-based drug discovery approach, we identified a METTL3 inhibitor with potency in a biochemical assay of 280 nM, while its enantiomer is 100 times less active. We observed a dose-dependent reduction in the m6 A methylation level of mRNA in several cell lines treated with the inhibitor already after 16 h of treatment, which lasted for at least 6 days. Importantly, the prolonged incubation (up to 6 days) with the METTL3 inhibitor did not alter levels of other RNA modifications (i. e., m1 A, m6 Am , m7 G), suggesting selectivity of the developed compound towards other RNA methyltransferases.
Collapse
Affiliation(s)
- Elena V. Moroz‐Omori
- Department of BiochemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Danzhi Huang
- Department of BiochemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Rajiv Kumar Bedi
- Department of BiochemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | | | - Elena Bochenkova
- Department of BiochemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Aymeric Dolbois
- Department of BiochemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Maciej D. Rzeczkowski
- Department of BiochemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Yaozong Li
- Department of BiochemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Lars Wiedmer
- Department of BiochemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Amedeo Caflisch
- Department of BiochemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| |
Collapse
|
35
|
Xia P, Zhang H, Xu K, Jiang X, Gao M, Wang G, Liu Y, Yao Y, Chen X, Ma W, Zhang Z, Yuan Y. MYC-targeted WDR4 promotes proliferation, metastasis, and sorafenib resistance by inducing CCNB1 translation in hepatocellular carcinoma. Cell Death Dis 2021; 12:691. [PMID: 34244479 PMCID: PMC8270967 DOI: 10.1038/s41419-021-03973-5] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. However, there still remains a lack of effective diagnostic and therapeutic targets for this disease. Increasing evidence demonstrates that RNA modifications play an important role in the progression of HCC, but the role of the N7-methylguanosine (m7G) methylation modification in HCC has not been properly evaluated. Thus, the goal of the present study was to investigate the function and mechanism of the m7G methyltransferase WD repeat domain 4 (WDR4) in HCC as well as its clinical relevance and potential value. We first verified the high expression of WDR4 in HCC and observed that upregulated WDR4 expression increased the m7G methylation level in HCC. WDR4 promoted HCC cell proliferation by inducing the G2/M cell cycle transition and inhibiting apoptosis in addition to enhancing metastasis and sorafenib resistance through epithelial-mesenchymal transition (EMT). Furthermore, we observed that c-MYC (MYC) can activate WDR4 transcription and that WDR4 promotes CCNB1 mRNA stability and translation to enhance HCC progression. Mechanistically, we determined that WDR4 enhances CCNB1 translation by promoting the binding of EIF2A to CCNB1 mRNA. Furthermore, CCNB1 was observed to promote PI3K and AKT phosphorylation in HCC and reduce P53 protein expression by promoting P53 ubiquitination. In summary, we elucidated the MYC/WDR4/CCNB1 signalling pathway and its impact on PI3K/AKT and P53. Furthermore, the result showed that the m7G methyltransferase WDR4 is a tumour promoter in the development and progression of HCC and may act as a candidate therapeutic target in HCC treatment.
Collapse
Affiliation(s)
- Peng Xia
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430062, Hubei, People's Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430062, Hubei, People's Republic of China
| | - Hao Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430062, Hubei, People's Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430062, Hubei, People's Republic of China
| | - Kequan Xu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430062, Hubei, People's Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430062, Hubei, People's Republic of China
| | - Xiang Jiang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430062, Hubei, People's Republic of China
| | - Meng Gao
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430062, Hubei, People's Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430062, Hubei, People's Republic of China
| | - Ganggang Wang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430062, Hubei, People's Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430062, Hubei, People's Republic of China
| | - Yingyi Liu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430062, Hubei, People's Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430062, Hubei, People's Republic of China
| | - Ye Yao
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430062, Hubei, People's Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430062, Hubei, People's Republic of China
| | - Xi Chen
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430062, Hubei, People's Republic of China
| | - Weijie Ma
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430062, Hubei, People's Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430062, Hubei, People's Republic of China
| | - Zhonglin Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430062, Hubei, People's Republic of China.
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430062, Hubei, People's Republic of China.
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430062, Hubei, People's Republic of China.
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430062, Hubei, People's Republic of China.
| |
Collapse
|
36
|
Zhao Y, Kong L, Pei Z, Li F, Li C, Sun X, Shi B, Ge J. m7G Methyltransferase METTL1 Promotes Post-ischemic Angiogenesis via Promoting VEGFA mRNA Translation. Front Cell Dev Biol 2021; 9:642080. [PMID: 34136476 PMCID: PMC8200671 DOI: 10.3389/fcell.2021.642080] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/06/2021] [Indexed: 12/19/2022] Open
Abstract
Post-transcriptional modifications play pivotal roles in various pathological processes and ischemic disorders. However, the role of N7-methylguanosine (m7G), particularly m7G in mRNA, on post-ischemic angiogenesis remains largely unknown. Here, we identified that methyltransferase like 1 (METTL1) was a critical candidate responsible for a global decrease of m7G within mRNA from the ischemic tissues. The in vivo gene transfer of METTL1 improved blood flow recovery and increased angiogenesis with enhanced mRNA m7G upon post-ischemic injury. Increased METTL1 expression using plasmid transfection in vitro promoted HUVECs proliferation, migration, and tube formation with a global increase of m7G in mRNA. Mechanistically, METTL1 promoted VEGFA mRNA translation in an m7G methylation-dependent manner. Our findings emphasize a critical link between mRNA m7G and ischemia and provide a novel insight of targeting METTL1 in the therapeutic angiogenesis for ischemic disorders, including peripheral arterial disease.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Lingqiu Kong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Zhiqiang Pei
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Fuhai Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Xiaolei Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Junbo Ge
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| |
Collapse
|
37
|
Graille M. Division of labor in epitranscriptomics: What have we learnt from the structures of eukaryotic and viral multimeric RNA methyltransferases? WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1673. [PMID: 34044474 DOI: 10.1002/wrna.1673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
The translation of an mRNA template into the corresponding protein is a highly complex and regulated choreography performed by ribosomes, tRNAs, and translation factors. Most RNAs involved in this process are decorated by multiple chemical modifications (known as epitranscriptomic marks) contributing to the efficiency, the fidelity, and the regulation of the mRNA translation process. Many of these epitranscriptomic marks are written by holoenzymes made of a catalytic subunit associated with an activating subunit. These holoenzymes play critical roles in cell development. Indeed, several mutations being identified in the genes encoding for those proteins are linked to human pathologies such as cancers and intellectual disorders for instance. This review describes the structural and functional properties of RNA methyltransferase holoenzymes, which when mutated often result in brain development pathologies. It illustrates how structurally different activating subunits contribute to the catalytic activity of these holoenzymes through common mechanistic trends that most likely apply to other classes of holoenzymes. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole Polytechnique, IP Paris, Palaiseau Cedex, France
| |
Collapse
|
38
|
Wang C, Wang W, Han X, Du L, Li A, Huang G. Methyltransferase-like 1 regulates lung adenocarcinoma A549 cell proliferation and autophagy via the AKT/mTORC1 signaling pathway. Oncol Lett 2021; 21:330. [PMID: 33692862 PMCID: PMC7933771 DOI: 10.3892/ol.2021.12591] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022] Open
Abstract
Methyltransferase-like 1 (METTL1) is a transfer RNA and microRNA modifying enzyme. However, its role in lung adenocarcinoma (LUAD) remains unknown. The present study aimed to investigate the effect of METTL1 in LUAD and determine the association between METTL1 expression and prognosis of patients with LUAD. The expression profile of METTL1 in LUAD tissues was downloaded from public cancer databases and analyzed using the Gene Expression Profiling Interactive Analysis database and UALCAN online software. In addition, the association between METTL1 expression and prognosis of patients with LUAD was assessed using the Kaplan-Meier Plotter software. The effect of METTL1 in the A549 cell line was determined in vitro via overexpression and knockdown experiments. The results demonstrated that METTL1 was upregulated in LUAD tissues, and its increased expression was associated with unfavorable prognosis. Furthermore, METTL1 promoted proliferation and colony formation of A549 cells, and inhibited autophagy via the AKT/mechanistic target of rapamycin complex 1 signaling pathway. Taken together, the results of the present study suggest that METTL1 acts as an oncogene in LUAD, thus may be a potential prognostic predictor and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Chen Wang
- Laboratory of Respiratory Diseases, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Wei Wang
- Laboratory of Respiratory Diseases, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Xiaodan Han
- Laboratory of Respiratory Diseases, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Longxia Du
- Laboratory of Respiratory Diseases, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Aili Li
- Laboratory of Respiratory Diseases, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Guojin Huang
- Laboratory of Respiratory Diseases, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| |
Collapse
|
39
|
De Zoysa T, Phizicky EM. Hypomodified tRNA in evolutionarily distant yeasts can trigger rapid tRNA decay to activate the general amino acid control response, but with different consequences. PLoS Genet 2020; 16:e1008893. [PMID: 32841241 PMCID: PMC7473580 DOI: 10.1371/journal.pgen.1008893] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/04/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
All tRNAs are extensively modified, and modification deficiency often results in growth defects in the budding yeast Saccharomyces cerevisiae and neurological or other disorders in humans. In S. cerevisiae, lack of any of several tRNA body modifications results in rapid tRNA decay (RTD) of certain mature tRNAs by the 5'-3' exonucleases Rat1 and Xrn1. As tRNA quality control decay mechanisms are not extensively studied in other eukaryotes, we studied trm8Δ mutants in the evolutionarily distant fission yeast Schizosaccharomyces pombe, which lack 7-methylguanosine at G46 (m7G46) of their tRNAs. We report here that S. pombe trm8Δ mutants are temperature sensitive primarily due to decay of tRNATyr(GUA) and that spontaneous mutations in the RAT1 ortholog dhp1+ restored temperature resistance and prevented tRNA decay, demonstrating conservation of the RTD pathway. We also report for the first time evidence linking the RTD and the general amino acid control (GAAC) pathways, which we show in both S. pombe and S. cerevisiae. In S. pombe trm8Δ mutants, spontaneous GAAC mutations restored temperature resistance and tRNA levels, and the trm8Δ temperature sensitivity was precisely linked to GAAC activation due to tRNATyr(GUA) decay. Similarly, in the well-studied S. cerevisiae trm8Δ trm4Δ RTD mutant, temperature sensitivity was closely linked to GAAC activation due to tRNAVal(AAC) decay; however, in S. cerevisiae, GAAC mutations increased tRNA loss and exacerbated temperature sensitivity. A similar exacerbated growth defect occurred upon GAAC mutation in S. cerevisiae trm8Δ and other single modification mutants that triggered RTD. Thus, these results demonstrate a conserved GAAC activation coincident with RTD in S. pombe and S. cerevisiae, but an opposite impact of the GAAC response in the two organisms. We speculate that the RTD pathway and its regulation of the GAAC pathway is widely conserved in eukaryotes, extending to other mutants affecting tRNA body modifications.
Collapse
Affiliation(s)
- Thareendra De Zoysa
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
| | - Eric M. Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
40
|
Wiese M, Bannister AJ. Two genomes, one cell: Mitochondrial-nuclear coordination via epigenetic pathways. Mol Metab 2020; 38:100942. [PMID: 32217072 PMCID: PMC7300384 DOI: 10.1016/j.molmet.2020.01.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Virtually all eukaryotic cells contain spatially distinct genomes, a single nuclear genome that harbours the vast majority of genes and much smaller genomes found in mitochondria present at thousands of copies per cell. To generate a coordinated gene response to various environmental cues, the genomes must communicate with each another. Much of this bi-directional crosstalk relies on epigenetic processes, including DNA, RNA, and histone modification pathways. Crucially, these pathways, in turn depend on many metabolites generated in specific pools throughout the cell, including the mitochondria. They also involve the transport of metabolites as well as the enzymes that catalyse these modifications between nuclear and mitochondrial genomes. SCOPE OF REVIEW This study examines some of the molecular mechanisms by which metabolites influence the activity of epigenetic enzymes, ultimately affecting gene regulation in response to metabolic cues. We particularly focus on the subcellular localisation of metabolite pools and the crosstalk between mitochondrial and nuclear proteins and RNAs. We consider aspects of mitochondrial-nuclear communication involving histone proteins, and potentially their epigenetic marks, and discuss how nuclear-encoded enzymes regulate mitochondrial function through epitranscriptomic pathways involving various classes of RNA molecules within mitochondria. MAJOR CONCLUSIONS Epigenetic communication between nuclear and mitochondrial genomes occurs at multiple levels, ultimately ensuring a coordinated gene expression response between different genetic environments. Metabolic changes stimulated, for example, by environmental factors, such as diet or physical activity, alter the relative abundances of various metabolites, thereby directly affecting the epigenetic machinery. These pathways, coupled to regulated protein and RNA transport mechanisms, underpin the coordinated gene expression response. Their overall importance to the fitness of a cell is highlighted by the identification of many mutations in the pathways we discuss that have been linked to human disease including cancer.
Collapse
Affiliation(s)
- Meike Wiese
- Max-Planck-Institute for Immunobiology und Epigenetics, Department of Chromatin Regulation, Stübeweg 51, 79108, Freiburg im Breisgau, Germany
| | - Andrew J Bannister
- Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
| |
Collapse
|
41
|
Abstract
Specific chemical modifications of biological molecules are an efficient way of regulating molecular function, and a plethora of downstream signalling pathways are influenced by the modification of DNA and proteins. Many of the enzymes responsible for regulating protein and DNA modifications are targets of current cancer therapies. RNA epitranscriptomics, the study of RNA modifications, is the new frontier of this arena. Despite being known since the 1970s, eukaryotic RNA modifications were mostly identified on transfer RNA and ribosomal RNA until the last decade, when they have been identified and characterized on mRNA and various non-coding RNAs. Increasing evidence suggests that RNA modification pathways are also misregulated in human cancers and may be ideal targets of cancer therapy. In this Review we highlight the RNA epitranscriptomic pathways implicated in cancer, describing their biological functions and their connections to the disease.
Collapse
Affiliation(s)
- Isaia Barbieri
- The Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
- Division of Cellular and Molecular Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Tony Kouzarides
- The Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
42
|
Direct activation of tRNA methyltransferase-like 1 (Mettl1) gene by thyroid hormone receptor implicates a role in adult intestinal stem cell development and proliferation during Xenopus tropicalis metamorphosis. Cell Biosci 2020; 10:60. [PMID: 32391142 PMCID: PMC7197180 DOI: 10.1186/s13578-020-00423-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/25/2020] [Indexed: 12/12/2022] Open
Abstract
Background Thyroid hormone (T3) plays an important role in vertebrate development. Compared to the postembryonic development of uterus-enclosed mammalian embryos, T3-dependent amphibian metamorphosis is advantageous for studying the function of T3 and T3 receptors (TRs) during vertebrate development. The effects of T3 on the metamorphosis of anurans such as Xenopus tropicalis is known to be mediated by TRs. Many putative TR target genes have been identified previously. Among them is the tRNA methyltransferase Mettl1. Results We studied the regulation of Mettl1 gene by T3 during intestinal metamorphosis, a process involves near complete degeneration of the larval epithelial cells via apoptosis and de novo formation of adult epithelial stem cells and their subsequent proliferation and differentiation. We observed that Mettl1 was activated by T3 in the intestine during both natural and T3-induced metamorphosis and that its mRNA level peaks at the climax of intestinal remodeling. We further showed that Mettl1 promoter could be activated by liganded TR via a T3 response element upstream of the transcription start site in vivo. More importantly, we found that TR binding to the TRE region correlated with the increase in the level of H3K79 methylation, a transcription activation histone mark, and the recruitment of RNA polymerase II by T3 during metamorphosis. Conclusions Our findings suggest that Mettl1 is activated by liganded TR directly at the transcriptional level via the TRE in the promoter region in the intestine during metamorphosis. Mettl1 in turn regulate target tRNAs to affect translation, thus facilitating stem cell formation and/or proliferation during intestinal remodeling.
Collapse
|
43
|
Boulias K, Greer EL. Put the Pedal to the METTL1: Adding Internal m 7G Increases mRNA Translation Efficiency and Augments miRNA Processing. Mol Cell 2019; 74:1105-1107. [PMID: 31226274 DOI: 10.1016/j.molcel.2019.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Complementary papers by Zhang, Liu, and colleagues (Zhang et al., 2019) and Pandolfini, Barbieri, and colleagues (Pandolfini et al., 2019) develop new sequencing techniques that reveal that METTL1 N7-methylates internal guanosines in mRNAs and miRNAs to increase translation efficiency and miRNA processing, respectively.
Collapse
Affiliation(s)
- Konstantinos Boulias
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Eric Lieberman Greer
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Liu Y, Yang C, Zhao Y, Chi Q, Wang Z, Sun B. Overexpressed methyltransferase-like 1 (METTL1) increased chemosensitivity of colon cancer cells to cisplatin by regulating miR-149-3p/S100A4/p53 axis. Aging (Albany NY) 2019; 11:12328-12344. [PMID: 31866582 PMCID: PMC6949057 DOI: 10.18632/aging.102575] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/24/2019] [Indexed: 11/25/2022]
Abstract
Methyltransferase-like 1 (METTL1) mediated 7-methylguanosine (m7G) is crucial for the regulation of chemoresistance in cancer treatment. However, the role of METTL1 in regulating chemoresistance of colon cancer (CC) cells to cisplatin is still unclear. This study established the cisplatin-resistant CC (CR-CC) cells and found that METTL1 was low-expressed in CR-CC cells compared to their paired cisplatin-sensitive CC (CS-CC) cells. Besides, overexpressed METTL1 enhanced the cytotoxic effects of cisplatin on CR-CC cells. In addition, miR-149-3p was the downstream target of METTL1, which could be positively regulated by METTL1. Further results validated that miR-149-3p was low-expressed in CR-CC cells comparing to the CS-CC cells. In addition, the promoting effects of overexpressed METTL1 on cisplatin induced CR-CC cell death were abrogated by synergistically knocking down miR-149-3p. Furthermore, S100A4/p53 axis was the downstream target of METTL1 and miR-149-3p, and either overexpressed METTL1 or miR-149-3p increased p53 protein levels in CR-CC cells, which were reversed by upregulating S100A4. Similarly, the promoting effects of overexpressed METTL1 on cisplatin-induced CR-CC cell death were abrogated by overexpressing S100A4. Taken together, overexpression of METTL1 sensitized CR-CC cells to cisplatin by modulating miR-149-3p/S100A4/p53 axis.
Collapse
Affiliation(s)
- Yang Liu
- The 3rd Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilong Jiang, China
| | - Chunyan Yang
- Department of Oral and Maxillofacial Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilong Jiang, China
| | - Yong Zhao
- The 3rd Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilong Jiang, China
| | - Qiang Chi
- The 3rd Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilong Jiang, China
| | - Zhen Wang
- The 3rd Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilong Jiang, China
| | - Boshi Sun
- The 3rd Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilong Jiang, China
| |
Collapse
|
45
|
Thongdee N, Jaroensuk J, Atichartpongkul S, Chittrakanwong J, Chooyoung K, Srimahaeak T, Chaiyen P, Vattanaviboon P, Mongkolsuk S, Fuangthong M. TrmB, a tRNA m7G46 methyltransferase, plays a role in hydrogen peroxide resistance and positively modulates the translation of katA and katB mRNAs in Pseudomonas aeruginosa. Nucleic Acids Res 2019; 47:9271-9281. [PMID: 31428787 PMCID: PMC6755087 DOI: 10.1093/nar/gkz702] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 07/13/2019] [Accepted: 08/06/2019] [Indexed: 11/14/2022] Open
Abstract
Cellular response to oxidative stress is a crucial mechanism that promotes the survival of Pseudomonas aeruginosa during infection. However, the translational regulation of oxidative stress response remains largely unknown. Here, we reveal a tRNA modification-mediated translational response to H2O2 in P. aeruginosa. We demonstrated that the P. aeruginosa trmB gene encodes a tRNA guanine (46)-N7-methyltransferase that catalyzes the formation of m7G46 in the tRNA variable loop. Twenty-three tRNA substrates of TrmB with a guanosine residue at position 46 were identified, including 11 novel tRNA substrates. We showed that loss of trmB had a strong negative effect on the translation of Phe- and Asp-enriched mRNAs. The trmB-mediated m7G modification modulated the expression of the catalase genes katA and katB, which are enriched with Phe/Asp codons at the translational level. In response to H2O2 exposure, the level of m7G modification increased, consistent with the increased translation efficiency of Phe- and Asp-enriched mRNAs. Inactivation of trmB led to decreased KatA and KatB protein abundance and decreased catalase activity, resulting in H2O2-sensitive phenotype. Taken together, our observations reveal a novel role of m7G46 tRNA modification in oxidative stress response through translational regulation of Phe- and Asp-enriched genes, such as katA and katB.
Collapse
Affiliation(s)
- Narumon Thongdee
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Juthamas Jaroensuk
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.,School of Biomolecular Sciences and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand
| | | | - Jurairat Chittrakanwong
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Kamonchanok Chooyoung
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Thanyaporn Srimahaeak
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Sciences and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand
| | - Paiboon Vattanaviboon
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Mayuree Fuangthong
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| |
Collapse
|
46
|
Shi Z, Xu S, Xing S, Yao K, Zhang L, Xue L, Zhou P, Wang M, Yan G, Yang P, Liu J, Hu Z, Lan F. Mettl17, a regulator of mitochondrial ribosomal RNA modifications, is required for the translation of mitochondrial coding genes. FASEB J 2019; 33:13040-13050. [PMID: 31487196 DOI: 10.1096/fj.201901331r] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Embryonic stem cells (ESCs) are pluripotent stem cells with the ability to self-renew and to differentiate into any cell types of the 3 germ layers. Recent studies have demonstrated that there is a strong connection between mitochondrial function and pluripotency. Here, we report that methyltransferase like (Mettl) 17, identified from the clustered regularly interspaced short palindromic repeats knockout screen, is required for proper differentiation of mouse embryonic stem cells (mESCs). Mettl17 is located in mitochondria through its N-terminal targeting sequence and specifically interacts with 12S mitochondrial ribosomal RNA (mt-rRNA) as well as small subunits of mitochondrial ribosome (MSSUs). Loss of Mettl17 affects the stability of both 12S mt-rRNA and its associated proteins of MSSUs. We further showed that Mettl17 is an S-adenosyl methionine (SAM)-binding protein and regulates mitochondrial ribosome function in a SAM-binding-dependent manner. Loss of Mettl17 leads to around 70% reduction of m4C840 and 50% reduction of m5C842 of 12S mt-rRNA, revealing the first regulator of the m4C840 and indicating a crosstalk between the 2 nearby modifications. The defects of mitochondrial ribosome caused by deletion of Mettl17 lead to the impaired translation of mitochondrial protein-coding genes, resulting in significant changes in mitochondrial oxidative phosphorylation and cellular metabolome, which are important for mESC pluripotency.-Shi, Z., Xu, S., Xing, S., Yao, K., Zhang, L., Xue, L., Zhou, P., Wang, M., Yan, G., Yang, P., Liu, J., Hu, Z., Lan, F. Mettl17, a regulator of mitochondrial ribosomal RNA modifications, is required for the translation of mitochondrial coding genes.
Collapse
Affiliation(s)
- Zhennan Shi
- Key Laboratory of Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Siyuan Xu
- Key Laboratory of Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shenghui Xing
- Key Laboratory of Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ke Yao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Lei Zhang
- Institutes of Biomedical Sciences and Department of Systems Biology for Medicine, Basic Medical College, Fudan University, Shanghai, China
| | - Luxi Xue
- Key Laboratory of Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Zhou
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ming Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guoquan Yan
- Institutes of Biomedical Sciences and Department of Systems Biology for Medicine, Basic Medical College, Fudan University, Shanghai, China
| | - Pengyuan Yang
- Institutes of Biomedical Sciences and Department of Systems Biology for Medicine, Basic Medical College, Fudan University, Shanghai, China
| | - Jing Liu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Fei Lan
- Key Laboratory of Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
47
|
METTL1 overexpression is correlated with poor prognosis and promotes hepatocellular carcinoma via PTEN. J Mol Med (Berl) 2019; 97:1535-1545. [DOI: 10.1007/s00109-019-01830-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 12/24/2022]
|
48
|
Pandolfini L, Barbieri I, Bannister AJ, Hendrick A, Andrews B, Webster N, Murat P, Mach P, Brandi R, Robson SC, Migliori V, Alendar A, d'Onofrio M, Balasubramanian S, Kouzarides T. METTL1 Promotes let-7 MicroRNA Processing via m7G Methylation. Mol Cell 2019; 74:1278-1290.e9. [PMID: 31031083 PMCID: PMC6591002 DOI: 10.1016/j.molcel.2019.03.040] [Citation(s) in RCA: 332] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 03/06/2019] [Accepted: 03/27/2019] [Indexed: 12/21/2022]
Abstract
7-methylguanosine (m7G) is present at mRNA caps and at defined internal positions within tRNAs and rRNAs. However, its detection within low-abundance mRNAs and microRNAs (miRNAs) has been hampered by a lack of sensitive detection strategies. Here, we adapt a chemical reactivity assay to detect internal m7G in miRNAs. Using this technique (Borohydride Reduction sequencing [BoRed-seq]) alongside RNA immunoprecipitation, we identify m7G within a subset of miRNAs that inhibit cell migration. We show that the METTL1 methyltransferase mediates m7G methylation within miRNAs and that this enzyme regulates cell migration via its catalytic activity. Using refined mass spectrometry methods, we map m7G to a single guanosine within the let-7e-5p miRNA. We show that METTL1-mediated methylation augments let-7 miRNA processing by disrupting an inhibitory secondary structure within the primary miRNA transcript (pri-miRNA). These results identify METTL1-dependent N7-methylation of guanosine as a new RNA modification pathway that regulates miRNA structure, biogenesis, and cell migration.
Collapse
Affiliation(s)
- Luca Pandolfini
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Isaia Barbieri
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Addenbroke's Hospital, Cambridge CB2 0QQ, UK
| | - Andrew J Bannister
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Alan Hendrick
- Storm Therapeutics, Ltd., Moneta Building (B280), Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Byron Andrews
- Storm Therapeutics, Ltd., Moneta Building (B280), Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Natalie Webster
- Storm Therapeutics, Ltd., Moneta Building (B280), Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Pierre Murat
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Pia Mach
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Rossella Brandi
- Fondazione EBRI Rita Levi-Montalcini, Genomics Laboratory, Viale Regina Elena 295, 00161 Rome, Italy
| | - Samuel C Robson
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Valentina Migliori
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Andrej Alendar
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Mara d'Onofrio
- Fondazione EBRI Rita Levi-Montalcini, Genomics Laboratory, Viale Regina Elena 295, 00161 Rome, Italy; IFT-CNR, Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | | | - Tony Kouzarides
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|
49
|
Zhang LS, Liu C, Ma H, Dai Q, Sun HL, Luo G, Zhang Z, Zhang L, Hu L, Dong X, He C. Transcriptome-wide Mapping of Internal N 7-Methylguanosine Methylome in Mammalian mRNA. Mol Cell 2019; 74:1304-1316.e8. [PMID: 31031084 DOI: 10.1016/j.molcel.2019.03.036] [Citation(s) in RCA: 328] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 02/26/2019] [Accepted: 03/27/2019] [Indexed: 01/05/2023]
Abstract
N7-methylguanosine (m7G) is a positively charged, essential modification at the 5' cap of eukaryotic mRNA, regulating mRNA export, translation, and splicing. m7G also occurs internally within tRNA and rRNA, but its existence and distribution within eukaryotic mRNA remain to be investigated. Here, we show the presence of internal m7G sites within mammalian mRNA. We then performed transcriptome-wide profiling of internal m7G methylome using m7G-MeRIP sequencing (MeRIP-seq). To map this modification at base resolution, we developed a chemical-assisted sequencing approach that selectively converts internal m7G sites into abasic sites, inducing misincorporation at these sites during reverse transcription. This base-resolution m7G-seq enabled transcriptome-wide mapping of m7G in human tRNA and mRNA, revealing distribution features of the internal m7G methylome in human cells. We also identified METTL1 as a methyltransferase that installs a subset of m7G within mRNA and showed that internal m7G methylation could affect mRNA translation.
Collapse
Affiliation(s)
- Li-Sheng Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Chang Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Honghui Ma
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Qing Dai
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Hui-Lung Sun
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Guanzheng Luo
- The State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Zijie Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Linda Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Lulu Hu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Xueyang Dong
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
50
|
7-Methylguanosine Modifications in Transfer RNA (tRNA). Int J Mol Sci 2018; 19:ijms19124080. [PMID: 30562954 PMCID: PMC6320965 DOI: 10.3390/ijms19124080] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 01/15/2023] Open
Abstract
More than 90 different modified nucleosides have been identified in tRNA. Among the tRNA modifications, the 7-methylguanosine (m7G) modification is found widely in eubacteria, eukaryotes, and a few archaea. In most cases, the m7G modification occurs at position 46 in the variable region and is a product of tRNA (m7G46) methyltransferase. The m7G46 modification forms a tertiary base pair with C13-G22, and stabilizes the tRNA structure. A reaction mechanism for eubacterial tRNA m7G methyltransferase has been proposed based on the results of biochemical, bioinformatic, and structural studies. However, an experimentally determined mechanism of methyl-transfer remains to be ascertained. The physiological functions of m7G46 in tRNA have started to be determined over the past decade. For example, tRNA m7G46 or tRNA (m7G46) methyltransferase controls the amount of other tRNA modifications in thermophilic bacteria, contributes to the pathogenic infectivity, and is also associated with several diseases. In this review, information of tRNA m7G modifications and tRNA m7G methyltransferases is summarized and the differences in reaction mechanism between tRNA m7G methyltransferase and rRNA or mRNA m7G methylation enzyme are discussed.
Collapse
|