1
|
Mo LJ, Liang HQ, Yu ZY, Liang YW, Gu CX, Wei QJ, He QH, Wei FY, Cheng JW, Mo ZN. RNA-binding protein expression based machine learning model predicts metastasis and treatment outcome of testicular cancer. Genes Genomics 2025:10.1007/s13258-025-01636-9. [PMID: 40138122 DOI: 10.1007/s13258-025-01636-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND RNA-binding proteins (RBPs) are key regulators of cellular transcription and are associated with the occurrence and development of diseases. OBJECTIVE This study aimed to validate the biological characteristics and clinical value of RBPs in testicular cancer, and then construct prediction models for testicular cancer metastasis and treatment outcome. METHODS RNA sequencing data from 150 testicular tumors and 6 normal tissues were obtained from the cancer genome atlas (TCGA). Additionally, RNA sequencing data from 165 normal testicular tissues were downloaded from the genotype-tissue expression (GTEx) portal. The chemotherapy sensitivity of testicular tumor was evaluated based on the genomics of drug sensitivity in cancer (GDSC) and cancer therapeutics response portal (CTRP) databases. RNA sequencing data was analyzed and predicted for tumor metastasis and treatment outcomes through machine learning models such as artificial neural networks (ANN), random forests (RF), support vector machines (SVM), and logistic regression models (LR). RESULTS A RBP risk-score model was developed with the genes: GAPDH, APOBEC3G, KRT18, NOSIP, KCTD12, ENO1, HMGA1, LDHB, ANXA2, ELOVL6, TCF7, BICD1. Those biomarkers were enriched in growth factor activity, hormone receptor binding, and cell killing signaling pathway. Risk-score model can predict the progress free interval (PFI), disease free interval (DFI), and metastasis status of patients with testicular cancer. Patients with high risk-score tumor had an increased tumor infiltrating M2 macrophage, and were more likely to progress after anti-PD-L1 immunotherapy. High risk patients seemed to benifit more from cisplatin-based chemotherapy, but less from bleomycin chemotherapy. Machine learning models basing on RBPs were able to predict tumor metastasis and the effects of chemotherapy and radiotherapy. ANN model achieved the highest accuracy in predicting tumor lymph node metastasis and radiotherapy sensitivity. CONCLUSION RBP signature genes can serve as biomarkers for testicular cancer and play a role in predicting tumor metastasis and therapeutic efficacy.
Collapse
Affiliation(s)
- Lin-Jian Mo
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hai-Qi Liang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhen-Yuan Yu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yao-Wen Liang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chuan-Xin Gu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qiu-Ju Wei
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qi-Huan He
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Fa-Ye Wei
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ji-Wen Cheng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zeng-Nan Mo
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Turgeon A, Fu J, Divyanshi, Ma M, Jin Z, Hwang H, Li M, Qiao H, Mei W, Yang J. Dzip1 is dynamically expressed in the vertebrate germline and regulates the development of Xenopus primordial germ cells. Dev Biol 2024; 514:28-36. [PMID: 38880277 PMCID: PMC11934228 DOI: 10.1016/j.ydbio.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
Primordial germ cells (PGCs) are the precursors of sperms and oocytes. Proper development of PGCs is crucial for the survival of the species. In many organisms, factors responsible for PGC development are synthesized during early oogenesis and assembled into the germ plasm. During early embryonic development, germ plasm is inherited by a few cells, leading to the formation of PGCs. While germline development has been extensively studied, how components of the germ plasm regulate PGC development is not fully understood. Here, we report that Dzip1 is dynamically expressed in vertebrate germline and is a novel component of the germ plasm in Xenopus and zebrafish. Knockdown of Dzip1 impairs PGC development in Xenopus embryos. At the molecular level, Dzip1 physically interacts with Dazl, an evolutionarily conserved RNA-binding protein that plays a multifaced role during germline development. We further showed that the sequence between amino acid residues 282 and 550 of Dzip1 is responsible for binding to Dazl. Disruption of the binding between Dzip1 and Dazl leads to defective PGC development. Taken together, our results presented here demonstrate that Dzip1 is dynamically expressed in the vertebrate germline and plays a novel function during Xenopus PGC development.
Collapse
Affiliation(s)
- Aurora Turgeon
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jia Fu
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Divyanshi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Meng Ma
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zhigang Jin
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyojeong Hwang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Meining Li
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wenyan Mei
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
3
|
Shi DL. Interplay of RNA-binding proteins controls germ cell development in zebrafish. J Genet Genomics 2024; 51:889-899. [PMID: 38969260 DOI: 10.1016/j.jgg.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
The specification of germ cells in zebrafish mostly relies on an inherited mechanism by which localized maternal determinants, called germ plasm, confer germline fate in the early embryo. Extensive studies have partially allowed the identification of key regulators governing germ plasm formation and subsequent germ cell development. RNA-binding proteins, acting in concert with other germ plasm components, play essential roles in the organization of the germ plasm and the specification, migration, maintenance, and differentiation of primordial germ cells. The loss of their functions impairs germ cell formation and causes sterility or sexual conversion. Evidence is emerging that they instruct germline development through differential regulation of mRNA fates in somatic and germ cells. However, the challenge remains to decipher the complex interplay of maternal germ plasm components in germ plasm compartmentalization and germ cell specification. Because failure to control the developmental outcome of germ cells disrupts the formation of gametes, it is important to gain a complete picture of regulatory mechanisms operating in the germ cell lineage. This review sheds light on the contributions of RNA-binding proteins to germ cell development in zebrafish and highlights intriguing questions that remain open for future investigation.
Collapse
Affiliation(s)
- De-Li Shi
- Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, 75005 Paris, France.
| |
Collapse
|
4
|
Petrova K, Tretiakov M, Kotov A, Monsoro-Burq AH, Peshkin L. A new atlas to study embryonic cell types in Xenopus. Dev Biol 2024; 511:76-83. [PMID: 38614285 PMCID: PMC11315121 DOI: 10.1016/j.ydbio.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
This paper introduces a single-cell atlas for pivotal developmental stages in Xenopus, encompassing gastrulation, neurulation, and early tailbud. Notably surpassing its predecessors, the new atlas enhances gene mapping, read counts, and gene/cell type nomenclature. Leveraging the latest Xenopus tropicalis genome version, alongside advanced alignment pipelines and machine learning for cell type assignment, this release maintains consistency with previous cell type annotations while rectifying nomenclature issues. Employing an unbiased approach for cell type assignment proves especially apt for embryonic contexts, given the considerable number of non-terminally differentiated cell types. An alternative cell type attribution here adopts a fuzzy, non-deterministic stance, capturing the transient nature of early embryo progenitor cells by presenting an ensemble of types in superposition. The value of the new resource is emphasized through numerous examples, with a focus on previously unexplored germ cell populations where we uncover novel transcription onset features. Offering interactive exploration via a user-friendly web portal and facilitating complete data downloads, this atlas serves as a comprehensive and accessible reference.
Collapse
Affiliation(s)
- Kseniya Petrova
- Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Aleksandr Kotov
- Université Paris Saclay, Faculté des Sciences d'Orsay, CNRS UMR 3347, INSERM, U1021, Orsay, France; Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, F-91405, Orsay, France
| | - Anne H Monsoro-Burq
- Université Paris Saclay, Faculté des Sciences d'Orsay, CNRS UMR 3347, INSERM, U1021, Orsay, France; Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, F-91405, Orsay, France; Institut Universitaire de France, F-75005, Paris, France
| | - Leonid Peshkin
- Systems Biology, Harvard Medical School, Boston, MA, 02115, USA; Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
| |
Collapse
|
5
|
Turgeon A, Fu J, Divyanshi, Ma M, Jin Z, Hwang H, Li M, Qiao H, Mei W, Yang J. Dzip1 is dynamically expressed in the vertebrate germline and regulates the development of Xenopus primordial germ cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.20.590349. [PMID: 38712275 PMCID: PMC11071414 DOI: 10.1101/2024.04.20.590349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Primordial germ cells (PGCs) are the precursors of sperms and oocytes. Proper development of PGCs is crucial for the survival of the species. In many organisms, factors responsible for PGC development are synthesized during early oogenesis and assembled into the germ plasm. During early embryonic development, germ plasm is inherited by a few cells, leading to the formation of PGCs. While germline development has been extensively studied, how components of the germ plasm regulate PGC development is not fully understood. Here, we report that Dzip1 is dynamically expressed in vertebrate germline and is a novel component of the germ plasm in Xenopus and zebrafish. Knockdown of Dzip1 impairs PGC development in Xenopus embryos. At the molecular level, Dzip1 physically interacts with Dazl, an evolutionarily conserved RNA-binding protein that plays a multifaced role during germline development. We further showed that the sequence between amino acid residues 282 and 550 of Dzip1 is responsible for binding to Dazl. Disruption of the binding between Dzip1 and Dazl leads to defective PGC development. Taken together, our results presented here demonstrate that Dzip1 is dynamically expressed in the vertebrate germline and plays a novel function during Xenopus PGC development.
Collapse
|
6
|
Conti M, Kunitomi C. A genome-wide perspective of the maternal mRNA translation program during oocyte development. Semin Cell Dev Biol 2024; 154:88-98. [PMID: 36894378 PMCID: PMC11250054 DOI: 10.1016/j.semcdb.2023.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Transcriptional and post-transcriptional regulations control gene expression in most cells. However, critical transitions during the development of the female gamete relies exclusively on regulation of mRNA translation in the absence of de novo mRNA synthesis. Specific temporal patterns of maternal mRNA translation are essential for the oocyte progression through meiosis, for generation of a haploid gamete ready for fertilization and for embryo development. In this review, we will discuss how mRNAs are translated during oocyte growth and maturation using mostly a genome-wide perspective. This broad view on how translation is regulated reveals multiple divergent translational control mechanisms required to coordinate protein synthesis with progression through the meiotic cell cycle and with development of a totipotent zygote.
Collapse
Affiliation(s)
- Marco Conti
- Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.
| | - Chisato Kunitomi
- Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
7
|
Tang Y, Zhang B, Shi H, Yan Z, Wang P, Yang Q, Huang X, Li J, Wang Z, Gun S. Cloning, expression analysis and localization of DAZL gene implicated in germ cell development of male Hezuo pig. Anim Biotechnol 2023; 34:4000-4014. [PMID: 37671929 DOI: 10.1080/10495398.2023.2249953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Deleted in azoospermia-like (DAZL) is essential for mammalian testicular function and spermatogenesis. To explore the molecular characterization, expression patterns, and cellular localization of the DAZL in Hezuo pig testes, testicular tissue was isolated from Hezuo pig at five development stages including 30 days old (30 d), 90 days old (90 d), 120 days old (120 d), 180 days old (180 d), and 240 days old (240 d). DAZL cDNA was first cloned using the RT-PCR method, and its molecular characterization was analyzed using relevant bioinformatics software. Subsequently, the expression patterns and cellular localization of DAZL were evaluated using quantitative real-time PCR (qRT-PCR), Western blot, and immunohistochemistry. The cloning and sequence analysis showed that the Hezuo pig DAZL cDNA fragment contained 888 bp open reading frame (ORF) capable of encoding 295 amino acid residues and exhibited high identities with some other mammals. The qRT-PCR and Western blot results indicated that DAZL was specifically expressed in Hezuo pig testes, and DAZL levels of both mRNA and protein were expressed at all five reproductive stages of Hezuo pig testes, with extremely significant higher expression levels in 90 d, 120 d, 180 d, and 240 d than those in 30 d (p < 0.01). Additionally, immunohistochemistry results revealed that DAZL protein was mainly localized in gonocytes at 30 d testes, primary spermatocytes, and spermatozoon at other developmental stages, and Leydig cells throughout five development stages. Together, these results suggested that DAZL may play an important role by regulating the proliferation or differentiation of gonocytes, development of primary spermatocytes and spermatozoon, and functional maintenance of Leydig cells in testicular development and spermatogenesis of Hezuo pig. Nevertheless, the specific regulatory mechanisms underlying these phenomena still requires further investigated and verified.
Collapse
Affiliation(s)
- Yuran Tang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bo Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Haixia Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiyou Li
- Gansu General Station of Animal Husbandry Technology Extension, Lanzhou, China
| | - Zike Wang
- Gansu General Station of Animal Husbandry Technology Extension, Lanzhou, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, China
| |
Collapse
|
8
|
Liu L, Zhang M, Jiang F, Luo D, Liu S, Su Y, Guan Q, Yu C. High cholesterol diet-induced testicular dysfunction in rats. Hormones (Athens) 2023; 22:685-694. [PMID: 37596375 DOI: 10.1007/s42000-023-00472-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 07/20/2023] [Indexed: 08/20/2023]
Abstract
PURPOSE Hypercholesterolemia due to a high-cholesterol diet is linked to numerous diseases and may lead to male infertility. However, the underlying mechanism remains unknown. The maintenance of male fertility requires intact testicular structures (including seminiferous tubules and mesenchyme) and functioning cells (Leydig cells, Sertoli cells and germ cells, etc.), production of appropriate concentrations of sex hormones, and cooperation among testicular cells. Thus, we considered whether male fertility declined as the structure and function of testicular cells were altered in rats on a high-cholesterol diet. METHODS Male Sprague Dawley rats were fed either a standard or a high-cholesterol diet for 16 weeks. Serum sex hormones, lipid components, semen quality, and fertility rate were assayed in the rats. The 3β-hydroxysteroid dehydrogenase (3β-HSD), Wilms tumor 1 (WT-1), and deleted in azoospermia-like (DAZL) were regarded as specific markers of Leydig, Sertoli, and germ cells in rats. In addition, the ultrastructure of the testis and expression levels of particular marker molecules of testicular cells were further investigated. RESULTS Compared to rats fed on a regular diet, the serum testosterone levels and sperm progressive motility decreased in rats fed high cholesterol. Moreover, we observed a deformed nucleus, dilated smooth endoplasmic reticulum, and swollen mitochondria of Leydig cells and a schizolytic nucleus of Sertoli cells in rats on a high-cholesterol diet. The 3β-HSD, WT-1, and DAZL protein expression levels were significantly reduced in rats on a high-cholesterol diet. CONCLUSIONS Our results showed that a high-cholesterol diet adversely affected testosterone production and sperm progressive motility, possibly due to Leydig, Sertoli, and germ cell abnormalities.
Collapse
Affiliation(s)
- Luna Liu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic disease, Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Meijie Zhang
- Jing'an District Center Hospital, Fudan University, Shanghai, 200433, China
| | - Fangjie Jiang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan, 250021, Shandong, China
- Department of Rehabilitation, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Dandan Luo
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic disease, Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Shuang Liu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic disease, Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Yu Su
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic disease, Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Qingbo Guan
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic disease, Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Chunxiao Yu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan, 250021, Shandong, China.
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic disease, Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China.
| |
Collapse
|
9
|
Park ZM, Remillard M, Belnap E, Rose MD. Kar4 is required for the normal pattern of meiotic gene expression. PLoS Genet 2023; 19:e1010898. [PMID: 37639444 PMCID: PMC10491391 DOI: 10.1371/journal.pgen.1010898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/08/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023] Open
Abstract
Kar4p, the yeast homolog of the mammalian methyltransferase subunit METTL14, is required for efficient mRNA m6A methylation, which regulates meiotic entry. Kar4p is also required for a second seemingly non-catalytic function during meiosis. Overexpression of the early meiotic transcription factor, IME1, can bypass the requirement for Kar4p in meiotic entry but the additional overexpression of the translational regulator, RIM4, is required to permit sporulation in kar4Δ/Δ. Using microarray analysis and RNA sequencing, we sought to determine the impact of removing Kar4p and consequently mRNA methylation on the early meiotic transcriptome in a strain background (S288c) that is sensitive to the loss of early meiotic regulators. We found that kar4Δ/Δ mutants have a largely wild type transcriptional profile with the exception of two groups of genes that show delayed and reduced expression: (1) a set of Ime1p-dependent early genes as well as IME1, and (2) a set of late genes dependent on the mid-meiotic transcription factor, Ndt80p. The early gene expression defect is likely the result of the loss of mRNA methylation and is rescued by overexpressing IME1, but the late defect is only suppressed by overexpression of both IME1 and RIM4. The requirement for RIM4 led us to predict that the non-catalytic function of Kar4p, like methyltransferase complex orthologs in other systems, may function at the level of translation. Mass spectrometry analysis identified several genes involved in meiotic recombination with strongly reduced protein levels, but with little to no reduction in transcript levels in kar4Δ/Δ after IME1 overexpression. The low levels of these proteins were rescued by overexpression of RIM4 and IME1, but not by the overexpression of IME1 alone. These data expand our understanding of the role of Kar4p in regulating meiosis and provide key insights into a potential mechanism of Kar4p's later meiotic function that is independent of mRNA methylation.
Collapse
Affiliation(s)
- Zachory M. Park
- Department of Biology, Georgetown University, Washington DC, United States of America
| | - Matthew Remillard
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Ethan Belnap
- Department of Biology, Georgetown University, Washington DC, United States of America
| | - Mark D. Rose
- Department of Biology, Georgetown University, Washington DC, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
10
|
Ozadam H, Tonn T, Han CM, Segura A, Hoskins I, Rao S, Ghatpande V, Tran D, Catoe D, Salit M, Cenik C. Single-cell quantification of ribosome occupancy in early mouse development. Nature 2023:10.1038/s41586-023-06228-9. [PMID: 37344592 DOI: 10.1038/s41586-023-06228-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/16/2023] [Indexed: 06/23/2023]
Abstract
Translation regulation is critical for early mammalian embryonic development1. However, previous studies had been restricted to bulk measurements2, precluding precise determination of translation regulation including allele-specific analyses. Here, to address this challenge, we developed a novel microfluidic isotachophoresis (ITP) approach, named RIBOsome profiling via ITP (Ribo-ITP), and characterized translation in single oocytes and embryos during early mouse development. We identified differential translation efficiency as a key mechanism regulating genes involved in centrosome organization and N6-methyladenosine modification of RNAs. Our high-coverage measurements enabled, to our knowledge, the first analysis of allele-specific ribosome engagement in early development. These led to the discovery of stage-specific differential engagement of zygotic RNAs with ribosomes and reduced translation efficiency of transcripts exhibiting allele-biased expression. By integrating our measurements with proteomics data, we discovered that ribosome occupancy in germinal vesicle-stage oocytes is the predominant determinant of protein abundance in the zygote. The Ribo-ITP approach will enable numerous applications by providing high-coverage and high-resolution ribosome occupancy measurements from ultra-low input samples including single cells.
Collapse
Affiliation(s)
- Hakan Ozadam
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Tori Tonn
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Crystal M Han
- Department of Mechanical Engineering, San Jose State University, San Jose, CA, USA
| | - Alia Segura
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Ian Hoskins
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Shilpa Rao
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Vighnesh Ghatpande
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Duc Tran
- Department of Chemical and Materials Engineering, San Jose State University, San Jose, CA, USA
| | - David Catoe
- Joint Initiative for Metrology in Biology, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Marc Salit
- Joint Initiative for Metrology in Biology, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
11
|
Reifarth L, Körber H, Packeiser EM, Goericke-Pesch S. Detection of spermatogonial stem cells in testicular tissue of dogs with chronic asymptomatic orchitis. Front Vet Sci 2023; 10:1205064. [PMID: 37396999 PMCID: PMC10311113 DOI: 10.3389/fvets.2023.1205064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Chronic asymptomatic idiopathic orchitis (CAO) is an important but neglected cause of acquired infertility due to non-obstructive azoospermia (NOA) in male dogs. The similarity of the pathophysiology in infertile dogs and men supports the dog's suitability as a possible animal model for studying human diseases causing disruption of spermatogenesis and evaluating the role of spermatogonial stem cells (SSCs) as a new therapeutic approach to restore or recover fertility in cases of CAO. To investigate the survival of resilient stem cells, the expression of the protein gene product (PGP9.5), deleted in azoospermia like (DAZL), foxo transcription factor 1 (FOXO1) and tyrosine-kinase receptor (C-Kit) were evaluated in healthy and CAO-affected canine testes. Our data confirmed the presence of all investigated germ cell markers at mRNA and protein levels. In addition, we postulate a specific expression pattern of FOXO1 and C-Kit in undifferentiated and differentiating spermatogonia, respectively, whereas DAZL and PGP9.5 expressions were confirmed in the entire spermatogonial population. Furthermore, this is the first study revealing a significant reduction of PGP9.5, DAZL, and FOXO1 in CAO at protein and/or gene expression level indicating a severe disruption of spermatogenesis. This means that chronic asymptomatic inflammatory changes in CAO testis are accompanied by a significant loss of SSCs. Notwithstanding, our data confirm the survival of putative stem cells with the potential of self-renewal and differentiation and lay the groundwork for further research into stem cell-based therapeutic options to reinitialize spermatogenesis in canine CAO-affected patients.
Collapse
Affiliation(s)
| | | | | | - Sandra Goericke-Pesch
- Reproductive Unit – Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
12
|
Jiang Y, Adhikari D, Li C, Zhou X. Spatiotemporal regulation of maternal mRNAs during vertebrate oocyte meiotic maturation. Biol Rev Camb Philos Soc 2023; 98:900-930. [PMID: 36718948 DOI: 10.1111/brv.12937] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
Vertebrate oocytes face a particular challenge concerning the regulation of gene expression during meiotic maturation. Global transcription becomes quiescent in fully grown oocytes, remains halted throughout maturation and fertilization, and only resumes upon embryonic genome activation. Hence, the oocyte meiotic maturation process is largely regulated by protein synthesis from pre-existing maternal messenger RNAs (mRNAs) that are transcribed and stored during oocyte growth. Rapidly developing genome-wide techniques have greatly expanded our insights into the global translation changes and possible regulatory mechanisms during oocyte maturation. The storage, translation, and processing of maternal mRNAs are thought to be regulated by factors interacting with elements in the mRNA molecules. Additionally, posttranscriptional modifications of mRNAs, such as methylation and uridylation, have recently been demonstrated to play crucial roles in maternal mRNA destabilization. However, a comprehensive understanding of the machineries that regulate maternal mRNA fate during oocyte maturation is still lacking. In particular, how the transcripts of important cell cycle components are stabilized, recruited at the appropriate time for translation, and eliminated to modulate oocyte meiotic progression remains unclear. A better understanding of these mechanisms will provide invaluable insights for the preconditions of developmental competence acquisition, with important implications for the treatment of infertility. This review discusses how the storage, localization, translation, and processing of oocyte mRNAs are regulated, and how these contribute to oocyte maturation progression.
Collapse
Affiliation(s)
- Yanwen Jiang
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| | - Deepak Adhikari
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Chunjin Li
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| | - Xu Zhou
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| |
Collapse
|
13
|
Li W, Liu W, Mo C, Yi M, Gui J. Two Novel lncRNAs Regulate Primordial Germ Cell Development in Zebrafish. Cells 2023; 12:cells12040672. [PMID: 36831339 PMCID: PMC9954370 DOI: 10.3390/cells12040672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/22/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are regulatory transcripts in various biological processes. However, the role of lncRNAs in germline development remains poorly understood, especially for fish primordial germ cell (PGC) development. In this study, the lncRNA profile of zebrafish PGC was revealed by single cell RNA-sequencing and bioinformatic prediction. We established the regulation network of lncRNA-mRNA associated with PGC development, from which we identified three novel lncRNAs-lnc172, lnc196, and lnc304-highly expressing in PGCs and gonads. Fluorescent in situ hybridization indicated germline-specific localization of lnc196 and lnc304 in the cytoplasm and nucleus of spermatogonia, spermatocyte, and occyte, and they were co-localized with vasa in the cytoplasm of the spermatogonia. By contrast, lnc172 was localized in the cytoplasm of male germline, myoid cells and ovarian somatic cells. Loss- and gain-of-function experiments demonstrated that knockdown and PGC-specific overexpression of lnc304 as well as universal overexpression of lnc172 significantly disrupted PGC development. In summary, the present study revealed the lncRNA profile of zebrafish PGC and identified two novel lncRNAs associated with PGC development, providing new insights for understanding the regulatory mechanism of PGC development.
Collapse
Affiliation(s)
- Wenjing Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Wei Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Chengyu Mo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
- Correspondence: (M.Y.); (J.G.)
| | - Jianfang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 420072, China
- Correspondence: (M.Y.); (J.G.)
| |
Collapse
|
14
|
Park ZM, Remillard M, Rose MD. Kar4 is Required for the Normal Pattern of Meiotic Gene Expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.526097. [PMID: 36747654 PMCID: PMC9900936 DOI: 10.1101/2023.01.29.526097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Kar4p, the yeast homolog of the mammalian methyltransferase subunit METTL14, is required for the initiation of meiosis and has at least two distinct functions in regulating the meiotic program. Cells lacking Kar4p can be driven to sporulate by co-overexpressing the master meiotic transcription factor, IME1 , and the translational regulator, RIM4 , suggesting that Kar4p functions at both the transcriptional and translational level to regulate meiosis. Using microarray analysis and RNA sequencing, we found that kar4 Δ/Δ mutants have a largely wild type transcriptional profile with the exception of two groups of genes that show delayed and reduced expression: (1) a set of Ime1p-dependent early genes as well as IME1 , and (2) a set of late genes dependent on the mid-meiotic transcription factor, Ndt80p. The early gene expression defect is rescued by overexpressing IME1 , but the late defect is only suppressed by overexpression of both IME1 and RIM4 . Mass spectrometry analysis identified several genes involved in meiotic recombination with strongly reduced protein levels, but with little to no reduction in transcript levels in kar4 Δ/Δ after IME1 overexpression. The low levels of these proteins were rescued by overexpression of RIM4 and IME1 , but not by the overexpression of IME1 alone. These data expand our understanding of the role of Kar4p in regulating meiosis and provide key insights into a potential mechanism of Kar4p's later meiotic function that is independent of mRNA methylation. Author Summary Kar4p is required at two stages during meiosis. Cells lacking Kar4p have a severe loss of mRNA methylation and arrest early in the meiotic program, failing to undergo either pre-meiotic DNA synthesis or meiotic recombination. The early block is rescued by overexpression of the meiotic transcription factor, IME1 . The kar4 Δ/Δ cells show delayed and reduced expression of a set of Ime1p-dependent genes expressed early in meiosis as well as a set of later genes that are largely Ndt80p-dependent. Overexpression of IME1 rescues the expression defect of these early genes and expedites the meiotic program in the wild type S288C strain background. However, IME1 overexpression is not sufficient to facilitate sporulation in kar4 Δ/Δ. Completion of meiosis and sporulation requires the additional overexpression of a translational regulator, RIM4 . Analysis of kar4 Δ/Δ's proteome during meiosis with IME1 overexpression revealed that proteins important for meiotic recombination have reduced levels that cannot be explained by equivalent reductions in transcript abundance. IME1 overexpression by itself rescues the defect associated with a catalytic mutant of Ime4p, implying that the early defect reflects mRNA methylation. The residual defects in protein levels likely reflect the loss of a non-catalytic function of Kar4p, and the methylation complex, which requires overexpression of RIM4 to suppress.
Collapse
Affiliation(s)
- Zachory M. Park
- Department of Biology, Georgetown University, Washington DC, 20057, USA
| | - Matthew Remillard
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Mark D. Rose
- Department of Biology, Georgetown University, Washington DC, 20057, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
15
|
Farini D, De Felici M. The Beginning of Meiosis in Mammalian Female Germ Cells: A Never-Ending Story of Intrinsic and Extrinsic Factors. Int J Mol Sci 2022; 23:ijms232012571. [PMID: 36293427 PMCID: PMC9604137 DOI: 10.3390/ijms232012571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Meiosis is the unique division of germ cells resulting in the recombination of the maternal and paternal genomes and the production of haploid gametes. In mammals, it begins during the fetal life in females and during puberty in males. In both cases, entering meiosis requires a timely switch from the mitotic to the meiotic cell cycle and the transition from a potential pluripotent status to meiotic differentiation. Revealing the molecular mechanisms underlying these interrelated processes represents the essence in understanding the beginning of meiosis. Meiosis facilitates diversity across individuals and acts as a fundamental driver of evolution. Major differences between sexes and among species complicate the understanding of how meiosis begins. Basic meiotic research is further hindered by a current lack of meiotic cell lines. This has been recently partly overcome with the use of primordial-germ-cell-like cells (PGCLCs) generated from pluripotent stem cells. Much of what we know about this process depends on data from model organisms, namely, the mouse; in mice, the process, however, appears to differ in many aspects from that in humans. Identifying the mechanisms and molecules controlling germ cells to enter meiosis has represented and still represents a major challenge for reproductive medicine. In fact, the proper execution of meiosis is essential for fertility, for maintaining the integrity of the genome, and for ensuring the normal development of the offspring. The main clinical consequences of meiotic defects are infertility and, probably, increased susceptibility to some types of germ-cell tumors. In the present work, we report and discuss data mainly concerning the beginning of meiosis in mammalian female germ cells, referring to such process in males only when pertinent. After a brief account of this process in mice and humans and an historical chronicle of the major hypotheses and progress in this topic, the most recent results are reviewed and discussed.
Collapse
|
16
|
Shakeel M, Jung H, Yoon D, Yoon M. Seasonal changes in the expression of molecular markers of stallion germ cells. J Equine Vet Sci 2022; 118:104109. [PMID: 36029943 DOI: 10.1016/j.jevs.2022.104109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
The economic impacts of infertility and subfertility of stallions greatly influence the horse breeding industry. Self-renewal and differentiation of spermatogonial stem cells are the initial processes to maintain an adequate sperm population. Thus, understanding these processes may provide useful information to reveal the causes and remedies of subfertile and infertile stallions. Stallions are seasonal breeders. About 50% of the sperm population is reduced during the non-breeding season (NBS) in stallions. The seasonal regulation of spermatogenesis renders stallions as ideal models to understand the process of sperm production. Furthermore, comparing internal and external factors related to spermatogenesis during the breeding season (BS) and NBS may provide a solution for subfertile/infertile stallions. It is especially pertinent to study the expression pattern of different protein markers during undifferentiated, differentiating, and differentiated spermatogonia. Deleted in azoospermia-like (DAZL), undifferentiated cell transcription factor 1 (UTF-1), and protein gene product 9.5 (PGP9.5) are the molecular markers expressed at different stages of spermatogenesis. However, whether the expression pattern of these molecular markers is similar throughout the year in stallion remains undetermined. The objectives of this study were to (1) investigate the expression pattern and localization of DAZL, UTF-1, and PGP9.5 within seminiferous tubules and (2) evaluate the relative mRNA levels of these three germ cell markers in stallion testes during BS and NBS. Immunohistochemistry was performed to check and compare the expression pattern and localization of DAZL, UTF-1, and PGP9.5 antibodies. Reverse transcription-quantitative PCR analysis was performed to calculate the relative mRNA expression levels in the testes. Testicular tissues from thoroughbred stallions were collected during routine castration that was carried out in field conditions. Immunostaining of germ cells with DAZL and UTF-1 in BS and NBS were not significantly different. However, the relative mRNA expression levels of DAZL and UTF-1 were significantly different in both groups. Interestingly, the immunolabeling and the relative mRNA expression of PGP9.5 were significantly different between BS and NBS. From these results, it is hypothesized that the expression level of these putative molecular markers might be gonadotropin-dependent in stallion testes.
Collapse
Affiliation(s)
- Muhammad Shakeel
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; Department of Clinical Studies, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi 44000, Pakistan
| | - Heejun Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Duhak Yoon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; Reseach Center for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Minjung Yoon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; Department of Horse, Companion and Wild Animal Science, Kyungpook National University, Sangju 37224, Republic of Korea; Reseach Center for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea.
| |
Collapse
|
17
|
Morgan M, Kumar L, Li Y, Baptissart M. Post-transcriptional regulation in spermatogenesis: all RNA pathways lead to healthy sperm. Cell Mol Life Sci 2021; 78:8049-8071. [PMID: 34748024 DOI: 10.1007/s00018-021-04012-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 01/22/2023]
Abstract
Multiple RNA pathways are required to produce functional sperm. Here, we review RNA post-transcriptional regulation during spermatogenesis with particular emphasis on the role of 3' end modifications. From early studies in the 1970s, it became clear that spermiogenesis transcripts could be stored for days only to be translated at advanced stages of spermatid differentiation. The transition between the translationally repressed and active states was observed to correlate with the shortening of the transcripts' poly(A) tail, establishing a link between RNA 3' end metabolism and male germ cell differentiation. Since then, numerous RNA metabolic pathways have been implicated not only in the progression through spermatogenesis, but also in the maintenance of genomic integrity. Recent studies have characterized the elusive 3' biogenesis of Piwi-interacting RNAs (piRNAs), identified a critical role for messenger RNA (mRNA) 3' uridylation in meiotic progression, established the mechanisms that destabilize transcripts with long 3' untranslated regions (3'UTRs) in post-mitotic cells, and defined the physiological relevance of RNA exonucleases and deadenylases in male germ cells. In this review, we discuss RNA processing in the male germline in the light of the most recent findings. A brief recollection of different RNA-processing events will aid future studies exploring post-transcriptional regulation in spermatogenesis.
Collapse
Affiliation(s)
- Marcos Morgan
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA.
| | - Lokesh Kumar
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Yin Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Marine Baptissart
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| |
Collapse
|
18
|
Vong YH, Sivashanmugam L, Leech R, Zaucker A, Jones A, Sampath K. The RNA-binding protein Igf2bp3 is critical for embryonic and germline development in zebrafish. PLoS Genet 2021; 17:e1009667. [PMID: 34214072 PMCID: PMC8282044 DOI: 10.1371/journal.pgen.1009667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/15/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022] Open
Abstract
The ability to reproduce is essential in all branches of life. In metazoans, this process is initiated by formation of the germline, a group of cells that are destined to form the future gonads, the tissue that will produce the gametes. The molecular mechanisms underlying germline formation differs between species. In zebrafish, development of the germline is dependent on the specification, migration and proliferation of progenitors called the primordial germ cells (PGCs). PGC specification is dependent on a maternally provided cytoplasmic complex of ribonucleoproteins (RNPs), the germplasm. Here, we show that the conserved RNA-binding protein (RBP), Igf2bp3, has an essential role during early embryonic development and germline development. Loss of Igf2bp3 leads to an expanded yolk syncytial layer (YSL) in early embryos, reduced germline RNA expression, and mis-regulated germline development. We show that loss of maternal Igf2bp3 function results in translational de-regulation of a Nodal reporter during the mid-blastula transition. Furthermore, maternal igf2bp3 mutants exhibit reduced expression of germplasm transcripts, defects in chemokine guidance, abnormal PGC behavior and germ cell death. Consistently, adult igf2bp3 mutants show a strong male bias. Our findings suggest that Igf2bp3 is essential for normal embryonic and germline development, and acts as a key regulator of sexual development.
Collapse
Affiliation(s)
- Yin Ho Vong
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Lavanya Sivashanmugam
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Rebecca Leech
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Andreas Zaucker
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Alex Jones
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Karuna Sampath
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Centre for Early Life, University of Warwick, Coventry, United Kingdom
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
19
|
de Souza AF, Pieri NCG, Martins DDS. Step by Step about Germ Cells Development in Canine. Animals (Basel) 2021; 11:ani11030598. [PMID: 33668687 PMCID: PMC7996183 DOI: 10.3390/ani11030598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The progression of germ cells is a remarkable event that allows biological discovery in the differ-entiation process during in vivo and in vitro development. This is crucial for understanding one toward making oogenesis and spermatogenesis. Companion animals, such as canine, could offer new animal models for experimental and clinical testing for translation to human models. In this review, we describe the latest and more relevant findings on germ cell development. In addition, we showed the methods available for obtaining germ cells in vitro and the characterization of pri-mordial germ cells and spermatogonial stem cells. However, it is necessary to further conduct basic research in canine to clarify the beginning of germ cell development. Abstract Primordial germ cells (PGCs) have been described as precursors of gametes and provide a connection within generations, passing on the genome to the next generation. Failures in the formation of gametes/germ cells can compromise the maintenance and conservation of species. Most of the studies with PGCs have been carried out in mice, but this species is not always the best study model when transposing this knowledge to humans. Domestic animals, such as canines (canine), have become a valuable translational research model for stem cells and therapy. Furthermore, the study of canine germ cells opens new avenues for veterinary reproduction. In this review, the objective is to provide a comprehensive overview of the current knowledge on canine germ cells. The aspects of canine development and germ cells have been discussed since the origin, specifications, and development of spermatogonial canine were first discussed. Additionally, we discussed and explored some in vitro aspects of canine reproduction with germ cells, such as embryonic germ cells and spermatogonial stem cells.
Collapse
|
20
|
Huggins HP, Keiper BD. Regulation of Germ Cell mRNPs by eIF4E:4EIP Complexes: Multiple Mechanisms, One Goal. Front Cell Dev Biol 2020; 8:562. [PMID: 32733883 PMCID: PMC7358283 DOI: 10.3389/fcell.2020.00562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/15/2020] [Indexed: 11/29/2022] Open
Abstract
Translational regulation of mRNAs is critically important for proper gene expression in germ cells, gametes, and embryos. The ability of the nucleus to control gene expression in these systems may be limited due to spatial or temporal constraints, as well as the breadth of gene products they express to prepare for the rapid animal development that follows. During development germ granules are hubs of post-transcriptional regulation of mRNAs. They assemble and remodel messenger ribonucleoprotein (mRNP) complexes for translational repression or activation. Recently, mRNPs have been appreciated as discrete regulatory units, whose function is dictated by the many positive and negative acting factors within the complex. Repressed mRNPs must be activated for translation on ribosomes to introduce novel proteins into germ cells. The binding of eIF4E to interacting proteins (4EIPs) that sequester it represents a node that controls many aspects of mRNP fate including localization, stability, poly(A) elongation, deadenylation, and translational activation/repression. Furthermore, plants and animals have evolved to express multiple functionally distinct eIF4E and 4EIP variants within germ cells, giving rise to different modes of translational regulation.
Collapse
Affiliation(s)
- Hayden P Huggins
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Brett D Keiper
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
21
|
Mikedis MM, Fan Y, Nicholls PK, Endo T, Jackson EK, Cobb SA, de Rooij DG, Page DC. DAZL mediates a broad translational program regulating expansion and differentiation of spermatogonial progenitors. eLife 2020; 9:56523. [PMID: 32686646 PMCID: PMC7445011 DOI: 10.7554/elife.56523] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/20/2020] [Indexed: 01/28/2023] Open
Abstract
Fertility across metazoa requires the germline-specific DAZ family of RNA-binding proteins. Here we examine whether DAZL directly regulates progenitor spermatogonia using a conditional genetic mouse model and in vivo biochemical approaches combined with chemical synchronization of spermatogenesis. We find that the absence of Dazl impairs both expansion and differentiation of the spermatogonial progenitor population. In undifferentiated spermatogonia, DAZL binds the 3' UTRs of ~2,500 protein-coding genes. Some targets are known regulators of spermatogonial proliferation and differentiation while others are broadly expressed, dosage-sensitive factors that control transcription and RNA metabolism. DAZL binds 3' UTR sites conserved across vertebrates at a UGUU(U/A) motif. By assessing ribosome occupancy in undifferentiated spermatogonia, we find that DAZL increases translation of its targets. In total, DAZL orchestrates a broad translational program that amplifies protein levels of key spermatogonial and gene regulatory factors to promote the expansion and differentiation of progenitor spermatogonia.
Collapse
Affiliation(s)
| | - Yuting Fan
- Whitehead Institute, Cambridge, United States.,Reproductive Medicine Center, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | - Emily K Jackson
- Whitehead Institute, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | | | | | - David C Page
- Whitehead Institute, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, United States
| |
Collapse
|
22
|
Crystal Structure of a Variant PAM2 Motif of LARP4B Bound to the MLLE Domain of PABPC1. Biomolecules 2020; 10:biom10060872. [PMID: 32517187 PMCID: PMC7356810 DOI: 10.3390/biom10060872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022] Open
Abstract
Eukaryotic cells determine the protein output of their genetic program by regulating mRNA transcription, localization, translation and turnover rates. This regulation is accomplished by an ensemble of RNA-binding proteins (RBPs) that bind to any given mRNA, thus forming mRNPs. Poly(A) binding proteins (PABPs) are prominent members of virtually all mRNPs that possess poly(A) tails. They serve as multifunctional scaffolds, allowing the recruitment of diverse factors containing a poly(A)-interacting motif (PAM) into mRNPs. We present the crystal structure of the variant PAM motif (termed PAM2w) in the N-terminal part of the positive translation factor LARP4B, which binds to the MLLE domain of the poly(A) binding protein C1 cytoplasmic 1 (PABPC1). The structural analysis, along with mutational studies in vitro and in vivo, uncovered a new mode of interaction between PAM2 motifs and MLLE domains.
Collapse
|
23
|
Bo D, Jiang X, Liu G, Xu F, Hu R, Wassie T, Chong Y, Ahmed S, Liu C, Girmay S. Multipathway synergy promotes testicular transition from growth to spermatogenesis in early-puberty goats. BMC Genomics 2020; 21:372. [PMID: 32450814 PMCID: PMC7249689 DOI: 10.1186/s12864-020-6767-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/04/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The microscopic process of postnatal testicular development in early-puberty animals is poorly understood. Therefore, in this study, 21 male Yiling goats with average ages of 0, 30, 60, 90, 120, 150 and 180 days old (each age group comprised three goats) were used to study the changes in organs, tissues and transcriptomes during postnatal testicle development to obtain a broad and deep insight into the dynamic process of testicular transition from growth to spermatogenesis in early-puberty animals. RESULTS The inflection point of testicular weight was at 119 days postpartum (dpp), and the testicular weight increased rapidly from 119 dpp to 150 dpp. Spermatozoa were observed in the testis at 90 dpp by using haematoxylin-eosin staining. We found from the transcriptome analysis of testes that the testicular development of Yiling goat from birth to 180 dpp experienced three stages, namely, growth, transition and spermatogenesis stages. The goats in the testicular growth stage (0-60 dpp) showed a high expression of growth-related genes in neurogenesis, angiogenesis and cell junction, and a low expression of spermatogenesis-related genes. The goats aged 60-120 dpp were in the transitional stage which had a gradually decreased growth-related gene transcription levels and increased spermatogenesis-related gene transcription levels. The goats aged 120-180 dpp were in the spermatogenesis stage. At this stage, highly expressed spermatogenesis-related genes, downregulated testicular growth- and immune-related genes and a shift in the focus of testicular development into spermatogenesis were observed. Additionally, we found several novel hub genes, which may play key roles in spermatogenesis, androgen synthesis and secretion, angiogenesis, cell junction and neurogenesis. Moreover, the results of this study were compared with previous studies on goat or other species, and some gene expression patterns shared in early-puberty mammals were discovered. CONCLUSIONS The postnatal development of the testis undergoes a process of transition from organ growth to spermatogenesis. During this process, spermatogenesis-related genes are upregulated, whereas neurogenesis-, angiogenesis-, cell junction-, muscle- and immune-related genes are downregulated. In conclusion, the multipathway synergy promotes testicular transition from growth to spermatogenesis in early-puberty goats and may be a common rule shared by mammals.
Collapse
Affiliation(s)
- Dongdong Bo
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Xunping Jiang
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Guiqiong Liu
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, 430070, People's Republic of China.
| | - Feng Xu
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ruixue Hu
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Teketay Wassie
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yuqing Chong
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Sohail Ahmed
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Chenhui Liu
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shishay Girmay
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
24
|
Xie S, Zhang Y, Yang Y. Is the primary AZFc duplication a potential risk for male infertility?: A systematic review and meta-analysis. Andrology 2020; 8:996-1004. [PMID: 32298532 DOI: 10.1111/andr.12800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/14/2020] [Accepted: 04/08/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Numerous studies have been performed to investigate the association between the primary AZFc duplication and male infertility risk; however, the sample sizes have been small and the results have been controversial. A meta-analysis was performed to assess these associations. METHODS A systematic search was conducted to identify all relevant studies from the PubMed, Web of Science, Medline, CNKI, and Wanfang databases up to October 22, 2019. The odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to assess the strength of associations. All of the statistical analyses were conducted by using RevMan 5.3. RESULTS Eleven studies were identified that involved 3140 infertile men and 2280 fertile men. Overall, there was a statistically significant association between the primary AZFc duplication and male infertility (OR = 1.66, 95% CI = 1.29-2.14, P < .0001). In the subgroup analysis by ethnic group, a statistically significant association between the primary AZFc duplication and male infertility was observed in Asian men (OR = 2.26, 95% CI = 1.64-3.12, P < .00001), but not in European men (OR = 0.90, 95% CI = 0.59-1.38, P = .64). For subtypes of the primary AZFc duplication, a statistically significant association was observed between the gr/gr duplication-only (OR = 2.71, 95% CI = 1.38-5.32, P = .004) and infertility in Asian men. Asian men with the primary AZFc duplication resulting in more than four DAZ genes were found to be at an increased risk for infertility (OR = 2.70, 95% CI = 1.49-4.89, P = .001). CONCLUSION Our meta-analysis provides an unprecedented illustration of how the association between the primary AZFc duplication and male infertility may be dependent on ethnicity or geographic location. Furthermore, gr/gr duplication or increased DAZ copy number can be detrimental to spermatogenesis in Asian men.
Collapse
Affiliation(s)
- Shengyu Xie
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yangwei Zhang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yuan Yang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
The translational landscape of ground state pluripotency. Nat Commun 2020; 11:1617. [PMID: 32238817 PMCID: PMC7113317 DOI: 10.1038/s41467-020-15449-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/09/2020] [Indexed: 12/30/2022] Open
Abstract
Translational control plays a central role in regulation of gene expression and can lead to significant divergence between mRNA- and protein-abundance. Here, we used genome-wide approaches combined with time-course analysis to measure the mRNA-abundance, mRNA-translation rate and protein expression during the transition of naïve-to-primed mouse embryonic stem cells (ESCs). We find that the ground state ESCs cultured with GSK3-, MEK-inhibitors and LIF (2iL) display higher ribosome density on a selective set of mRNAs. This set of mRNAs undergo strong translational buffering to maintain stable protein expression levels in 2iL-ESCs. Importantly, we show that the global alteration of cellular proteome during the transition of naïve-to-primed pluripotency is largely accompanied by transcriptional rewiring. Thus, we provide a comprehensive and detailed overview of the global changes in gene expression in different states of ESCs and dissect the relative contributions of mRNA-transcription, translation and regulation of protein stability in controlling protein abundance. Translational control of gene expression can lead to significant divergence between mRNA and protein abundance. Here, the authors describe transcriptional rewiring and translational buffering during transition from naïve to primed pluripotency through quantitation of mRNA-abundance, translation rate and protein expression.
Collapse
|
26
|
Yang CR, Rajkovic G, Daldello EM, Luong XG, Chen J, Conti M. The RNA-binding protein DAZL functions as repressor and activator of mRNA translation during oocyte maturation. Nat Commun 2020; 11:1399. [PMID: 32170089 PMCID: PMC7070028 DOI: 10.1038/s41467-020-15209-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 02/14/2020] [Indexed: 01/06/2023] Open
Abstract
Deleted in azoospermia-like (DAZL) is an RNA-binding protein critical for gamete development. In full-grown oocytes, the DAZL protein increases 4-fold during reentry into the meiotic cell cycle. Here, we have investigated the functional significance of this accumulation at a genome-wide level. Depletion of DAZL causes a block in maturation and widespread disruption in the pattern of ribosome loading on maternal transcripts. In addition to decreased translation, DAZL depletion also causes translational activation of a distinct subset of mRNAs both in quiescent and maturing oocytes, a function recapitulated with YFP-3′UTR reporters. DAZL binds to mRNAs whose translation is both repressed and activated during maturation. Injection of recombinant DAZL protein in DAZL-depleted oocytes rescues the translation and maturation to MII. Mutagenesis of putative DAZL-binding sites in these mRNAs mimics the effect of DAZL depletion. These findings demonstrate that DAZL regulates translation of maternal mRNAs, functioning both as the translational repressor and activator during oocyte maturation. The RNA binding protein DAZL plays a critical role during germ cell development. Here the authors provide evidence that DAZL functions both as activator and repressor of translation during oocyte maturation in mouse.
Collapse
Affiliation(s)
- Cai-Rong Yang
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Gabriel Rajkovic
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Enrico Maria Daldello
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Xuan G Luong
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Jing Chen
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Marco Conti
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA. .,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA. .,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
27
|
Christou-Kent M, Dhellemmes M, Lambert E, Ray PF, Arnoult C. Diversity of RNA-Binding Proteins Modulating Post-Transcriptional Regulation of Protein Expression in the Maturing Mammalian Oocyte. Cells 2020; 9:cells9030662. [PMID: 32182827 PMCID: PMC7140715 DOI: 10.3390/cells9030662] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022] Open
Abstract
The oocyte faces a particular challenge in terms of gene regulation. When oocytes resume meiosis at the end of the growth phase and prior to ovulation, the condensed chromatin state prevents the transcription of genes as they are required. Transcription is effectively silenced from the late germinal vesicle (GV) stage until embryonic genome activation (EGA) following fertilisation. Therefore, during its growth, the oocyte must produce the mRNA transcripts needed to fulfil its protein requirements during the active period of meiotic completion, fertilisation, and the maternal-to zygote-transition (MZT). After meiotic resumption, gene expression control can be said to be transferred from the nucleus to the cytoplasm, from transcriptional regulation to translational regulation. Maternal RNA-binding proteins (RBPs) are the mediators of translational regulation and their role in oocyte maturation and early embryo development is vital. Understanding these mechanisms will provide invaluable insight into the oocyte's requirements for developmental competence, with important implications for the diagnosis and treatment of certain types of infertility. Here, we give an overview of post-transcriptional regulation in the oocyte, emphasising the current knowledge of mammalian RBP mechanisms, and develop the roles of these mechanisms in the timely activation and elimination of maternal transcripts.
Collapse
Affiliation(s)
- Marie Christou-Kent
- Université Grenoble Alpes, F-38000 Grenoble, France; (M.C.-K.); (M.D.); (E.L.); (P.F.R.)
- Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, F-38000 Grenoble, France
| | - Magali Dhellemmes
- Université Grenoble Alpes, F-38000 Grenoble, France; (M.C.-K.); (M.D.); (E.L.); (P.F.R.)
- Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, F-38000 Grenoble, France
| | - Emeline Lambert
- Université Grenoble Alpes, F-38000 Grenoble, France; (M.C.-K.); (M.D.); (E.L.); (P.F.R.)
- Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, F-38000 Grenoble, France
| | - Pierre F. Ray
- Université Grenoble Alpes, F-38000 Grenoble, France; (M.C.-K.); (M.D.); (E.L.); (P.F.R.)
- Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, F-38000 Grenoble, France
- CHU de Grenoble, UM GI-DPI, F-38000 Grenoble, France
| | - Christophe Arnoult
- Université Grenoble Alpes, F-38000 Grenoble, France; (M.C.-K.); (M.D.); (E.L.); (P.F.R.)
- Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, F-38000 Grenoble, France
- Correspondence: ; Tel.: +33-(0)4-76-63-74-08
| |
Collapse
|
28
|
Yang F, Wang W, Cetinbas M, Sadreyev RI, Blower MD. Genome-wide analysis identifies cis-acting elements regulating mRNA polyadenylation and translation during vertebrate oocyte maturation. RNA (NEW YORK, N.Y.) 2020; 26:324-344. [PMID: 31896558 PMCID: PMC7025505 DOI: 10.1261/rna.073247.119] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/30/2019] [Indexed: 05/10/2023]
Abstract
Most cells change patterns of gene expression through transcriptional regulation. In contrast, oocytes are transcriptionally silent and regulate mRNA poly(A) tail length to control protein production. However, the genome-wide relationship of poly(A) tail changes to mRNA translation during vertebrate oocyte maturation is not known. We used Tail-seq and polyribosome analysis to measure poly(A) tail and translational changes during oocyte maturation in Xenopus laevis We identified large-scale poly(A) and translational changes during oocyte maturation, with poly(A) tail length changes preceding translational changes. Proteins important for completion of the meiotic divisions and early development exhibited increased polyadenylation and translation during oocyte maturation. A family of U-rich sequence elements was enriched near the polyadenylation signal of polyadenylated and translationally activated mRNAs. We propose that changes in mRNA polyadenylation are a conserved mechanism regulating protein expression during vertebrate oocyte maturation and that these changes are controlled by a spatial code of cis-acting sequence elements.
Collapse
Affiliation(s)
- Fei Yang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Wei Wang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Michael D Blower
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
29
|
Mitochondria Associated Germinal Structures in Spermatogenesis: piRNA Pathway Regulation and Beyond. Cells 2020; 9:cells9020399. [PMID: 32050598 PMCID: PMC7072634 DOI: 10.3390/cells9020399] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 12/24/2022] Open
Abstract
Multiple specific granular structures are present in the cytoplasm of germ cells, termed nuage, which are electron-dense, non-membranous, close to mitochondria and/or nuclei, variant size yielding to different compartments harboring different components, including intermitochondrial cement (IMC), piP-body, and chromatoid body (CB). Since mitochondria exhibit different morphology and topographical arrangements to accommodate specific needs during spermatogenesis, the distribution of mitochondria-associated nuage is also dynamic. The most relevant nuage structure with mitochondria is IMC, also called pi-body, present in prospermatogonia, spermatogonia, and spermatocytes. IMC is primarily enriched with various Piwi-interacting RNA (piRNA) proteins and mainly functions as piRNA biogenesis, transposon silencing, mRNA translation, and mitochondria fusion. Importantly, our previous work reported that mitochondria-associated ER membranes (MAMs) are abundant in spermatogenic cells and contain many crucial proteins associated with the piRNA pathway. Provocatively, IMC functionally communicates with other nuage structures, such as piP-body, to perform its complex functions in spermatogenesis. Although little is known about the formation of both IMC and MAMs, its distinctive characters have attracted considerable attention. Here, we review the insights gained from studying the structural components of mitochondria-associated germinal structures, including IMC, CB, and MAMs, which are pivotal structures to ensure genome integrity and male fertility. We discuss the roles of the structural components in spermatogenesis and piRNA biogenesis, which provide new insights into mitochondria-associated germinal structures in germ cell development and male reproduction.
Collapse
|
30
|
Guo AX, Cui JJ, Wang LY, Yin JY. The role of CSDE1 in translational reprogramming and human diseases. Cell Commun Signal 2020; 18:14. [PMID: 31987048 PMCID: PMC6986143 DOI: 10.1186/s12964-019-0496-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
Abstract CSDE1 (cold shock domain containing E1) plays a key role in translational reprogramming, which determines the fate of a number of RNAs during biological processes. Interestingly, the role of CSDE1 is bidirectional. It not only promotes and represses the translation of RNAs but also increases and decreases the abundance of RNAs. However, the mechanisms underlying this phenomenon are still unknown. In this review, we propose a “protein-RNA connector” model to explain this bidirectional role and depict its three versions: sequential connection, mutual connection and facilitating connection. As described in this molecular model, CSDE1 binds to RNAs and cooperates with other protein regulators. CSDE1 connects with different RNAs and their regulators for different purposes. The triple complex of CSDE1, a regulator and an RNA reprograms translation in different directions for each transcript. Meanwhile, a number of recent studies have found important roles for CSDE1 in human diseases. This model will help us to understand the role of CSDE1 in translational reprogramming and human diseases. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Ao-Xiang Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Jia-Jia Cui
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Lei-Yun Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China. .,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China. .,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China. .,Hunan Provincial Gynecological Cancer Diagnosis and Treatment Engineering Research Center, Changsha, 410078, People's Republic of China. .,Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Changsha, 410078, People's Republic of China.
| |
Collapse
|
31
|
Zagore LL, Sweet TJ, Hannigan MM, Weyn-Vanhentenryck SM, Jobava R, Hatzoglou M, Zhang C, Licatalosi DD. DAZL Regulates Germ Cell Survival through a Network of PolyA-Proximal mRNA Interactions. Cell Rep 2019; 25:1225-1240.e6. [PMID: 30380414 PMCID: PMC6878787 DOI: 10.1016/j.celrep.2018.10.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/26/2018] [Accepted: 10/01/2018] [Indexed: 01/25/2023] Open
Abstract
The RNA binding protein DAZL is essential for gametogenesis, but its direct in vivo functions, RNA targets, and the molecular basis for germ cell loss in Dazl-null mice are unknown. Here, we mapped transcriptome-wide DAZL-RNA interactions in vivo, revealing DAZL binding to thousands of mRNAs via polyA-proximal 3′ UTR interactions. In parallel, fluorescence-activated cell sorting and RNA-seq identified mRNAs sensitive to DAZL deletion in male germ cells. Despite binding a broad set of mRNAs, integrative analyses indicate that DAZL post-transcriptionally controls only a subset of its mRNA targets, namely those corresponding to a network of genes that are critical for germ cell proliferation and survival. In addition, we provide evidence that polyA sequences have key roles in specifying DAZL-RNA interactions across the transcriptome. Our results reveal a mechanism for DAZL-RNA binding and illustrate that DAZL functions as a master regulator of a post-transcriptional mRNA program essential for germ cell survival. Combining transgenic mice, FACS, and multiple RNA-profiling methods, Zagore et al. show that DAZL binds thousands of mRNAs via GUU sites upstream of polyA tails. Loss of DAZL results in decreased mRNA levels for a network of genes that are essential for germ cell proliferation and differentiation.
Collapse
Affiliation(s)
- Leah L Zagore
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Thomas J Sweet
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Molly M Hannigan
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Raul Jobava
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chaolin Zhang
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | - Donny D Licatalosi
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
32
|
Rosario R, Crichton JH, Stewart HL, Childs AJ, Adams IR, Anderson RA. Dazl determines primordial follicle formation through the translational regulation of Tex14. FASEB J 2019; 33:14221-14233. [PMID: 31659914 DOI: 10.1096/fj.201901247r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Deleted in azoospermia-like (DAZL) is a germ cell RNA-binding protein that is essential for entry and progression through meiosis. The phenotype of the Dazl knockout mouse has extensive germ cell loss because of incomplete meiosis. We have created a Dazl hypomorph model using short interfering RNA knockdown in mouse fetal ovary cultures, allowing investigation of Dazl function in germ cell maturation. Dazl hypomorph ovaries had a phenotype of impaired germ cell nest breakdown with a 66% reduction in total follicle number and an increase in the proportion of primordial follicles (PMFs), with smaller oocytes within these follicles. There was no significant early germ cell loss or meiotic delay. Immunostaining of intercellular bridge component testis-expressed protein (Tex)14 showed ∼59% reduction in foci number and size, without any change in Tex14 mRNA levels. TEX14 expression was also confirmed in the human fetal ovary across gestation. Using 3'UTR-luciferase reporter assays, translational regulation of TEX14 was demonstrated to be DAZL-dependant. Dazl is therefore essential for normal intercellular bridges within germ cell nests and their timely breakdown, with a major impact on subsequent assembly of PMFs.-Rosario, R., Crichton, J. H., Stewart, H. L., Childs, A. J., Adams, I. R., Anderson, R. A. Dazl determines primordial follicle formation through the translational regulation of Tex14.
Collapse
Affiliation(s)
- Roseanne Rosario
- Medical Research Council (MRC) Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - James H Crichton
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Hazel L Stewart
- Medical Research Council (MRC) Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew J Childs
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ian R Adams
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Richard A Anderson
- Medical Research Council (MRC) Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
33
|
Schisa JA. Germ Cell Responses to Stress: The Role of RNP Granules. Front Cell Dev Biol 2019; 7:220. [PMID: 31632971 PMCID: PMC6780003 DOI: 10.3389/fcell.2019.00220] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/18/2019] [Indexed: 11/13/2022] Open
Abstract
The ability to respond to stress is critical to survival for animals. While stress responses have been studied at both organismal and cellular levels, less attention has been given to the effect of stress on the germ line. Effective germ line adaptations to stress are essential to the propagation of a species. Recent studies suggest that germ cells share some cellular responses to stress with somatic cells, including the assembly of RNP granules, but may also have unique requirements. One fundamental difference between oocytes and sperm, as well as most somatic cells, is the long lifespan of oocytes. Since women are born with all of their eggs, oocytes must maintain their cellular quality over decades prior to fertilization. This prolonged meiotic arrest is one type of stress that eventually contributes to decreased fertility in older women. Germ cell responses to nutritional stress and heat stress have also been well-characterized using model systems. Here we review our current understanding of how germ cells respond to stress, with an emphasis on the dynamic assembly of RNP granules that may be adaptive. We compare and contrast stress responses of male gametes with those of female gametes, and discuss how the dynamic cellular remodeling of the germ line can impact the regulation of gene expression. We also discuss the implications of recent in vitro studies of ribonucleoprotein granule assembly on our understanding of germ line responses to stress, and the gaps that remain in our understanding of the function of RNP granules during stress.
Collapse
Affiliation(s)
- Jennifer A Schisa
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| |
Collapse
|
34
|
Ozturk S. The translational functions of embryonic poly(A)‐binding protein during gametogenesis and early embryo development. Mol Reprod Dev 2019; 86:1548-1560. [DOI: 10.1002/mrd.23253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 07/26/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Saffet Ozturk
- Department of Histology and EmbryologyAkdeniz University School of MedicineAntalya Turkey
| |
Collapse
|
35
|
Li H, Liang Z, Yang J, Wang D, Wang H, Zhu M, Geng B, Xu EY. DAZL is a master translational regulator of murine spermatogenesis. Natl Sci Rev 2019; 6:455-468. [PMID: 31355046 PMCID: PMC6660020 DOI: 10.1093/nsr/nwy163] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/12/2018] [Accepted: 12/27/2018] [Indexed: 12/30/2022] Open
Abstract
Expression of DAZ-like (DAZL) is a hallmark of vertebrate germ cells, and is essential for embryonic germ cell development and differentiation, yet the gametogenic function of DAZL has not been fully characterized and most of its in vivo direct targets remain unknown. We showed that postnatal stage-specific deletion of Dazl in mouse germ cells did not affect female fertility, but caused complete male sterility with gradual loss of spermatogonial stem cells, meiotic arrest and spermatid arrest. Using the genome-wide high-throughput sequencing of RNAs isolated by cross-linking immunoprecipitation and mass spectrometry approach, we found that DAZL bound to a large number of testicular mRNA transcripts (at least 3008) at the 3'-untranslated region and interacted with translation proteins including poly(A) binding protein. In the absence of DAZL, polysome-associated target transcripts, but not their total transcripts, were significantly decreased, resulting in a drastic reduction of an array of spermatogenic proteins and thus developmental arrest. Thus, DAZL is a master translational regulator essential for spermatogenesis.
Collapse
Affiliation(s)
- Haixin Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Zhuqing Liang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Jian Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Dan Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Hanben Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Mengyi Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Baobao Geng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Eugene Yujun Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
36
|
Wilburn DB, Feldhoff RC. An annual cycle of gene regulation in the red-legged salamander mental gland: from hypertrophy to expression of rapidly evolving pheromones. BMC DEVELOPMENTAL BIOLOGY 2019; 19:10. [PMID: 31029098 PMCID: PMC6487043 DOI: 10.1186/s12861-019-0190-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
Abstract
Background Cell differentiation is mediated by synchronized waves of coordinated expression for hundreds to thousands of genes, and must be regulated to produce complex tissues and phenotypes. For many animal species, sexual selection has driven the development of elaborate male ornaments, requiring sex-specific differentiation pathways. One such male ornament is the pheromone-producing mental gland of the red-legged salamander (Plethodon shermani). Mental gland development follows an annual cycle of extreme hypertrophy, production of pheromones for the ~ 2 month mating season, and then complete resorption before repeating the process in the following year. At the peak of the mating season, the transcriptional and translational machinery of the mental gland are almost exclusively redirected to the synthesis of rapidly evolving pheromones. Of these pheromones, Plethodontid Modulating Factor (PMF) has experienced an unusual history: following gene duplication, the protein coding sequence diversified from positive sexual selection while the untranslated regions have been conserved by purifying selection. The molecular underpinnings that bridge the processes of gland hypertrophy, pheromone synthesis, and conservation of the untranslated regions remain to be determined. Results Using Illumina sequencing, we prepared a de novo transcriptome of the mental gland at six stages of development. Differential expression analysis and immunohistochemistry revealed that the mental gland initially adopts a highly proliferative, almost tumor-like phenotype, followed by a rapid increase in pheromone mRNA and protein. One likely player in this transition is Cold Inducible RNA Binding Protein (CIRBP), which selectively and cooperatively binds the highly conserved PMF 3′ UTR. CIRBP, along with other proteins associated with stress response, have seemingly been co-opted to aid in mental gland development by helping to regulate pheromone synthesis. Conclusions The P. shermani mental gland utilizes a complex system of transcriptional and post-transcriptional gene regulation to facilitate its hypertrophication and pheromone synthesis. The data support the evolutionary interplay of coding and noncoding segments in rapid gene evolution, and necessitate the study of co-evolution between pheromone gene products and their transcriptional/translational regulators. Additionally, the mental gland could be a powerful emerging model of regulated tissue proliferation and subsequent resorption within the dermis and share molecular links to skin cancer biology. Electronic supplementary material The online version of this article (10.1186/s12861-019-0190-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Damien B Wilburn
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, 40292, USA. .,Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA.
| | - Richard C Feldhoff
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, 40292, USA
| |
Collapse
|
37
|
Dynamic interaction of poly(A)-binding protein with the ribosome. Sci Rep 2018; 8:17435. [PMID: 30487538 PMCID: PMC6261967 DOI: 10.1038/s41598-018-35753-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/09/2018] [Indexed: 01/15/2023] Open
Abstract
Eukaryotic mRNA has a cap structure and a poly(A) tail at the 5′ and 3′ ends, respectively. The cap structure is recognized by eIF (eukaryotic translation initiation factor) 4 F, while the poly(A) tail is bound by poly(A)-binding protein (PABP). PABP has four RNA recognition motifs (RRM1–4), and RRM1-2 binds both the poly(A) tail and eIF4G component of eIF4F, resulting in enhancement of translation. Here, we show that PABP interacts with the 40S and 60S ribosomal subunits dynamically via RRM2-3 or RRM3-4. Using a reconstituted protein expression system, we demonstrate that wild-type PABP activates translation in a dose-dependent manner, while a PABP mutant that binds poly(A) RNA and eIF4G, but not the ribosome, fails to do so. From these results, functional significance of the interaction of PABP with the ribosome is discussed.
Collapse
|
38
|
Wang X, Wen Y, Dong J, Cao C, Yuan S. Systematic In-Depth Proteomic Analysis of Mitochondria-Associated Endoplasmic Reticulum Membranes in Mouse and Human Testes. Proteomics 2018; 18:e1700478. [DOI: 10.1002/pmic.201700478] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/29/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Xiaoli Wang
- Family Planning Research Institute; Center of Reproductive Medicine; Tongji Medical College; Huazhong University of Science and Technology; 430030 Wuhan P.R. China
| | - Yujiao Wen
- Family Planning Research Institute; Center of Reproductive Medicine; Tongji Medical College; Huazhong University of Science and Technology; 430030 Wuhan P.R. China
| | - Juan Dong
- Family Planning Research Institute; Center of Reproductive Medicine; Tongji Medical College; Huazhong University of Science and Technology; 430030 Wuhan P.R. China
| | - Congcong Cao
- Family Planning Research Institute; Center of Reproductive Medicine; Tongji Medical College; Huazhong University of Science and Technology; 430030 Wuhan P.R. China
| | - Shuiqiao Yuan
- Family Planning Research Institute; Center of Reproductive Medicine; Tongji Medical College; Huazhong University of Science and Technology; 430030 Wuhan P.R. China
| |
Collapse
|
39
|
Fukuda K, Masuda A, Naka T, Suzuki A, Kato Y, Saga Y. Requirement of the 3'-UTR-dependent suppression of DAZL in oocytes for pre-implantation mouse development. PLoS Genet 2018; 14:e1007436. [PMID: 29883445 PMCID: PMC6010300 DOI: 10.1371/journal.pgen.1007436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/20/2018] [Accepted: 05/19/2018] [Indexed: 12/25/2022] Open
Abstract
Functional oocytes are produced through complex molecular and cellular processes. In particular, the contribution of post-transcriptional gene regulation mediated by RNA-binding proteins (RBPs) is crucial for controlling proper gene expression during this process. DAZL (deleted in azoospermia-like) is one of the RBPs required for the sexual differentiation of primordial germ cells and for the progression of meiosis in ovulated oocytes. However, the involvement of DAZL in the development of follicular oocytes is still unknown. Here, we show that Dazl is translationally suppressed in a 3'-UTR-dependent manner in follicular oocytes, and this suppression is required for normal pre-implantation development. We found that suppression of DAZL occurred in postnatal oocytes concomitant with the formation of primordial follicles, whereas Dazl mRNA was continuously expressed throughout oocyte development, raising the possibility that DAZL is dispensable for the survival and growth of follicular oocytes. Indeed, follicular oocyte-specific knockout of Dazl resulted in the production of normal number of pups. On the other hand, genetically modified female mice that overexpress DAZL produced fewer numbers of pups than the control due to defective pre-implantation development. Our data suggest that post-transcriptional suppression of DAZL in oocytes is an important mechanism controlling gene expression in the development of functional oocytes.
Collapse
Affiliation(s)
- Kurumi Fukuda
- Division of Mammalian Development, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
| | - Aki Masuda
- Division of Mammalian Development, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Takuma Naka
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Faculty of Engineering, Yokohama National University, Yokohama Kanagawa, Japan
| | - Atsushi Suzuki
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Faculty of Engineering, Yokohama National University, Yokohama Kanagawa, Japan
| | - Yuzuru Kato
- Division of Mammalian Development, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
- * E-mail: (YK); (YS)
| | - Yumiko Saga
- Division of Mammalian Development, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail: (YK); (YS)
| |
Collapse
|
40
|
Post-transcriptional regulation in planarian stem cells. Semin Cell Dev Biol 2018; 87:69-78. [PMID: 29870807 DOI: 10.1016/j.semcdb.2018.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/17/2022]
Abstract
Planarians are known for their immense regenerative abilities. A pluripotent stem cell population provides the cellular source for this process, as well as for the homeostatic cell turnover of the animals. These stem cells, known as neoblasts, present striking similarities at the morphological and molecular level to germ cells, but however, give rise to somatic tissue. Many RNA binding proteins known to be important for germ cell biology are also required for neoblast function, highlighting the importance of post-transcriptional regulation for stem cell control. Many of its aspects, including alternative splicing, alternative polyadenylation, translational control and mRNA deadenylation, as well as small RNAs such as microRNAs and piRNA are critical for stem cells. Their inhibition often abrogates both regeneration and cell turnover, resulting in lethality. Some of aspects of post-transcriptional regulation are conserved from planarian to mammalian stem cells.
Collapse
|
41
|
Zhu W, Wang T, Zhao C, Wang D, Zhang X, Zhang H, Chi M, Yin S, Jia Y. Evolutionary conservation and divergence of Vasa, Dazl and Nanos1 during embryogenesis and gametogenesis in dark sleeper (Odontobutis potamophila). Gene 2018; 672:21-33. [PMID: 29885464 DOI: 10.1016/j.gene.2018.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 11/17/2022]
Abstract
Germline-specific genes, Vasa, Dazl and Nanos1, have highly conserved functions in germline development and fertility across animal phyla. In this study, the full-length sequences of Opvasa, Opdazl and Opnanos1 were cloned and characterized from the dark sleeper (Odontobutis potamophila). Gonad-specific expression patterns of Opvasa and Opdazl were confirmed in adult tissues by quantitative real-time PCR (qRT-PCR). Different from Opvasa and Opdazl, the expression of Opnanos1 was ubiquitously detected in all examined tissues except for the liver and spleen. Time-course dynamic expressions during embryogenesis were assessed, and all three genes (Opvasa, Opdazl and Opnanos1) persisted at a high level until gastrulation. qRT-PCR and Western blotting analyses revealed that all three genes were highly expressed throughout gametogenesis. In testis, the expressions of all three genes at the mRNA and protein levels were down-regulated during spermatogenesis. In ovary, different expression patterns were found, and all three genes had a differential role in translational regulation during oogenesis. The expressions of Opvasa, Opdazl and Opnanos1 at the mRNA but not the protein level were high in stage IV. Different expression patterns were found in premeiotic gonads treated by HPG axis hormones (HCG and LHRH-A). Immunolocalization analysis demonstrated that in testis, Opvasa, Opdazl and Opnanos1 were detected in spermatogonia and spermatocytes but absent in the meiotic products, such as spermatids and spermatozoa. In ovary, Opvasa, Opdazl and Opnanos1 persisted at a high level throughout oogenesis. These findings indicated that Opvasa, Opdazl and Opnanos1 played an important role in mitotic and early meiotic phases of oogenesis and spermatogenesis, and they functioned as maternal factors in early embryogenesis. Their proteins could be used as three new markers for germ cells during gametogenesis in O. potamophila gonad. Our data laid a good foundation for improving the breeding efficiency of O. potamophila.
Collapse
Affiliation(s)
- Wenxu Zhu
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Tao Wang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Cheng Zhao
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Dan Wang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Xinyu Zhang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Hongyan Zhang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Meili Chi
- Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Shaowu Yin
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| | - Yongyi Jia
- Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China.
| |
Collapse
|
42
|
Conti M, Franciosi F. Acquisition of oocyte competence to develop as an embryo: integrated nuclear and cytoplasmic events. Hum Reprod Update 2018; 24:245-266. [PMID: 29432538 PMCID: PMC5907346 DOI: 10.1093/humupd/dmx040] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/01/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Infertility affects ~7% of couples of reproductive age with little change in incidence in the last two decades. ART, as well as other interventions, have made major strides in correcting this condition. However, and in spite of advancements in the field, the age of the female partner remains a main factor for a successful outcome. A better understanding of the final stages of gamete maturation yielding an egg that can sustain embryo development and a pregnancy to term remains a major area for improvement in the field. This review will summarize the major cellular and molecular events unfolding at the oocyte-to-embryo transition. We will provide an update on the most important processes/pathways currently understood as the basis of developmental competence, including the molecular processes involved in mRNA storage, its recruitment to the translational machinery, and its degradation. We will discuss the hypothesis that the translational programme of maternal mRNAs plays a key role in establishing developmental competence. These regulations are essential to assemble the machinery that is used to establish a totipotent zygote. This hypothesis further supports the view that embryogenesis begins during oogenesis. A better understanding of the events required for developmental competence will guide the development of novel strategies to monitor and improve the success rate of IVF. Using this information, it will be possible to develop new biomarkers that may be used to better predict oocyte quality and in selection of the best egg for IVF.
Collapse
Affiliation(s)
- Marco Conti
- Department of OBGYN-RS, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0556, USA
| | - Federica Franciosi
- Department of OBGYN-RS, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0556, USA
| |
Collapse
|
43
|
Harvey RF, Smith TS, Mulroney T, Queiroz RML, Pizzinga M, Dezi V, Villenueva E, Ramakrishna M, Lilley KS, Willis AE. Trans-acting translational regulatory RNA binding proteins. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1465. [PMID: 29341429 PMCID: PMC5947564 DOI: 10.1002/wrna.1465] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/31/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022]
Abstract
The canonical molecular machinery required for global mRNA translation and its control has been well defined, with distinct sets of proteins involved in the processes of translation initiation, elongation and termination. Additionally, noncanonical, trans-acting regulatory RNA-binding proteins (RBPs) are necessary to provide mRNA-specific translation, and these interact with 5' and 3' untranslated regions and coding regions of mRNA to regulate ribosome recruitment and transit. Recently it has also been demonstrated that trans-acting ribosomal proteins direct the translation of specific mRNAs. Importantly, it has been shown that subsets of RBPs often work in concert, forming distinct regulatory complexes upon different cellular perturbation, creating an RBP combinatorial code, which through the translation of specific subsets of mRNAs, dictate cell fate. With the development of new methodologies, a plethora of novel RNA binding proteins have recently been identified, although the function of many of these proteins within mRNA translation is unknown. In this review we will discuss these methodologies and their shortcomings when applied to the study of translation, which need to be addressed to enable a better understanding of trans-acting translational regulatory proteins. Moreover, we discuss the protein domains that are responsible for RNA binding as well as the RNA motifs to which they bind, and the role of trans-acting ribosomal proteins in directing the translation of specific mRNAs. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Translation > Translation Regulation Translation > Translation Mechanisms.
Collapse
Affiliation(s)
| | - Tom S. Smith
- Cambridge Centre for Proteomics, Department of BiochemistryUniversity of CambridgeCambridgeUK
| | | | - Rayner M. L. Queiroz
- Cambridge Centre for Proteomics, Department of BiochemistryUniversity of CambridgeCambridgeUK
| | | | | | - Eneko Villenueva
- Cambridge Centre for Proteomics, Department of BiochemistryUniversity of CambridgeCambridgeUK
| | | | - Kathryn S. Lilley
- Cambridge Centre for Proteomics, Department of BiochemistryUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
44
|
Rosario R, Smith RWP, Adams IR, Anderson RA. RNA immunoprecipitation identifies novel targets of DAZL in human foetal ovary. Mol Hum Reprod 2017; 23:177-186. [PMID: 28364521 PMCID: PMC5943682 DOI: 10.1093/molehr/gax004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 01/25/2017] [Indexed: 12/15/2022] Open
Abstract
Study question Can novel meiotic RNA targets of DAZL (deleted in azoospermia-like) be identified in the human foetal ovary? Summary answer SYCP1 (synaptonemal complex protein-1), TEX11 (testis expressed 11) and SMC1B (structural maintenance of chromosomes 1B) are novel DAZL targets in the human foetal ovary, thus DAZL may have previously unrecognised roles in the translational regulation of RNAs involved in chromosome cohesion and DNA recombination in the oocyte from the time of initiation of meiosis. What is known already The phenotype of Dazl deficiency in mouse is infertility in both sexes and DAZL has also been linked to infertility in humans. Few studies have explored targets of this RNA-binding protein. The majority of these investigations have been carried out in mouse, and have focussed on the male thus the basis for its central function in regulating female fertility is largely unknown. Study design size, duration We carried out RNA sequencing after immunoprecipitation of endogenous DAZL from human foetal ovarian tissue (17 weeks of gestation, obtained after elective termination of pregnancy) to identify novel DAZL targets involved in meiosis (n = 3 biological replicates). Participants/materials, setting, methods Using quantitative RT-PCR, we examined the expression of selected RNAs identified by our immunoprecipitation across gestation, and visualised the expression of potential target SMC1B in relation to DAZL, with a combination of in situ hybridisation and immunohistochemistry. 3′ untranslated region (3′UTR)-luciferase reporter assays and polysome profile analysis were used to investigate the regulation of three RNA targets by DAZL, representing key functionalities: SYCP1, TEX11 and SMC1B. Main results and the role of chance We identified 764 potential RNA targets of DAZL in the human foetal ovary (false discovery rate 0.05 and log-fold change ≥ 2), with functions in synaptonemal complex formation (SYCP1, SYCP3), cohesin formation (SMC1B, RAD21), spindle assembly checkpoint (MAD2L1, TRIP13) and recombination and DNA repair (HORMAD1, TRIP13, TEX11, RAD18, RAD51). We demonstrated that the translation of novel targets SYCP1 (P = 0.004), TEX11 (P = 0.004) and SMC1B (P = 0.002) is stimulated by the presence of DAZL but not by a mutant DAZL with impaired RNA-binding activity. Large scale data The raw data are available at GEO using the study ID: GSE81524. Limitations, reasons for caution This analysis is based on identification of DAZL targets at the time when meiosis starts in the ovary: it may have other targets at other stages of oocyte development, and in the testis. Representative targets were validated, but detailed analysis was not performed on the majority of putative targets. Wider implications of the findings These data indicate roles for DAZL in the regulation of several key functions in human oocytes. Through the translational regulation of novel RNA targets SMC1B and TEX11, DAZL may have a key role in regulating chromosome cohesion and DNA recombination; two processes fundamental in determining oocyte quality and whose establishment in foetal life may support lifelong fertility. Study funding and competing interest(s) This study was supported by the UK Medical Research Council (grant no G1100357 to R.A.A. and an intramural MRC programme grant to I.R.A.). The authors declare no competing interests.
Collapse
Affiliation(s)
- Roseanne Rosario
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Richard W P Smith
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Ian R Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
45
|
Abstract
In mammalian development, primordial germ cells (PGCs) represent the initial population of cells that are committed to the germ cell lineage. PGCs segregate early in development, triggered by signals from the extra-embryonic ectoderm. They are distinguished from surrounding cells by their unique gene expression patterns. Some of the more common genes used to identify them are Blimp1, Oct3/4, Fragilis, Stella, c-Kit, Mvh, Dazl and Gcna1. These genes are involved in regulating their migration and differentiation, and in maintaining the pluripotency of these cells. Recent research has demonstrated the possibility of obtaining PGCs, and subsequently, mature germ cells from a starting population of embryonic stem cells (ESCs) in culture. This phenomenon has been investigated using a variety of methods, and ESC lines of both mouse and human origin. Embryonic stem cells can differentiate into germ cells of both the male and female phenotype and in one case has resulted in the birth of live pups from the fertilization of oocytes with ESC derived sperm. This finding leads to the prospect of using ESC derived germ cells as a treatment for sterility. This review outlines the evolvement of germ cells from ESCs in vitro in relation to in vivo events.
Collapse
Affiliation(s)
- Deshira Saiti
- Monash Immunology and Stem Cell Laboratories, Level 3, STRIP 1 – Buildings 75, Monash University, Wellington Rd., Clayton, Australia, 3800
| | - Orly Lacham-Kaplan
- Monash Immunology and Stem Cell Laboratories, Level 3, STRIP 1 – Buildings 75, Monash University, Wellington Rd., Clayton, Australia, 3800
| |
Collapse
|
46
|
Rengaraj D, Lee BR, Han JY, Pang MG. Comprehensive analysis on the homology, interaction, and miRNA regulators of human deleted in azoospermia proteins: updated evolutionary relationships with primates. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0598-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Lee WY, Lee R, Park HJ, Do JT, Park C, Kim JH, Jhun H, Lee JH, Hur T, Song H. Characterization of male germ cell markers in canine testis. Anim Reprod Sci 2017; 182:1-8. [DOI: 10.1016/j.anireprosci.2017.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/06/2017] [Accepted: 01/07/2017] [Indexed: 12/27/2022]
|
48
|
Hewetson A, Do HQ, Myers C, Muthusubramanian A, Sutton RB, Wylie BJ, Cornwall GA. Functional Amyloids in Reproduction. Biomolecules 2017; 7:biom7030046. [PMID: 28661450 PMCID: PMC5618227 DOI: 10.3390/biom7030046] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 11/16/2022] Open
Abstract
Amyloids are traditionally considered pathological protein aggregates that play causative roles in neurodegenerative disease, diabetes and prionopathies. However, increasing evidence indicates that in many biological systems nonpathological amyloids are formed for functional purposes. In this review, we will specifically describe amyloids that carry out biological roles in sexual reproduction including the processes of gametogenesis, germline specification, sperm maturation and fertilization. Several of these functional amyloids are evolutionarily conserved across several taxa, including human, emphasizing the critical role amyloids perform in reproduction. Evidence will also be presented suggesting that, if altered, some functional amyloids may become pathological.
Collapse
Affiliation(s)
- Aveline Hewetson
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Hoa Quynh Do
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Caitlyn Myers
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Archana Muthusubramanian
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Roger Bryan Sutton
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Benjamin J Wylie
- Department of Chemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Gail A Cornwall
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
49
|
In vitro differentiation of human embryonic stem cells into ovarian follicle-like cells. Nat Commun 2017; 8:15680. [PMID: 28604658 PMCID: PMC5472783 DOI: 10.1038/ncomms15680] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 04/19/2017] [Indexed: 12/20/2022] Open
Abstract
Understanding the unique mechanisms of human oogenesis necessitates the development of an in vitro system of stem cell differentiation into oocytes. Specialized cell types and organoids have been derived from human pluripotent stem cells in vitro, but generating a human ovarian follicle remains a challenge. Here we report that human embryonic stem cells can be induced to differentiate into ovarian follicle-like cells (FLCs) in vitro. First, we find that two RNA-binding proteins specifically expressed in germ cells, DAZL and BOULE, regulate the exit from pluripotency and entry into meiosis. By expressing DAZL and BOULE with recombinant human GDF9 and BMP15, these meiotic germ cells are further induced to form ovarian FLCs, including oocytes and granulosa cells. This robust in vitro differentiation system will allow the study of the unique molecular mechanisms underlying human pluripotent stem cell differentiation into late primordial germ cells, meiotic germ cells and ovarian follicles.
Collapse
|
50
|
Viral and cellular mRNA-specific activators harness PABP and eIF4G to promote translation initiation downstream of cap binding. Proc Natl Acad Sci U S A 2017; 114:6310-6315. [PMID: 28559344 DOI: 10.1073/pnas.1610417114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Regulation of mRNA translation is a major control point for gene expression and is critical for life. Of central importance is the complex between cap-bound eukaryotic initiation factor 4E (eIF4E), eIF4G, and poly(A) tail-binding protein (PABP) that circularizes mRNAs, promoting translation and stability. This complex is often targeted to regulate overall translation rates, and also by mRNA-specific translational repressors. However, the mechanisms of mRNA-specific translational activation by RNA-binding proteins remain poorly understood. Here, we address this deficit, focusing on a herpes simplex virus-1 protein, ICP27. We reveal a direct interaction with PABP that is sufficient to promote PABP recruitment and necessary for ICP27-mediated activation. PABP binds several translation factors but is primarily considered to activate translation initiation as part of the PABP-eIF4G-eIF4E complex that stimulates the initial cap-binding step. Importantly, we find that ICP27-PABP forms a complex with, and requires the activity of, eIF4G. Surprisingly, ICP27-PABP-eIF4G complexes act independently of the effects of PABP-eIF4G on cap binding to promote small ribosomal subunit recruitment. Moreover, we find that a cellular mRNA-specific regulator, Deleted in Azoospermia-like (Dazl), also employs the PABP-eIF4G interaction in a similar manner. We propose a mechanism whereby diverse RNA-binding proteins directly recruit PABP, in a non-poly(A) tail-dependent manner, to stimulate the small subunit recruitment step. This strategy may be particularly relevant to biological conditions associated with hypoadenylated mRNAs (e.g., germ cells/neurons) and/or limiting cytoplasmic PABP (e.g., viral infection, cell stress). This mechanism adds significant insight into our knowledge of mRNA-specific translational activation and the function of the PABP-eIF4G complex in translation initiation.
Collapse
|